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R A I R O Analyse Numenque/Numencal Analysis
(vol 11, n° 2, 1977, p 197 a 208)

ERROR ESTIMATES FOR THE APPROXIMATION
OF SOME UNILATERAL PROBLEMS (*) ( )

by Francesco SCARPINI and Maria Agostma VIVALDI (2)
Communique par P A RAVIART

Abstract — Anenot estimate foi the ajfine finite element approximation of some umlatet al
probiems is given

1. INTRODUCTION

In the mechanics of Fluids through semipermeable boundary the followmg
problem is studied *

- A u = / in Q; u > i|/> JjJ > 0, (M - ^ ) | ^ = 0 on F (1)

where F is a thm membrane around the space D. filied by the fluid : semi-
permeable means that the fluid is allowed to enter but not to escape.

A dénotes the Laplace operator, u the pressure of the fluid in lts stable
condition, / the amount of the fluid that has been put in, \|/ dénotes the

external fluid pressure on F, -r- the outer normal derivative on F

(1) can be used also to sketch some probiems m thermo-dynamics or
electnc dynamics

A system such as (1 ) is known m the hterature as a complementarity system
and can be solved when some compatibihty conditions are imposed on ƒ
(see [8])

lf the internai pressure u is greater than the external one \|/ then the semi-

s o — = 0 ).

If v|/ is greater or equal than w, the external fluid enters through F f— ^ 0
until there is u = v|/ ; m theory there is no w < v|/. \

(*) Thib paper has been partially supported by GNAFA-C N R
l1} Manusent reçu le 10 décembre 1975
(2) Istituto Matematico Universitd di Roma
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198 F SCARPINI, M A VIVALDI

The membrane could be devided into two parts I \ and F2

on I \ we have u = v|/ (Dinchlet condition),

on F2 we have — = 0(Neumann condition).

but we look at (1) as a free boundary problem because we do not know I \
or F2 .

We shall study some vanational mequahties (with coerciveness assump-
tion) (cfr [23]), we shall consider an approximation usmg the tnangular
affine éléments : the solutions of the correspondmg discrete complementanty
Systems are supposed known.

Our purpose is to estimate the distance between the exact solution u
and the discrete one uh.

2. THE BASIC NOTATION AND TERMINOLOGY

Q dénotes a bounded, open set of R2, F dénotes the boundary of Q
and Q the closure of Q so that Q = Q, u F : Q is supposed with "not too
bad" a boundary.

Ck(Q), (k = 0, 1, 2, . .) is a Banach space, the éléments of which are
functions that are contmuous m Q and have contmuous denvatives m Q of
the first k order : the norm is defined by :

Hlc*(5,= I

Af ir = -i- oo the functions £*re mfinitely
®(Q) is the space of the functions of C°°(O) which are zero m a

neighbourhood of d Q, and we put on it Schwartz's topology,
IF (Q), (1 < p < + oo) dénotes the Banach space of all functions on Q that
are measurable and p-summable in Q. the norm in this space is defined by

or if p = +oo a e. bounded in Q, (the éléments LP(Q) are the class of
equivalent functions on Cl).

Wk'p(Q)y (k e N, 1 < p < + oo) dénotes the Banach space of all éléments
of LP(Q) that have generahzed denvatives of all kmds of the first k orders
that are p-summable m Q. : the norm is defined by

/ \

\W\<k }
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Wk
0>

p (Q) dénotes the closure in the space Wk>p(Q) of 3 (Q) ; for further details
and for the spaces WS>P(Q), with s real, see e.g. [15] and [20].

We shall use the following notations

Hk(Q) = Wk-2(Q) ; Hk
0(Q) = Wk>2(Q)

1/2

3. VARIATIONAL FORMULATION OF THE PROBLEM

Let us look at the following form

a(u,v)= ( £ dijix)^.^* ao(x)uv)dx

where ai} (x) e C1 (Q), and a0 (x) e L00 (O)

let us suppose :
2

£ a y (x )^^ . > a0 |^|2 V ^ e R 2 , a0 > 0 and ao(x) > c > 0

so that a ( . , . ) is a bilinear, continuous, coercive form on HX(Q) x H1 (Q)
i. e.

|fl(«, i?)| < M ||i*||1(n . | | Î ; | | 1 ) Q , oc, M G R; a > 0, M > 0

We shall consider the problem

ueK:a(u,v - u) ^ < ƒ v - u> VveK (2)

where K is a convex set :

K = { v 11? 6 H1 (Q) : v > • on T }

<5 > dénotes the pairing between (i/1 (Q))' and Jï1 (Q), feL2 (Q), ^ e i72 (Q).
In these conditions (see e. g. [3], [14]) there is one and only one

solution u of the problem (2) and u e H2 (Q).
In what follows we sball use the notations :

where n is the outer normal to F.

vol. 11, n°2, 1977



200 F. SCARPINI, M, A. VIVALDI

Let us recall (see [14]) the problem (2) is equivalent to the following
System :

Lu = ƒ in Q

u 2: ^ on F

?*o on r <3>

(»-*>!=°n r

REMARK 3.1.

If ûij = an the problem (2) can be formulated as follows :

find ne K such that

J(u) = inf J(v)
veK

where J(v) = -jCi(v9 v) — < ƒ» v > is a weakly lower semicontinuous, strictly

convex, differentiable functional.

4. A DISCRETIZATION OF THF PROBLEM BY THE FINITE ELEMENT METHOD

We shall sketch hère an approximation of problem (2) by means of
triangular affine éléments.

We shall suppose that Q is a bounded convex open subset of R2, with
a smooth boundary r (e. g. C2).

Given h, 0 < h < 1, we first inscribe a polygon Qh in Q. whose vertices
belong to F and whose sides have a length which does not exceed h.

We then décompose Qh into triangles in such a way that :

o < i < K tir < p , o < 9 0 < & ^ - |

where P and 90 <~ are given positive constants /» /', T are lenghts of

arbitrary sides of the triangulation» 9 an arbitrary angle of our triangles,
(As always, the triangulation is not permitted to place a vertex of one

triangle along the edge of another, each pair of triangles shares a vertex, a
whole edge, or nothing.)

We call "regular" (see [2], [11]) such a triangulation.

R.A.I.R.O. Analyse Numérique/Numerical Analysis
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We shall dénote by Io = { 1, . . . , No } the set of all indices i associated with
the internai nodes xt of the triangulation (xt e Q) and we shall dénote by
I1 = { No + i, . . . 9 N } the set of all indices i associated with the boundary
nodes of the triangulation (x( e 3 Cl) : and let be I = IQ u I1.

We number the vertices in such a way that xNo+l9 ...9xN are the
boundary vertices, numbered consecutively counterclockwise around F :
the curved side (lying on F) with end points xh xi+1 is F£ (for sake of
notation we shall make the identification xN+1 — xNo+1) we shall dénote
by S£ the zone between the curved side Tt and the right side with endpoints xt,
xi+1, and by Tt the triangle corresponding to the [xi+1, jcf] side: finally
we shall call curved éléments the following subdomains :

For each i e I, we shall consider the continuous function

which is affine in each triangular or curved (see the above position)
element of the décomposition, is = 1 at xt and = 0 in all Xj ^ xh j e L

We shall now consider the piecewise affine function vh(x) defined by

ie/

and the space :

(trivially H\ (Q) is contained in the space H1 (Q)).
In [2] it was shown that :

\\u - ttj||rA < eh2'' \u\2tÇlh , r = 0,l, Vu

where Uj(x) is the piecewise affine function which interpolâtes u at every
vertex

Uj{x) =
i e /

but we can modify the process of the quoted paper and using the regularity
conditions of the décomposition and a continuous extension theorem in the
seminorms (see [26]) we can obtain :

\\u - M/||riO < ch2~r \u\2,a , r = 0,l. (6)

We shall consider the convex

Kh = { vh (x) :vheHl (Cl)/vh (xt) > * (x,) V i e I, }

vol. l l , n o 2 , 1977
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The approximate problem is obtained by replacing K with Kh in problem (2)

uheKh: a{uh, uh - vh) < < ƒ, uh - vh > \lvh e Kh (7)

Let us write the discrete problem by replacing the expression (4) of uh(x)
that is :

iel

PROPOSITION 4 .1 . The problem (7) is equivalent to the following discrete
System.

uu %. ^ u (9)
Mt^A^Ut-b^^O

where A = A n = { au } i J e I , atJ = a(<f>Hj, cp?); bt = { bt } i e l

PROOF. By choosing vh = uh ± (p* for every i e Io we find the first équation

h) M, = £ ayt/, - fc( = 0 i e / 0 .

The second condition in (9) is the définition of Kh

ii») UtZVt ieh

By putting wfc = uh + cp* i e Ix we have
iii*) M j = £ a y t / j - & , . ^ 0 i e / ! -

The last condition in (9) is obtained by choosing

in fact ift)gives

and with choices : 8 > 1, 1 > e > 0 due to iih) and iiij we find :

It is easy to check, in turn, that if we take the coefficients Uj of the
function (8) to be the solution of (9) then uh(x) is the solution of (7).

R.A.I.R.O. Analyse Numérique/Numerical Analysis
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REMARIC 4 . 1 . The matrix A belongs to the class (P) that is to say,
all principal minors A3J = {ahtk)hkeJ, J e I have a positive determinant;
therefore the existence and uniqueness of the solution Uj of (9) is a well
known resuit; if A belongs, also, to the class (Z), that is atj < 0 (/ ^ j) (*)
then a monotone algorithm for solving system (9) can be found, (see
e. g. [12], [17], [22] for other unilatéral problems).

5. ERROR ESTIMATES

In order to estimate the distance between the solutions u of (2) and
uh of (7) we shall follow the procedure described in [9] for another
unilatéral problem; of course our problem demands some modifications of
the Falk's method for the "inability" of piecewise polinomials to satisfy the
conditions on a curved boundary.

Our main resuit is this: the error is of order ft* in the energy norm:

THEOREM I. We have

II" " "*Ln < ̂  (**) (10)

Proof. Let us now write the inequalities (2) and (7) by choosing v = 4*
in (2) and v = ut in (7)

a(u,u - v | / ) < < / , w ~ \ | / >
a(uh, uh - Uj) < < f,uk - Uj >

Wefind

a(u, u) + a(uh, uh) < < / u - ur + uh - x|/ > + a(u, ^ ) + a(uh, Mf)

and, by subtracting a(ut uh) H- a(uh, u\ also

a(u - Wfc, W - Uh) < < ƒ U - Uj + Mh - \|/ > - û ( « , W - Wx + Mh - XJ/)

+ a(u - uh,u - Uj).

Let us write the inequality using Green's formula
a(w - wft5 w - «J < (ƒ - Li4, M - u, + Mh - ^) + a(u — uh, u - w7) -

(*) This is true, for example, for Lu — —Au + aou.
{**) In the sequel C will dénote a generic constant not necessanly the same in any two

places.

vol 11. n°2. 1977
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and by the first équation of the system (3)

a(u - u h 9 u - uh) < a(u - uh,u - u,) - \ (u - ux + uh - ^)-~ dT (11)

We shall split the last term into two intégrais i. e.

r du [ y du

1 dv I dv
Jr Jr

The estimation of \\u — «jj|i,n is therefore reduced to study the convergence
of the boundary intégrais.

We begin by remarking that g = uh — \|/7 is nonnegative at the boun-
dary nodes, if also uh — \|/j > 0 on T we could eliminate the intégral

— I ~^-(uh "~ ^i) a n d so the inequality would increase (cf. Systems (3) (9));
Jr

if this is not the case. let us dénote by f the subset of F in which.
g < 0

and let us split f into a finite number of curved sides Ff with endpoints
zh zi+l such that :

f = IJ ff , f , c i ; , g(Zi) = g(zi+l) = o(l).

We can now prove the foiiowing :

PROPOSITION 5 . 1 . : We have :

-L§^r<ch*H| 2 . n (i2)
Jr

Proof. By the third inequality of (3) we find :
f du ,„ f du „ „ II du

- j ? ^ d F < - z^r-dr < \\g L

We may increase the inequality by replacing || — with II |
d̂

and
öv

by a trace theorem (see e. g. [15] [20]) with C ||w||2(ft. We dénote by z the
intersection between the side [zf, zl + 1 ] and its normal from x; by
Zj the zone between the curved side f̂  and the right side [zi+u z j (see
the figure 1)

(l) f, may be empty for some i.

RA I R.O. Analyse Numérique/Numerical Analysis
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Figure 1.

The foUowing inequalities can be obtained using Schwartz inequality and the
smoothness of the boundary (cfr. [26])

f \g(xfdr<\ \r dg
dn

dn

JTi Jz

dg
dn dndr<Ox2\g\2

lSi (13)

finally we apply Berger's ideas (see [26]) for piecewise polynomial functions :

i. e.

f \D«g\2dx <Ch\ \D*g\2dx V|a|

and combining the relations obtained above we have (12). Now we return
to (11) and we prove the :

PROPOSITION 5.2. We have

(14)

Proof.

Let us write (see proposition 5.1 and figure 2) for v = (u — *|>) — (u — \|/)/

duf
J r

-f^dr<C||«||2 ,a |H|0 ,r and
Jr

 m |p|S.r,

Figure 2.

vol. 11, n°2, 1977
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it is now easy to prove the following inequalities

< f l\\z - x,| f l + 1 | £ dk + 2 |x - z\ f |grad v\2 dn\ dT. (15)

We shall apply Bramble and Zlamal's method (cjr. [2]) and use the trace
theorems (see [20]) and the reguîarity assumptions, to yield (14).

We are finally ready to prove our theorem I (*): we shall replace in (11)
the results of the propositions 5.1 and 5.2 and use the coerciviness and
continuity assumption.

6. REMARKS

Zlâmal introduced in the finite element method the "curved éléments" (see
e. g. [29]), by introducing Zlâmal curved éléments to our problem, we find
again the same rate of convergence for the approximation error.

Namely we shall consider a triangulation of the given domain Q into
triangles completed along the boundary T by curved éléments, so that the
union of their closures is Q (the usual reguiarity conditions are supposed
satisfied): we construct a finite-dimensional subspace (Vh) of trial functions
belonging to H1 (Q) :

vh(x\x2) = rh(Ux\x2\Mx\x2)) (16)

When ^(x1, x2), r\ (x1, x2) is the inverse mapping of

K

which maps the unit triangle Tt with vertices Rl = (0,0), R2 = (1,0),
R3 = (0, 1) in the Ç-rj-plane one-to-one into the triangle T (which may be a
curved one) with vertices (JC}, x?), {xl

i+x,x
2
+1), (x), x)) (see [29]) and r(%,x\)

(*) In order to obtain the optimal error estimate :
Le. ||u - MJ|1(ÎÏ <ch

we should need the following results

o p where g - uh - \

(+ +) HL. , ? ^ ^ 1 / 2 W 0 f where v = (u - • ) - (u - «|/)7

which at the moment we are not able to prove.

R.A.I.R.O. Analyse Numérique/Numerical Analysis
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is an affine fonction in 7j, We shall also use the Zlâmal theorem 2 to estimate
the différence u — üj where iïT is the "interpolate of u" i. e. : the function
from Vh such that

Mxi) = uixi) v ' e / -

We shall chooseÂ^ as the convex set of the all function of Vh such that :

»,(*,)**(*<) Vie A
(and then also vh(x) > y (x) Vx e T).

üh dénotes the solution of the discrete problem (7) corresponding to the
convex se t^ . We can now repeat our theorem I replacing uh with iïh to obtain
the error bounds
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