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ERROR ESTIMATES FOR THE APPROXIMATION
OF SOME UNILATERAL PROBLEMS (*) (')

by Francesco SCAarRPINI and Maria Agostina VIVALDI ()

Communique par P A RAVIART

Abstract — An ciior estimate for the affine finite element approximation of some unilateral
problems s given

1. INTRODUCTION

In the mechanics of Fluids through semipermeable boundary the following
problem 1s studied
ou

—Au=f in Q; u>\\, %20, (u—\lf)gr;:O on I' (1)

where I' 1s a thin membrane around the space Q filled by the flmd: semi-
permeable means that the fluid 1s allowed to enter but not to escape.

A denotes the Laplace operator, u the pressure of the fllid 1n 1its stable
condition, f the amount of the fluud that has been put 1n, { denotes the

0
external flud pressure on T, Sn the outer normal dernivative on I

(1) can be used also to sketch some problems in thermo-dynamics or
electric dynamics

A system such as (1)1s known n the literature as a complementanty system
and can be solved when some compatibihity conditions are imposed on f

(see [8])

If the internal pressure u 1s greater than the external one \ then the semi-

permeable membrane holds the fluid and the fluid cannot escape (so% = 0).

If \ 1s greater or equal than u, the external fluid enters through I (% = 0)
until there 1s # = ¥ ; 1n theory there 1s no u < V. "

(*) This paper has been partially supported by GNAFA-C N R
(*} Manuscrit requ le 10 decembre 1975
() Istituto Matematico Umversita di Roma
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198 F SCARPINI, M A VIVALDI

The membrane could be devided into two parts I'y and T,

on I'; we have u = { (Dirichlet condition),

on I', we have —Z—E = 0 (Neumann condition).

but we look at (1) as a free boundary problem because we do not know I';
orT’,.

We shall study some variational mequalities (with coerciveness assump-
tion) (c¢fr [23]), we shall consider an approximation using the triangular
affine elements : the solutions of the corresponding discrete complementarity
systems are supposed known.

Our purpose 1s to estimate the distance between the exact solution u
and the discrete one u,.

2. THE BASIC NOTATION AND TERMINOLOGY

Q denotes a bounded, open set of R? I denotes the boundary of Q

and Q the closure of Q so that Q@ = QU I': Q 1s supposed with “not too
bad” a boundary.

C*(Q), (k =0,1,2,. .) 1s a Banach space, the elements of which are

functions that are continuous m Q and have continuous derivatives 1n Q of
the first £ order: the norm 1s deﬁned by:

||””c’<(§) = Z Z max |Dul

J=0 |o| =y

(f & = + oo the functions are infinitely differentiable)

{OI oA

2(Q) 1s the space of the functions of ) which are zero n a
neighbourhood of 6Q, and we put on 1t Schwartz’s topology,
r(Q), (1 < p < + o) denotes the Banach space of all functions on Q that
are measurable and p-summable 1n Q. the norm 1n this space is defined by

. 1/p
]y = <flw”dx>
Q

or if p =4 oo ae. bounded n Q, (the elements L?(Q) are the class of
equivalent functions on Q).

wer(Q), (ke N, 1 < p < + o) denotes the Banach space of all elements
of L?(Q) that have generalized derivatives of all kinds of the first k orders
that are p-summable 1n Q: the norm 1s defined by

‘ 1/p 2
HNWJ@=<ZHwa@) Ca= ()= Y q

lel<k =1
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W? (Q) denotes the closure in the space W*?(Q) of 2 (Q); for further details
and for the spaces W*7?(Q), with s real, see e.g. [15] and [20].

We shall use the following notations
HYQ) = W*2(Q) ; HG(Q) = W5(Q)

1/2
olea = lolwee |v|k,n=(lz ||D~v1|g,n) .

al =k

3. VARIATIONAL FORMULATION OF THE PROBLEM

Let us look at the following form

ou ov

au, v) = L(i,ilai"( o +a0(x)uv)d

where a;;(x) e C* (Q), and a, (x) € L™ (Q)

let us suppose :
2

Y, a;(x)EE; > ol YEER? , a,>0 and ay(x) =c >0

i,j=1
so that a“(.,.) is a bilinear, continuous, coercive form on H'(Q) x H'(Q)
e a(u)= olul|ig;

la(u, v)) <M |u], o |lv], 0o MER; a>0,M >0

We shall consider the problem
uekK:awv—-u)z{fiv—u) YveK (2)
where K is a convex set :
K={v|veH' (Q):v=VonT}

¢, > denotes the pairing between (H! (Q)) and H'(Q), fe L?(Q), ¥ € H*(Q).

In these conditions (see e.g. [3], [14]) there is one and only one
solution u of the problem (2) and u € H*(Q).

In what follows we shall use the notations :

Z= ( x)6 > + ay(x)u, % = ijzzl a,.j(x)% cos (n, x;)

where n is the outer normal to I'.
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200 F. SCARPINI, M. A. VIVALDI

Let us recall (see [14]) the problem (2) is equivalent to the following
system :

Lu=f in Q

u>V¥ on I
150 on T 3)
ov

REMARK 3.1.
If a;; = a;; the problem (2) can be formulated as follows :
find u € K such that

J() = inf J(o)

where J(v) =%a(v, v) — < f,v ) is a weakly lower semicontinuous, strictly

convex, differentiable functional.

4. A DISCRETIZATION OF THY PROBLEM BY THE FINITE ELEMENT METHOD

We shall sketch here an approximation of problem (2) by means of

trianonlar affine elemente
triar lements,

Apeaas SA220I0 LIANS

We shall suppose that Q is a bounded convex open subset of R?, with
a smooth boundary I (e. g. C?).

Given h, 0 < h < 1, we first inscribe a polygon Q, in Q whose vertices
belong to I' and whose sides have a length which does not exceed #.

We then decompose , into triangles in such a way that:

O0<l<h I"<B ,0<%<9<%

1
where B and 9, <X are given positive constants /, ', /" are lenghts of

2
arbitrary sides of the triangulation, 8 an arbitrary angle of our triangles.

(As always, the triangulation is not permitted to place a vertex of one
triangle along the edge of another, each pair of triangles shares a vertex, a
whole edge, or nothing.)

We call “regular” (see [2], [11]) such a triangulation.

R.A.LLR.O. Analyse Numérique/Numerical Analysis
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We shall denote by I, = { 1, ..., N, } the set of all indices i associated with

the internal nodes x; of the triangulation (x; € Q) and we shall denote by
I, = {Ny + 1, ..., N} the set of all indices i associated with the boundary

nodes of the triangulation (x;€dQ): and letbe I = I, U I,.

We number the vertices in such a way that xy_ .,, ..., xy are the
boundary vertices, numbered consecutively counterclockwise around I':
the curved side (lying on I') with end points x;, x;,, is I (for sake of
notation we shall make the identification xy,, = xy,4,) we shall denote
by X, the zone between the curved side I’; and the right side with endpoints x,,
X;+1, and by T; the triangle corresponding to the [x;,,, x;] side: finally
we shall call curved elements the following subdomains :

T, , iel,.
For each i e I, we shall consider the continuous function
o"(x) , xeQ

which is affine in each triangular or curved (see the above position)
element of the decomposition, is = 1 at x; and =0 in all x; # x;, je L

We shall now consider the piecewise affine function 1, (x) defined by
o) = Y viol(x) , {v}}i;eRY )
iel

HiQ) = { (x)}

(trivially Hy (Q) is contained in the space H!(Q)).
In [2] it was shown that :

lu — wrll,q < ch? " |ulq, ,» r=01, Yue H*(Q)

and the space:

where u;(x) is the piecewise affine function which interpolates u at every
vertex

i.e. u(x) = Y u(x;)ol(x)

iel

but we can modify the process of the quoted paper and using the regularity
conditions of the decomposition and a continuous extension theorem in the
seminorms (see [26]) we can obtain :

”” - “t“r,n < ch*7r |u|2,n , r=0,L (6)
We shall consider the convex

Ky = {v,(x): v, € HyQ)/v,(x;) = ¥ (x,)Viel, }

vol. 11, n° 2, 1977



202 F. SCARPINI, M. A. VIVALDI

The approximate problem is obtained by replacing K with K, in problem (2)
u,eKy:a(u, u, — v,) << fiuy, — v, > Yv, € K, 7

Let us write the discrete problem by replacing the expression (4) of u,(x)
thatis:

uy(x) = Y. Ui (x) (®)

iel

PrOPOSITION 4.1. The problem (7) is equivalent to the following discrete
system.

M, = AU — b, =0

U, -¥,20 )
M, = A4,,U; — b,1 >0
MI;(Ull - l{’11) =0

where 4 = 4y = { a;; }i,jezs a;; = a((P?, ot by = { b, Yier
b; = (£, ¢%); ¥, ={Y¥}ia, » ¥i=¥x)
PROOF. By choosing v, = u, + ¢ for every i € I, we find the first equation

i) M,=3%a;U, —b=0 iel,

jel

The second condition in (9) is the definition of K,

iiy) U,2%, iel,
By putting v, = u, + ¢" i€ I, we have
iii,) M,=3%a;U,—b>0 el

jeI
The last condition in (9) is obtained by choosing
vp(x;) = euy(x;) i€l
on(x)) = V(x;) + el — V)(x) i€l
in fact i, ) gives

(e -1) Z (U; —wv) ZaijUj - bi}ZO

iel jel

and with choices: € > 1, 1 > ¢ > 0 due to ii,) and iii,) we find :
iv,) M (U, —¥,)=0.

1

It is easy to check, in turn, that if we take the coefficients U; of the
function (8) to be the solution of (9) then u,(x) is the solution of (7).

R.A.I.R.O. Analyse Numérique/Numerical Analysis
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Remark 4.1. The matrix 4 belongs to the class (P) that is to say,
all principal minors A4;; = (@, )y4cs» J = I have a positive determinant;
therefore the existence and uniqueness of the solution U; of (9) is a well
known result; if 4 belongs, also, to the class (Z), that is a;; < 0 (i # j) (*)
then a monotone algorithm for solving system (9) can be found, (see
e. g. [12], [17], [22] for other unilateral problems).

5. ERROR ESTIMATES

In order to estimate the distance between the solutions u# of (2) and
u, of (7) we shall follow the procedure described in [9] for another
unilateral problem; of course our problem demands some modifications of
the Falk’s method for the “inability” of piecewise polinomials to satisfy the
conditions on a curved boundary.

Our main result is this: ‘the error is of order h in the energy norm:

THEOREM 1. We have
lu = wlly.0 < Ch* (*¥) (10
Proof. Let us now write the inequalities (2) and (7) by choosing v = ¥
in (2)and » = u; in (7)
alw,u — V)< fiu—V¥)
a(uy, uy — ur) < frw —up )
We find
alu,u) + aluy, uy) < fyw—up +uy — V) + au, V) + a(u, u;)
and, by subtracting a(u, w,) + a(u,, u), also

alu —upu — )< fyu—up+u,— V) —awu —u +u, — V)
+a(u — w, u — uy).

Let us write the inequality using Green’s formula

alu —upu —uw) < (f — Luyu —u; +u, — V) + alu — uy,u — u;) —

ou
+ J;(u —u; +u, — \I/)Edl"

(*) This is true, for example, for Lu = —Au + agu.
(**) In the sequel C will denote a generic constant not necessarily the same in any two
places.

vol 11.n°2 1977



204 F. SCARPINI, M. A. VIVALDI

and by the first equation of the system (3)

a(u — u,,u —u,) <au — u,u —u,)—f(u—u,-&-u,,—%-f,j—tdl’ (11)
r

We shall split the last term into two integrals i. e.

- [ = v Goar - | (@- ¥ - - v Gar

r

The estimation of |[u — u,|, q is therefore reduced to study the convergence
of the boundary integrals.

We begin by remarking that g = u, — {, is nonnegative at the boun-
dary nodes, if also u, — ¥, =2 0 on I we could eliminate the integral

- j % (4, — V¥;) and so the inequality would increase (cf. systems (3) (9));
T

if this is not the case. let us denote by T the subset of ' in which.
g<90

and let us split " into a finite number of curved sides T, with endpoints

1
z;, z;4+, such that:

f=Uﬁ > f:CF: . 8(z) = g(zi4y) = 0(Y).
iely

We can now prove the foliowing :

PROPOSITION 5.1. : We have :
( ou 3
- | g5 <chilul.a (12)
r

Proof. By the third inequality of (3) we find :

ou ou | ou
—J\gg\jdrﬁ —J~85;drﬁl|g|lo,r il -
r r -i,l‘
We may increase the inequality by replacing || — with ou and
ov 1 ovil

2 2T
by a trace theorem (see e. g. [15] [20]) with C ||u|, . We denote by z the
intersection between the side [z;, z;,,] and its normal from x; by

£, the zone between the curved side I'; and the right side [z;,,, z;] (see
the figure 1)

(*) 1~—. may be empty for some i.
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x J‘
Fj

MS

Zi+1 y4 Z;

Figure 1.

The following inequalities can be obtained using Schwartz inequality and the
smoothness of the boundary (c¢fr. [26])

2

% dr

%dn

'dn dT < Ch? lg2s (13)

finally we apply Berger’s ideas (see [26]) for piecewise polynomial functions :
i. e.

J |D*g|? dx sChj‘ |Degl*dx V]| <1
Pl .
and combining the relations obtained above we have (12). Now we return

to (11) and we prove the :

PROPOSITION 5.2. We have
- [@-v-w-w o< 149

Proof.
Let us write (see proposition 5.1 and figure 2)forv = (¥ — ¥) — (u — V),

ou
fua_dr <Clulsalolor and  Jolir= T folx,

[ X
Xi+1 Z Xi
Figure 2.

vol. 11, n° 2, 1977



206 F. SCARPINI, M. A. VIVALDI

it is now easy to prove the following inequalities

Lilv(x)‘z dr = f [ j LN +j %dn]zdr
BRI

We shall apply Bramble and Zlamal’s method (cfr. [2]) and use the trace
theorems (see [20]) and the regularity assumptions, to yield (14).

We are finally ready to prove our theorem I (*): we shall replace in (11)
the results of the propositions 5.1 and 5.2 and use the coerciviness and
continuity assumption.

d?» +2x - z|J‘ |grad vf? dn] . (15)

6. REMARKS

Zlamal introduced in the finite element method the “ curved elements” (see
e. g. [29]), by introducing Zldmal curved elements to our problem, we find
again the same rate of convergence for the approximation error.

Namely we shall consider a triangulation of the given domain  into
triangles completed along the boundary I' by curved elements, so that the

union of their closures is Q (the usual regularity conditions are supposed
satisfied): we construct a finite-dimensional subspace (¥}) of trial functions
belonging to H' (Q):

v (xh, x2) = r € (x*, x*), n (x, x?)) (16)

When & (x!, x?), n(x!, x?) is the inverse mapping of
xt = x'(gm) 17
{xz - ¥Em) )

which maps the unit triangle 7; with vertices R, = (0, 0), R, = (1, 0),
R; = (0, 1) in the &n-plane one-to-one into the triangle T (which may be a
curved one) with vertices (x}, x7), (x}y,, X2 ,), (x}, x}) (see [29]) and (€, n)

(*) In order to obtain the optimal error estimate :
e, fu—ul,q <ch
we should need the following results
(+) lely; <chlgl, . where g=u,~V,

(++) Hv”_%,.l= 5ch”2Hv||O’F where v =(u— V) - (u— V),
which at the moment we are not able to prove.

R.A.L.R.O. Analyse Numérique/Numerical Analysis
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is an affine function in 7;, We shall also use the Zlamal theorem 2 to estimate
the difference u — #, where @, is the “interpolate of u” i. e.: the function
from ¥, such that

H(x;)=wu(x;) Viel

We shall choose K, as the convex set of the all function of ¥, such that :
v(x) = V(x) Viel,

(and then also v, (x) = ¥ (x) VxeT).

u, denotes the solution of the discrete problem (7) corresponding to the

convex setK,. We can now repeat our theorem I replacing u, with i, to obtain
the error bounds

Ju - &, < cht.
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