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A MIXED FINITE ELEMENT METHOD
FOR THE BIHARMONIC PROBLEM (*)

by T. SCAPOLLA (x)

Communiqué par E. MAGENES

Résumé. — L'objet de ce travail est Vétude d'une méthode d'éléments finis de type mixte pour le
problème biharmonique. On étudie en particulier une méthode mixte du type Hellan-Hermann-Johnson
avec des éléments finis rectangulaires. On reprend certains résultats de C. Johnson, que l'on démontre
différemment et qu'on améliore. Ces résultats sont établis dans un cadre plus général, qui permet la
construction d'un schéma d1'approximation d'ordre plus élevé.

Abstract. — The purpose ofthis work is to study a mixed finite element methodfor the biharmonic
probtem. We study in particular a mixed method oj Hellan-Hermann-Johnson type itith rectangular
Unité éléments. Some results ofC. Johnson are given in a différent proof and they are improved. These
results are established in a more gênerai framework, which applies to the construction of an
approximation scheme ofhigher order.

INTRODUCTION

The subject ofthis paper is the study of a finite element method of mixed type
for the approximation of the biharmonic problem.

This problem is a classical one and it has been studied from a theoretical point
of view by many authors (see e. g. [10,14,19]). The use of finite element methods
has contributed new developments to the numerical approach to the problem.
Presently many and different types of approximation by means of finite element
methods are used. In particular we recall displacement methods, various types of
hybrid and mixed methods, and equilibrium methods.

(*) Reçu Décembre 1978.
(*) Laboratório di Analisi Numerica del C.N.R., Palazzo dell' Université, Pavia, (Italie).
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56 T. SCAPOLLA

In this paper we have expecially studied the mixed methods of Hellan-
Hermann-Johnson type with rectangular éléments. As regards the error bounds
these methods do not present the favourable circumstances that have permitted
an optimal error bound, in many gênerai conditions, with triangular éléments.
Ho wever it is possible, at least in particular cases, to obtain again the optimal
convergence order.

More exactly hère we reconsider some results obtained by Johnson {see [13]).
We represent these results in a more simple form using the recent techniques to
approximate saddle-points, we improve these results (for the approximation of
the displacement we get an optimal error bound), and we arrange these results in
a more gênerai context that permits the extension to other schemes of higher
order.

The outline of the paper is the following:
In paragraph 1 we study from an abstract point of view the properties of a class

of saddle-point problems. In particular we give an abstract theorem of
convergence (theorem 1) that should be useful, besides our case, for the study of
error bounds in other schemes.

In paragraph 2 we introducé the "model problem".
In paragraph 3 we transform the "model problem" in a saddle-point problem.

The formulation we obtain is not yet optimal for a discrétisation by means of
fmite éléments.

In paragraph 4 we briefly recail some of Green's formulas that we shall use
later.

In paragraph 5, using Green's formulas, we give a new formulation of the
initial problem, again of saddle-point type, that allows us a convenient
discrétisation.

In paragraph 6 we introducé two discrétisation schemes.
In paragraph 7 we give convergence results using the abstract scheme

introduced in paragraph 1.

1. ABSTRACT PROBLEM

Let Fbe a real Hubert space with norm ||.||, and Wbe a Banach space with
norm ||.||» ; let V' and W' be respectively the dual spaces of V and W. We
dénote by (., .) the duality bet ween the spaces V' and For bet ween the spaces
W' and W.

R.A.I.R.O. Analyse numénque/Numerical Analysis



METHOD FOR THE BIHARMONIC PROBLEM 57

Let a (., .) and b (., .) be respectively two continuous bilinear forms o n F x K
and WxW. We set

uu» sup ';•;" , d.2)
veV,VeW \\V\\v\\(P \\w

Gi ven ƒ G F ' and \ieW', we consider the folio wing problem (continuous
problem):

Find a pair (//. \|/)e Kx PF such that:

) , b{u, q>) = (n, <p).

Let H be a real Hilbert space with norm ||. ||H and M be a Banach space with
norm ||. | |M, such that:

F<=H, W<=M, with continous and dense imbedding. (1.3)

We dénote by (Ji, a 2 , the imbedding constants, that is

V<;eF, H ^ ^ I H I r , (1.4)

VcpeJF, I M U ^ H I g , . (1-5)

We suppose that we can extend the bilinear form a (., . ), defined on V x V, to
the space H xH.

Let the bilinear form a (., .) be elliptic in # , that is

3a>0, VyefJ, a(ü( u)^a||i;||^. (1.6)

Moreover we suppose that the bilinear form b (., .) satisfies the following
stability condition (external ellipticity):

ap>0, VcpePF, S U p ^ l è p | | c p | | M . (1.7)
veV \\V\\V

With simple considérations it's easy to verify that problem (P) has at most one
solution. However we cannot deduce the existence of the solution from the
assumptions we have made, and to prove the existence it will be necessary, in
concrete situations, to use other properties.

We assume in addition that two finite-dimensional vectoriai spaces Vh and Wh

are given, such that

Vh<=V, WhczW,

vol. 14, n°l, 1980



58 T. SCAPOLLA

and we suppose that the following hypotheses hold:

(i) a linear continous operator nh: V -> Vh and a positive constant y exist such
that:

VveV, b(v — nhv, <ph) = 0, \f<$heWhy

SUp ^ ^ ^pfc||cpfc||M. (1.9)
vheVh \\Vh\\V

Now we consider the following problem (discrete problem):

Find a pair (uh, \|/h)e Vh x Wh such that:

It's easy to verify that problem (Ph) has a unique solution.

We define

Bh(\i) = {vheVh, Vq>fc6ÏFfc, b(üfc> cp,) = (^ 9,)}- (1-10)

Then we have the following results:

THEOREM 1 : Assume that the hypotheses (1.6) and (1.7) ftoZd, aw^ that(u, \|/) ani

h, \|/h) are respectively the solutions ofproblems (P) arcd (Ph).

\\u-uh\\H£c( inf l lu-^l^+sup inf & ( ^ \ Ç h \ (1.11)

where C isa constant depending ona,\\a\\,butnot dependingon{u, \|/), Vh and Wh.

Proof: We have

(1.12)

= a(u-uh, u-vh) + b(vh-uh, \|f-v|/fc), J

and therefore

- u A , \|/-v|/fc). (1.13)

R.A.I.R.O. Analyse numérique/Numerical Analysis



METHOD FOR THE BIHARMONIC PROBLEM 59

As vheBh(\i) we observe that

uh,yh) = 0. (1.14)
Then we have

b(vh-uh, ty-^h) = b(vh-uh, \|/-(pft)^ inf b(vh-uh, v|/-(

- inf ||!>fc-ttfc||H M- —n = \\Vh-Uk\\H mf
| | ü M | |

. b{vh-uh, \|/-(p*) n 1 C iinf H— n . ' (1.15)

Setting

Ci(fc)= inf I I M - Ü J L , (1.16)

C 2 (h)= sup inf

we have

| |w~wJ|ff = a(u — uh, u — vh) + b(vh — uh, \j/ — cph)

\u-uh\\H, (1.18)

, frorri which we obtain

| | | | h))> (1.19)

that is, with (1.16) and (1.17), the desired inequality. •

THEOREM 2: Assume that the hypotheses (1.6), (1.7), (1.8), holà, and that (w, \|/)
and (uh, \|/h) are re^pectively the solutions ofproblems (P) and (P J . T/zen we have:

«-u,||H+ inf s u p ^ t ^ \ (1-20)
\ <pheWk vhsVh \\Vh\\v J

where C is a constant depending on $h, || a||, a l f but not depending on (u, \|/), Fft

Proof: The foliowing inequality is obvious:

Vq>h6^, |K-^||M^||v|f-<p f c | |M + |Kfc-<P*|U. (1.21)

vol. 14, n° 1, 1980



60 T. SCAPOLLA

Using (1.9) we can write:

V<pheWh, ||\|/-cpft||M £-

\
V<pheWht |Kfc-<P*|U = Â~ SUP

Using (1.23) and a simple property of the supremum, we have:

n
\Vh\\v

I I^A —<P*||M ^ Ô -

We recall that

+ SUp
b{vh, V|A-»

Vh, a(u, vh) = b(vh, v|/) + (/, o»),

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

and therefore

and so we obtain

VvheVh,

^ ô - ( SUPSUP—irr-n
r. ||t)*|k

Using (1.1) we have

and then, using (1.4),

(1.27)

(1-28)

(1.29)

From (1.21), using (1.22) and (1.30), we obtain

I I H r - i M U s f - inf •up & ( P
| ; 'Y q > l ) +Fl l f l l l - l l" -»*IU- '(1.31)

Pft yheWk vheVh \\Vh\\v Ph V '

R.A.I.R.O. Analyse numérique/Numerical Analysis



METHOD FOR THE BIHARMONIC PROBLEM 61

We set

(1.32)

and from (1.31) we obtain the desired inequality. •
In the sequel it will be very useful to consider the following:

LEMMA 1: Ifthe hypo theses (1.3), (1.7), (1.8), hold, then the condition (1.9) is
satisfied.

Proof: See Fortin [11]. •
The usefulness of lemma 1 consists in the possibility of obtaining (1.9) (discrete

external ellipticity) from (1.7), (1.8), that are often in the practice more simple to
verify than (1.9) itself.

2. THE MODEL PROBLEM

Let Q be a bounded open subset of IR 2 with a sufficiently smooth boundary dQ,
let ƒ be a given function in L2 (Q) and let us dénote by d/dn the outward normal
derivative along dQ.

Now we consider the following problem (Dirichlet problem for the
biharmonic operator):

A2\|/ = / in Q,
\|/ = ô\|//3n = 0 on dQ.

Ifthe function ƒ belongs, for simplicity, to L2 (Q), and we seek for the solution in
the space H % (Q), then the problem (2.1) is well-posed, that is the solution exists
and is unique (see [14]).

The problem (2.1) is very interesting since it is found in numerous problems of
physical mathematics, for instance in hydrodinamics problems and in plate
bending problems.

The problem (2.1) is a classical one and it has been studied either
from a theoretical point of view or from a numerical one by many authors
(see e.g. [5, 10, 18, 19]). The use of finite element methods has improved the
techniques to approximate numerically the solution of (2.1). At the present time
there are many and different finite element methods for this approximation:
conforming, non conforming, hybrid and mixed methods; the literature on this
subject is quite large (see e.g. [3, 4, 6, 12]).

In the sequel we shall study a mixed method for the approximation of (2.1).

vol 14, n°l , 1980



62 T. SCAPOLLA

For these mefhods we can say that the theory is nearly complete when a
subdivision of Q with triangular éléments is used (see e. g. [4, 9, 15]). As regards
the use of rectangular éléments we can say that while the extension of some mixed
methods (see [9, 15]) is complete and it doesn't present supplementary
diiïiculties, the extension of Hermann-Johnson scheme présents some further
difficulties and at the present it's not complete.

The method we study hère has been suggested to us by a previous paper of
Johnson (see [13]). The results we obtain allow us to arrange the results of [13] in
a more gênerai context which is more adhèrent to the abstract scheme of [4].

In particular the present arrangement allows us:
(a) to semplify and improve the results of [13]: we prove an optimal error

bound in H1 (Q) for the displacements while in [13] Johnson proved only a non
optimal error bound in L™ (Q);

(b) to extend the theory to discrétisation schemes of higher order, similar to
those already obtained in [4] in the case of triangular éléments.

3. FIRST TRANSFORMATION IN SADDLE-POINT PROBLEM

The first step we must do for the approximation of the problem (2.1) by means
of a fmite element method of mixed type is (see [4]) the transformation of the
problem into the so-called Hellinger-Reissner form. For this purpose we
introducé, as a new variable, the symmetrie tensor-valued function u =(uij), i}

7 — 1, 2, u12
 = u 2i, with component s given by

U i j ^ n j C ) , i,j = l,2, (3.1)

where \|/ is the solution of the problem (2.1).

For example, in plate bending problems u, multiplied by a factor of
proportionality, gives the tensor of the moments. One of the most important
aspects of mixed methods is that of giving directly an approximation of u that is
the most interesting unknown quantity in many practical problems and
expecially in structural analysis. The tensor-valued function u belongs to the
space

H = ( L 2 ( Q ) ) î = { v : y = ( v i j ) , v i j e L 2 ( Q ) , i,j=l.2,v12 = v 2 1 } . ( 3 . 2 )

(x) The classical notation rij indicates the derivative with respect to xL and to Xj.

R.A.I.R.O. Analyse numérique/Numerical Analysis



METHOD FOR THE BIHARMONIC PROBLEM 63

For convenience in the sequel the norm of a tensor v eH, defmed by

wül simply be denoted by || v| |0 .

Now we consider the following saddle-point problem:

Find a pair (u, \\t)eH xHl(Q) such that:

Vveiï, uijvijdx= Vij^fijdx, j
Ja Ja (

r r r (3.4)
Vq>/fg(Q)f Uijtyfijdx^ fydx. )

h Ja
It's easy to verify that if the pair (u, \|/) solves (3.4), withu defined by (3.1), then \|/
is the solution of (2.1).

In fact from the first équation of (3.4) we easily obtain u tj = \|/ /0-, ij = 1,2, while
from the second équation, integrating by parts two times, we have uim — ƒ and
therefore we finally obtain A2 \|/ = ƒ. We observe that the problem (3.4) is a type
(P) problem choosing

a{u, v)= UijVtjdx, (3.5)

b(v, cp)= Vijip/ijdx (3.6)
Ja

and therefore it wül have at most one solution.
Since: (a) problem (3.4) has at most one solution; (b) if the pair (u, \|/) solves

(3.4) then \|/ is the solution of (2.1); (c) problem (2.1) is well-posed; we get that the
solution of (3.4) wül coincide with the solution of (2.1).

4. GREEN'S FORMULAS

The formulation (3.4) is not yet the optimal formulation that allows us to
introducé an approximation scheme of mixed type. To pass from (3.4) to a new
formulation, still of saddle-point type but in different spaces, we briefly recall
some Green's formulas that we shall use in the sequel.

Let Q be, for simplicity, a polygon with boundary dQ. We define the following
space of tensor-valued functions:

= (vtJ)t v.jeH1^ U = l, 2}. (4.1)

(2) We use (here and in the following pages) the convention of the summation of repeated indices,

vol. 14, n°l, 1980



64 T. SCAPOLLA

If ve V and cpeH2 (Q), then we have the following Green's formula:

viSq>tijdx=- vw<pijdx + {Mn(\)(pln + Mnt(\)q>/t)ds, (4.2)
Jn Jo Jdn

and moreover if each component vtj of v belongs to H2{Q) then we have

vmq>udx=- uowcpdx + ^„(vjcpds, (4.3)
Ja Jn Jan

where

Mn(y) = Vijntnjf (4.4)

Mrt(v) = i ; y M j f (4.5)

QH{y) = vmnJf (4.6)

n = (ni, n2) is the unit outward normal and t = (t1, t2) = (n2, - « i ) is the unit
tangent along dQ, (p/n = ôq>/ôw and cp/f =ôcp/ôt.

Combining (4.2) and (4.3) we obtain

Ç Ç f
Vij<P/ijdx= vijfij(pdx + (Mn(v)(p/n + M r t f(v)(pA-gn(v)(p)ds. (4.7)

Ja Ja Jan

r
Finally we observe that the term Mnt(\)<pitds is valid also for functions

Jan

5. SECOND TRANSFORMATION IN SADDLE-POINT PROBLEM

We cannot use the formulation (3.4) for an approximation of mixed type. In
particular the spaces appearing in (3.4) are: H, on which no continuity
requirements are made, and HQ(Q), whose éléments must have the second
derivative in L2 (Q). It's clear that, in an eventual discrétisation of the problem
(2.1) in the form (3.4), we could use discontinous "test functions" to
approximate the space H, while we would almost be obliged to use continous
"test functions" with their first derivative to approximate the space HQ(Q).

However it's well-known that this last circumstance, even if quite performable
(see [8]), leads to remarkable formai and computational difficulties.

Another characteristic that makes mixed methods interesting is the fact that
they permit the use of continous approximating functions but not necessairly of

•R.A.I.R.O. Analyse numérique/Numerical Analysis



METHOD FOR THE BIHARMONIC PROBLEM 65

class C1. For this purpose we must give a new formulation of the problem (3.4)
in which, roughly speaking, we ask a greater regularity of the space which
contains u in order to accept a smaller regularity of the space which contains \|/.
In the sequel we shall refer to the formulation (3.4) of the problem (2.1),
formulation that, as we have previously verified, is equivalent.

Till now we have asked the solution \|r to belong to if o (Q) and the tensor u to
have components belonging to L2 (Q). Now we give a new formulation in which
we ask \|/ to belong to Wl>p (Q), p > 2, hence with a loss of regularity, and we ask
u to belong to a space V, space that we shall soon define, that is included in H
and is more regular than H.

We suppose, for simplicity, that Q is a convex polygon in the plain. Let Jh be a
décomposition of £1 in convex subpolygons K and let h be the maximum
diameter of the subpolygons. We say that M„(v) [see (4.4)] is "continous at the
interelement boundaries" of the décomposition 3~h if and only if, for any pair
(K l% K 2) of adjacent éléments of $~h, we have:

Mni{y/Kl) = MHi(v/Ki) on K1nK2, (5.1)

where nx , n2 , are respectively the unit outward normals along ôKt, dK2.

We define:

V= {v : v=(»y), VKeiT, , ViJeHl(K), i,j = l, 2, B 1 2 = I ; 2 1

and M„ (v) is "continous at the interelement boundaries"}, (5.2)

Hv- z (Hl,2*)1'2, (5.3)
Kefh

W=W1
O>P(Q), p > 2 , (5.4)

/ f
&(v, <p)= Z

f \
+ Mnt(v)q>jtds) with veK, yeW. (5.5)

Now we consider the following problem:

vol. 14, n°l , 1980



66 T SCAPOLLA

Find a pair (u, \|/)e Vx W such that:
VveF,

Ja /eer,, V JK JÔK

VcpePF,

/ f f \
£ ( - uljfl<pfjdx + M„t(u)<p/tds =

Ke^ \ JK JdK /

P-O)

We observe that (5.6) is a type (P) problem with a (u, v) defined in (3.5) and
b(v, (p) defined in (5.5). As before the problem (5.6) will have at most one
solution. As regards the existence of the solution we observe that if the first
argument of the solution (u, v|/) of the problem (3.4) belongs to the space V, then
the pair (u, \|/) is also the solution of the probiem (5.6). We venfy this
assumption.

If (u, \pr) is the solution of the problem (3.4) then

VveH, f UljVlJdx= [v^/tJdx. (5.7)

Since V a H, (5.7) is valid V v e V. Now integrating by parts the second member
of (5.7), using the f act that v e V> \j/ e R\ (Q), and usmg Green's formula (4.2), we
obtain

VveF, uljVlJdx= £ Vyfyujdx
Ja Ke^h JK

= Z ( - f vljll^ljdx+ \ Mnt(y)$ltds\ (5.8)
Kef,, \ JK JôK J

that is the pair (ü, \j/) vérifies the first équation of the problem (5.6). Fr om the
second équation of (3.4), if u e V, again integrating by parts, we have:

( [ ~ f ~ \ Ç
E " «yA<P/j^+ MJtt(u)cp/tds)=
efh V JK J 3 K / JQ

and hence the second équation of (5.6) is valid for all the functions (pe/f g (Q). As
the space / / § (Q) i s dense in W\ •p (Q), p > 2, and since the application cp -»- b (u, q>)
is linear and conti nous in the norm of WliP{Q), p > 2, then (5.9) holds for all the
functions cp e W\ ' (O), /? > 2. Therefore the pair (u, v[f) is also the solution of the
problem (5.6).

R A I R O Analyse numénque/Numencal Analysis



METHOD FOR THE BIHARMONIC PROBLEM 67

6. DISCRETISATION

In [13] Johnson, with a suitable discrétisation, gives a bound of the fïrst order
for the error between the exact solution (u, \|/) and the approximate solution (ufc,
\|/ft). The bound is obtained in the norm ||. ||0 for the error u-u^ and in the space
L°°(Q) for the error \|/ —\|/fc. In this paragraph and in the following one we
reconsider the discrétisation of Johnson and we prove, in a different and more
simple way, a bound of the first order in the norm ||. ||0 for the error u-u^ but in
the space H1 {Q) for the error \|/ — \|/ fc. Later we introducé a second discrétisation
which allows us to prove a convergence of the second order. Hence this
paragraph and the following one have been divided in two parts: in the first we
study the case of the linear convergence, in the second we study the case of the
quadratic convergence. Let Q be a bounded domain in the plane with a boundary
consisting of a finite number of straight segments parallel to either the coordinate
direction. Assume that Q. has been covered by a number of closed rectangles Rk

such that any two rectangles are either disjoint or have a common vertex or side.
We dénote by h the maximum side lenght of the rectangles Rk covering Q.
Further, let Xk dénote the ratio of the lenghts of the non-parallel sides of Rk. We
assume that there is a fixed positive number A such that l/A, _• Xk :g A, for any k.
This means of course that the rectangles Rk are not allowed to get very thin as

We define two finite-dimensional spaces Vh and Wh in the following way:

Discrétisation 1

(a) Vh is the set of the tensor-valued functions y = (vtJ)t i, 7 = 1, 2, such that:
(i) vlieQö{x,y)®{3){x};v12eQ0(x,y)iv22eQ0(x,y)®{y};oneachRki

(ii) M„ (v) is continous at the interelement boundaries.

{b) Wh is the set of the functions cp defined on Q such that: (i) cp e Q x (x, y) on
each Rk, (ii) q>eC°(O), (iii) <p = 0 on dQ.

The spaces Vh and Wh so defined are subspaces of F and W> respectively. It's
easy to verify that we can choose the degrees of freedom (d. o. f.) in Vh and Wh as
folio ws:

(a) d. o. f. in Vh. A function v e Vh is uniquely determined by the value of Mn (v)
along each side and by the value of v12 in each rectangle (secfig. 1).

(3 ) Here and in the following pages we dénote by Q k (x, y) the space of polynomials in x and y with
a degree less or equal than k in each of the two variables x and y; we dénote by Pk {x, y) the space of
polynomials in x and y with a degree less or equal than k in both the two variables x and y.

vol. 14, n°l, 1980



68 T. SCAPOLLA

(b) d. o. f. in Wh. Each function cp e Wh is determined by its values at the four
vertices of each rectangle.

Discrétisation 2

(a) Vh is the set of the tensor-valued functions v = (vi}), i,j=l, 2, such that:

(i) UneÔi(*>y)© {x2};v12eQl(x,y);v22eQ1{x,y)®{y2};oneïichRk;

(ii) M n (y) is continous at the interelement boundaries.
(b) Wh is the set of the functions q> defined on Q such that: (i) cp e Q 2 (x, y) on

each Rk, (ii) <peC°(O), (iii) cp = O on ÔQ.
We can choose the d.o.f. as follows:
(a) d.o.f. in Vh. We take as d.o.f.: the value of u u in two points of each

vertical side; the value of v22 i
n two points of each horizontal side; the values

r
vlxdx and v22dxin each rectangle; the values of v12 at the vertices (4) of

each rectangle {seçfig. 2).
(b) d.o.f. in Wh. We choose the classical usual d.o.f. (values of at the vertices,

at the midpoint of each side and at the centre).

x value of Mn{\)
O value of vl2

A value of ü n

A value < " i l

O value of v12

D value of u22

• value of v22

Figure 1 Figure 2

7. ERROR ESTIMATES

With the discrétisation that we have introduced in the previous paragraph, the
approximate formulation of the problem (5.6) assumes the foliowing form:

(4)° Remark: This condition does not imply the continuity for Ï; 12; for instance, if a node belongs to
four différent rectangles, four different d.o.f. will be present at this node.

R.A.LR.O. Analyse numérique/Numerical Analysis



METHOD FOR THE BIHARMONIC PROBLEM

Find a pair (uh, \|/ft)e Vh x Wh such that:

69

I uiJvijdx= Y. f - I Vij/ityijdx+ |

\ f
/tds)=

/ Jn
/ f f f

E " «y/£(P/jdx+ Mm(u)<p/tds)= fydx. ƒ
\ X J / Jn

We observe that the problem (7.1) is a type (Ph) problem with

a{uh, vh)= UijVijdx,

b(vh,(ph)=
Rk

Mnt(v)<?itds\.
JRk

(7 .2)

(7 .3)

In this paragraph we give bounds for the errors u — uh and \|/ — \|/h. To prove
these bounds we shall refer to the abstract formulation that we have introduced
in paragraph 1.

In particular we shall need to verify that the hypotheses (1.6) and (1.7) hold.
Moreover, by lemma 1, it will be sufficient to prove (1.8).

Case 1

The condition (1.6), that is the ellipticity in H of the bilinear form a (.,.), as we
have already previously observed, is satisfied. For the other two conditions we
prove the foliowing lemmas:

LEMMA 2: There exists a continous linear operator nh: F-> Vh which satisfies
(1.8) and such that

| | | | ^ C / i f (7 .4)

where C is a constant independent ofh.

Proof: We want to construct an application nh that maps each ve V into an
element w = nh\e Fftsuch that:

VcpeWfc, b(v-w, <p) = 0. (7.5)

From (5.5), using Green's formula (4.2), we obtain the following equivalent
expression for b(v, cp):

&(v,q>)= E ( f *>u<P/y<**- [ MB(v)<p/Bds\ (7.6)
Rke*i, \JRk JdRk )
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As cp 6 Wht using (7.6), (7.5) becomes

G f \

(vi2-w12)<pixydxdy- M„(y-w)q>inds 1 = 0. (7.7)
Rk JdRk J

To define w we must choose the value of Mn (w) along each side and the value of
w 12 in each Rk. As cp e Wfc, setting <p = a 4- bx 4- cy 4-dxy and denoting by lit i = 1,
4, the sides of i ^ (with l2 and /4 vertical sides), on each Rkwe have

- M n (v-w)

For each side lt we define M „(w) in the following way:

M , . *• l ik jr / \ J /*7 O\

n \w), = M. n (\) as, ( I. o)
|^(/.) \{

and so we easily have

: Mn(\-Y/)ds + b

Still we must choose wl2 and we choose it so that

J (v12 — w12)dxdy= Mn(\~ w)xds+ Mn{\ — Yf)yds, (7.9)
Rk Jllfh X.U

that is, as u;12 = Const.,

Mn{y-Yt)xds- \ Ms(Y-w)y<fa). (7.10)

Now we define 71 h the operator that maps each ve F into an element we Vh

defined from (7.8), (7.10). By this choice (7.5) is satisfïed. In a similar way we
define on R = (0, 1) x(0, 1) the operator nh that maps each ve F into an element
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we Vh again defined from (7.8), (7.10), with Rk = R. It's easy to verify that:

(i) nh\ = nh\,

(ii) VveP 0 (x , y), TC„V =

In these conditions we can use the Bramble-Hilbert lemma (see [1]) obtaining

II V TT V II < C I V (1 \1\

and therefore

from which

| |v-w||O i J l f c^Cfc|v| l ï J l à . (7.14)

Moreover in a similar way we obtain

llïCfcvll^ ^C||v|| l f jRfc. D (7.15)

LEMMA 3: Let W= W^p (fi),p > 2,andM = Hl{Q); then condition (1.7) holds.

Proof: Let q>e PF; we choose ve F so defined:

"" '^ — ~ r\ i>~i -| ^-\

Then we have

i(v,9)= I f" f (-cp/x-cp^^^U^I^. (7.17)

But

I I ^ I I K = E (||v||1%ft) = 2 | |cp | | 1
2

n , ( 7 . 1 8 )

from which, by Poincaré's inequality, we have

\<p\ha, (7.19)

where Cp is the Poincaré constant. Hence

b f r c p H M u ^ ^ — |9|I.0 | |*| |K. (7-20)

from which

vol. 14, n°l, 1980


