JUHANI PITKÄRANTA

On a mixed finite element method for the Stokes problem in \mathbb{R}^3

<http://www.numdam.org/item?id=M2AN_1982__16_3_275_0>
ON A MIXED FINITE ELEMENT METHOD
FOR THE STOKES PROBLEM IN \mathbb{R}^3 (*)

by Juhani Pitkäranta (1)

Communicated by P G Ciarlet

Abstract — We prove an error estimate for a mixed finite element method for solving the Stokes problem on a rectangular domain in \mathbb{R}^3. The scheme is based on piecewise trilinear velocities and piecewise constant pressure on a uniform rectangular grid.

Résume — On établit une estimation de l’erreur pour une méthode d’éléments fins mixtes pour le problème de Stokes sur un domaine rectangulaire de \mathbb{R}^3. Le schéma met en œuvre des vitesses trilinéaires par morceaux et une pression constante par morceaux sur un maillage rectangulaire uniforme.

1. INTRODUCTION

One of the simplest ways of discretizing the Stokes equations on a rectangular domain in \mathbb{R}^n is to apply the finite element technique with continuous, piecewise multilinear velocities and piecewise constant pressure on a rectangular grid. The resulting finite difference equations resemble those of the classical Marker — and — Cell method [4]. In two dimensions the method has been used successfully also on irregular meshes, cf. [10].

From a theoretical point of view, the above finite element scheme falls into the category of mixed methods, which can be analyzed along the lines of Babuška [1] and Brezzi [2]. The analysis was recently carried out in the two-dimensional case [7]. It was shown that although the method is not uniformly stable in the classical sense of [1, 2], a weaker stability estimate holds which yields optimal convergence rates for the velocities in $H^1(\Omega)$ and $L^2(\Omega)$, provided that the exact solution is sufficiently regular.

(*) Received in April 1981

(1) Institute of Mathematics, Helsinki University of Technology, SF-0150 Espoo 15, Finlande.
In this paper we analyze the three-dimensional scheme where the velocities are approximated by piecewise trilinear functions. The analysis proceeds following closely the lines of [7]. In particular, we establish a weak Babuška-Brezzi-type stability estimate for the pressures and combine this with certain superapproximation properties for the velocities. As in two dimensions, we are able to prove that the velocities converge with the optimal rate $O(h)$ in $H^1(\Omega)$, if the exact solution is sufficiently smooth. We also state the three-dimensional analogues of the L_2-estimates proved in [7] for the velocities and for the pressures smoothed in an appropriate way.

Due to the fact that the stability estimate we can prove is weaker than in two dimensions, we end up requiring relatively high regularity on the exact solution, in order to be able to balance the weak stability with superapproximation results. Only the case of a regular mesh is considered, a constraint that seems to play an essential role in the analysis.

The plan of the paper is as follows. In section 2 we state the problem and define its finite element discretization. Section 3 is devoted to the error analysis.

Throughout the paper we denote by $W^{m,p}(\Omega), \Omega \subset \mathbb{R}^3, m \geq 0, 1 \leq p < \infty$, the usual Sobolev spaces with the norms

$$\|v\|_{m,p} = \left(\sum_{l=0}^{k} \|v_l\|^p_p \right)^{1/p},$$

where $\| \cdot \|_{l,p}$ denote the seminorms

$$\|v\|_{l,p} = \left\{ \sum_{i+j+k=l} \int_{\Omega} \left| \frac{\partial^e v}{\partial x_1^i \partial x_2^j \partial x_3^k} \right|^p \, dx_1 \, dx_2 \, dx_3 \right\}^{1/p}.$$

Here we omit to indicate the domain with a subindex, since it will be the same throughout the paper. For non-integral $s \geq 0$, $W^{s,p}(\Omega)$ is defined as usual by interpolation. For $p = 2$ we set $H^m(\Omega) = W^m,2(\Omega), \| \cdot \|_m = \| \cdot \|_{m,2}$ and $\| \cdot \|_m = \| \cdot \|_{m,2}$. As usual, $H^0_0(\Omega)$ denotes the completion of $C_0^\infty(\Omega)$ in the norm $\| \cdot \|_1$.

The same notation will be used for the corresponding (semi) norms in $[W^{m,p}(\Omega)]^3$. The scalar products in $L_2(\Omega)$ or $[L_2(\Omega)]^3$ will be denoted by (\cdot, \cdot).

Finally, by C or C_j we denote positive constants, possibly different at different occurrences, which may depend on the domain Ω considered but not on any other parameter to be introduced unless indicated explicitly. We also denote by P_k the set of polynomials in three variables of degree at most k.

R A I R O Analyse numerique/Numerical Analysis
2. THE PROBLEM AND ITS DISCRETIZATION

Let Ω be a rectangular domain in $\mathbb{R}^3 : \Omega = \{ x = (x_1, x_2, x_3) \in \mathbb{R}^3, \ x_i \in (0, a_i), i = 1, 2, 3 \}$. We consider the Stokes problem for an incompressible fluid with viscosity equal to one:

\[- \Delta u + \nabla \lambda = f \quad \text{in} \quad \Omega, \]
\[\text{div} \ u = 0 \quad \text{in} \quad \Omega, \]
\[u = 0 \quad \text{on} \quad \partial \Omega, \]
\[\int_{\Omega} \lambda \, dx = 0.\]

Here $u = (u_1, u_2, u_3)$ is the velocity of the fluid and λ is the pressure, which we normalize to have the zero mean value. For simplicity we consider only the homogeneous Dirichlet boundary condition.

Let C^0_h be a uniform partitioning of Ω into rectangular subdomains of size $h_1 \times h_2 \times h_3$, i.e.,

\[C^0_h = \{ K_{ijk} : i = 1, \ldots, m_1, j = 1, \ldots, m_2, k = 1, \ldots, m_3 \}, \]

\[K_{ijk} = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : (i - 1) \ h_1 < x_1 < i h_1, \]
\[\quad (j - 1) \ h_2 < x_2 < j h_2, (k - 1) \ h_3 < x_3 < k h_3 \}, \]

where $m_i = a_i/h_i$ are integers. We assume that h_1, h_2 and h_3 depend on the mesh parameter h in such a way that h_i/h is bounded from below and from above by constants independent of h.

Let C^1_h be a partitioning of Ω obtained by dividing each $K_{ijk} \in C^0_h$ into eight equal 3-rectangles:

\[C^1_h = \{ \Delta_{ijk} : i = 1, \ldots, 2 \ m_1, j = 1, \ldots, 2 \ m_2, k = 1, \ldots, 2 \ m_3 \}, \]

\[\Delta_{ijk} = \{ x \in \mathbb{R}^3 : (i - 1) \ h_1/2 < x_1 < i h_1/2, \]
\[\quad (j - 1) \ h_2/2 < x_2 < j h_2/2, (k - 1) \ h_3/2 < x_3 < k h_3/2 \}. \]

We associate to C^1_h the following finite element spaces:

\[S_h = \{ v \in H^1_0(\Omega) : v \big|_{\Delta_{ijk}} \quad \text{is trilinear} \quad \forall \Delta_{ijk} \in C^1_h \} \]
\[Q_h = \{ \mu \in L^2(\Omega) : \mu \big|_{\Delta_{ijk}} \quad \text{is constant} \quad \forall \Delta_{ijk} \in C^1_h \}. \]
Setting $V_h = (S_h)^3$ we can now define a finite element method for the solution of (2 1) as

Find $(u_h, \lambda_h) \in V_h \times Q_h$ such that

$$
\begin{align*}
(Vu_h, Vv) - (\lambda_h, \text{div } v) &= (f, v) \quad \forall v \in V_h \\
(\text{div } u_h, \mu) &= 0 \quad \forall \mu \in Q_h
\end{align*}
$$

(2 2a)
(2 2b)

This set of equations does not have a unique solution (see section 3 below). To make the solution unique, it is customary to replace (2 2b) by

$$
\epsilon(\lambda_h, \mu) + (\text{div } u_h, \mu) = 0 \quad \forall \mu \in Q_h,
$$

(2 2b')

where $\epsilon > 0$ is a small parameter. The perturbed system (2 2a)-(2 2b') now has a unique solution, as is easily seen by setting $v = u_h$, $\mu = \lambda_h$. Upon eliminating λ_h from the perturbed system one obtains for u_h the equation

$$
(Vu_h, Vv) + \frac{1}{\epsilon} (\text{div } u_h, \text{div } v)_* = (f, v) \quad \forall v \in V_h
$$

(2 3)

where $(., .)_*$ indicates that the inner product is evaluated by first taking the average of $\text{div } u_h$ and $\text{div } v$ over each $\Delta_{ijk} \in C_h$. Eq (2 3) may also be regarded as a penalty method where the so-called selective reduced integration (cf [8]) is applied.

In the analysis below we will only treat the unperturbed scheme (2 2a, b). It is possible to show (see [7] for details) that the results also hold for the scheme (2 2a, b), provided that $\epsilon \leq Ch^2$.

3 ERROR ANALYSIS

We will first introduce a special orthogonal basis for the space Q_h. The basis consists of the functions ξ_{ijkl}, $i = 1, \ldots, m_1$, $j = 1, \ldots, m_2$, $k = 1, \ldots, m_3$, $l = 1, \ldots, 8$ defined as follows. The support of each ξ_{ijkl}, $l = 1, \ldots, 8$, is contained in $K_{ijk} \in C_h$, and on each subrectangle $\Delta_{i_1i_2i_3} \subset K_{ijk}$, $\Delta_{i_1i_2i_3} \subset C_h$, the functions ξ_{ijkl}, $l = 1, \ldots, 8$, attain the value ± 1 according to the following rule

$$
\begin{align*}
\xi_{ijkl}(x) &= 1 & \xi_{ijkl}(x) &= (-1)^{i_2+i_3} \\
\xi_{ijkl}(x) &= (-1)^{i_1} & \xi_{ijkl}(x) &= (-1)^{i_1+i_3} \\
\xi_{ijkl}(x) &= (-1)^{i_2} & \xi_{ijkl}(x) &= (-1)^{i_1+i_2} \\
\xi_{ijkl}(x) &= (-1)^{i_3} & \xi_{ijkl}(x) &= (-1)^{i_1+i_2+i_3}
\end{align*}
$$

If $x \in \Delta_{i_1i_2i_3} \subset C_h$, $\Delta_{i_1i_2i_3} \subset K_{ijk} \subset C_h^0$
Any \(\mu \in Q_h \) has the unique representation

\[
\mu = \sum_{i,j,k,l} \alpha_{ijkl} \xi_{ijkl} .
\]

Here and below we sum \(i, j, k \) and \(l \) from 1 to \(m_1, m_2, m_3 \) and \(8 \), respectively, unless noted otherwise.

We introduce the following subspaces of \(Q_h \):

\[N_h = \{ \mu \in Q_h : (\mu, \text{div} v) = 0 \ \forall v \in V_h \} \]
\[N_h^\perp = \{ \lambda \in Q_h : (\lambda, \mu) = 0 \ \forall \mu \in N_h \} . \]

One can verify by simple computation that \(N_h \) consists of the linear combinations of functions \(\psi, \varphi_i, i = 1, ..., m_1, \theta_j, j = 1, ..., m_2 \) and \(\rho_k, k = 1, ..., m_3 \), defined as follows:

\[
\psi(x) = 1, \quad x \in \Omega ,
\]
\[
\varphi_i(x) = \begin{cases} (-1)^{i+k}, & x \in \Delta_{ijk} \in C_h \\ 0, & \text{otherwise} \end{cases},
\]
\[
\theta_j(x) = \begin{cases} (-1)^{i+k}, & x \in \Delta_{ijk} \in C_h \\ 0, & \text{otherwise} \end{cases},
\]
\[
\rho_k(x) = \begin{cases} (-1)^{i+k}, & x \in \Delta_{ijk} \in C_h \\ 0, & \text{otherwise} \end{cases} .
\]

Taking into account the relation \(\sum_i \varphi_i = \sum_j \theta_j = \sum_k \rho_k \), we conclude easily that \(\dim (N_h) = 2(m_1 + m_2 + m_3) - 1 \).

The space \(N_h^\perp \) can now be characterized as

\[
N_h^\perp = \left\{ \sum_{i,j,k,l} \alpha_{ijkl} \xi_{ijkl} : \sum_{i,j,k,l} \alpha_{ijkl} = 0 , \right\}
\]
\[
\sum_{i,j,k,l} \alpha_{ijkl} = \sum_{i,j,k} \alpha_{ijk8} = 0 , \quad i = 1, ..., m_1 ,
\]
\[
\sum_{i,j,k,l} \alpha_{ijkl} = \sum_{i,j,k} \alpha_{ijk8} = 0 , \quad j = 1, ..., m_2 ,
\]
\[
\sum_{i,j,k,l} \alpha_{ijkl} = \sum_{i,j,k} \alpha_{ijk8} = 0 , \quad k = 1, ..., m_3 .
\]

Remark: The solution of (2.2) is not unique, since if \((u_h, \lambda_h)\) is a solution, then so is \((u_h, \lambda_h + \mu)\) for any \(\mu \in N_h \). However, if we require that \(\lambda_h \in N_h^\perp \),

vol 16, no 3, 1982
then the solution is unique. Note also that if \((u_h, \lambda_h)\) is the solution of the perturbed problem (2.2a, b'), then \(\lambda_h \in N_h^l\). □

We will supply \(Q_h\) with a special mesh-dependent semi-norm, the meaning of which will be clarified by Lemma 3.1 below. We define

\[
|\mu_h|^2 = \sum_{l=1}^{4} |\mu_l|^2 + h^3 \sum_{l=5}^{8} \sigma(\mu_l)^2,
\]

\[
\mu = \sum_{i,j,k,l} \alpha_{ijkl} \xi_{ijkl},
\]

where

\[
\mu_l = \sum_{i,j,k} \alpha_{ijkl} \xi_{ijkl}, \quad l = 1, \ldots, 8,
\]

and

\[
\sigma(\mu_1)^2 = \sum_{j=1}^{m_2-1} \sum_{i,k} (\alpha_{ijkl} - \alpha_{i,j+1,k5})^2 + \sum_{k=1}^{m_2-1} \sum_{i,j} (\alpha_{ijkl} - \alpha_{i,j,k+1,5})^2,
\]

\[
\sigma(\mu_2)^2 = \sum_{i,j,k} (\alpha_{ijkl} - \alpha_{i+1,jk6})^2 + \sum_{k=1}^{m_2-1} \sum_{i,j} (\alpha_{ijkl} - \alpha_{i,j,k+1,6})^2,
\]

\[
\alpha(\mu_3)^2 = \sum_{j=1}^{m_1-1} \sum_{i,k} (\alpha_{ijkl} - \alpha_{i+1,jk7})^2 + \sum_{k=1}^{m_1-1} \sum_{i,j} (\alpha_{ijkl} - \alpha_{i,j,k+1,7})^2,
\]

\[
\sigma(\mu_4)^2 = \sum_{i=1}^{m_1-1} \sum_{j,k} (\alpha_{ijkl} - \alpha_{i+1,jk8} - \alpha_{i,j+1,k8} + \alpha_{i+1,j+1,k8})^2 + \sum_{j=1}^{m_1-1} \sum_{i,k} (\alpha_{ijkl} - \alpha_{i+1,jk8} - \alpha_{i,j,k+1,8} + \alpha_{i+1,j,k+1,8})^2 + \sum_{k=1}^{m_1-1} \sum_{i,j} (\alpha_{ijkl} - \alpha_{i+1,jk8} - \alpha_{i,j,k+1,8} + \alpha_{i+1,j,k+1,8})^2.
\]

We now prove a stability estimate of Babuška-Brezzi (cf. [1, 2]) type.

Lemma 3.1: There are the constants \(C_1\) and \(C_2\) such that

\[
C_1 |\mu_h|_h \geq \sup_{v \in V_h} \frac{\langle \mu, \text{div } v \rangle}{\|v\|_1} \geq C_2 |\mu_h|_h
\]

for all \(\mu \in Q_h\) with \((\mu, 1) = 0\).
In the proof we need the following analogue of Lemma 3.1, obtained by reducing the space \(Q_h \) to consist only of functions that are constant on each \(K_{i,j,k} \in C_h^1 \).

Lemma 3.2: Let \(\mu_1 = \sum_{i,j,k} \alpha_{i,j,k} \zeta_{i,j,k} \), with \((\mu_1, 1) = 0 \). Then there is a constant \(C \) such that

\[
\sup_{v \in V_h} \left(\frac{\mu_1}{\| v \|_1}, \text{div } v \right) \geq C \left\| \mu_1 \right\|_0 .
\]

Proof: Given \(\mu_1 \) as in the lemma, there exists (cf. [5]) \(z \in [H_0^1(\Omega)]^3 \) such that \(\text{div } z = \mu_1 \) in \(\Omega \) and

\[
\| z \|_1 \leq C \| \mu_1 \|_0 .
\]

We then define \(z_h \in V_h \) by requiring

\[
z_h(P) = w_h(P), \quad \text{if } P \text{ is a vertex or the midpoint or a midpoint of an edge of } K_{i,j,k} \in C_h^0 ,
\]

\[
\int_S z_h \, ds = \int_S z \, ds , \quad \text{if } S \text{ is a side of } K_{i,j,k} \in C_h^0 ,
\]

where \(w_h \in V_h \) satisfies

\[
(\nabla z - \nabla w_h, \nabla v) = 0 \quad \forall v \in V_h .
\]

Using the same argument as in [5, pp. 76-77] one can verify that \(z_h \) is well defined and that

\[
\| z_h \|_1 \leq C \| z \|_1 ,
\]

\[
(\text{div } z_h, \mu_1) = (\text{div } z, \mu_1) .
\]

Thus we have

\[
\frac{\left(\mu_1, \text{div } z_h \right)}{\| z_h \|_1} \geq C \frac{\left(\mu_1, \text{div } z \right)}{\| z \|_1} \geq C \| \mu_1 \|_0 ,
\]

which proves the lemma. \(\square \)

vol 16, n° 3, 1982
Remark: In the argument of [5] referred to above one assumes that the Laplacian is an isomorphism from $H^2(\Omega) \cap H^1_0(\Omega)$ to $L_2(\Omega)$. This obviously holds in the present case. □

Proof of Lemma 3.1: Let $\mu = \sum_{ijkl} \alpha_{ijkl} \xi_{ijkl} = \sum_i \mu_i$ be given with $(\mu, 1) = 0$.

We first define the functions $z = (z_1, z_2, z_3) \in V_h$, $w = (w_1, w_2, w_3) \in V_h$ and $g = (g_1, g_2, g_3) \in V_h$ as follows:

\[
\begin{aligned}
 z_1(P) &= - \alpha_{ijkl} x_{ijkl} \\
 z_2(P) &= \begin{cases} - \alpha_{ijkl} x_{ijkl} & \text{if } P \text{ is the midpoint} \\
 0 & \text{otherwise} \end{cases} \\
 z_3(P) &= \begin{cases} - \alpha_{ijkl} x_{ijkl} & \text{if } P \text{ is the midpoint of the common edge of } K_{ijkl} \\
 0 & \text{otherwise} \end{cases}
\end{aligned}
\]

\[
\begin{aligned}
 w_3(P) &= - \alpha_{ijkl} x_{ijkl}, \quad \text{or respectively} \\
 w_2(P) &= \begin{cases} - \alpha_{ijkl} x_{ijkl} & \text{if } P \text{ is the midpoint} \\
 0 & \text{otherwise} \end{cases} \\
 w_1(P) &= \begin{cases} - \alpha_{ijkl} x_{ijkl} & \text{if } P \text{ is the midpoint} \\
 0 & \text{otherwise} \end{cases}
\end{aligned}
\]

\[
\begin{aligned}
 g_3(P) &= h(- \alpha_{ijkl} x_{ijkl} + \alpha_{ijkl} x_{ijkl}), \quad \text{or} \\
 g_2(P) &= h(- \alpha_{ijkl} x_{ijkl} + \alpha_{ijkl} x_{ijkl}), \quad \text{or} \\
 g_1(P) &= h(- \alpha_{ijkl} x_{ijkl} + \alpha_{ijkl} x_{ijkl}, \alpha_{ijkl} x_{ijkl}, \alpha_{ijkl} x_{ijkl}, \alpha_{ijkl} x_{ijkl}), \quad \text{or}
\end{aligned}
\]

if, respectively, P is the midpoint of the common edge of K_{ijkl}, K_{ijkl}, K_{ijkl}, and K_{ijkl}, or of K_{ijkl}, K_{ijkl}, K_{ijkl}, and K_{ijkl}.

(vi) The remaining degrees of freedom of z, w and g are set equal to zero.
One can easily verify from (i) through (vi) that the following inequalities hold:

\[
\| z \|_1 \leq C \left\{ \sum_{l=2}^{4} \| \mu_l \|^2 \right\}^{1/2} ,
\]
\[
\| w \|_1 \leq Ch^{3/2} \left\{ \sum_{l=5}^{7} \sigma(\mu_l)^2 \right\}^{1/2} ,
\]
\[
\| g \|_1 \leq Ch^{3/2} \sigma(\mu_8) .
\]
\[
(\mu, \text{div } z) \geq C \left(\sum_{l=2}^{4} \mu_l \right) ,
\]
\[
\left(\mu_1 + \sum_{l=5}^{8} \mu_l, \text{div } w \right) \geq Ch^{3} \left(\sum_{l=5}^{7} \sigma(\mu_l)^2 \right) ,
\]

and

\[
(\mu_1 + \mu_8, \text{div } g) \geq Ch^3 \sigma(\mu_8)^2 .
\]

We now introduce a fourth function \(e = (e_1, e_2, e_3) \in V_h \) which satisfies

\[
\| e \|_1 \leq C \| \mu_1 \|_0
\]
\[
(\mu_1, \text{div } e) \geq C \| \mu_1 \|^2_0 .
\]

Since \((\mu, 1) = (\mu_1, 1) = 0\), the existence of \(e \) follows from Lemma 3.2.

Now, let \(v = z + \delta w + \delta^2 g + \delta^3 e \), where \(\delta \in [0, 1] \) will be chosen below. Then we have

\[
\| v \|_1 \leq C \| \mu \|_h ,
\] (3.1)

and

\[
(\mu, \text{div } v) \geq C \left\{ \delta^3 \| \mu_1 \|^2_0 + \sum_{l=2}^{4} \| \mu_l \|^2_0 + \delta h^3 \sum_{l=5}^{7} \sigma(\mu_l)^2 + \delta^2 h^3 \sigma(\mu_8)^2 \right\}
\]
\[
+ \delta \sum_{l=2}^{4} (\mu_l, \text{div } w)
\]
\[
+ \delta^2 \sum_{l=2}^{7} (\mu_l, \text{div } g)
\]
\[
+ \delta^3 \sum_{l=2}^{8} (\mu_l, \text{div } e) .
\] (3.2)

We will now deduce estimates for \(|(\mu, \text{div } g)| \) and \(|(\mu_l, \text{div } e)| \) for \(l = 5, ..., 8 \).

We proceed as follows. For \(v = (v_1, v_2, v_3) \in V_h \), let

\[
v_{nijk} = v_n(ih_1/2, jh_2/2, kh_3/2) ,
\]
\[i = 0, \ldots, 2m_1, j = 0, \ldots, 2m_2, k = 0, \ldots, 2m_3, n = 1, 2, 3. \text{ Then we can write} \]
\[(\mu_l, \text{div} \, v) = \sum_{j=1}^{m_2-1} \sum_{i,k} (\alpha_{ijk} - \alpha_{i,j+1,k}) \Delta_{ijk}^3(v) + \sum_{k=1}^{m_3-1} \sum_{i,j} (\alpha_{ijk} - \alpha_{i,j,k+1}) \left[\Delta_{ijk}^1(v_1) + \Delta_{ijk}^2(v_2) \right], \]

where
\[\Delta_{ijk}^1(v) = \frac{1}{16} h_2 h_3 \sum_{\nu=0}^{1} \sum_{\mu=0}^{1} (-1)^{\nu+\mu} v_{2\nu+1,2j-2\mu,2k}, \]

and
\[\Delta_{ijk}^2(v) = \frac{1}{16} h_1 h_3 \sum_{\nu=0}^{2} c_{ij}(v_{2\nu+1,2j,2k-2} - 2v_{2\nu+1,2j-2,2k} + v_{2\nu+1,2j-2,2k}) \]
\[\Delta_{ijk}^3(v) = \frac{1}{16} h_1 h_2 \sum_{\nu=0}^{2} c_{ij}(v_{2\nu+1,2j,2k} - 2v_{2\nu+1,2j-2,2k+1} + v_{2\nu+1,2j,2k+1}), \]

where \(c_0 = 1, c_1 = 2 \) and \(c_2 = 1 \).

Similarly, we find that
\[\left(\mu_8, \frac{\partial v_1}{\partial x_1} \right) = \frac{1}{16} h_2 h_3 \sum_i \sum_{\nu=1}^{m_2-1} \sum_{k=1}^{m_3-1} \Delta_{ijk}(v_1) \times \]
\[\times \left(\alpha_{i,jk} - \alpha_{i,j+1,k} - \alpha_{i,j,k+1} - \alpha_{i,j+1,k+1} \right), \]

where
\[\Delta_{ijk}(v) = v_{2\nu+1,2j,2k} - 2v_{2\nu+1,2j-2,2k} + v_{2\nu+1,2j,2k}. \]

Using these relations and similar expressions for \((\mu_6, \text{div} \, v), (\mu_7, \text{div} \, v), (\mu_8, \partial v_2/\partial x_2)\) and \((\mu_6, \partial v_3/\partial x_3)\), and noting that
\[C_1 \| v \|^2_1 \leq h \sum_{n=1}^{3} \sum_{i=0}^{2m_1-1} \sum_{j=0}^{2m_2-1} \sum_{k=0}^{2m_3-1} \left[(v_{njk} - v_{n,i+1,j,k})^2 + (v_{njk} - v_{n,i,j+1,k})^2 + (v_{njk} - v_{n,i,j,k+1})^2 \right] \]
\[\leq C_2 \| v \|^2_1, \quad v \in V_h, \]

we can now easily verify that
\[\| (\mu_l, \text{div} \, v) \| \leq Ch^{3/2} \sigma(\mu_l) \| v \|_1, \quad l = 5, 6, 7, \quad v \in V_h, \quad (3.3) \]
and

\[|(\mu, \text{div} \, v)| \leq C h^{3/2} \sigma(\mu) |v|_1, \quad v \in V_h. \]

(3.4)

Applying (3.3) and (3.4) together with the above estimates for \(\|w\|_1, \|g\|_1 \) and \(\|e\|_1 \) in (3.2) we find that

\[
(\mu, \text{div} \, v) \geq C \left\{ \delta^3 \| \mu_1 \|^2_0 + \sum_{l=2}^4 \| \mu_l \|^2_0 + \delta h^3 \sum_{l=5}^7 \sigma(\mu_l)^2 + \delta^2 h^3 \sigma(\mu_8)^2 \right\} - \\
- C_1 \delta h^{3/2} \left\{ \sum_{l=2}^4 \| \mu_l \|^2_0 \right\}^{1/2} \left\{ \sum_{l=5}^7 \sigma(\mu_l)^2 \right\}^{1/2} \\
- C_1 \delta^2 h^{3/2} \left\{ \sum_{l=2}^4 \| \mu_l \|^2_0 + h^3 \sum_{l=5}^7 \sigma(\mu_l)^2 \right\}^{1/2} \sigma(\mu_8) \\
- C_1 \delta^3 \left\{ \sum_{l=2}^4 \| \mu_l \|^2_0 + h^3 \sum_{l=5}^7 \sigma(\mu_l)^2 \right\}^{1/2} \| \mu_1 \|_0 \\
\geq (C - C_2 \delta) \left\{ \delta^3 \| \mu_1 \|^2_0 + \sum_{l=2}^4 \| \mu_l \|^2_0 + \delta h^3 \sum_{l=5}^7 \sigma(\mu_l)^2 + \\
+ \delta^2 h^3 \sigma(\mu_8)^2 \right\}.
\]

Choosing now \(\delta = \min \left\{ 1, \frac{C}{2 C_2} \right\} \), we have

\[(\mu, \text{div} \, v) \geq C |\mu|_h^2. \]

Together with (3.1), this proves the asserted lower bound for \(|\mu|_h \). To finally prove the upper bound we only need to note that, by (3.3) and (3.4),

\[|(\mu, \text{div} \, v)| \leq C |\mu|_h |v|_1, \quad \mu \in Q_h, \quad v \in V_h. \]

Thus, Lemma 3.1 is proved. \(\square \)

We note that, by the definition of \(N_h^1 \), \(\cdot \) \(h \) is a norm in \(N_h^1 \). We establish next a lower bound for this norm in terms of \(h \) and the usual \(L_p \) norms.

Lemma 3.3: If \(\mu \in N_h^1 \), then

\[
|\mu|_h \geq C \left(\sum_{l=1}^4 \| \mu_l \|_0 + h \sum_{l=5}^7 \| \mu_l \|_0 + h^{5/2} \| \mu_8 \|_{0,6} \right).
\]
Proof : Let \(\mu = \sum_{i,j,k,l} \alpha_{ijkl} z_{ijkl} \in N_h^\perp \) be given. We recall from the definition of \(N_h^\perp \) that \(\sum_{j,k} \alpha_{ijk,5} = \sum_{i,j} \alpha_{ijk,6} = \sum_{i,j,k} \alpha_{ijk,7} = 0 \). From these relations we conclude, e.g., that

\[
h^3 \sigma(\mu_5)^2 = h^3 \sum_i \left\{ \sum_{j=1}^{m_2-1} \sum_k (\alpha_{ijk,5} - \alpha_{i,j+1,k,5})^2 + \right. \\
\left. + \sum_j \sum_{k=1}^{m_3-1} (\alpha_{ijk5} - \alpha_{ij,k+1,5})^2 \right\} \geq C h^5 \sum_{i,j,k} (\alpha_{ijk5})^2 \geq C_1 h^2 \left\| \mu_5 \right\|_0^2
\]

Here we used discrete Poincaré’s and Sobolev’s inequalities to conclude that if \(\sum_j \alpha_{jk} = 0 \), then

\[
\sum_{j=1}^{m_2-1} \sum_k (\alpha_{jk} - \alpha_{j+1,k})^2 + \sum_j \sum_{k=1}^{m_3-1} (\alpha_{jk} - \alpha_{j,k+1})^2 \geq C h^2 \sum_{j,k} \alpha_{jk}^2
\]

(cf. [7] for the details of the argument) Since similar estimates obviously hold for \(\sigma(\mu_6) \) and \(\sigma(\mu_7) \), we conclude that

\[
\left\| \mu \right\|_h \geq C \left(\sum_{l=1}^{4} \left\| \mu_l \right\|_0 + h \sum_{l=5}^{7} \left\| \mu_l \right\|_0 \right).
\] (3.5)

To obtain a bound for the component \(\mu_8 = \sum_{i,j,k} \alpha_{ijk8} z_{ijk8} \), let \(k \) be fixed, \(1 \leq k \leq m_3 - 1 \), and define

\[
\beta_{ij} = \alpha_{ijk8} - \alpha_{i+1,j,k8} - \alpha_{i,j,k+1,8} + \alpha_{i+1,j,k+1,8}, \\
\gamma_{ij} = \alpha_{ijk8} - \alpha_{i,j+1,k8} - \alpha_{i,j,k+1,8} + \alpha_{i,j+1,k+1,8}, \\
\delta_{ij} = \alpha_{ijk8} - \alpha_{i,j,k+1,8}.
\]

Then we easily find that

\[
\delta_{ij} = \delta_{1,1} - \sum_{l=1}^{i-1} \beta_{1l} - \sum_{l=1}^{j-1} \gamma_{1l}.
\] (3.6)
Recalling that \(\sum_{i,j,k} a_{ijk} = 0 \) for \(k = 1, \ldots, m_3 \) (since \(\mu \in N_k\)), we have in particular that \(\sum_{i,j} \delta_{ij} = 0 \). Using this we may solve for \(\delta_{1,1} \) in (3.6) to obtain

\[
\delta_{1,1} = \sum_{i=1}^{m_1-1} c_i \beta_{i1} + \sum_{i} \sum_{j=1}^{m_2-1} d_{ij} \gamma_{ij},
\]

where the coefficients satisfy

\[
|c_j| \leq C, \quad |d_{ij}| \leq Ch.
\]

Substituting this back to (3.6) we obtain

\[
h \sum_{i,j} \delta_{ij}^2 \leq Ch^{-2} \left(\sum_{i=1}^{m_1-1} \sum_{j} \beta_{ij}^2 + \sum_{i} \sum_{j=1}^{m_2-1} \gamma_{ij}^2 \right).
\]

(3.7)

Repeating this argument for all \(k \) and for permuted indices, and summing up the resulting inequalities (3.7), we find that

\[
\sigma(\mu_8) \geq Ch |\mu_8|_{1,h},
\]

(3.8)

where

\[
|\mu_8|_{1,h}^2 = h \left\{ \sum_{i=1}^{m_1-1} \sum_{j,k} (\alpha_{ijk} - \alpha_{i+1,jk})^2 + \sum_{j=1}^{m_2-1} \sum_{i,k} (\alpha_{ijk} - \alpha_{i,j+1,k})^2 + \sum_{k=1}^{m_3-1} \sum_{i,j} (\alpha_{ijk} - \alpha_{i,j+1,k})^2 \right\}.
\]

To finally get a lower bound for \(|\mu_8|_{1,h} \), we construct a function \(\phi \in H^1(\Omega) \) satisfying

\[
C_1 |\mu_8|_{1,h} \leq |\phi|_1 \leq C_2 |\mu_8|_{1,h},
\]

\[
C_1 \|\mu_8\|_{0,p} \leq \|\phi\|_{0,p} \leq C_2 \|\mu_8\|_{0,p}, \quad 1 \leq p < \infty
\]

and

\[
\int_{\Omega} \phi \, dx = h_1 h_2 h_3 \sum_{i,j,k} \alpha_{ijk} = 0.
\]
The function \(\varphi \) is found, e.g. as follows. Consider another rectangular sub-
division \(C_h^1 \) of \(\Omega \), the interior nodes of which are located at the midpoints of
\(K_{ijk} \in C_h^0 \). Then define \(\varphi \) to be the continuous piecewise trilinear function on
\(C_h^1 \), which satisfies \(\varphi(x) = \alpha_{ijk} \) if \(x \) is a node of \(C_h^1 \) such that \(x \in K_{ijk}, K_{ijk} \in C_h^0 \).
It is then easy to see that the above relations hold, and so, using Poincare’s
and Sobolev’s inequalities, we find that
\[
|\mu_8|_{1,h} \geq C |\varphi|_1 \geq C_1 \| \varphi \|_1 \geq C_2 \| \varphi \|_{0,6} \\
\geq C_3 \| \mu_8 \|_{0,6}.
\]
Combining this with (3.8) and recalling the definition of \(|\mu|_h \), we obtain
\[
|\mu|_h \geq h^{3/2} \sigma(\mu_8) \geq C h^{5/2} \| \mu_8 \|_{0,6}.
\]
Together with (3.5) this finishes the proof of Lemma 3.3. \(\square \)

We can now state and prove a basic error estimate for the scheme (2.2).

Theorem 3.1: Assume that the solution of (2.1) satisfies
\[
(u, \lambda) \in \left[W^{9/2,6/5}(\Omega) \right]^3 \times H^1(\Omega).
\]
Then if \((u_h, \lambda_h) \in V_h \times N_h^\perp \) is a solution to (2.2) and \(\tilde{\lambda} \) is the orthogonal projec-
tion of \(\lambda \) onto \(N_h^\perp \), we have
\[
|u - u_h|_1 + |\lambda_h - \tilde{\lambda}_h|_h \leq C h(\| u \|_{9/2,6/5} + \| \lambda \|_1).
\]

Proof: Let \(\tilde{u} \in V_h \) be the interpolant of \(u \). We first apply Lemma 3.1 and
the general theory of Babuška [1] and Brezzi [2] (cf. also [7]) to conclude the
existence of \((v, \mu) \in V_h \times N_h^\perp \) such that
\[
|v|_1 + |\mu|_h \leq C,
\]
and
\[
|u_h - \tilde{u}|_1 + |\lambda_h - \tilde{\lambda}_h|_h \leq C \{ |(\nabla(u - \tilde{u}), \nabla v)| + \\
+ |(\lambda - \tilde{\lambda}, \nabla v)| + |(\text{div}(u - \tilde{u}), \mu)| \}. \tag{3.9}
\]
The first term on the right side of (3.9) obeys as usual (cf. [3]) the quasi-
optimal bound
\[
|(\nabla(u - \tilde{u}), \nabla v)| \leq |u - \tilde{u}|_1 |v|_1 \leq C h |u|_2. \tag{3.10}
\]
The second term can be estimated by first noting that
\[
(\tilde{\lambda}, \text{div} v) = (\pi_h \lambda, \text{div} v) \quad \forall v \in V_h,
\]
where \(\pi_h \lambda \) is the orthogonal projection onto \(Q_h \). Hence, by well-known approximation theory,

\[
| (\lambda - \tilde{\lambda}, \text{div } v) | \leq \| \lambda - \pi_h \lambda \|_0 \| v \|_1 \leq C h | \lambda |_1. \tag{3.11}
\]

In estimating the third term on the right side of (3.9) we need the following « superapproximation » result, the proof of which is straightforward.

Lemma 3.4: Defining for \(v \in [H^2(K)]^3 \), \(K = K_{ijk} \in C_h \),

\[
L_l(v) = \int_K \text{div} (v - \tilde{v}) \xi_{ijkl} \, dx, \quad l = 1, \ldots, 8,
\]

where \(\tilde{v} \) denotes the piecewise trilinear interpolant of \(v \) on the eight subrectangles of \(K \), we have

\[
L_l(v) = 0, \quad l = 1, \ldots, 8, \quad \text{if} \quad v \in [P_2]^3
\]

and

\[
L_8(v) = 0, \quad \text{if} \quad v \in [P_3]^3,
\]

so that, in particular,

\[
| L_l(v) | \leq C h^{7/2} | v |_{H^3(K)}, \quad l = 1, \ldots, 8,
\]

and

\[
| L_8(v) | \leq C h^{k + 2 - 3/p} | v |_{W^{k+2,p}(K)}, \quad 1 \leq p < \infty, \quad 4 \leq k \leq 6.
\]

Now writing \(\mu = \sum_{i,j,k,l} \alpha_{ijkl} \xi_{ijkl} = \sum_i \mu_i \) we have

\[
\left| (\text{div} (u - \bar{u}), \sum_{l=1}^4 \mu_l) \right| \leq C \| u - \bar{u} \|_1 \| \mu \|_h \leq C_1 h \| u \|_2, \tag{3.12}
\]

and, applying Lemma 3.4 and Lemma 3.3,

\[
\left| (\text{div} (u - \bar{u}), \sum_{l=5}^7 \mu_l) \right| = \left| \sum_{i,j,k} \sum_{l=5}^7 \alpha_{ijkl} \int_{K_{ijkl}} \text{div} (u - \bar{u}) \xi_{ijkl} \, dx \right| \leq C h^2 \| u \|_3 \sum_{l=5}^7 \| \mu_l \|_0 \leq C_1 h \| u \|_3. \tag{3.13}
\]
Similarly, applying the Holder inequality and Lemma 3.4 we find that
\[
|\langle \text{div} (u - \tilde{u}), \mu_g \rangle | \leq C h^{k-1} \| u \|_{k,p} \| \mu_g \|_{0,q},
\]
where
\[
1 \leq p < \infty, \quad p^{-1} + q^{-1} = 1, \quad 4 \leq k \leq 6 \quad (3.14)
\]
Choosing here \(p = 6/5 \), we have \(q = 6 \) and so, by Lemma 3.3,
\[
\| \mu_g \|_{0,q} \leq C h^{5/2} \| \mu \|_h \leq C_1 h^{-5/2}
\]
By interpolating in (3.14) we then obtain
\[
|\langle \text{div} (u - \tilde{u}), \mu_g \rangle | \leq C h^{7/2} \| u \|_{9/2,6/5} \| \mu \|_{0,6}
\]
\[
\leq C_1 h \| u \|_{9/2,6/5} \quad (3.15)
\]
From (3.12), (3.13) and (3.15) we see, applying the Sobolev embedding, that
\[
|\langle \text{div} (u - \tilde{u}), \mu \rangle | \leq C h \| u \|_{9/2,6/5}
\]
Combining this with (3.9) through (3.11) and finally applying the triangle inequality together with the usual bound for \(|u - \tilde{u}|_1 \), we obtain the desired estimates for \(|u - u_h|_1 \) and \(|\lambda_h - \tilde{\lambda}_h|_h \), and the proof of Theorem 3.1 is complete. \(\Box \)

Remark The regularity assumption in Theorem 3.1 is not quite realistic even in the simple geometry considered, since there are in general singularities in the solution near the edges and vertices of \(\Omega \). Taking the leading edge singularity into account, we conjecture from [6, 9] that \(u \) can satisfy
\[
u \in [W^{s,65}(\Omega)]^3 \quad \text{for} \quad s \leq 4.4
\]
if \(f \) in (2.1) is sufficiently smooth. With this regularity assumption, we would obtain \(\| u - u_h \|_1 \approx 0(h^{0.9}) \) \(\Box \)

Remark One cannot obtain any convergence rate for the pressure in \(L_2 \) from Theorem 3.1, since Lemma 3.3 only implies that
\[
|\lambda_h - \tilde{\lambda}_h|_h \geq C h^{5/2} \| \lambda_h - \tilde{\lambda}_h \|_0
\]
However, as in [7], it follows easily from the definition of \(|.|_h \) that if \(\lambda_h \) is first averaged over each \(K_{ijh} \in C_0h \) then the resulting smoothed pressure \(\pi_0^h \lambda_h \) converges
\[
\| \lambda - \pi_0^h \lambda_h \|_0 \leq C h (\| u \|_{9/2,6/5} + \| \lambda \|_1)
\]
\(\Box \)
Remark: Assuming that we have for Eq. (2.1) the a priori estimate
\[\| u \|_2 + \| \lambda \|_1 \leq C \| f \|_0, \]
which is generally conjectured for a convex polyhedral domain, one can prove using the technique of [7] that
\[\| u - u_h \|_0 \leq C h^2 (\| u \|_{9/2,6/5} + \| \lambda \|_1). \]

REFERENCES