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APPROXIMIATION OF SOLUTION BRANCHES
OF NONLINEAR EQUATIONS (*), (**)

by Jean DgscrLoux (!) and Jacques Rappaz (%)

Communicated by P G CIARLET

Abstract — We present a general theory for the approximation of regular and bifurcating bran-
ches of solutions of nonhinear equations It can be apphed to numerous problems, including differential
equations on unbounded domains, in connection with various numerical algorithms, for example
Galerkin methods with numerical integration

Résumé —— On présente une théorie générale de I’approximation de branches, réguliéres ou avec
bifurcation, de solutions d’équations non inéaires Cette théorie sSapphque d de nombreux problémes,
y compris les équations différentielles sur des domaines non bornes, résolus par des méthodes numé-
riques variées, par exemple des méthodes de Galerkin avec intégration numerique

1. INTRODUCTION

In their three papers [1], 2], [3], Brezzi, Rappaz and Raviart consider the
approximation of nonlinear equations of the type

u+ TG(hu) =0 (1.1)
by a family of equations of the form
u+ T,GAh u)=0; (1.2)

here G : Rx V> W is a regular nonlinear mappmg, T : W — V and
T, : W — V, are bounded linear operators ; V and W are real Banach spaces,

(*) Received in december 1981
(**) This work was supported by the Fonds National Suisse de la Recherche Scientifique
() Département de Mathématiques, Ecole Polytechmque Fédérale, Lausanne, Suisse.
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320 J DESCLOUX, J RAPPAZ

{ V, }i 1s a famly of finite dimensional subspaces of I As a mam hypothesis
connecting (1 1) and (1 2), they suppose that

Im || T - T,llgwy, =0, 1 3)

h—0

which implies m particular that T is compact

Brezzi, Rappaz and Raviart have limited their investigations to regular
branches of solutions [1], limit points [2] and simple bifurcation points [3],
whereas 1n [12], [13] Rappaz and Raugel have considered in the same coniext
bifurcation at multiple eigenvalues

The purpose of this paper 1s to genetahize mn an uiufied treatment some of
the main results contained in the references mentioned above In particular,
our theory includes the possibility to analyse two new situations

a) m (1 1), T 1s non compact, b) the approximation 1s of Galerkin type
with numerical integrat:on

Also most concrete problems can be written naturally n the form (1 1),
we have found suitable to adopt the following framework Let X and Y be real
Banach spaces, F X — Y be a sufficiently regular nonlinear map, x, € X be
such that F(x,) = 0 In a neighborhood of x,, we consider the equation

F(x) =0, (1 4)
we shail suppose that F (xo) X — Y 1 a Fiedholu operator of wmdea 1,

T
however we shall assume no compactness hypothesis on F (x)

Several authors have considered bifurcation problems m the general form
(1 4) (see for example Magnus [10]), since with 1t the parameter A € R does
not appear explicitly, a simple limit point cannot be distinguished from a
regular point, 1n the same way, the “ double limit point ” introduced by Decker
and Keller mn [5], can be treated as an usual simple bifurcation pont (see
Descloux, Rappaz [8])

For approximating the equation F(x) = 0 we consider two families of fimte
dimensional subspaces { X, },, { Y, }, of X and Y respectively, nonlinear
mappings F, X, — Y, and the equations

Fylx) =0, (15)

mstead of (1 3), we impose on F and F, a consistency condition and a stability
condition which are given by relations (3 5) and (3 7) in Section 3, remark
that they do not suppose that F (x,) possesses any properly of compactness

As for the analysis of problems (1 1), (1 2) by Brezzi, Rappaz, Raviart and
Raugel, our mvestigation will be based on the implicit function theorem In
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 321

Section 1, we recall a version of this theorem and prove a basic error estimate
(Theorem 2.2).

Section 3 deals with “ regular points ”, i.e. we require that F'(x,) is sur-
jective. Theorem 3.1 contains the general results. In Theorem 3.2, we suppose
that X is of the form R x V, and that x, = (A, u,) € X is a turning point ;
for Galerkin methods, as in [2], we obtain an improved bound for the parameter
A at the approximate turning point.

The main results of this paper are contained in Section 4 which is devoted
to bifurcation points. Although not impossible, we have found it very compli-
cated to work with the approximate problem (1.5) when F, operates on finite
dimensional subspaces ; for this reason we require that F, admits a suitable
extension F, : X — Y such that, in particular, the equations F,(x) = 0 and
F,(x) = 0 possess the same solutions. As in Section 3, we impose to F and
F, (where now F, denotes the extended operator X — Y) a consistency condi-
tion (4.4) and a stability condition (4.6). Supposing that the dimension of the
kernel of F'(xy) is n + 1 with n = 1, we apply the Lyapunov-Schmidt proce-
dure to F and F, (Theorem 4.1) and reduce problems (1.4) and (1.5) to
equations of the form f(c) = 0 and f,(c) = 0, where f and f, operate on the
same finite dimensional subspaces. Theorems 4.2 and 4.3 are based on the
following hypothesis :

fO) = f(0) = = f97P0) =0, £,0) = £;0) == £2710) =0

for some g > 2 and there exists a non degenerate characteristic ray (Hypothe-
ses (4.16), (4.17)) ; they show the existence of a branch I'" of solutions of the
exact problem (1.4) passing through x, and tangent to the characteristic ray
at x, and, on the other side, the existence of a branch I', of solutions of the
approximate problem (1.5) converging to I'. The particular case of a simple
bifurcation point is treated in Theorems 4.4 and 4. 5 which give error estimates
similar to those obtained in [3].

The aim of Section 5 is to show how the results of Section 4 can be applied
to the following classical problem

M uyeR x HYQ), — Au — du + u® = 0;

here Q is the unit square 0 < x, y < 1 and we are interested by solutions in the
neighborhood of (A, 0) where A, = 5 I1? is a double eigenvalue of the eigen-
value equation Au + Au = 0. The approximate problem is obtained by the
Galerkin method with numerical integration. The exact problem can be written
in the form (1.1) with T compact ; however, due to the presence of numerical
integration and to the fact that H{(Q) is not imbedded in C°(Q), the approxi-
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322 J DESCLOUX, J RAPPAZ

mate problem cannot be put i the form (1 2) Note that this difficulty can
be overcome by replacing H () by Wi ?(Q) for p > 2, but, then, the estimate
0(h) (5 25) should be replaced by 0(h! "), & > 0 (see [11])

Except for a part of Section 5, all the results of this paper are contained 1n
our Report [8] m which however some further questions are discussed, for
example bifurcation in presence of symmetry, the situation of imperfect nume-
rical bifurcation (1e using the above notations, f satisfies the relations
f0) = f(0)= = f@Y0) =0, but f, does not satisfy the relations
£0) = £,(0) = = f4"Y(0) = 0) Let us also mention the analysis of a
nonlinear Sturm-Liouville eigenvalue problem on the mnfinite mterval (0, co),
here, the exact problcm can be written iz the form (1 1), but with 7 non

compact (see also [9])

2. NOTATIONS. PRELIMINARIES

We first mtroduce some notations Let X, Y, Z be real Banach spaces For
the sake of simplicity, we shall denote by | . || the various norms 1n X, Y, Z,
L(X,Y),Z (X x Y,Z), where %, (X,Y)isthespace of continuous m-linear
mappings of X™ into Y In the same way, for any space, B(a, p) denotes the
open ball of center a and radius p The norm in X x Y 1s defined by the rela-
tion H(x,y)“ =|x|| +{yll For a map G QcX->Y, D"G or
G™ Q— & (X,Y) represents the m-th Frechet derivative of G, for x € Q,
E_ (£, ,Sm)cxm, we use the notations G™{x)e £ (X, Y)

GM()E =G"x)(E, ,E)eY,

if & =€, = =¢,_,, or If §& =&, = =¢&, we may also write
G™M(x)E = GM(x)E™ 1E, or G™M(x)E = G™(x)ET, respectively For a
mapG Qc X xY—->Z D G D, G DG, DG willdenote the partial
derivatives

As n [1], [2], [3], the essential 100l of this work will be the implicit function
theorem We quote here a particular version of 1t , for the proof, see, for exemple

(8]

THEOREM 2 1 Let X, Y and Z be Banach spaces, x,€ X, yo€ Y, 0 be a
positive number, Q = B(xy,8) x B(yy, 0) c X x Y, G Q—>Z be a C?
mapping with p = 2 We suppose that D, G(xo, y,) 1s an isomorphism from Y
onto Z and that there exist the numbers cy, ¢,, , ¢, such that

H D, G(x,, vo) ! “ < €
[G¥0 ) [ < ¥xyeQ, k=12 .p
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 323
Then, there exist positive numbers a, b, d depending only on 3, ¢y, ¢,, ¢, and for
k = 1,2,...,p, the numbers M, depending only oncg, c,, ..., ¢, such that :

1) for any (x, y) € B(xo, @) x B(yo, b), D, G(x, y) is an 1somorphism from Y
onto Z such that | D, G(x, y)" ' | < 2¢,,

u) if | G(xq, ¥o) | < d, there exists a C? mapping g * B(x,, a) = B(y,, b)
such that, for any x € B(x,, a), y = g(x) 1s the unique solution of the equation
G(X, ,V) = Os y € B(.)}Oa b)a lLe.

G(X, g(x)) = 0 5 g(x) € B(yo’ b) VX € B(x09 (1) a
furthermore
| g%90) | < M, VxeB(xga),l<k<p.

The next theorem provides a key result for error estimates.

THEOREM 2.2 : We consider the situation given by Theorem 2.1 with
| G(xo, ¥o) || <d. Let W be a real Banach space, A = W be open,
s : B(xg,a) = B(yy, b) and o : A — B(x,, a) be CP™! mappings, § = goa
and § = soa : A — B(y, b). We suppose that there exist constants

€1,€2 €15 Vi V2s o Vp-1
such that
|9 | < e VxeBlxga), o) <y VieA,
k=1,2..,p—1.
Then, for k=0,1, ,p — 1, there eust constants K, depending onl on

Cos C1s -oos Cht 15 €15 €25 cvvs €y Y1 Yas +o» Vi SUCh that
k

990 =50 | < K 3 [HOW] VeeA, 0<k<p—1, 2.1)
1=0

where H : A — Z 1s the C*~ ! mapping defined by H(t) = G(a(t), 5 (t)).

Proof : Since G(a(t), §(t)) = 0, we obtain by the fundamental theorem of
calculus :

H(t) = G(aft), §(t)) — G(a(t), §(2)) = E(t) (5(t) — §(1)), teA, (2.2)
where

E(t) = f D, Gla(t), §(0) + t(8(0) — §0)) dr; 2.3)

0
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324 J. DESCLOUX, J. RAPPAZ

by the same theorem again, we have that | E(t) — D, G(x,, o) | < ¢,(a + b).
Without restriction of generality we can assume in Theorem 2.1 that
2 ¢y c,(a + b) < 1; writting

E(t) = D, G(xo, yo) (I — D, G(xo, yo)™" (D, Glxo, yo) — E(t))),

we see that for any t € A, E(t) is an isomorphism from Y onto Z with inverse
bounded by 2 ¢, By differentiating (2.3) j times, 1 < j < p — 1, and by
using the bound | g®(x) | < M, of Theorem 2.1, we see that || EQ(t) || is
bounded, uniformly with respect to ¢, by a constant depending only on

C0s €1y vor Cya 15 €15 €35 e €, Y15 o, ¥,» W€ NOW prove Theorem 2.2 by induc-
tion ; for k = 0, we have by (2.2) :

[ 36) =g | < [EO7" [ [H@O [ < 2¢ [ HO

which proves (2.1) for k = 0 with K, = 2 ¢,. Now suppose (2.1) true for
<k<qg-—-1,1<qg < p— 1, by differentiating (2.2) ¢ times we obtain
for any§ = (&, .., §,)e Wiandanyte A:

B (690) ~ §90) & = HYOE ~ 3 b’ K@) (101) -
DT (s(e) - g(0) (LI,

where I1, is any partition of the set {&,, ..., &, } in two subsets n(Il,) and

C(IT)) containing respectively j and (g — j) elements; by the hypothesis of
induction, this proves (2.1) for k = q. [ ]

We conclude this section by recalling a classical result we shall use frequently
in the following.

THEOREM 2.3 : Let X and Y be Banach spaces, D be a relatively compact
subset of X, f and f,, ne N, be maps from D into Y. We suppose :

a) lim f,(x) = f(x) Vx € D,b)there exists a constant L such that

| fix) = A€ | < LIx—-&ll V¥x, £EeD, VneN.
Then lim f, = funiformly.

3. REGULAR POINTS

Let X and Y be two real Banach spaces, F : X — Y be a C? mapping with
p = 2 and xy € X be such that F(x,) = 0. We suppose that x, is a regular
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 325

point 1n the following sense

F'(xy) X — Y 1s a Fredholm operator of index 1, 31
Range F'(x,) = Y 3 2)

Hypotheses (3 1) and (3 2) imply that the kernel of F'(x,) 1s one-dimensional
and consequently 1s spanned by some vector 0,€ X, 0, # 0 Let Yo X*
be such that { @4, Vo, > # 0, where X * denotes the dual space of X and
{ ., . > the duality pairing between X and X * As we shall see in Theorem 3 1,
there 1s an unique branch of solutions of the equation F(x) = 0 passing through
X, which can be parametrized by a function x(t) satisfying the relations
F(x(t)) = 0, { x(t) — xg, Wo > — t = 0

In order to approximate this branch of solutions let { X, },and { Y, },betwo
families of finite dimensional subspaces of X and Y respectvely, { F, }, be a
family of C? functions mapping X, into Y, and { I, }, be a family of projectors
mapping X onto X, , here h 1s a parameter which tends to zero We suppose

a)ylimIl,x =x VxeX, 3 3)
h=0
b) dimension X, = dimension Y, + 1, (3 4)

¢) forany0 € k < p — 1and for any fixed x,&,, ,&, € X, we have

}ll_r’% n FOx) (€, &) — FP(L, x) (00, &,, ,II,&) ” =0, (35

d) there exist the positive constants & and ¢ such that
| FPX) || <e¢, VxeX, with || x — I, x, || <&, Vh, 1 <k <p,
(3 6)
e) there 1s a positive constant p such that
| Fallyxp) & | = nll &l ¥Ee Wy, Vh, 37
where W, ={xeX,|{x,Yo> =0}

(3 3) implies that the projectors II, are uniformly bounded, (3 4) 1s the
discrete analogous of (3 1), (3 5)1s a relation of pontwise convergence which
can be interpreted as a condition of consistency whereas (3 7) will appear as
a condition of stability allowing the use of the implicit function theorem

Remark 31 Let W ={xeX|{x,y,> =0}, by Hypotheses (3 1),
(3 2) and by Banach’s theorem, F'(x,) defines an 1somorphism from W onto Y
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326 J DESCLOUX, J RAPPAZ
and consequently there exists a positive constant ¢ such that
| Fo)E| > cligl veew

It follows that a sufficient condition which nsures the stability hypothesis (3 7)
1s the following one

o sup | (Fi0L )& — F (x)€ ] =0, 3 8)

h=0 EeXn ||E]l -1
such a condition has been used for example in [7] in connection with eigen-
value problems

Let4 RxX->RxYand¥9, R x X, >R x Y, be defined by the
relations

G, x) = ({x = X, Yo > — , F(x)), Gyt x) = ({x — X, Yo > — 1, F)(x))
(39

LemMma 3 1 Assume Hypotheses (3 1) to (3 7) Then a) D, 9(0, xy) 1s
an 1somorphism from X onto R x Y b) For h small enough, D_%4,(0, I1, x,)

1s an isomorphism from X, onto R x Y, with unmiformly (with respect to h) bounded
inverse

Proof By Hypotheses (3 1), (3 2) and the fact that { ©,, Y, > # 0, part
a) of lemma 3 1 follows immediately from Banach’s theorem In the following,
¢ will denote a positive generic constant independent of h, smce X, and

show, for h small enough, that | D,%,00,I1,x,)& || =cll &l VEeX,
Let 04, = I, ©,, by Hypotheses (3 3) and (3 5) we have that lim oy, = 0,
h—0

and lim F,(T], x,) ©y, = 0 Any g € X, can be decomposed as & = a®y, + W,
h—0

o € R, w e W, and we obtain by Hypothesis (3 7)

H D, %,(0,1I, xo) & || = ifx<(00ha Vo | + ” Fi(IT, xo) (@0g, + w) :l Z
zcla|l+clfw| — o] HF;.(Hhxo)(DOh ”
Zc{lal+wl}=clil n

THEOREM 3 1 Assume Hvpotheses (3 1) to (3 7) Then theie exist positive
constants hy, ty, o, K and two umque maps x(t)e X and x,(t)e X,, | t| < t,
satisfying respectively the conditions

G(t,x(t)) =0, | x(t)—x,| <o, for|t] <t,, (3 10)
G,(t, x, (1)) =0, || x,0t) =T, xq | <o, for |t] <ty and h < hy,
G 11)
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moreover x(0) = xo, X'(0) # 0, x(.) and x,(.) are of class C? with bounded
derwvatives of order 0, 1, , p where the bounds are uniform with respect to t
and h < hy, and we have

m sup | x®¥() — xP@)| =0, k=01, ,p—1, (312)

h=0 |t] <to
| x®() — xP@) | < K éo{ H %F,,(H,, x(t)) U + | (- 11,) x®@) | }
[t <ty, h<hy, 0<k<p-1 (313)

Proof By Hypotheses (3 1)-(3 7) and by Lemma 3 1, relations (3 10),
(3 11) and the boundedness of the derivatives of x(t) and of x,,(¢) follow easily
from Theorem 2 1 applied to 4 and 4, By applying Theorem 2 2 to ¢,, with
W=R,ot) =t 3(t) =11, x(t), weobtamfor 0 < k < p —1,| 1] < t, and
some constant ¢

from which, by using (3 10), (3 13) follows immediately Hypotheses (3 3),
(3 5) together with the fact that F(x(t)) = 0 imply that the right member of
(3 13) converges, for each t, to zero as h tends to zero , n fact, by Theorem 2 3,
the convergence 1s uniform with respect to t, this proves (3 12) |

300 - x| <c 3 |4

> Ml@(z o, x(t))

Besides Hypotheses (3 1)-(3 7), we shall assume from now on that we have
the following particular situation X = R x V, where V 1s a real Banach
space, X, = R x V,, where V, 1s a subspace of V', an element of R x V will
be denoted by (A, u), AeR, ue V and we shall write F(A, u) for F(x) and
F, (A, u) for Fy(x), we set x5 = (Ao, Ug), X(t) = (A1), u(t)), x,(t) = (A, (1), u,(2)),
[ t] < to, where x(t) and x,(t) are defined by Theorem 3 1, we suppose that

Range D, F()q, ug) 1s closed and of codimension 1 mn Y, (3 14)

D, F(ho, up) ¢ Range D, F(ho, uy), (3 15)

note that (3 14) and (3 15) are consistent with (3 2), 1n fact 1t 1s easy to prove

(see Appendix I of [8]) that (3 1) implies that D, F(),, uy) 1s a Fredholm

operator of index 0 so that (3 14) 1s a consequence of (3 1), (3 2) and (3 15)

Leta Y x Y — R be a continuous and coercive bilinear form , we assume
that F, 1s the Galerkin approximation of F with respecttoai1e

a(F,(\, u),y) = a(F(A, u),y) VveY,, Y\ ueX,, Vh, (3 16)

Im mf |[y—=z| =0, VveY 317

h—0 zeYy
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328 J DESCLOUX, ] RAPPAZ

By differentiating the relation F(A(t), u(t)) = 0 at t = 0, and by taking m
account (3 15), we obtain that A'(0) = 0, 1e (A, ug) 18 a limit point, we shall
assume furthermore that 1t 1s a turning point1e

A(0) # 0 (3 18)

Our purpose 1s to show that the approximate branch parametrized by
(A, (), u,(r)) has also a turning point for some ¢ = t, near t = 0 and to give
an « improved » estimate for the quantity A, — A,(t,)

Hypothesis (3 14) implies the existence of an element y, € Y such that

vo # 0, a(D,F(ho, ug)v,95) =0 YveV (3 19)

THEOREM 3 2 Assume Hypotheses (3 1)-(3 7), (3 14)-(3 18) and suppose
that p = 3 Then there exist positive constants t, and h, such that for h < h;
there exists an unmgue t, € (— ty, t,) with A(t,) = 0, A (t,) # O, furthermore
there exists a constant ¢ such that, for h small enough, we have

| Mt — Ao | < ¢ {1l x,(0) — x'(0) 17 + || x,(0) — xo || x
x (Il x,0) — xo Il + ylgt; lyo—yl)} (3 20)

Proof Inthe following, ¢ will denote a generic positive constant independent
of h We use estimate (3 12) of Theorem 3 1 for k = 1,2 Since A'(0) = 0,
we obtain that Iim A,(0) = 0, by (3 18), there exists ¢, > 0 such that, for i

h—0

small enough, | A;(t) | = ¢, | t| < t,, consequently there exists i, > 0 and
for h < h, an umque t, e (— t,, t;) such that A, (t,) = O, furthermore, we
have the estimates

6] < c|[M0)] = c|M0) —N0)| < c x0) —x0)|, (321)
M0) = My(t,) — (M) B + 0(82) = My(t,) + 0(27) (3 22)

In order to prove (3 20),letz, € Y, suchthat | y, — 2z, || = mf ||y, — z |
zeYy

By (3 14), 3 15), (3 19), a(D, F(ro, up), yo) # 0 and consequently, by
(3 17), we shall have that { a(D, F(ho, uy), 2,) | = ¢ for h small enough By
(3 16), a(F(1,(0), u,(0)), z,) = a(F,(\,(0), ©,(0)), z,) = 0 and by Taylor’s
expansion we have

0 = a(F(1,(0), 1,(0)), z,) — a(F(\y, up), z,)
= (M(0) — Xy) a(Dy F(ho, u), z;) + a(D, F(h, up) (u(0) — u5), 2,) +
+ 0(ll x,(0) = x, 1I?),
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 329
by (3 19),
a(D, F(ho, uo) u(0) — up), z,) = a(D, F(ho, uo) (0) — uo), (2, — o))
and, for h small enough, we deduce the estimate
| M0) = ho | < e | x(0) = o | (1 %400) = xo Il + 12, — yo 1), (3 23)
combinmng (3 21), (3 22) and (3 23), we obtan (3 20) ]

Remark 3 2 (3 21) and (3 22) are independent of the fact that F, 1s a
Galerkin approximation of F, whereas (3 23) 1s ndependent of the condition
A0) #0

4. BIFURCATION POINTS

Let X and Y be two real Banach spaces, F X — Y be a C? mapping with
p =2 2 and x, € X be such that F(x,) = 0 We suppose that x, 1s a critical
pownt of order n > 1 1n the following sense

a) F'(x,) X — Y 1s a Fredholm operator of index 1, “41)
b) codimension Range F'(x,) = n 4 2)
Hypotheses (4 1), (4 2) imply that X, = Ker F (x,) has dimension n + 1

and, if we set Y, = Range F'(x,), there exist two closed subspaces X, < X
and Y, < Y such that

X=X,0X,, Y=Y, @Y,, (4 3)

clearly dimension Y, = #» and the restriction of F'(x,) to X, defines an 1so-
morphism from X, onto Y,

LetQ Y- Y,and I-Q Y — Y, be the projectors associated with the
decomposition Y =Y, @ Y,

In order to approximate the solutions of the equation F(x) = 01n a netghbor-
hood of x,, we consider a family { F, }, of C? operators F, X — Y, where h
1s a positive parameter tending to zero, m applications, F, will appear as a
suitable extension of a function defined on a finite dimensional subspace X,
of X with values 1n a finite dimensional subspace Y, of Y We suppose

¢) forany0 < k < p — 1 and for any fixed x, &,, , &, € X, we have

hm | FOX) €1 6p L8) = FPX) Gl 8| =0, (44

d) there exist the positive constants 8 and ¢ such that

| FOx) | <c¢ YxeX with | x —xo | <8, Vh, 1<k<p, (45)

vol 16, n° 4, 1982



330 J. DESCLOUX, J. RAPPAZ

e) QF/(x,) is an isomorphism from X, onto Y, with uniformly bounded
inverse with respect to 4. 4.6)

(4.4) is a relation of pointwise convergence which can be interpreted as a
condition of consistency whereas (4.6) will appear as a condition of stability
which will allow, in Theorem 4.1, the Lyapunov-Schmidt procedure for F,;
clearly (4.4) and (4.6) are analogous to Hypotheses (3.5) and (3. 7) introduced
in the preceding section.

THEOREM 4.1 : We suppose that Hypotheses a) to e) are satisfied. Then there
exist positive constants hg, C, o, K and two unique maps v : B(0,() < X, - X,,
v, :B(0,{) =« X, » X, suchthat :

QF(xo + 0 + v(0)) =0, |ov(o)| <a VoeB(0,), 4.7
QF (xo + 0 + 1,(0)) =0, |ulo)| <o VYVoeB(0,0), Vh<hy; (4.8)

v and v, are C? mappings with bounded derwvatives of order 0, 1, ..., p where the
bounds are uniform with respect to ¢ € B(0,() and h < hy; furthermore, we
have :

lim sup ||v®(c) - vP)| =0, k=01.,p—1, (4.9

B0 oeB(0,0)
) ) . d’
| v (o) — off (cs)nsKJ;)!F

<k<[/‘—l, S B("ag)a

QF,(xo + o + v(o)) |, (4.10)

v h<h

c -
< (v

Proof : We apply Theorems 2.1 and 2.2t0 G : X, x X, - Y, and G,, :
X, x X, > Y,, where G(c, v) = QF (xy + ¢ + v), G,(0, v) = QF (xq + G + )
from which (4.7), (4.8) and (4. 10) follow immediately ; then (4.9) is a conse-
quence of Theorem 2.3, of (4.10), of Hypotheses (4.4), (4.5) and from the
fact that X, is finite dimensional. [ ]

By Theorem 4.1, the equations F(x) = 0 and F,(x) = O are reduced, in a
neighborhood of x,, to the equation f(c) = 0 and f,(c) = 0 in a neigh-
borhood of 0, where f and f, are the bifurcation functions defined by :

f:B0,8)—-Y,, flo)=(UQ)F(x, + c + v(c)), (4.11)
fn:BO, ) ->Y,, filoc)=(Q)F,(x, + o + v,(5)). (4.12)

The following relations are either obvious or easy to verify :

p(0) =0, v(0)=0, f(0)=0, f(0)=0, (4.13)
Fi(xg)E =0 YeeX,, (I-Q)F'(xy) = 0. (4.14)
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We now mntroduce the following new hypotheses p > 4, there exist 65 € X
and the integer g with 2 < g < p/2 such that

NP0 =0 2<k<qg—1, @ 15)
g9) f90) oy =0, (4 16)
h) the relations 6 € X,, f@(0) 6% ! o = 0 imply the existence of 1€ R
with ¢ = 10, (4 17)
) fP0)=0 0<k<qg—1 4 18)

Remark 4 1 Consider theconditions o) (I-Q) F®(x,) = 0,2 <k <g—1,
B) the restriction of F®(x,) to X} vanishes for 2 < k < g — 1, then 1t 1s
easy to verify that a) or B) 1s a sufficient condition for obtaining (4 15), fur-
thermore, 1f o) or B) 1s satisfied, then f@(0) 1s equal to the restriction of
(I-Q) F9(x,) to X¢, which allows to express (4 16) and (4 17) in terms of F
directly

Remark 4 2 We could replace (4 18) by the more general hypothesis )
there exists 1, € X, such that 11rr(1) N, = 0and fP(n,) = 0for0 <k <gq -1,
h—

mn fact, with mmor modifications, all the following results of this section would
remain vahd However, 1t 18 possible to reduce y) to (4 18) in the following
way, let z, = n, + v,(n,) and F,(x) = F,(x + z,), then by applying Theorem
4 1 to F, we obtamn a map #, B(0,{) < X, — X, such that

QF(xo + 6 + 7,(0)) =0

and a new bifurcation function f,(c) = (I-Q) F W(xo + 0 + ,(0)), 1t 15 possi-
ble to venfy that f,(c) = f,(c + m,) and consequently, by y), fX(0) = 0 for
0 < k < g — 1,notealso that F,(x,) = 0

Under the above hypotheses, we shall show the existence of a C?~? branch
of solutions of the equation F(x) = 0 passing through x, and of a correspond-
ing approximate branch for the equation F,(x) = 0, the « exact » branch will
be parametrized by a function x(t) € X such that x(0) = x,, x'(0) = o, To
this end, let {, € X * be such that { o, ¥, > # 0, where X * denotes the dual
of X and < ., . ) the duality pairing between X and X *, we mtroduce the
following mappings

90.6) = (<o~ o0.¥0 5 ). @ 19)

9,0) = ({0 = 00 Yo ). 3, ) @ 20)
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