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R A I R O Analyse numénque/Numencal Analysis
(vol 16, n° 4, 1982, p 319 à 349)

APPROXIMATION OF SOLUTION BRANCHES
OF NONLINEAR EQUATIONS (*), (**)

by Jean DESCLOUX (*) and Jacques RAPPAZ 0)

Commumcated by P G CIARLET

Abstract —- We present a gênerai theory for the approximation of regular and bifurcating bran-
ches of solutions ofnonhneat équations It can be apphed to numerous problems, including different ial
équations on unbounded domains, in connection with vanous numencal algonthms, for example
Galerkin methods with numencal intégration

Résumé —On présente une théorie générale de l'approximation de branches, régulières ou avec
bifurcation, de solutions d'équations non linéaires Cette théorie s'applique à de nombreux problêmes,
y compris les équations différentielles sur des domaines non bornes, résolus par des méthodes numé-
riques variées, par exemple des méthodes de Galerkin avec intégration numérique

1. INTRODUCTION

In their three papers [1], [2], [3], Brezzi, Rappaz and Raviart consider the
approximation of nonlinear équations of the type

u + TG(X,u) = 0 (1.1)

by a family of équations of the form

u + ThG(X,u) = 0'9 (1.2)

hère G : M x V ^ W is & regular nonlinear mappmg, T : W -> V and
Th\W ^ Vh are bounded linear operators ; V and W are real Banach spaces,

(*) Received m december 1981
(**) This work was supported by the Fonds National Suisse de la Recherche Scientifique
l1) Département de Mathématiques, École Polytechnique Fédérale, Lausanne, Suisse.
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320 J DESCLOUX, J RAPPAZ

{ Vh )h 1S a farnily of fimte dimensional subspaces oï V As a mam hypothesis
Connecting (1 l)and(l 2), they suppose that

hm || 7 - T J ^ K ) = 0, (1 3)
h~* 0

which implies in particular that T is compact
Brezzi, Rappaz and Raviart have hmited their investigations to regular

branches of solutions [1], limit points [2] and simple bifurcation points [3],
whereas m [12], [13] Rappaz and Raugel have considered m the same context
bifurcation at multiple eigenvalues

Tne purpose of mis paper is to genei ahze m an umfied treatment sorne of
the mam results contained m the références mentioned above In particular,
our theory includes the possibility to analyse two new situations

a) m (1 1), T is non compact, b) the approximation is of Galerkin type
with numencal intégration

Also most concrete problems can be wntten naturally m the form (1 1),
we have found suitable to adopt the following framework Let X and Y be real
Banach spaces, F X -• Y be a sufficiently regular nonlmear map, x0 e X be
such thatF(x0) = 0 In a neighborhoodof x0, weconsider the équation

F(x) = 0 , (14)

we shall suppose ihai F {x0) A -> Y is a FicdLolm operator of index 1,
however we shall assume no compactness hypothesis on F (x0)

Several authors have considered bifurcation problems m the gênerai form
(1 4) (see for example Magnus [10]), since with ît the parameter X e M does
not appear exphcitly, a simple hmit point cannot be distmguished from a
regular point, in the same way, the " double hmit point " mtroduced by Decker
and Keiler m [5], can be treated as an usual simple bifurcation point (see
Descloux, Rappaz [8])

For approximatmg the équation F{x) = 0 we consider two families of fmite
dimensional subspaces { Xh },,, { Yh }h of X and Y respectively, nonlmear
mappings Fh Xh -> Yh and the équations

Fh(x) = 0, (1 5)

mstead of (1 3), we impose on F and Fh a consistency condition and a stabihty
condition which are given by relations (3 5) and (3 7) in Section 3, remark
that they do not suppose that F (x0) possesses any property of compactness

As for the analysis of problems (1 1), (1 2) by Brezzi, Rappaz, Raviart and
Raugel, our investigation will be based on the implicit function theorem In
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 321

Section 1, we recall a version of this theorem and prove a basic error estimate
(Theorem2.2).

Section 3 deals with " regular points ", i.e. we require that F'(x0) is sur-
jective. Theorem 3.1 contains the gênerai results. In Theorem 3.2, we suppose
that X is of the form M x V, and that x0 = (X09 u0) e X is a turning point ;
for Galerkin methods, as in [2], we obtain an improved bound for the parameter
X at the approximate turning point.

The main results of this paper are contained in Section 4 which is devoted
to bifurcation points. Although not impossible, we have found it very compli-
cated to work with the approximate problem (1.5) when Fh opérâtes on finite
dimensional subspaces ; for this reason we require that Fh admits a suitable
extension Fh : X -* Y such that, in particular, the équations Fh(x) = 0 and
Fh(x) = 0 possess the same solutions. As in Section 3, we impose to F and
Fh (where now Fh dénotes the extended operator X -• Y) a consistency condi-
tion (4.4) and a stability condition (4.6). Supposing that the dimension of the
kernel of F'(x0) is n + 1 with n ^ 1, we apply the Lyapunov-Schmidt proce-
dure to F and Fh (Theorem 4.1) and reduce problems (1.4) and (1.5) to
équations of the form ƒ(<?) = 0 and fh(o) = 0, where ƒ and fh operate on the
same finite dimensional subspaces. Theorems 4.2 and 4.3 are based on the
following hypothesis :

/(O) = /'(O) = - = /(*-1}(0) - 0, fh(0) = /„'(O) = - = ^ - " ( O ) = 0

for some q ^ 2 and there exists a non degenerate characteristic ray (Hypothe-
ses (4.16), (4.17)) ; they show the existence of a branch F of solutions of the
exact problem (1.4) passing through x0 and tangent to the characteristic ray
at x0 and, on the other side, the existence of a branch Th of solutions of the
approximate problem (1.5) converging to F. The particular case of a simple
bifurcation point is treated in Theorems 4.4 and 4.5 which give error estimâtes
similar to those obtained in [3].

The aim of Section 5 is to show how the results of Section 4 can be applied
to the following classical problem

(X, u) e M x if oHQ), - Au - Xu + u3 = 0 ;

here O is the unit square 0 < x, y < 1 and we are interested by solutions in the
neighborhood of (Xo, 0) where Xo = 5 II2 is a double eigenvalue of the eigen-
value équation Au + Xu = 0. The approximate problem is obtained by the
Galerkin method with numerical intégration. The exact problem can be written
in the form (1.1) with T compact ; however, due to the présence of numerical
intégration and to the fact that HQ(Q) is not imbedded in C°(Q), the approxi-
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322 J DESCLOUX, J RAPPAZ

mate problera cannot be put m the form (1 2) Note that this difficulty can
be overcome by replacmg HQ(Q) by WQ P(Q) for p > 2 , but, then, the estimate
0(/i)m(5 25)shouldbereplacedbyO(/i1"E),£ > 0(see[ll])

Except for a part of Section 5, all the results of this paper are contained in
our Report [8] m which however some further questions are discussed, for
example bifurcation m présence of symmetry, the situation of imperfect nume-
ncal bifurcation (î e using the above notations, ƒ satisfies the relations
/(O) = /'(O) - = f{q~l)(0) = 0, but fh does not satisfy the relations
/fc(0) = /h'(0) = = fiq~l)(0) = 0) Let us also mention the analysis of a
nonhnear Sturm-Liouville eigenvalue problem on the infinité interval (0, oo),
hère, the exact problem can be wntten in the form (1 1), but with T non
compact (see also [9])

2. NOTATIONS. PRELIMINARIES

We first introducé some notations Let X, Y, Z be real Banach spaces For
the sake of simphcity, we shall dénote by || . || the vanous norms m X, Y, Z,
&m(X, Y), SejX x Y,Z), where £Pm(X9 Y) is the space of continuous m-lmear
mappings of Xm mto Y In the same way, for any space, B(a, p) dénotes the
open bail of center a and radius p The norm m X x Y is defined by the rela-
tion || (x, y) || = || x || + H j ; || For a map G Q c X -* Y, Dm G or
G(m) Q -^ ^m(X, Y) represents the m-th Frechet denvative of G, for x e Q5

^ - £ l s , U E Xm, we use the notations G(">(x) e &JX, Y),

if ^ = %2 = = ^m_!, or if ^ = ^2 = = %m, we may also wnte
G(m)(x)Ç = Gim)(x)Ç? 1^ffl or G(m)(x)^ - G{m){x)^, respectively For a
map G Q c X x Y -• Z, Dx G, Z)̂  G, DX

2
X G, D,2V G will dénote the partial

denvatives
As in [1], [2], [3], the essential tool of this work will be the împhcit function

theorem We quote hère a particular version of ît, for the proof, see, for exemple
[8]

THEOREM 2 1 Let X, Y and Z be Banach spaces, x0 e X, y0 e Y, 5 be a
p o s i t i v e nurnber, Q = B ( x 0 , 5 ) x B { y 0 9 5 ) c X x 7 , G Q ^ Z b e a C

mapping with p ^ 2 P^e suppose that Dy G(xOi y0) is an isomorphism from Y

onto Z and that there exist the numbers co,c^ ,cp such that

DyG{x0, c0 ,

V(x,y)eQ, k = 1, 2, ,p

R A I R O Analyse numenque/Numencal Analysis



APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 323

Then, there exist positive numbers a, b, à depending only on 5, c0, cx, c2 and for
k = 1,2,..., p, the numbers Mk depending only onc0,cx, ...,ck such that :

î) for any (x, y) e B(x0, a) x B(yQ, b\ Dy G(x, y) is an isomorphism from Y
onto Z such that || Dy G(x, y)"1 [| ^ 2 c 0 ,

n) if || G{x09 y0) I < d, there exists a Cp mapping g • B(x09 a) -> B(y0, b)
such that, for any x e B(x0, a), y = g(x) is the unique solution of the équation
G(x,y) - 0tye*B(yO9b)9i.e.

G(x9 g{x)) = 0 , g(x) e B(y09 b) \/x e B(x0, a) ;

furthermore

|| gW(x) || ^Mk Vx e B(x0, a), 1 < k < p .

The next theorem provides a key resuit for error estimâtes.

THEOREM 2 . 2 : We consider the situation given by Theorem 2.1 with
|| G(x0, y0) || < d. Let W be a real Banach space, A ci W be open,
s : B(x09 a) -> B(y0, b) and a : A -> B(x0, a) be Cp~l mappings, g = g o a
anrf iT = s o a : A -> J5(y0, b). Ŵ e suppose that there exist constants

ek Vx € B(xos a), || a(fc)(f) || < Yk W e À ,

fc= l , 2 , . . . , p - 1 .

7hen, foi k = O, 1, , p — 1, rAe/e ?\/.sf constants Kk depending onl\ on

|| ^ ( 0 - sW(r) || ^ K, | || H«>(0 II W e A , 0 ^ k < p - 1 , (2.1)

w/iere H : A ^ Z is the Cp~1 mapping defined by H(t) = G(a(t), s*(t)).

Proo/ : Since G(a(t), g(t)) = 0, we obtain by the fondamental theorem of
calculus :

H(t) = G(a(t), 5(0) - G(a(0, g(t)) = E{t) (s[t) - g{t)) > f e A , (2.2)

where

= f Dy G{*i
Jo
f y it), g(t) + T(s(f) - gf(f )) dx ; (2.3)
Jo
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324 J. DESCLOUX, J. RAPPAZ

by the same theorem again, we have that || E(t) — Dy G(x0, y0) || ^ c2(a -b h).
Without restriction of generality we can assume in Theorem 2.1 that
2 c0 c2(a + b) < 1 ; writting

E(t) = Dy G(x0, v0) (ƒ - Dy G(x0, yQrx (Dy G(x0, j,0) - £ (0 ) ) ,

we see that for any t e À, E(t) is an isomorphism from Y onto Z with inverse
bounded by 2 c0. By differentiating (2.3) j times, 1 ^ j ^ p — 1, and by
using the bound || g(k)(x) || ^ Mk of Theorem 2.1, we see that || Eij)(t) || is
bounded, uniformly with respect to t, by a constant depending only on
c0, c l3 ..., cJ+1, el9 e2,..., ejS 7i, ••-, y r We now prove Theorem 2.2 by induc-
tion ; for k = 0, we have by (2.2):

1 s(0 - git) II ̂  II Eity11| || H(t) || < 2 c01| H(t) II

which proves (2.1) for k = 0 with Ko = 2 c0. Now suppose (2.1) true for
1 ^ k ^ q — 1, 1 ^ q ^ p — l ; b y differentiating (2.2) q times we obtain
for any ̂  = (^ , ...5 ̂ ) e FF9 and any t e A :

£(0 f

where 11̂  is any partition of the set { £l5..., ^4 } in two subsets r|(riJ) and
(̂11̂ ) containing respectively ; and (q - j) éléments; by the hypothesis of

induction, this proves (2.1) for k = q. •
We conclude this section by recalling a classical result we shall use frequently

in the following.

THEOREM 2 . 3 : Let X and Y be Banach spaces, D be a relatively compact
subset of X, f and fn, neN.be maps from D into Y. We suppose :

a) lim fn(x) = f(x) V'x e D,b) there exists a constant L such that

I! / „ M - / » ( Ç ) | | < M * - U Vx, ^ D , VneN.

Then lim fn = f uniformly.

3. REGULAR POINTS

Let X and Y be two real Banach spaces, F : X -» Y be a Cp mapping with
p ^ 2 and x o e l b e such that F(x0) = 0. We suppose that x0 is a regular

R.A I R.O. Analyse numénque/Numerical Analysis



APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 325

point in the followmg sensé

F'{x0) X -> Y is a Fredholm operator of index 1 , (3 1)

Range F'(x0) = Y (3 2)

Hypotheses (3 1) and (3 2) imply that the kernel of F'(x0) is one-dimensional
and consequently is spanned by some vector <D0 G X, <D0 # 0 Let \|/0 e X*
be such that < CD0, V|/0 > ^ 0, where Z * dénotes the dual space of X and
< ., . > the duahty painng between X and X* As we shall see m Theorem 3 1,
there is an unique branch of solutions of the équation F(x) = 0 passing through
x0 which can be parametnzed by a function x(t) satisfymg the relations
F{x(t)) = 0, < x(t) - x0, v|/0 > - t = 0

In order to approximate this branch of solutions let { Xh }h and { Yh }h be two
families of fimte dimensional subspaces of X and Y respectively, { Fh }h be a
family of Cp functions mapping Xh into Yh and { Hh }h be a family of projectors
mapping X onto Xh, hère h is a parameter which tends to zero We suppose

a) hm Ylh x = x V x e l , (3 3)

fc) dimension Xh = dimension Yh + 1 , (3 4)

c) for any 0 < k ^ p — 1 and for any fixed x, £l9 , ^ Ê I , we have

hm II F«(x) ft„ , ̂ ) - FfCn» x) (n, ^, , II, ̂ ) || = O , (3 5)

h~+ 0

^) there exist the positive constants 8 and c such that

|| Ff)(x) || ^ c, Vx G X, with || x - Uh x0 l| < 6 , Vh, 1 < k < p ,

(3 6)

e) there is a positive constant |a such that

|| F;(nft x 0 K || Z\L\\$\\V$eWh, V/z, (3 7)

where ^ - { x G X J < x, x|/0 > = 0 }

(3 3) implies that the projectors Iîh are umformly bounded, (3 4) is the
discrete analogous of (3 1), (3 5) is a relation of pointwise convergence which
can be interpreted as a condition of consistency whereas (3 7) will appear as
a condition of stabihty allowmg the use of the ïmphcit function theorem

Remark 3 1 Let W = { x e X |< x, \|/0 > = 0 }, by Hypotheses (3 1),
(3 2) and by Banach's theorem, F'(x0) defînes an isomorphism from W onto Y

vol 16, n° 4, 1982



326 J DESCLOUX, J RAPPAZ

and consequently there exists a positive constant c such that

1 F ( x 0 ) Ç f > c \\% || V^ e VK

It follows that a sufficient condition which ïnsures the stability hypothesis (3 7)
is the followmg one

hm sup || (F^n, x0) Ç - F (x0) Ç || = 0, (3 8)
h-o ^xh util - i

such a condition has been used for example m [7] m connection with eigen-
value problems

Let <g U x X ^U x Y Sind^h H x l ^ i x ^ b e defined by the
relations

#(r, x) = « x - x0, x|/0 > - u F(x)), 9h(t9 x) = « x - x0, ^0 > - t,Fh{x))

(3 9)

LEMMA 3 1 Assume Hypotheses (3 1) to (3 7) T/ien a) D^ ̂ (0, x0) zs
an isomorphism from X onto U x Y b) For n sraa// enough, Dx ^/z(0, Ilh x0)
zs an isornorphismfrom Xh onto U x Yh with uniformly (with respect to h) bounded
inverse

Proof By Hypotheses (3 1), (3 2) and the fact that < <D0, \|/O > ^ 0, part
a) of lemma 3 1 follows immediately from Banach's theorem In the followmg,
c will dénote a positive genene constant independent of h, since Xh and
Ri x Yh have the same imite dimension, u suffices, for piuvmg part b), to
show, for h small enough, that || Dx <gh(Q, Uh x0) ^ || ^ c || Ç || V ^ e l h

Let ü>Oh = ITh ©o, by Hypotheses (3 3) and (3 5) we have that hm <oOh = CD0

and hm F Jn,, x0) ©Oh = 0 Any t)sXh can be decomposed as Ç = a(D0lj + w,

a G R, w e Wh and we obtain by Hypothesis (3 7)

|| Dx 9h(0, n h x0) ^ || = | a < o0h, v|/0 > | + || F&

^ c | a | + c || w || - | a Fh(Uh x0)

c { | a w

THEOREM 3 1 Assume Hypotheses (3 1) to (3 7) T/ien f/ie^ exist positive
constants h0, t09 a, K and two unique maps x(t)e X and xh(t) e Xh, \ t \ < t0

satisfying respectively the conditions

9{t, x(0) = 0 , || x(0 - x0 || < oc, for \ t \ < t0 , (3 10)

&h(t, xh(t)) = 0 , I xh(t) - n h x 0 || < a , for \t\ < t0 and h < h0,

(3 11)
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moreover x(0) = x0, x'(0) / 0, x(.) and xh(.) are of class Cp with bounded
derivatives of order 0 , 1 , , p where the bounds are uniform with respect to t
and h < h0, and we have

km sup il xik)(t) - x<f>(f ) II = 0 , k = 0 , 1 , , p - 1 ,
/i->0 |f | <*o

(3 12)

x<"(f) - x?>(f)

t\ (3 13)

Proo/ By Hypotheses (3 l)-(3 7) and by Lemma 3 1, relations (3 10),
(3 11) and the boundedness of the derivatives of x(r) and of xh(t) follow easily
from Theorem 2 1 apphed to 'S and ^h By applying Theorem 2 2 to 'S^, with
W= U, <x(f) = f, s(t) = Uh x(t), we obtain for 0 ^ k ^ p - 1, | 11 < t0 and
some constant c

xî>(r)-nhx(*>(0 î

from which, by using (3 10), (3 13) follows îmmediately Hypotheses (3 3),
(3 5) together with the fact that F(x(t)) = 0 imply that the nght member of
(3 13) converges, for each t, to zero as h tends to zero , m fact, by Theorem 2 3,
the convergence is uniform with respect to t, this proves (3 12) •

Besides Hypotheses (3 l)-(3 7), we shall assume from now on that we have
the following particular situation X = U x V, where V is a real Banach
space, Xh = U x Vh9 where Vh is a subspace of V, an element oîU x V will
be denoted by {X, u), XeU, ue V and we shall wnte F(X, u) for F(x) and
F,(X,w)forF,(x)5wesetx0 - (A,o, w0), x(t) = (Ht), u(t)), xh(t) = (Xh(t\^)l

11 < t0, where x(t) and xh(t) are defined by Theorem 3 1, we suppose that

Range Du F(X0, u0) is closed and of codimension 1 m Y , (3 14)

Dx F(X0, u0) ^ Range Du F(X0, u0), (3 15)

note that (3 14) and (3 15) are consistent with (3 2), m fact ît is easy to prove
(see Appendix / of [8]) that (3 1) implies that DuF(X0,u0) is a Fredholm
operator of index 0 so that (3 14) is a conséquence of (3 1), (3 2) and (3 15)

Let a 7 x 7 -^ R be a continuons and coercive bilmear form , we assume
that Fh is the Galerkm approximation of F with respect to a î e

a{Fh(X, u\ y) = a{F(X9 u), y) Vv e Yh, V(X, u)eXh, Vfc , (3 16)

- z || = 0 , Vv e 7 (3 17)lim inf
h-*0 zeYh

vol 16, n° 4, 1982



328 J DESCLOUX, J RAPPAZ

By differentiatmg the relation F(k(t\u(t)) = 0 at t = 0, and by taking in
account (3 15), we obtam that A/(0) = 0, i e (k0, uö) is a limit point, we shall
assume furthermore that it is a turnmg point i e

r (0) # 0 (3 18)

Our purpose is to show that the approximate branch parametnzed by
(kh(t), uh(t)) has also a turning point for some t = th near t = 0 and to give
an « improved » estimate for the quantity Xo — A,fc(t J

Hypothesis (3 14) imphes the existence of an element yoe Y such that

v0 / 0 , a(Du F(X0, u0) v, y0) = 0 Vz; e V (3 19)

THEOREM 3 2 Assume Hypotheses (3 l)-(3 7), (3 14)-(3 18) and suppose
that p ^ 3 Then there exist positive constants tx and hx such that for h < hx

there exists an unique th e (— tu tx) with k'h(th) = 0, Xf^(th) ^ 0, furthermore
there exists a constant c such that, for h small enough, we have

I K(fh) - K \ < c { \ \ *;(0) - x'(0) ||2 + II xh(0) - x 0 II x

x (II x f c ( 0 ) - x 0 || + i n f H j / 0 — V I I ) } ( 3 2 0 )
yeYh

Proof In the followmg, c will dénote a genene positive constant independent
of h We use estimate (3 12) of Theorem 3 1 for k = 1, 2 Since X'(0) = 0,
we obtain that hm ^ (0 ) = 0 , by (3 18), there exists tx > 0 such that, for h

small enough, | Xf^(t) | ^ c, | t \ < tx, consequently there exists hx > 0 and
for / i < ^ an unique tf te(— tx, tx) such that X^(ïh) = 0, furthermore, we
have the estimâtes

I th\ < c | ^ (0 ) | = c | ^ (0) - V(0) | ^ c || 4(0) - x'(0) || , (3 21)

K(0) = K(h) - (K(th)) th + 0(r,2) = Xh(th) + 0(th
2) (3 22)

In order to prove (3 20), let zh e Yh such that || y0 ~ zh \\ = inf || y0 — z ||
zeYh

By (3 14), (3 15), (3 19), a{Dx F(k0, uQ), y0) / 0 and consequenlly, by
(3 17), we shall have that | a(Dx F(X0, u0), zh)\ ^ c for h small enough By
(3 16), a(F(Xh(0), M„(0)), zh) = a(Fh(\h(0), u„(0)), zh) = 0 and by Taylor's
expansion we have

0 = a(F(Xh{0), uh(0)), zh) - a(F{X0, u0), zh)

= (Xh(0) - Xo) a{Dx F(X0, u0), zh) + a{Du F(X0, u0) {uh(0) - u0), z„) +
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 329

by (3 19),

a{Du FÇk0, u0) {uh(0) - u0), zh) = a{Du F(k0> u0) (uh(Q) - u0), (zh - y0))

and, for h small enough, we deduce the estimate

| MO) - ^o I < c II x,(0) - x0 || (|| x,(0) - x0 || + || zh - y0 | | ) , (3 23)

combining (3 21), (3 22) and (3 23), we obtain (3 20) •

Remark 3 2 (3 21) and (3 22) are independent of the fact that Fh is a
Galerkm approximation of F, whereas (3 23) is independent of the condition
À/'(0) ï 0

4. BIFURCATION POINTS

Let X and Y be two real Banach spaces, F X ^ Y bo SL Cp mapping with
p ̂  2 and x o e l b e such that F(x0) = 0 We suppose that x0 is a cntical
point of order O l i n the following sensé

a) Ff(x0) X -» 7 is a Fredholm operator of index 1, (4 1)

b) codimension Range i*"(x0) = n (4 2)

Hypotheses (4 1), (4 2) imply that Xx = Ker F (x0) has dimension n + 1
and, if we set 7 2 = Range Ff(x0), there exist two closed subspaces X2 a X
and 7 ^ 7 such that

X - X, ® X2 , Y = Y, 0 72 , (4 3)

clearly dimension Yx = n and the restriction of F'(x0) to X2 defines an îso-
morphism from X2 onto Y2

Let Q Y -> Y2 and 7-Q 7 -> 7X be the projectors associated with the
décomposition Y = Y1 ® Y2

In order to approximate the solutions of the équation F(x) = 0 m a neighbor-
hood of x0, we consider a family { Fh }h of Cp operators Fh X -> Y, where h
is a positive parameter tending to zero, m applications, Fh will appear as a
suitable extension of a function defîned on a fimte dimensional subspace Xh

oïX with values in a finite dimensional subspace Yh of Y We suppose

c) for any 0 ̂  k < p — 1 and for any fixed x? £ ls , ^ e l , we have

hm 1 F(">(x) fêi, ̂ 2. » y - F«(x) (^, ^2, , ̂ ) || = 0, (4 4)
h~* 0

d) there exist the positive constants 5 and c such that

|| F<*>(x) || < c V x e l with || x - x0 || < 6 , Vh , 1 ̂  k ^ p, (4 5)
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e) QF'h(xQ) is an isomorphism from X2 onto Y2 with uniformly bounded
inverse with respect to h. (4.6)

(4.4) is a relation of pointwise convergence which can be interpreted as a
condition of consistency whereas (4.6) will appear as a condition of stability
which will allow, in Theorem 4.1 , the Lyapunov-Schmidt procedure for Fh;
clearly (4.4) and (4.6) are analogous to Hypotheses (3.5) and (3.7) introduced
in the preceding section.

THEOREM 4 . 1 : We suppose that Hypotheses a) to e) are satisfied. Then there
exist positive constants h0, Ç, a, K and two unique maps v : 5(0, Q c Xx -> X2,
vh : 5(0, Q c X1 -• X2 such that :

QF(x0 + a + v(o)) = 0 , || w(a) || < a Va e 5(0, Ç) , (4.7)

QFh(x0 + a + üfc(a)) = 0 , || üfc(a) || < a Va e 5(0, Q , Vfc < fc0 ; (4.8)

t)ft are C p mappings with bounded denvatives of order 0, 1, ...9 p where the
bounds are uniform with respect to G e 5(0, Q and h < h0; furthermore, we
have :

lim sup II vik)(a) - v^(a) II = 0 , k = 0, 1, ..., p - 1 , (4.9)
fc0 fl(00

v(k)(a) - v%\o) || ^ K
k

j—o
, (4.10)

5 ( 0 , O , h < h 0 .

Proof : We apply Theorems 2 .1 and 2 .2 to G : X x x X 2 -> 7 2 and Gft :

Xx x X2^> Y2, where G(a3 Ü) = QF{x0 + a + v), Gh(a, v) = QFh(x0 + a + u)
from which (4.7), (4.8) and (4.10) follow immediately ; then (4.9) is a consé-
quence of Theorem 2.3, of (4.10), of Hypotheses (4.4), (4.5) and from the
fact that Xx is fini te dimensional. •

By Theorem 4 .1 , the équations F(x) = 0 and Fh(x) = 0 are reduced, in a
neighborhood of x0, to the équation f (o) = 0 and fh(a) = 0 in a neigh-
borhood of 0, where ƒ and fh are the bifurcation functions defined by :

ƒ : 5(0, Q - y x , / ( a ) = (J-Q) F(x0 + a + v{o)), (4.11)

/fc : 5(0, Q^Y19 fh(a) = (J-g) Ffc(x0 + a + üfc(a)). (4.12)

The following relations are either obvious or easy to verify :

v(0) = 0 , i/(0) = 0 , /(0) = 0 , / ( 0 ) = 0 , (4.13)

f ' (x o)Ç = 0 V Ç e l , , ( /-g)F'(xo) = 0 . (4.14)
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We now introducé the following new hypotheses p ^ 4 , there exist aoe Xx

and the integer q with 2 ^ q ^ p/2 such that

ƒ) ƒ»>(<)) = 0 2 ^ fc ^ q - 1 , (4 15)

^) /"'(O) a§ = 0 , (4 16)

fc) the relations a G XU fiq){0) al'1 a = 0 imply the existence of x G M
with a = xa0 , (4 17)

i) /W(0) = 0 0 < k ^ ^ - l (4 18)

Remark 4 1 Consider the conditions oc) (J-g) F(fc)(x0) = 0, 2 ^ f c s $ g - l ,
P) the restriction of F(k)(x0) to Xk vamshes for 2 ^ k ^ <? - 1, then ît is
easy to venfy that a) or P) is a sufficient condition for obtaimng (4 15), fur-
thermore, if a) or P) is satisfîed, then fiq)(0) is equal to the restriction of
(I-Q) Fiq)(x0) to Xf9 which allows to express (4 16) and (4 17) m terms of F
directly

Remark 4 2 We could replace (4 18) by the more gênerai hypothesis y)
there exists r\h e X1 such that hm r|h = 0 and Ûk)(r\h) = 0for0^k^q — 1,

h->0

in fact, with minor modifications, all the following results of this section would
remain valid However, ît is possible to reduce y) to (4 18) in the following
way, let zh = r{h + vh(r\h) and Fh(x) = Fh(x + zh), then by applying Theorem
4 1 to Fh we obtain a map vh B(0, Q a Xl ~> X2 such that

QFh{x0 + a + vh(a)) = 0

and a new bifurcation function fh(a) = (I-Q) Fh(x0 + a + vh(o)), ît is possi-
ble to venfy that fh(a) = fh{a + r\h) and consequently, by y), flk)(0) = 0 for
0 < fc < 4 - 1, note also that Fh(x0) = 0

Under the above hypotheses, we shall show the existence of a Cp~q branch
of solutions of the équation F(x) = 0 passing through x0 and of a correspond-
îng approximate branch for the équation Fh(x) = 0, the « exact » branch will
be parametrized by a function x(t) eX such that x(0) = x0, x'(0) = a0 To
this end, let v|/0 G X * be such that < a0, \|/0 > / 0, where X * dénotes the dual
of X and < ., . > the duahty painng between X and X *, we introducé the
following mappings

t, a) = U a - a0, *0 > , 1 f(ta)\ , (4 19)
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^ and <Sh (h small enough) are defined on some neighborhood Q c H x I t

of (0, a0) with values in IR x Yr ; ü is independent of h ; by (4.13) and Hypo-
theses (4.15) and (4.18), 9 and eêh are Cp~* mappings where we recall that
P - q > 2.

THEOREM 4.2 : We assume that Hypotheses a) to ï) are satisfied. Then there
exist positive constants h0, t0, P, M and two unique maps a( . ) : (— t0, t0) -• X1 ;

, \t\<t09 (4.21)

t\<tQ9 h < h0; (4.22)a fc(0-a0

o(.) and oh(.) are Cp~q mappings with bounded denvatives of order 0, l , . . . ,p — ^
where the bounds are uniform with respect to \ t \ < tö and h < h0 ; furthermore

0, a 0 ) = 0 and we have for 0^k^p-2q + \ :

lim sup = o ,

sup
\t\<to d?

(tG(t) - tah M sup

(4.23)

< V

(4.24)

Proof : By (4.13) and (4.15) we have for any a e XY :

, a0) a = ^< o, v|/0

by (4.17) and the fact that < a0, \|/0 > / 0, we see that Da <g(0, a0) is injective ;
since Xx and IR x Yl have the same finite dimension n + 1, we conclude that
Da ^(0, a0) defines an isomorphism between these two spaces. Moreover, by
(4.13), (4.15) and (4.16), we have »(0, a0) - 0. By (4.4), (4.5), (4.9) and
Theorem 2.3, we obtain

lim sup || fk\a) -
fc0

= 0 , 0 p - 1 ; (4.25)

furthermore f£p) is bounded on B(0, Q uniformly with respect to ft ; by (4.13),
(4.15), (4.18) and Taylor's formula, we obtain :

(4.26)
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