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OPTIMIZATION OF THE DOMAIN IN ELLIPTIC
UNILATERAL BOUNDARY VALUE PROBLEMS
BY FINITE ELEMENT METHOD (*)

by I. HLAVACEK (') and J. Necas (?)

Communicated by P G CIARLET

Resumé — On considére le probleme de la mwmmisation d’une fonction cofit par rapport au
domaine, ou la fonction d’état est la solution d’une équation elliptique avec des conditions aux himites
du type de Signorini sur une partie de la frontiére variable On démontre (1) I’existence d’une solution
pour quatre differentes fonctions coiit et (11) la convergence des approximations par éléments fims dans
un certain sens

Abstract — The problem of the mimimization of a cost functional with respect to the doman 1s
considered, where the state variable has to solve an elliptic equation with boundary conditions of
Signorini’s type on a part of the variable boundary We prove (1) the existence of an exact solution for
Jour different cost functionals and (11) the convergence of finite element approximations in a certain
sense

INTRODUCTION

Some problems of the optimal design remain open up to this time, although
they are of interest from the physical point of view. Thus for instance in some
problems of the contact between elastic bodies the shape of the boundaries
should be optimized to obtain minimal cost functional such as the integral of
energy, contact forces or displacements.

It is the aim of the present paper to start the analysis of this class of problems
on a simplified model with a unilateral problem in R for the Poisson equation
and boundary conditions of Signorini’s type. On a given part of the boundary
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352 I HLAVACEK, J NECAS

the Dirichlet homogeneous condition 1s prescribed and the remaining part
— with unilateral conditions — has to be determined

In Section 1 we present a proof of existence of a solution for four different
cost functionals and for one common state problem, which 1s formulated 1n
terms of a variational inequality on a variable domain

In Section 2 a finite element approximation 1s proposed, following the
method of Begis and Glowinski [2] who employed piecewise liear approxima-
tions of the unknown part of the boundary and piecewise bilinear finite elements
on a umiform mesh 1n a reference square domain In Section 3 we prove that
some subsequence of the approximate solutions converges to an exact solution
uniformly, whereas the corrcsponding solations of the state problem converge
weakly i each mterior subdomain of the optimal domain

1. EXISTENCE OF A SOLUTION TO THE MODEL PROBLEMS

Let us consider the following model problems Let Q(v) = R? be the domain
(see fig 1)

b X2

1 — —_———

Q(v)

[
|
|
)
I
|
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|
|
a
Figure 1.

Q) = {0 <x, <v(x,),0<x, <1},
where the function v 1s to be determined from the problem

(P) §.(v) = mm §(w)

WEXUga
Here

Uy = {we CO0,1]) (1e Lipschitz function),
1

O<a=wz=hb, | dwjdx, | £ C4, J

0

w(x,)dx, = C, },
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OPTIMIZATION OF DOMAIN 353

with given constants o, B, C,, C,, F.(w) = J(y(w)), i may equal any of the
numbers 1, 2, 3, 4, Z, = const is given and

r~

Ji(yw)) = (y(w) — zo)* dx, (1.9
JO(w)

JH(yw)) = | Vy(w) |? dx, (1.2)
JQw)

Ji(yw)) = Y(W) Irewy 4%, 5 (1.3)

Jo(yw)) = (y(w) lrowy — zo)* dx, , (1.4)

where y(w) denotes the solution of the following unilateral boundary value
problem :

—Ay=f in Qw), (1.5
y20, 220, y2-0 on T,

y=0 on 0Qw) = T[(w).

Here fe L*(Q) is given, Q3 = (0, B) x (0, 1) and Oy/dv denotes the derivative
with respect to the outward normal to I'(w). In the following, we denote by
H*(Q) the Sobolev space W(Q) with the usval norm | . ||, o, H® = L?, and
by | . |, o the seminorm generated by all derivatives of the k-th order.

It is well-known that the state problem (1.5) can be formulated in terms of a
variational inequality, as follows :

Kw)={zeH'(QW))|z=0 on 0Qw)+ I'(w),
220 on T'(w)};

find y € K(w) such that for any z € K(w)
j Vy.V(iz—y)dx = J f(z — y)dx. (1.6)
Q(w) Q(w)

The problem (1.6) has a unique solution for any w € %,,.
We are going to prove the main result of the section, i.e.

THEOREM 1 : The problem (P,) has at least one solution for any of the four
cost functionals §,i =1,2,3,4.

vol 16, n° 4, 1982



354 I. HLAVACEK, J. NECAS
Proof : Let us consider a minmmizing sequence { w, }, §(w,) — inf §F(w)
WEUqa
for n — oco. Since the set %,, is compact in C([0, 1]), we may choose a subse-
quence, denoted again by { w, }, such that w, — v in C([0, 1]). It is readily seen
that v € %, Let us denote by Q = Q(v) the domain bounded by I' = I'(v).
For any positive integer m let G,, be the domain bounded by y,,, where

VYm = {(xl,xz)]x1 = v(x,) —%}

Furthermore, let Q, be the domain bounded by the graph of the function w,
and y, the corresponding solution of the state problem {1.5) or {1.6), respec-
tively, where Q(w,) = Q,, I'(w,) = T, and K(w,) is inserted.

Choosing z = 0 and z = 2 y, in (1.6), we obtain

j | Vy, |? dx = f Sadx = fllog, | Yallog, - €1.m
Q, Q,

By a standard argument, we may write

I 3 120, < BZJ. |V, 2 dx. (1.8)

Q"
Combining (1.7) and (1.8), we are led to the estimate
[ vullio, =Co  Vn, (1.9)

with C, independent of n.
Next let us consider a fixed domain G,,. There exists ny(m) such that

n > ny(m)=G, < Q,.
Then

A H1,Gm <\, !il,n,, =G Vn. (1.10)

Consequently, a subsequence { y,, } exists such that
Y, = Y™ (weakly)in H'(G,), y™eH'(G,).

For G,,, ; we obtain a similar assertion, if we choose the proper subsequence
{ ¥, } of the sequence { y, }, etc.
Consider the diagonal subsequence { y° } of all subsequences

{ynl }a { ynz }7 Tt

R ATR O Analyse numérique/Numerical Analysis



OPTIMIZATION OF DOMAIN 355

It 1s easy to prove that a function y € H''(Q) exists such that

w =y, =y (1.11)

1

weakly in H*(G,,) holds for any m > a1,
In fact, the existence of generalized derivatives dy/0x, follows from the
definition of the Sobolev space. Moreover, we have

1y 6, S Co  Vm,

since any ball in H '(G,,) is weakly closed. Hence defining y such that

Vg, =y  VYm>oa'l,

we obtain

Iy “%,Q = lim || y™ ”%,Gm SCl <.

LEMMA 1.1 : The trace of y on I is non-negative.

Proof : Assume that y < Oonaset M, = I', mes M, > 0. Let M denote the
projection of M, into the x,-axis. Hence we have

j yipdx, = ¢4 < 0.
M

Denotey|, =M,y =m,
Cp = J N A%, ,
M

Vm:{(xl,xz)lv—%l'<xl <v,x26M}.

and

Then we have

JM dxzj %(E_,, X,) d(’;‘:

v—1/m

IA

Iyl (mesV,) "% mesV, = %mes M. (1.12)

D iy

v 0x,
Consequently, lim ¢,, = ¢, and it holds
1

en S 5% (1.13)

for sufficiently great m.

vol 16, n° 4, 1982



356 1 HLAVACEK, J NECAS

Letusdenote V,,, = { (x;, x,)€Q, — G,, x, e M },
b= [ e z0
M
(since y? € K(w,))and
dnm = J YnD Iym dx2
M

By the same argument as 1n (1 12) we obtain for n = ny(m)

JXﬁm—ﬁwwz

< Cy(mes V,, )2

Smce immes V,,, = 0 for n - o0, m - o0, n = ny(m),

dum 2 70 (1 14)

follows for sufficiently great n, m, n = ny(m)
From the weak convergence y? — ym H'(G,,) we deduce

lm d,, = lim J yol,,, dx, = J. N %, = ¢,
M M

By virtue of (1 14), we therefore have
Cp = 7o

for sufficiently great m, which 1s a contradiction with (1 13)

LemMa 1 2 The function y belongs to K(v) and satisfies the variational
mequality (1 6) on Q = Q(v)

Proof (1) Let us consider an arbitrary G,, and denote
V(G,) ={zeH'G,)|z=0 on 0G, — v, }

Since V(G,,)1s weakly closed, y™ e V(G,,) follows from (1 11) Hence we have
y =0 on dQ — I' and combining this result with Lemma 1 1, we obtain
yeK()

(1) For any fixed m we introduce the set
M, ={{eH;Q)|{=0 on Q3 —-G,}

R AIR O Analyse numernique/Numerical Analysis



OPTIMIZATION OF DOMAIN 357

For any n > ny(m) and z, € M,, it holds (we omit the superscript D in what
follows) :

J Vy,.V(z, — y,)dx = J flz, — y,) dx, (1.15)

Qn

since z, = 0onT, and therefore z, € K(w,,).
Let us pass to the limit for n — oo in (1.15). We have

j Vy,.Vz, dx = J Vy,.Vz, dx + J Vy,.Vz, dx +
Q, Gom 2,-0
+ f Vy,.Vz, dx ,
Q-—Gm)nQ,

lim J‘ Vy,.Vz dx = J Vy.Vz, dx,
m Gm

lim J Vy,.Vz, dx = 0.
,-0

The last result follows from the estimate

= v lie Ve lloo,-a>

j Vy,.Vz, dx
Q,-0

using (1.9) and lim [mes (Q, — Q)] = 0.

By a similar argument we obtain

j‘ Vy,.-Vz, dx
Q-G nQy

Thus we may write

< Colzilio-6,-

lim supf Vy,.Vz, dx £ j Vy.Vz, dx + Cyl 2z |y -6, - (1.16)
Q, Gm

n—ow

The same approach leads to the inequality

lim inf(—J fy,,dx> > —J frdx = Coliflog-c,.  (1.17)
Q, Gm

n—oc

vol. 16, n° 4, 1982



358 1 HLAVACEK, J NECAS

Moreover, we obtain
Iim fzrdx = | fz, dx (1 18)
The mequality (1 15) yields
— J‘ | Vy, 2 dx = — J Vy,.Vz, dx + J‘ flz, — y,) dx
Gom Q. Q.

For n — oo (and a proper subsequence) we deduce on the basis of (1 16),
(1 17) and (1 18) that

—J |Vy |?dx = Iim <—f |Vy,,|2dx)
G)n n— oo Gm

— J Vy.Vzdx — Co | |y g-6,, +
Gm

v

o[ x| o= Gl flone.
Q G
Consequently, we may write

r
J Vy.V(z, — y)dx =
Gm

zj&n»ﬂmﬁw—qwmm%+ummm (1 19)
Q G

Let a z € K(v) be given There exists a function o € H*(Q) such that ® = z
on 0Q and @ 20 ac m Q3 Then Z = z — 0y € Hy(Q) and therefore a
sequence { Z, }, Z, € CZ(Q) exists such that if we define

Zle =0+ 2, zlo,-0 =0,
then 1t holds
I/m < d, =dist(I,supp Z,) =z, e M, ,
lze—zlha=12Z—Zlig—0 for k- o
Passing to the imit in (1 19) for m — oc, k — oo, m > 1/d,, we obtain

Izl -6, = 1®l1g-6,, 20,

R A IR O Analyse numerique/Numerical Analysis



OPTIMIZATION OF DOMAIN 359

=

j Vy.Vz, dx — J Vy.Vzdx + j Vy.Vzdx — ‘[ Vy.Vzdx
G Gm Gm Q

j Vy.Vz dx
Q-G

§|YI1,Q|Zk—Z|1,n+J | Vy.Vz | dx—0.
Q-G

=

+

J Vy.V(z, — z)dx
Grm

Thus we arrive at the inequality
J Vy.Vzdx—J‘ |Vy|2dxgjfzdx—jfydx. Q.E.D.
Q Q Q Q

LEMMA 1.3 : For any i = 1,2, 3,4 there exists a subsequence of the mini-
mizing sequence, denoted again by { w, }, such that w, — v in C([0, 1]), v € %,
and

lim §(w,) = §() = J{yw) . (1.20)
Proof : Let i = 1. For any m > o~ ! it holds
O s
Gm

Q=G

(Vo — 20)? dx = J‘ (¥, — zo)* dx .
Gm
(1.21)

Considering the subsequence { y? } and using (1.11), we obtain, by virtue of
the Rellich’s theorem

lim 3, (w,) 2 J (y — z0)* dx .
n—ow G
For m — oo in the right-hand side we get

lim Bl(wn) ; j (y - ZO)Z dx .
n— oo o

Since v € %,,;, y = y(v) on the basis of Lemma 1.2, and

lim F,(w,) = inf % (w), (1.22)

n—co WEUgq
we have

$0) = j (y — zo)* dx < inf §,(w) = J,(v) = inf F,(w).
Q

vol. 16, n° 4, 1982



360 I. HLAVACEK, J. NECAS

From this and (1.22) we conclude that (1.20) holds.
Leti = 2. For m > o~ ! we have

Falw,) 2 f | Vy, |? dx .

Gm

Since the latter integral is a weakly lower semi-continuous functional on
H '(G,,), considering the subsequence { y? }, we may write

im d0) 2 | 1V9F ax.

Gom

Passing to the limit for m — oo, we obtain

inf 3,00) = J |Vy [ dx. (1.23)
WEXUaq Q

Using Lemma 1.2 we conclude that the equality takes place in (1.23) and
(1.20) follows.

Leti = 3. Using Lemma 1.2, we may write

1
F3w,) — F0) = j (Vn Ir, — ¥ Ip)dx, =1, + I, + I, (1.24)
0

where
1

1
Il = J‘ (yn ‘1"" - yn Iym) de b 12 = J (yn |ym -y ‘ym) dxz 3
0

0

1
I3 = j (y |7m — ylp)dx, .

0o

The following estimates hold :
1 Wi ayn
[an] Fexal
(0] v
1 12 1 Wn ay, \? 1/2
<= d <
o) el ) )
1/2 L rwn /5 2 1/2
<<l+ B,,) [j J‘ (,,y"> dxldxz]
m o Jo \0%

1 1/2
< (E + Bn) ” .))n “],Q“ > (125)

|I1|:

N
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OPTIMIZATION OF DOMAIN 361

where

B = max |w,(x,) — v(x;) [;
x2€[0,1]

limI,=0 (1.26)

by virtue of (1.11); finally
lim I; =0 (1.27)
follows from the argument of (1.12), applied to M = [0, 1].

Combining (1.25),(1.9),(1.26), (1.27) and (1.24), we obtain (1.20).
Let i = 4. We may write, using Lemma 1.2 :

daw,) — 4lv) = K, + K, + Kj, (1.28)
where
rl 1
K= | Ol = 20 dx, - j (Gl — 20? dx
JO 0
rl 1
K2 = (yn rym - 20)2 dxl - J (y "ym - ZO)Z de s
JO 0
1 1
K; = . — 2o)* dx, — J (Ve — 20)* dx,, n > ny(m).
vo 0

Let us derive estimates for K. Thus we have

1
|K1|§J )ynll‘,,—'ynly,,.]"ynll‘"+yn|ym_2z()|deé
0

1 1/2 1 1/2
é [J' (yn ll",, - yn Iym)2 dxz] [j (yn Ir,, + yn lym - 2 20)2 dxz] ’ (1 29)

0
)
yn dxl>

1 .
j Gule. = v b ) dxy =J dxz(
0
1 Wy, a 1
5+ 6 | dxzfu_ (52) < (5 8.) 1 Fas 030

1
J‘ (yn Il-n + Y I'ym -2 20)2 d‘x:Zg

0

M) 3(*—‘
H/\

IIA

1
= 3[ [ l6,)? + aly,)? +423]dx;, < C, (1.31)

0

vol. 16, n° 4, 1982



362 I. HLAVACEK, J. NECAS

where C is independent of all sufficiently great n,m,n > ny(m). Indeed,

1 1 1
J A |r,,)2 dx, < 2[J (Vn lr,, - 20)2 dx, + J Z(Z, dxz] <C,,
0 0 0

since y, generate a minimizing sequence J,(y,). Furthermore, using (1.30),
we may write

1
f Vu by, ) dx; <
0

{'1 (tl

/
= 2&] A |r,‘)2 dx, + J (Y by = Y ,r,.)z dx2> S2C, + G
0

0
and we arrive at (1.31).
Consequently,

lmK, =0 for n—> o0, m-oow, n> nym) (1.32)

follows from (1.29), (1.30), (1.31) and (1.9).
Since the integral

1

Ko(n) zj (M, — zo) dx,

0

is a weakly lower semi-continuous functional in H'(G,), we have for any
-1
m > a

liminfK, = 0. (1.33)
Finally,
1
| K| = J (}’[y,,, - J’|r)(YIy,,, + Ve —2z)dx, | £
0

1 12
< C|:J‘ W, — i) dxz] -0 for m— o0 (1.34)
0

follows from Theorem 4.6 in chapter 2 of the book [3].
Using (1.28),(1.32),(1.33)and (1. 34), we obtain

,.lirg (34(‘4’") - ‘34(0)) =0

for a subsequence { w, }.

R AIR O Analyse numénque/Numerical Analysis



OPTIMIZATION OF DOMAIN 363

Hence
Fa(0) < lim F,(w,) = j”nf Faw)

and only the equality sign may take place, since v € %,,. Q.ED.

Theorem 1 is now an easy consequence of Lemma 1.3 and of the equation

lim 3,(w,) = inf %w).

n- oo WEXUga

2. APPROXIMATE SOLUTION BY FINITE ELEMENTS

The problems (P,) have to be solved approximately. To this end we follow
the approach of Begis and Glowinski [2], transforming each of the problems
(P, into an equivalent one with the state problem defined on a fixed square
domain and then employing bilinear finite elements on a uniform mesh. The
unknown part of the boundary is sought among continuous piecewise linear
functions.

Thus let N be a positive integer and & = 1/N. Denote by e,j = 1, .., N,
the interval [(j — 1) h, jh] and introduce the set

aZz{whE%ad|wh|e,€P1 V]}

where P, denotes the space of linear polynomials.

Let Q, denote the domain bounded by the graph I, of the function w, € %},
ie. Q, = Q(w,).

We define : Q = (0, 1) x (0, 1),

K, =[G —1Dhin] x [(j = 1) hjh],
j-h = { IZ” IL\,’]=I ’
F,:Q-Q,, F,=(F,,F,), @D
Fp(X), %) = £, wy(R,), Fpp(%y, X5) = X5,
Kl] = Fh(ku) Viaj, fh = {Ku v

L,Jj=1"

Note that each K, is a trapezoid and
F, k., € Q1 X 0,

where Q, = {p|p = p(R;, %;) = ago + ay0 X1 + Goy X5 + ay; X; X, } de-
notes the space of bilinear polynomials.

vol 16, n° 4, 1982



364 I. HLAVACEK, J. NECAS

Let us consider the problem (1.6) on the domain Q,. To approximate K(w,)
we introduce the set
K, ={z,12,e Kw) N C(Q), z,°F, |z, €Q, Yi}.
Let us define the finite element approximations of (1.6) as the solution
y, € K,, of (1.6) on Q, for any z, € K,. Instead of (1. 6), however, it is more sui-

table to solve numerically an equivalent problem on Q, which is obtained by the
transformation (2.1) of the integrals in (1.6). Thus we arrive at the inequality

a(wh s P 2y — 57;.) = L(w,; 2, — yAh) Vi, e K;. s 2.2
where
Jp=ypoF ek,

o 1 8y, ai, <A wy, 09,  0F,
aWy; Yps tp) = SEox ox. T\X1y Az T )
Wis Dns 1) L [W,g dx, 0x, Y wy 0%, ax)

L(W,,;;,,)=J_ Fiowpds, f=foF,,

Q

R, ={212€CQ),% | t,€Q Yij % 20onl, 2, =00ndQ T},
fz{(’szz)“zl:l 0=%,=1}.

To simplify further the calculations, we introduce approximate forms a,
and L,, as follows :

N
a,(Wy, 5 P t) = Z

,7=1

W;. 5)7;. 55}h>< W;l 8Eh afh . A
S e ) Y L S ) i,
<F° wi(&,) a%, 0%, 5 W) 3%, 0%, wy(§,) d%

Q=G—%h,g=0—9m

(wh’th)_ 4 Z wi(§,) Z f(P )th(Pu),

,7=1
where P}, k = 1,..., 4, are the vertices of K, (*).

[ 1 ap,, az,,
K

‘vh(é ) le 6)21

where

(') In case that f 1s not continuous, we replace f(P}) by the mean value of f over the set

@(Pl';)zﬁn{]x PH, | <5 hr=12}

R ATR O Analyse numenique/Numerical Analysis



OPTIMIZATION OF DOMAIN 365
We replace (2.2) by the mequahty
a, (W5 P 2, — Pu) 2 LWy, 2, — §p) Vi, € Kh . 2.3)

Moreover, the cost functionals F, will be replaced by the approximate func-
tionals :
2 N

B = Jubni ) =7 3 w&) 3 GWPY — P @.4)

Ly=1

32;;(“’;.) = Jouwy; ) = awy; I 9,

N
F3nWn) = Jau(Wys 94) = h ; (1, é,)-

Note that among the functionals ¥, only ¥, is integrated without loss of
accuracy, i.e.

1 1
FanW") = J3(n) = J In(l, %,) dX,; = J i Ir,, dx - (2.4)
0 0
We then solve the problem :
(ch) Blh(vh) = mgl 3&h(wh) s b= 1’ 2’ 3 ’

where 3, are defined by means of the formulae (2.4) and j, € K, are solutions
of (2.3).

3. CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS

We are going to show that a subsequence { u, } of the approximate solutions
exists, which converges in some sense to a solution of the continuous problem
(P),1 = 1,2, 3. In several points of the argument we use the results of Begis
and Glowinski [1].

First we prove an important lemma.

LemMma 3.1 : Suppose that fe C 1(5,5) and a sequence { v, }, v, € Uk, converges
uniformly to a function v. Let §, be the solution of the inequality (2.3) for w, = v,
and y, = j, o F,”1. Moreover, let y(v) be the solution of the problem (1.6) for
w = v on the domain Q = Q(v).

Then for any integer m > o~ ! a subsequence { y, } exists such that

v, — y(v) (weakly) in H*(G,,), 3.1

where

sz{(xl,xz)]0<x1 <v(x2)—%,0<x2<1}.

vol 16, n° 4, 1982



366 1. HLAVACEK, J. NECAS

Proof : First let us show that (2.3) has a unique solution. In fact, one can
derive that (see [1], Proposition 6.1)

a,(w,; 2, 2,) = s12,12a VhVw, et Vi, e H'(Q). (3.2)
1

_*
1+B*+C

Since the set K » 18 convex, the inequality (2. 3) is equivalent with the problem
of minimizing the functional

R 1 . 2 .
1,(z,) = 3 ay(Wy,; 2 2,) — Ly(wy,; 2,)

over the set K,. From (3.2), (3. 5) and the Friedrichs inequality
I 2, loa < Cl3,1,4V2,€ H (Q)such that ,(0, %,) =0,  (3.3)

we conclude that I, is coercive on K, and convex. Using also its continuity and
the closedness of K,, the existence of a solution follows. The uniqueness is a
consequence of (3.2) and the Friedrichs inequality.

Let us insert Z, = 0 and Z, = 2 y, into (2.3), respectively. Thus we obtain

ay(Vy5 I In) = Ly(vy; D) - (3.4)

It is easy to show that 1f fe C(Q), then
| Ly 9 | S B I Flic | Bl - (3.5
Using (3.2),(3.4),(3.5)and (3. 3), we obtain
|9yl < C VA (3.6)
Since it holds for any A > 0
ColmbBia, Sl hlia SColnmlia, B.7
(see[1], Proposition 5.1), we may also write
[ i ﬁ,nh =C Vh.
The Friedrichs inequality in Q, yields

I yuhie, =C Vh, (3.8)
where C is independent of .
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Arguing as 1 the proof of Theorem 1, we deduce that a subsequence of { y, },

which will be denoted by the same symbol, and a function y° € H*(Q) exist
such that foranym > o~ !

»w=lg, m HYG,) (weakly) 39

The same argument as the proof of Lemma 1 1 leads to the conclusion that
the trace of 1° on " = I'(v) 1s non-negative

Let us show that y° = y(v),1e y° satisfies the mequality (1 6) on Q = Q(v)
and y° € K(v) The latter assertion follows from the closedness of V(G,,) (see
the proof of Lemma 1 2(1)) and (3 9) It remains to prove (1 6)

Let ze K(v) A function we H 1(Q,,) exists such that

w=1z on 0Q, w=0 on 0Q,

w20 ae m £

Extending w by zero outside Qg shrinking and regulanizing, we obtamn
functions R, w such that

RyweCg(Qy), Rywz20 m Q,
| Reyw—=wlq -0 for # -0
Then Z = z — we H(Q) and therefore functions Z, € CP(Q) exist such that
Z, - Z|,q—0 for k—
Let us define functions o7 m Qg such that
of =Rywlp+Z, m Q,
of =R,w m Q5 —Q
Then obviously

of 20 m Q- G,, f lm<d, =dst(,suppZ,), (3 10)
lof —zliq=IRew+Z, —Z—-wiyo=

SIRyw—wlio+1Z,—Z|;q—0 for #—>0,k—>00 (311)
Next let o, be the nterpolate of 07 on the mesh ¢, 1€ a function such that
0,(P) = ©ff (P) at all nodes of the mesh %, ,

0,0 F), ]K,, €Q, Yy
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It is readily seen that ¢, € K, for sufficiently small h, since I', = Q5 — G,
holds for such 4.

From the regularity of the family {#7,},0 < h < 1 of meshes (see [1],

Lemma 7.2) it follows (see [2]) that
o — o 10, £ Chllof 20, (3.12)

Next let us estimate the difference

=

‘L,,(u,,;z,,) = J v, f2, d%
Q

<3y

1,J=1

W) 3 ren - | e as

K,

<

A
b=

1 Ighff—fivh(a,)dﬂj 17106 = wi) | de .

L K., K.,

where # = f2, and g, & is the piecewise constant function, equal to F (P
over each of the subdomain O(Pf). Since

g, F — FIZCh|VF|, |pE) —v(X)| SC h2, (3.12)
and .
IV oo = CIl fllem )l 200

| & ||o,ﬁ <If flcr@pll 2, lloa s

we obtain, using also (3. 3),

< Ch ||f9‘c1(5,,)|2h|1,é (3.13)

L,(v, 2,) — J‘ Uy fzh dx
o}

vz, e HY(Q), 2,00, %,) = 0.
An analogous argument yields

l ay (Vg5 Ius 24) — avy; s 23) ' <Chliplioliylia (3.14)
V9, 2, € H*(Q) suchthat §,(0,%,) = 2,(0,%,) = 0.

Since ¢, = o, o F, € K,, we have

a,(vy; Iy O — I Z Lyvy; 04 — ) s (3.15)
a(vy; Yy Gp — Pu) = J‘ Vy,-Vio, — y,) dx. (3.16)
ﬂh
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Therefore we may write
J VIV, = 1) dx = 0,0, 5 &, — 5,) +
Qp

+ [avy, 91 D) — Jb) — vy, 91 &) — 1 =

= j flo, — y,)dx + |:Lh(vh3(bh — D) - J
Qn

Q

0, 716, - 3, dx] "
+ [a(vin f}hx (Bh - yAh) - ah(vhs j}k: (ah - );h)] (3 17)
Passing to the limit with h — 0, we obtan for any m > o™ !
[ Vy,.Vo, dx —»J Vy°.Voi dx , (3 18)
G G
by virtue of (3 9) and (3 12), furthermore

J Vy,.-Vo, dx <
Q, Q

SvhioelOlig-a0

S C | Ry w liciig,(mes (@, — Q)2, (3 19)
since 1t 1s readily seen that in Q, — Q we have
00,
0x,

OR, w

< max

:<: “ R,;?’ w “Cl(ﬁp): r= 19 2
Qp

r

Finally, we can write form > 1/d,

J Vy Vo, dx | £ Clo,lia-6, =
Q-Gm) N

SCU/mM? | Ryewlog, (3 20)

Combinmg (3 18), 3 19) and (3 20), we obtain for any m > 1/d;, any #
and k

lim sup<— J Vy,.Vo, dx) = hm sup{ - J Vy,.Vo, dx —
h—0 o h—0 Gom

- J Vy,.Vo, dx — j Vy,-Vo, dx} >
;-0 Q=Gn)nQp

> —J- Vy°O. Vo dx — Cufi/m, (3 21)
Gm

where C,, depends on 5 but not onm
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In a similar way we get

im supf — foydx 2 —J Adx — Coll floac.. 22
Qn G

h—0

llmj fo, dx = hmJ fo,dx = J foif dx , (3 23)
Qp QA Q

h—0 h—0

where the estimate (3 12) has also been used
From (3 17) 1t follows

- j 1Vy, Pde 2 — J Vy,.-Vo, dx + J flo, — 3 dx +
Gom Q Qp
+ |:Lh(vh5 O, — Ju) — J Uy f((f)h =) dx}
Q

+ [a(vh, Vo O — D) — (v, &, — 3]

For h — 0 we obtan, on the basis of (3 13), (3 14), 3 9), (3 21), (3 22) and

3 23)
lim sup l:— J‘ | Vy, I? dle >
Gm

—J | Vy° | dx
Gm
— 0 — W —~ I
— J Vy“. Vo, ax — Cypl/m
G

1\

I

+ J foif dx —J Hdx = Collfloa-g,
Q Gm
Applymmg (3 13) and (3 14), we have used the estimate
[0 — Pl ECrp <0 Vh,

which 1n turn 1s an easy consequence of (3 6), (3 7) (for 0,) and (3 12)
Passing to the limit with m — oo, we obtam

f VIOV — ) dx 2 j f(0F — 1) dx

Q
Finally, we let # — 0 and k — oo to get from (3 11)

J Vy®.V(z — y%) dx = j f(z — y%) dx QED
o Q
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Lemma 3.2 : Let the assumptions of Lemma 3.1 hold. Then a subsequence of
{ v, } exists such that

lim 3,(v,) = §,0), i=1273.
h—0

Proof : Leti = 1. Using the functions g, y, and piecewise constant functions
P, v, Which equal to v, (€ ) in every subinterval e, we may write

Jinwys ¥y) = J P 0n(gn I — zo)? dX .
Q

From the estimate (see [1], (7.34))

1 g 9n — P llog < hy/21 910

and (3.6) we derive easily that
lim J,(v,; §,) = lim j | P — 2o |* v, d%. (3.29)
h=0 h=0 Ja

On the other hand, recall that
j 90— 7o P 0, d5 = f (3 — 207 dx =
[e) Qp

=j (3 — 7o) dx +[ (O — 202 dx. (3.29)
G Q-G

From the Rellich’s theorem and Lemma 3.1 we get

h—0

limj (Vp — 20)? dx = j (y() — z4)* dx. (3.26)
Gom Gom
Second, we prove that

lim J (y, — 2o)2 dx = 0. (3.27)
h20 Jow-6.,

Recall that the curve F, '(y,,) is the graph of the function

v(%,) — %

‘thm(jel) =

v,(X;)
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