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CONVERGENCE OF THE DISCRETE FREE BOUNDARIES
FOR FINITE ELEMENT APPROXIMATIONS (*)

by F. BREZZI (*) and L. A. CAFFARELLI (2)

Résumé — Sur un problème d'obstacle modèle, on établit que la frontière libre discrète, obtenue
par éléments finis linéaires par morceaux, converge vers la frontière libre du problème continu, avec
un ordre de convergence qui est approximativement la racine carrée de la distance dans L00 entre la
solution continue et la solution discrète.

Abstract — We show, on a model " obstacle problem " that the discrete (piecewise hnear) finite
element free boundary converges to thefree boundary oj the continuous problem with a rate which is
approximately the square root of the Lœ distance between the continuous and the discrete solution.

1. INTRODUCTION

It is well known that a certain number of stationary free boundary problems
can be written, directly or after some manipulations, as an elliptic variational
inequality. The usual finite element approximation will then, in gênerai,
provide a séquence uh(x) convergent to the exact solution u(x) of the varia-
tional inequality as h tends to zero. Hence, from the knowledge of uh(x) one
tries to have information on some " approximate free boundary ". However,
the usual estimâtes on the rate of convergence of uh(x) to u(x) (in t h e / / 1 -norm
or in the Ie0-norm) do not yield, by themselves, any estimate on the rate of
convergence of the ^ree boundaries.

In the present paper we discuss, for the sake of simplicity, the following
" model problem " *

jind UG K such that
a(u, v - M) > (ƒ, v - M) VÜ e K , ' ( 1 ' ^
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386 F. BREZZl, L. A. CAFFARELLI

where
K = { v \ v e H'iQX v ^ O a . e . i n Q v \ d Ç l = g } 9 ( 1 . 2 )

a(u,v) = Vu.Vvdx, (1.3)
Jn

(f,v)= [ jvdx, (1.4)
Jn

and where Q is a bounded domain in R", ƒ is an element of L2(Q) bounded
from above by a négative constant

f(x) < c{j) <0a . e . inQ, (1.5)

and g is a nonnegative function in H1/2(ôQ) n
We show that if the finite element approximation of (1.1) vérifies the discrete

maximum principle then the discrete solutions of (1.1) " leave " the obstacle
(zero in our case) with a certain " minimum speed ", showing a behaviour
completely similar to the one proved, for the exact solution, by Caffarelli [2],
By means of this " minimum speed " property, added to some regularity
assumptions on u(x) and to known L°°-estimates for the finite element approxi-
mation, we are then able to prove quasi-optimal error bounds (in measure
and in distance, foliowing different regularity assumptions on u(x)) for the
approximation of the free boundaries.

2. FINITE ELEMENT APPROXIMATIONS

Assume for the sake of simplicity that Q is a polyhedron in Mn and let { TSfc }h

be a family of décompositions of Q into w-simplexes of diameter ^ h. We assume
that the family { TSh }h is regular and quasi-unijorm in the following sensé :
for any 7Sh and for any S e TSfc, let P be a vertex of S, FS(P) the opposite face in S,
and ns(P) the hyperplane containing FS(P) ; we set

ds{P) = dist (/>, ns(P)) (2.1)

and we assume :

39 > 0 s. t. V/i > 0 , VS e 15,,, VP e S,

Remark : The assumption of regularity and quasi-uniformity of the family
{*<gh }h can be written in many different equivalent ways (see for instance [4]).
We chose (2.2) for convenience.
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For any given TSA let now Pu P2 , . . . , PN{k) be the vertices of 15,, and assume,
to simplify the notations, that the numbering is such that P l 9 P2 , . . . , PNoih)

are the internai vertices while PNo{h)+1,..., P W ) lie on oQ. We disregard the
trivial case assuming N0(h) ^ 1. We define now the following finite element
sets

Wh = {vh\vhe C°(Q), oMS e ^ VS e <6„} (2.3)

(with 0>x — polynomials of degree < 1)

W0
h = Wh n { v | v e C°(Q), v = g at each vertex of 3Q } (2.4)

Kh = Wg n { t; 11; 2s 0 in fl } (2.5)

and we consider the discrete problem :

find uh e Kh such that :

a(uhJ vh - uh) > ( ƒ , vh - uh) Vvh e K h , f

We shall now briefly discuss some well known property of'the solution uh

f (2.6). T
defined by
of (2.6). To this end we introducé in Wh the canonical basis <f/[, cj)^..., <\>h

N{h)

tfeWh and tf(P,) = 5 y , ï,y = 1, - N(A), (2.7)

and we set

Qh
0 = { x | x e n , w f c ( x ) = 0} (2.8)

Qft
+ = Q - Q£ (note that Qh

+ is open) (2.9)

Fh =(dQh
+)nQ. (2.10)

It is well known (and easy to check !) that if Pl is a node (i.e. a vertex of 1SJ
then

(2.11)

p, e n - o*+ =* Ö(W„ ̂  ^ a # ) • (2.12)

Setting now :

Ux =uh(PJ i = l^N(h), (2.13)

AXJ = [ Vc()f Vd>î rfx /,y = 1,..., N(h), (2.14)

ƒ , = f ftfdx i = 1,...,N(A), (2.15)
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388 F. BREZZI, L. A. CAFFARELLÏ

it is easy to see that (2.6) can be written as : find Uu ..., UNih) such that :

Ut > 0 , i = l,..., N0(A); Ut = <?(/>,), Ï = N0(h) + 1,..., N(A); (2.16)
JVo(ft)

X ^ C / , 2 * ƒ,, i = 1,...,NO(A); (2.17)

/ , = < > , i = l...,N0(h). (2.18)

3. THE DISCRETE MAXIMUM PRINCIPLE (D.M.P.)

In this section we shall recall some known results on the discrete maximum
principle in a form which is convenient for the following section. We shall also
discuss some natural properties of the " discrete Laplacian " of a function

n

of type X *?•

From now on we shall assume that for every h > 0 the décomposition loh

satisfies the following condition :

For ail S e T>h and for ail vert ex Ps S the projection ofP on the opposite 1

[ (3.1)
hyperplane ns(P) f ails in the closure of the opposite face FS(P). \

Remark : In the two dimensional case (3.1) requires that all the angles are
^ 7C/2.

The following proposition is well known (see for instance [3], [4], [5]).

PROPOSITION 3 . 1 : Assume that 7Sh satisjies (3.1) and let Pt and P} be two
nodes with an n-simplex S in common. Then

i (3.2)

It is also well known that from (3.1) one can dérive the following additional
properties.

THEOREM 3 . 1 : Assume that ^h satisfies (3.1). Then the " stiffness matrix "
A defined by(2.14) has the following properties :

(3.3)

A t J ^ 0 i , j = l , . . . , N ( h ) , i ï j (3.4)
m»
1 ^ = 0 i = 1,..., N(h). (3.5)

. 7 = 1
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THEOREM 3.2 (d.m.p.) : Assume that ̂ h satisjies (3.1) and letDbea (connectée)
union of n-simplexes ofl5h. Let wh(x) e Wh be such that

V<j)* Vwh dx < 0 if Pt is internai toD; (3.6)
D

max wh(x) > max wh(Pj). (3.7)
xedD PDXôD

then

Proof : Results of type (3.7) are classical. However we shall sketch the proof
for convenience of the reader. Let Pt be a node in D\ôD and suppose that
wh(Pj) < wfc(Pj) for all neighbouring nodes Pr In that case (3.6), (3.4) and (3.5)
give

0> [ V$Vwhdx= £ f
JD PJZVJD

= 0, (3.8)

which is contradictory. Hence for each internai node Pt there is at least one
neighbouring node Pk where wh(Pk) > wh(P() and the procedure has to stop
on dD. m

We end this section with some remarks on the behaviour of the discrete
Laplacian of the function

oQ(x) = \x-Q\2 (3.9)

or, rather, of its piecewise linear interpolant ol
Q(x) defmed by

# ) e ^ ; *&Pd = <*Q(Pd i = 1, 2,..., N(A). (3.10)

For this we remark first that for P # Q we have

aQ(x) =0P(x)-f l(x) (3.11)

with l(x) polinomial of degree ^ 1.

THEOREM 3.3 : There exist two positive constants 50, 8i such that for all *ïjh

satisfying (2.2) and (3.1) and for all Q e Un we have :

- 5 0 ( <H' dx ̂  a ^ (t>?) < - Sx f ct>? dx i = 1,.... N0(h). (3.12)
J« JQ
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Prooj : Let Pt be an internai node ; using (3.11) we have

since

a(l{x\ 4>f) = [ V/.V4>f dx = 0 (3.14)

we get
N(h)

f f = £ ^ | ƒ> - i> |24>f) = a « , # ) = £ ^ | P, - PJ f = £ ^ | ƒ>, - i>, |2 . (3.15)

Let now h[ and A" be respectively the minimum and the maximum value of
| Pt - Pj | for Pj adjacent to Pt ; from (3.4) and (3.15) we have

(K? I AtJ ̂  a{o^ tf) ̂  {h')2 X AXJ (3.16)

and therefore from (3.16) and (3.5)

- {K) 2An < a{a^ tf) < - (Aï) 2^U . (3.17)

It is an easy matter to check that (2.2) implies, for each node Pv

cQQ02Att> f tfA^W)2^, (3.18)
J

with c0, Ci depending only on 0. Hence (3.12) follows from (3.17), (3.18).

Remark : Formula (3.12) merely expresses the fact that the " Laplacian
of OQ is bounded and strictly positive, as naturally does AaQ(x).

4. APPROXIMATION OF THE FREE BOUNDARIES

Let now u(x) be the solution of the continuous problem (1.1); we set

Q, u(x) > 0 } , (4.1)

- QO = Q\£Î+ (4.2)

F = ( ô Q + ) n O ; F = ÔÎ+n Ûo , (4.3)

r+ =(an+)nr . (4.4)

Moreover for any set A £ Q and for any e > 0 we set

xeâdist(x,i4)< e} (4.5)

R.A.I.R.O. Analyse numénque/Numencal Analysis
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and for any compact set X c Û

FK = BQ+ nK. (4.6)

Let us recall first some results from [2] on the continuous problem (1.1).

THEOREM 4 . 1 : Assume that ƒ vérifies (1.5) and let u(x) be the solution oj
(\A);then :

VX c Q, VJC0 G Q + n X 3ro(xo, X) 3co(X); Vr < r0

sup w(x) ^ co(X) r2 ;
, (4.7)

moreover, iff is smooth :

VX 3ex(X) 3cx(X); Ve < ;

meas ([^E(FK) V { x I ° < WW < £2 }] n X ) ^ Cj(X) e ;

ijfinally F% is locally Lipschitz for some K compact, X c: Q then :

2 ^ _ r^\ ^ /T^X _ r (4-8)

); Ve < e2(X)

I O < MOC) < c9(X) e2 } n X c

Remark : Property (4.8) follows from Lemma 1 and Corollary 2 of [2] by a
non overlapping covering argument.

In the following we shall prove different results under different regularity
assumptions on the solution of the continuous problem. In particular we shall
make use, at different levels, of the three following assumptions.

Al : Vx0 e Q + Vr > 0, ifBr(x0) n T+ = 0then

sup u(x) ^ yr2 \ (4.10)
xeBr(xQ)nO.

with y independent ofx0 and r.

A2 : 3Ej~>-f)-awrf Yi > 0 such that Ve <TZY.

meas \&t{F) u { JC | 0 < u(x) < £2 }] ^ Yi £

A3 : 3e2 > 0 andy2 > 0 such that VE < e2 :

Remark : Note that (4.10) is immédiate if one assumes ƒ and u in C°(Q) ;
(4.11) and (4.12) are also easily proved in many particular cases. We shall
now prove that a property of type (4.10) holds for the discrete solution uh(x)
of (2.6).
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TIHEOREM 4,2 : Let uh{x) be the solution of(2.6) and assume (1.5) and (3.1).
There exist two positive constants y0, h0 such that :for ail h < Ao, for all p > 2 h
and for ail Q e Qh

+ with Bp(Q) n T+ = 0 we have

sup w h (x)^y 0 p 2 . (4.13)
xeBp(Q)nQ

Proof : Consider the fonction

wh(x)=uh(x) + jÇ-afa) (4.14)

where o£ is defined by (3.9), (3.10), c(f) is defined by (1.5) and 50 by (3.12).
Let D+ be the connected open région of Q containing Q and such that uh(x)>0
in D+ ; let D be the biggest union of H-simplexes contained in Bp(Q) n D + .
Note that D has at least one internai node. Let Px be a node internai to D ;
from (1.5) and (2.11) we have

<*(uh, ct>?) - a * î )

and from (4.14), (4.15) and (3.12)

f 4 > ^ x = ^ [ 4>*<fc<0. (4.16)

We may now apply Theorem 3.2 and see that wh(x) has its maximum on a node,
say Pfc, on ôD. Clearly ^(Pfe) > 0, so that uh(Pk) > 0 and hence Pk$dD+;
it follows that

dist (Pk, dBp{Q)) < h . (4.17)

On the other hand, wh{Pk) > 0 also implies

uh(Pk)>=^aI
Q(Pk); (4.18)

recall that (3.9), (3.10) give

Q \Pk-Q\2 (4-19)

which combined with (4.17) gives

>(P-A)2 ; (4.20)

R.A.LR.O. Analyse numérique/Numerical Analysis
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hence from (4.18), (4.20) we have for p ^ 2 h

which proves (4.13) with

Yo= -c(f)/Sd0.

393

(4-21)

(4.22)

We shall assume from now on that an L00 error estimate is known for
u{x) — uh(x) of the type :

(i) u = solution of{\. 1)

(ii) uh = solution of (2.6)

(iii) \\u-uh ||Loo(Q) ^ n\h)

(iv) Hm TI(A) = O

(v) h-lr\{h)

(4.23)

2 y0 for h small enough

with} here and in the following, y0 given by (4.23). Estimâtes of type (4.23) are
well known in the littérature; see for instance [l], [6], [7], [8].

The following lemma will be used in the estimate of the rate of convergence
of the free boundaries.

LEMMA 4.1 : Assume (1.5), (3.1) and (4.23). 7hete exists an h0 > 0 such
that for all positive h < h0, for all Q e Q, and for all r > 0 with r ^ 2 h,
^r(Ô) n r + =0and r\2(h) ^ y0 r

2 we have :

M ^ 0 in Br(Q) n Q => uh(Q) = 0 . (4.24)

Proof : Assume that w = 0 in Br(Q) and suppose that uh{Q) > 0. Apply
now Theorem 4.2 to get

sup uh(x) o r2 > Ti2(/*)

which contradicts (4.23) (iii).

Remark : Using (4.10) instead of (4.13) one gets

uh = 0 in Br(Q)nQ=>u(Q)=Q

for all r > 0 such that £r(Ö) n T+ = 0 and r|2(/i) < yr2.

vol. 17, rf» 4, 1983
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LEMMA 4 . 2 : Assume (1.5), (3.1) and (4.23), and set

s1(h) = ^(h)^/2ho- (4.27)

There exists an h0 > 0 such that for ail positive h < howe have :

,}(F). (4.28)

Proof : Let Q e Q0\^m(F). Clearly u = 0 in Btm(Q) n Q and
Bei{h)(Q) n r + = 0 F r o m (4.23) (v) and (4.27) we get e^h) ^ Ihforh small
enough. Finally (4.27) implies r|2(/0 < y0 z\{h)\ hence we are allowed to use
Lemma 4.1 with r = e^A) and get M^(Ö) = 0.

The following theorem gives an estimate for the measure of the symmetrie
différence Q+ -r- O+ under the regularity assumption (4.11).

THEOREM 4 . 3 : Assume (1.5), (3.1), (4.11) and (4.23). 7 hen there exists an
h0 > 0 ûTîda constant C1 > 0 swe/z that for ail positive h ^ h0

meas(Q+ -=- Qh
+) ^ Q TI(A). (4.29)

Proo/ : Lemma 4.2 ensures that Q ^ \ Q + = Q 0 \Q£ Ç SfBlih)(F). On the
other hand for x e Q + \ Q f t

+ we have wh(x) = 0 and (4.23) (iii) implies
0 < u(x) < r[2(h). Hence :

Q+ -s- Q̂ + s ^, l(h)(F) u { x | 0 < a(x) < T]2(A)} (4.30)

and(4.11)gives(4.29). •
This gives already some kind of estimate on the " distance " between Q+

and Q+. In order to have better informations we need the stronger assump-
tion (4.12).

THEOREM 4 . 4 : Assume (1.5), (3.1), (4.12) and(4.23). There exists anho>O
and a constant C2 > 0 such that for ail h < howe have :

Fh <: STCmW(F) , (4.31)

(that is, thefree boundary of the discrete problem lies in an r\-neighbourhood of
thefree boundary of the continuous problem).

Proof : Let y2 be the constant appearing in (4.12); set

e2(/0 = T I ( / 0 7 2 ^ (4.32)

and let Q e Q+ \^e2( fc )(F). Assumption (4.12) joined to (4.32) gives

y2e
2

2(h)>j]
2(h) (4.33)
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and from (4 23) (m) and (4 33) we get uh(Q) > 0 Hence

n+\yt2{h)(F) s nh
+ (4 34)

which added to Lemma 4 2 complètes the proof

Remark We could obviously work m K czcz Q mstead of Q and get, using

(4 7)-{4 9), intenor estimâtes of the type

meas {(Q+ - Qh
+) n K } ^ C^K) r | , (4 35)

FhnK<z yC2{K)^FK) (4 36)

Obviously, a priori, the constants C^K) and C2(K) dépends on K It should

be noted, however, that (4 35), (4 36) hold under very genera! assumptions
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