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MATHEMATICALMOOELUHG AND NUMERICAL ANALYSES
MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 21, n 4, 1987, p. 581 à 604)

EFFICIENT RECTANGULAR MIXED FINITE ELEMENTS
IN TWO AND THREE SPACE VARIABLES (*)

by Franco BREZZI (l), Jim DOUGLAS, Jr. (2), Michel FORTIN (3)
and L. Donatella MARINI (4)

Abstract. — Two families of mixed finite éléments for second order elliptic équations are
introduced, o ne in two variables and the other in three. These rectangular éléments are related to
ones of Brezzi, Douglas and Marini in two space and Brezzi, Douglas, Durân and Fortin in three
space. They give the same rates of convergence as the corresponding Raviart-Thomas éléments
with fewer parameters per rectangle. Hybridization of the mixed method for these éléments is
considered, and alternating-direction itérative techniques are discussed.

Résumé. — On introduit deux familles d'éléments finis mixtes pour des problèmes aux limites
elliptiques d'ordre deux en dimension deux et trois. Il s'agit d'éléments rectangulaires liés à ceux
de Brezzi, Douglas et Marini en dimension deux et de Brezzi, Douglas, Durân et Fortin en
dimension trois. Ils donnent le même ordre de convergence que les éléments correspondants de
Raviart-Thomas, mais avec moins de paramètres par rectangle. On considère la formulation
hybridisée associée et on étudie des techniques itératives de directions alternées.

1. INTRODUCTION

The object of this paper is to present families of rectangular mixed finite
éléments that are derived from the éléments of Brezzi, Douglas and Marini
[7, 8] in two space variables and of Brezzi, Douglas, Durân and Fortin [6] in
three space variables. These modifications of the éléments of [7, 8] and [6]
^ave %eth aévantages -and drsadvantages tn comparison with those
éléments ; ho wever, they compare very favorably with the spaces of Raviart
and Thomas [21, 22] in that they provide greater algebraic simplicity than
the Raviart-Thomas spaces giving the same rates of convergence. This
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582 F. BREZZi et al

results in a significantly reduced computational cost for comparable
accuracy in the approximate solution.

We treat the two-dimensional case in Part I (Sections 2.5) and the three-
dimensional case in Part II (Sections 6 and 7). The convergence analysis for
the new éléments is essentially identical to that carried out for the Raviart-
Thomas éléments (« RT» or « RT; », where the subscript j indicates the
index of the space, as defined below) by Douglas and Roberts in [16], for
the Brezzi-Douglas-Marini éléments (« BDM » or « BDM; ») in [7], and for
the Brezzi-Dougias-Durân-Fortin éléments (« BDDF » or « BDDF; ») in
[6]. Consequently, only a brief indication of the analysis will be given,
though the results will be presented. We shall study several computational
aspects related to our new éléments and then draw comparisons with both
the RT éléments and either the BDM or BDDF éléments.

Throughout this paper we shall consider the Dirichlet problem

(1.1a) -d iv (a(jc)Vu) = ƒ in O ,
(1.16) M + g = 0 on au ,

where H is a bounded domain in either IR2 or 1R3 ; V indicates the gradient
operator and div the divergence operator. As usual in the considération of
mixed methods, we introducé the flux variable

(1.2) i|/ = - a Vu .

Let c(x) = a{x)"1. (Vectors will be represented by Greek letters.) Let
( , ) dénote the inner product in L2(O) or L2(O)m, m = 2 or 3, and
< , > that in L2(da). Set V = H (div, ft) and W = L2(O). The weak form
of (1.1) that leads to the mixed finite element method is given by seeking a
solution {i|i, M} eW XW satisfying the équations

(13a) (CI|I, M<) - (div p,, u) = (g, jx . v> , »x e * ,

( ( d iv i | f ,w)=( / ,w) , weW,

where v dénotes the outer normal to dfl ; (1.3a) results from testing (1.2),
divided by a(x), against W and (1.36) from (1.1a) tested against W.

We wish to discretize (1.3) in the following way. Let Jfh be a
décomposition of fl into rectangles K of diameter not greater than h ; we
suppose for analytical purposes that a sphère of diameter greater than
p diam (K) can be inscribed in each K € Jf h for some p e (0,1) which is
independent of h. A boundary « rectangle » is permitted to have one curved
face. We shall associate suitable subspaces ^hxWh of f x W with
JTA and seek an approximate solution {*|iA, uh) s^r

hxWh of (1.3) such that

(1.4a) (ei);/,, \x) - (div p,, uh) = (g, p . v> , ^ e Vh ,
(1.46) (div ̂ , w) = (ƒ, w), w e Wh.
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EFFICIENT RECTANGULAR MIXED FINITE ELEMENTS 583

The spaces tyh x Wh to be treated below will be derived as special cases of
the variable degree éléments [8] related to the BDM éléments and their
analogues in three space.

We have chosen to treat the simple équation — div (a Vu ) = ƒ in place of
the linear équation - div (a Vu + pw ) + y • Vu + du ~ ƒ primarily to re-
duce the technical detail in the présentation ; all of the convergence results
extend to the more gênerai case. See [13, 16] for such extensions. Some of
the discussion of the algebraic équations associated with (1.4) would require
modification to handle the gênerai case.

We shall dénote the restriction of polynomials of total degree not greater
than ƒ to the set K by Pj(K) and the tensor products of polynomials of
degree not greater than ij in the /-th variable by Qtvi2(K) or Q^ iz Î3(K).

PART I

2. THE REDUCED BDM ELEMENTS

Let us recall the BDM; space over an ordinary rectangle K. Let j be a
positive integer and set

(2.1) BDM^iQ = <!>(ƒ, i Q x W ( / \ i q

= [ P ; ( i q 2 + S p a n c u r l {x1xî + 1,x{ + lx2}]x Pj_x(K) ,

where curl (z) is the vector (dz/dx2, - dz/dx^. An element Ç of <P (/, K) is
determined uniquely [7] by the following degrees of freedom :

(2.2a) <€.v,/>>€, pePj(e),ee {el9 ..., e4} (the edges of K) ,

(2.2b) (

the choice of the degrees of freedom for W(j, K) is immaterial for our
purposes at the moment.

^OHsider-the feBewing sabspace of BBMj(K)-i-

(2.3a) V(j,K) ={?Ê*0 > . ^ ) ;{ -veP / . 1 (e j ) ,« > = l 4 } .
(2.36)

(2.3c) j

It is clear [8] that a set of degrees of freedom for VQ, K) can be given as

(2.4a) {Z-v,p)e, pePj^ie), e e {elt..., e4} ,

(2.46)

vol. 21, n ' 4, 1987



584 F. BREZZi et al.

A simple calculation shows that

(2.5) ¥ (2 , K) = Span {1, xl9 x2, x\, x1 x2) x Span {l9xu x2, xx x2, *£}

More generally, we can recharacterize ^ ( / , J^) as follows.

LEMMA 2.1 : ¥(ƒ, K) = [Pj(K)\{xï}] x [Pj(K)\{x{} ].

Proof: Dénote temporarily the spaces defined by (2.3a) and in the
statement of the lemma by ¥* and s¥2

> respectively. If £ e ¥ \ it has the
représentation

Ç = €* + cM, 0) + c2(0,x{) + es curl (JCI *î + 1) + c4 curl (xf + 1x2)

with Ç* € ̂ 2 . The requirement that g . v belong to P]_l(e) on the left and
right edges of K forces cx and c3 to vanish ; similarly, the constraints on the
top and bottom edges kill c2 and c4, so that the proof is done.

Each of the equivalent définitions of^(]\K) is useful ; the unisolvence of
the degrees of freedom (2.4) is obvious from (2.3) and the important
property that

(2.6a) ¥(ƒ, K) = ̂ 0 " , K) + V2(j9 K) ,

where

(2.66) *!(ƒ, K) = (P,-(K)\ {xi} ) x {0} ,

* 2 ( / > * ) = {0} x (

follows easily from Lemma 2.1. This splitting of the basis will permit greater
flexibility in defining itérative methods for solving the algebraic problem
associated with (1.4).

Now, let ̂ b e a boundary rectangle with one curved edge. There can be
two, three, or four linear edges, say, el9 ..., er. (We do not admit the case of
a single straight edge.) Let ¥(ƒ, K) be exactly as above for the ordinary
rectangle and associate the following degrees of freedom with ^(ƒ, K):

(2.7a) <i|i. v ,p ) e , p e Pj_l(e) , for each straight edge ,

(2Jb) (divili.w)^, w e P ; . ^ ) ,
(2.7c) (I|I, $)K , g G {7 G ¥(ƒ> K) : div 7 = 0 and 7 • v = 0

on each straight edge } .

We can now define the global subspaces Wh x Wh :

(2.8a) ^ = *(ƒ,.*•*) =
= {^eV = H(div,n):^\KeV(j,K),Ke Jfh} ,

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



EFFICIENT RECTANGULAR MIXED FINITE ELEMENTS 585

(2.8b) Wh

as usual, the requirement that 4* in (2.8a) belong to V is equivalent to asking
that the normal component of the vector i|/ be continuous across each
internai edge of the décomposition. Our new mixed method for planar
domains is determined by using the space of (2.8) in (1.4).

In order to carry out the analysis of the mixed method (1.4)-(2.8) by the
technique of Douglas and Roberts [16], it is necessary to define a projection
II* x Qh;H

l(Q,)2xL2(£l)^>Whx Wh such that the following diagram
commutes :

The component Qh can be taken to be defined locally by means of an
L2 projection into Pj_x(K). If z e L2(ft), let

(2.9) (z-Qhz,w) = 0, weWh;

i.e.,

(2.90 ((z-Qhz)\K9 w)K = 0, wePj.^K), K e Jf h .

Then, define 11̂  locally by using the degrees of freedom given by either (2.4)
or (2.7). Thus, if K is an ordinary rectangle, let i|i e Hl(K)2 and set

(2.10a) ((($-nhty)\K).v9p)g =0, p e Pj _ a ( e ) , all four edges ,

(2.106) ((* - Uh *)\K, xh = 0, x e Pj_2(K)2 ;

for boundary rectangles, use the three relations in (2.7) instead to define
Uh \\t on K. Note that it follows from (2.10) that

(2.11) (div (* - Uh i|i), w)K = 0, we Pj^(K) ,

for ordinary rectangles ; since this property was built into the degrees of
freedom for boundary rectangles, it follows that

(2.12) (div0|>-nAi|i),>v) = 0 , weWh.

Also, it is obvious that

(2.13) (divi | i ,z-Ö**) = 0 , tyeVh>

vol. 21, n° 4, 1987
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for any z e L2(H). The form (2.6) of ^(7 , K) implies that div "9h = Wk ;
hence, the diagram has been established. The following approximation
properties of the projection are easily seen from the local nature of its
définition (the subscript s indicates the norm in Hs(£l) for positive s and in
(Hs (£!))' for négative s) :

(2.14a) \\\\t — Ilfc i|;|j0 === MUijill^/i5, 1 m s =e ƒ ,

(2.14è) \\z — Qhz\\_ ^ ^ i l z i i hr + s y O^r^j, 0 ^ 5 ^ / .

The properties of Hh and Qh are the same as those for the corresponding
Raviart-Thomas space of index j - 1 , where RTt(K) is given by
[Qi + i,i x Qij + i] x Qi,i [21> 2 21- Thus, the stability and convergence of
this mixed method follow from theorems of Fortin [17]. The following
global error estimâtes are also conséquences of the diagram and the
approximation properties (2.14) ; the proof of Theorem 6.1 of Douglas and
Roberts [16] applies without modification. Let H be called (s + 2)-regular
if, when f e Hs(fl) and g e Hs + 3/2(d£l), the solution of the Dirichlet
problem (1.1) lies in Hs + 2(n) and

T H E O R E M 2 . 2 : Let Q, be (s -\-2)-regular. Then, there exists a unique
solution {\\fh, uhy o ƒ (1.4). Moreover, the following error estimâtes are valid :

M\\u\\rh'

(2.156) | | * - « M L ,

(2.15c) ||div(i|.

Moreover,

(2.15d) ||«ft-ö

M\\u\ r + 2 '

M\\u{

M\\u\

for

for

for

for

for

for

for

for

0=£S

and

' = j
and

s = j
and

and 1

* = ƒ
and 0

7 = 1

1 « r ••

and

*;
2=£

-1
1«

0«

j-

« r

ij

and

«7

-2
r ===

r ̂

r^

1

=£7

^7

0

7 »

i,

7 ;

;
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Before turning to interior estimâtes and then to spécifie questions related
to the évaluation of the solution of (1.4), let us compare the local
dimensions of the RT and BDM spaces with those of the new spaces for
similar optimal global rates of convergence in the approximation of the
vector variable. First, note that BDFM^X) = RT0(X) and recall that there
is no corresponding BDM space for which linear convergence is optimal for
the vector variable. So, consider ƒ > 1. In order to achieve an O(/î;)-rate in
L2(H), then we compare R T , . ^ ) , BDM^^l f ) , and BDFMy(À'):

(2.16a) dim (RT,_ 1 (K)) = 3 j 2 + 2 j ,

(2.16b) dim (BDMj_l(K)) = 1.5 j 2 + 0.5; + 2 ,

(2.16c) dim (BDFM,(K)) = 1.5 ; 2 4- 3.5 ; ;

thus, the new spaces require significantly fewer parameters than the
Raviart-Thomas spaces for this measure of accuracy, but slightly more than
the BDM spaces. In order to obtain an 0(A2/)-rate in the Sobolev space of
négative index of most rapid convergence for the vector variable, we must
compare RT^.^X), BDM^X), and BDFM,(K):

(2.17a) dim (RT, _ x (K)) = 3 ; 2 + 2 j ,

(2.17e) dim (BDM,(*0) = 1.5 j 2 + 3.5 j + 4 ,

(2.17c) dim (BDFMj(X)) = 1.5 j 2 + 3.5 ; ,

so that on the basis of this criterion the new spaces retain a significant
advantage over the RT spaces and have a small advantage over the BDM
spaces.

The interior estimâtes derived by Douglas and Milner [13] for the
Raviart-Thomas spaces, as the global estimâtes, depended only on the
properties of the projection Uh x Qh ; hence, the corresponding estimâtes
hold for the new éléments. Let G be an open subset of H, and set

(2.18a) Vh(G) = {g E ¥A : supp (Ç) c G} ,

(2.186) Wh(G) = {weWh: supp (w) c G) .

The pair {^uh} e ^h x Wh is said to be an interior solution of the mixed
method équations (1.4) on G^fl if

(2.19a) (*h, M.) - (div ^uh) = 0, ^ e *

(2.1%) (div * * , * ) = ( ƒ , * ) , weWh(G);

note that the boundary values g are not involved in the équations for an
interior solution, since supp (|x) a G. The following theorem is analogous
to Theorem 2.2 of [13].

vol. 21, n° 4, 1987



588 F, BREZZi et al

THEOREM 2.3 : Let ft^^^ ^ an& assume that the solution u of (1.1)
belongs to Hq{£l) H W(H2), w/iere 2 s s ç s s ; + 2 . Lef {i|iA, uA} be the
solution of (1.4)-(2.8). For h sufficiently small and 0 ^s === ƒ,

(2.20a) f|̂  ^ n i ^ ^ ^ ^ n

2 === r ^ ƒ + (5 - ƒ + 2 ) + ,

(2.206) I K - ^ I I . ^ ^ ^ A f E l l w l l ^ ^ / k ^ * - 1 - ^ - / * 1 ^ + l l w l l ^ o ^ ^ 7 " 2 ] ,

2 s s r * £ j + l + (s - ƒ + 1 )+ ,

(2.20c) | | d i v ( i | i - i | i A ) | | _ ^ n i ^ J I f e [ | | u | | r i n 2 ^ + ' - 2 +

+ \\u\\q,n
hi~2 + min{q'S + 2~B}]> 2^r^j +2,

for any positive e .
The négative norm estimâtes of this theorem and an analogous one for

différence quotients, corresponding to Theorem 4.1 of [13] when the
décomposition has a translation invariance over an interior subdomain can
be used to dérive superconvergence via Bramble-Schatz postprocessing of
the approximate solution. Présentation of these and the superconvergence
results that are related to the hybridization procedure to be discussed in the
next section will be delayed to Section 5.

3. HYBRIDIZATION

Some years ago Fraeijs de Veubeke [18, 19] introduced a hybridization of
the mixed method with his object being the simplification of the algebraic
problem that must be solved in order to evaluate the solution of the
procedure. Recently, Arnold and Brezzi [1] analyzed this modification of
the mixed method for Raviart-Thomas spaces ; the hybridization was also
introduced and analyzed for the BDM [7] and BDDF [6] spaces. We shall
consider the same concept hère. Let êh dénote the set of all internai edges
associated with the rectangles of the partition jfh9 and let

(3.1) A, = A(;\ Jfh) = {me L2(Sh) :m\ee Pj^(e) , e e gh) .

We shall interpret m e Ah to be zero on dft while it is being computed ; it
will be convenient to give it another interprétation later when it is being
used in a postprocessing. Next, release the continuity constraint of the
normal component of the vector variable across the internai edges by
replacing Wh by

(3.2) YA
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Reimpose this continuity by introducing a Lagrange multiplier mh e Kh, and
look for a solution {\\fh, uh, mh) e Yh x Wh x Ah of the équations

(3.3a) (c%, x) - Y, (div x> U^)K +
K

-f- V (y , Vj^, Wlfa) = (^, X • v ) j X ^ ^/i J

(3.36) V (div v[;̂ , w)K ~ (ƒ, w) vw e W^

(3.3c) Y (i|*A . v^, v) = O , Ü e A/, .

The relations (3.3c) force \\th to lie not only in Yh but also in M>ft ;
consequently, the pair {i|ift, wh} obtained from (3.3) coincides with the
solution of (1.4)-(2.8) as functions, though the degrees of freedom of
\\fh as determined from (3.3) differ from those of the original method.
Clearly, the error estimâtes of the previous section remain valid for
uh and tyh ; error estimâtes related to mh can be derived as in [1,6, 7] and will
be stated and used in the section on superconvergence.

Let us consider some computational aspects of the hybridized procedure.
The matrix associated with (3.3) takes the form

(3.4)

where A is block diagonal with the blocks being Nxx Nly

Nx = dim 0^0', K)), and B has a block structure dependent on the
dimension of W(j, K). Thus, the parameters defining i^-parameters can be
eliminated simply, with the matrix for the remaining degrees of freedom
taking the form

*A~lB B*A~1C
* 4 -1 R r* A ~i r

where now B*A~XB is block diagonal with N2xN2 blocks,
N2 = dim (Pj _ ! (K)), so that the ^-parameters can be eliminated, again at
the element level. The resulting matrix, say D, for the m^-parameters is
symmetrie and positive definite in the case that no lower order terms are
present in the differential équation (1.1a). If lower order terms are present,
then the élimination procedure can be carried out almost as outlined above,
at least for sufficiently small h ; however, the form of (3.5) and D will be
somewhat different, with D not retaining symmetry. It will have a dominant
part that is symmetrie, positive-definite.

vol. 21, n° 4, 1987

A
B*
C*

B
0
0

C
0
0



590 F. BREZZi et al

The graph structure of D is quite reasonable. Each set of j parameters
associated with the polynomial of degree j — 1 on an edge e that is the
restriction of mh to e sees the sets of parameters associated with the edges of
the two rectangles for which e is an edge. (Thus, the matrix has essentially
the same sparsity structure as the matrix for a nonconforming Galerkin
procedure based on polynomials of degree j after the internai degrees of
freedom have been eliminated.) The équations split naturally into sets of the
following form :

(3.6a) ELt _ lf j 7i -1,y + Etj y(j + ERt +hjyi+hj + Ftj 5 = <pl7 ,

(3.6b) GBt j _ i 8, y _ x + Gï7 ö(7 + GAf> y + ! 8^ j + 1+ Htj y = o>(7 ,

where 7l7 dénotes the parameters associated with the left edge of the
rectangle Ki} and 8i; those with the bottom edge. The matrix Ftj opérâtes on
^i-i,7> ^ï-i , / + i? fyj, and ô(ïy + i ; Htj opérâtes on the neighboring
7's. The symbols L, R, B, and A refer to left, right, below, and above,
respectively. If a preconditioned conjugate gradient itération is used to
solve (3.6), a clear choice of a preconditioner comes from this splitting. The
équations (3.6a) are tridiagonal in 7 for an x^ordering, while (3.6b) is
x2-ordered. We shall note in the superconvergence section that mh gives an
approximation to u ; consequently, the équations of both (3.6a) and (3.6b)
represent generalized différence approximations to the differential operator
— div (flV). As a resuit, the obvious choice of preconditioner for solving for
7 using (3.6a) and for 8 using (3.6b) does not reduce the O(h~2) bound on
the condition mumber of the effective matrix in the itération to some lower
order in h'1. This preconditioner is not the equivalent of an alternating-
direction preconditioner, and the équations (3.6) retain the difficulty of
solution associated with Galerkin and finite différence methods ; however,
it is possible to associate an alternating-direction itérative procedure with
(3.3) and one will be indicated in the next section.

The Raviart-Thomas space of index ƒ — 1 leads to équations having
exactly the same graph as those of (3.6) when the Fraeijs de Veubeke
hybridization is applied to it. Since the dimensions of both the vector and
scalar components of RT}_1(K) exceed those of BDFMy(X), the élimina-
tion of the tyh and uh parameters is cheaper for the new éléments than for the
RT éléments. On the other hand, if no postprocessing of the solution to
obtain a better approximation of the scalar variable is intended, then the
B'DMj_1(K) space has fewer parameters than BDFM ;(^) and leads again
to équations of the same form as (3.6), so that the first two steps are less
expensive for it than for the new éléments.
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4. ALTERNATING-DIRECTION ITERATION

Lemma 2.1 implies that the linear équations generated by (1.4)-(2.8) can
be written in the form

(4.1a) (a|4, X1) - (BX
l/dx9 uh) = (g, (x\ 0) .v> , x1 € V\ ,

(4.16) (CI& x2) - {Bf/dy, uh) = <*, (0, x 2 ) . v> , x2 e n ,

(4.1c) (div <|iA, w) = (ƒ, w) , iv e Wft ,

where Wk = ^ x MfJ, as results from (2.6). These équations can be written
in matricial form as

(4.2a) Ax ^ + Bx u = y, ,

(4.26) A2 4r2 + 5 2 u = 72 ,

(4.2c) Bf ili! + B{ ^2 = 9 •

The symbols i|ils i|i2, and u now represent the vectors of parameters giving
the degrees of freedom associated with ^\, ty2

h, and Wh, respectively. The
vector \\fx should be ordered in blocks of parameters associated with the
rectangular éléments ordered in an x-orientation, while ^2 should be
ordered in a y-orientation. In (4.2a) u should be interpreted to have an x-
orientation, and in (4.26) it should be interpreted to be ordered in a y-
orientation. Then (4.2) can be considered to be the steady-state équations
associated with the transient problem given by either

(4.3a) A 1 t y 1 + B l u = y l 9

(4.36) A2 ty 2 + B2 u — y2 ,

(4.3c) D du/dt2 + Bf i^ + B2* i|/2 = cp ,

(43d) u(t2 = Q) arbitrary ,

or

(4.4a)
(4.46)
(4.4c)

[4.4d)

Ai d\\f1/dtl +.
A2 d\\f2/dtx +
D du/dt2 + B}

^ = o ) , ty2(tx =

Ax l|li + #!

A 2 i|/2 + B2

f 4li + B2*

0 ) , M(r2

w = 7 i ,

; U = 7 2 ,

= 0 ) arbitrary

The équations (4.3) represent a parabolic problem whenever the matrix D
is defined as the Grammian associated with a positive weight function on O, ;
the usual choice for the weight function is a(x). Equations (4.4) represent a
damped wave équation if the two pseudo-time variables tx and t2 are the
same ; otherwise, they are related to a different damped hyperbolic
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