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MATHEMATICALMOOELUNGANONUMERICALANALYSIS
MOOEUSATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 23, n° 2, 1989, p 205-234)

HOMOGENIZATION OF THE STOKES SYSTEM
IN A THIN FILM FLOW WITH RAPIDLY VARYING THICKNESS (*)

by Guy BAYADA Q) and Michèle CHAMBAT (2)

Commumcated by E SANCHEZ-PALENCIA

Abstract — We study a problem with two small parameters, thaï models a fluid flow between
two close rough surfaces We study the convergence by the energy method of the 3-dimensional
Stokes System solution when the ratio X = y\/zis constant (y\ is linked to the fluid thickness and e
to the size of the roughness penod) Then making X tend to infinity (resp to zero) we show that
the case in which the thickness is greater (resp smaller) than the penod is an asymptotic limit of
the intermediate case

Resumé — On considère un problème de passage à la limite à deux petits paramètres
modélisant Vécoulement d'un fluide entre deux surfaces rapprochées supposées rugueuses Nous
étudions d'abord la convergence par la méthode de l'énergie de la solution du système de Stokes
tridimensionnel lorsque le rapport X = "n/e est constant (r\ est hé à l'épaisseur du domaine et e à
la période de la rugosité) Ensuite en faisant tendre X vers l'infini (resp vers zéro) nous montrons
que le cas ou l'épaisseur est plus grande (resp plus petite) que la periode est limite asymptotique
du cas intermediaire

I. INTRODUCTION

We study the asymptotic behavior of a viscous fluid flow in a narrow gap
with mean thickness in whose surfaces are supposed to be rough, with a
periodic roughness of wavelength e, when the two small parameters s and -r\
tend to zero. This problem f ails in the scope of the hydrodynamic
lubncation.

In the mechamcal literature most papers are based upon the Reynolds
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206 G BAYADA, M CHAMBAT

équation which is denved from the Stokes System by takmg account of the
small parameter -r\ associated to the film thickness To evaluate the surfaces
roughness effect, two different ways exist

First, lots of papers are concerned with the so called « Reynolds
roughness » This approach which retams the validity of the Reynolds
équation is commonly used if the charactenstic wavelength of the roughness
is much greater than the film thickness Proposed averaged équations
appear in [9], [14], [16], some of them being devoted to the particular case
of roughness pattern with small peak to valley height

The second way is associated to the « Stokes roughness », where the
authors claim that the applicability of the Reynolds équation is not valid,
especially when the roughness wavelength is small in front of the gap height
The related studies retam the assumption of small roughness height, and use
asymptotic expansions [15], [19]

All the results have given nse to rnany controversies both at view of their
numencal results than for the heunstic assumptions on which they are based
[8], [21] , mtercompansons are very difficult due to the various assumptions
introduced

We are concerned with the mathematical aspect of this problem The
most rigorous of the previously mentioned papers are based on formai
asymptotic expansions , though this last method has already proved îts
effectiveness no real proof appears m the literature, the statistical surfaces
descriptions rendermg any mathematical proof very difficult We consider a
deterrninistic way and assume a periodic roughnes» and the ba&ic équation»
are the Stokes System Problems depending on two « small parameters »
appear in various physical areas hke electncal engineering [17], thermal
effects in penodical structures [6] and mostly in the two dimensional
approximation of the three dimensional plate models [7], [11], [12] This last
problem is related to our study, especially when a rapidly varymg thickness
for the plate is considered

In most of the two small parameters problems, the way how the
parameters tend to zero is primordial and the limiting équations are
different whether e tends to zero f aster, slower or at the same rate as r) In
this paper, we show that this resuit is also true and ît descnbes all the
possibilités Mathematical tools are both asymptotic expansions [13] and
the homogenization theory [5], [18]

The second section is concerned with the notations and a recall of the
asymptotic équation that is proposed for the pressure in [2] by way of formai
expansion when r\/z is a constant ratio \

Section 3 is devoted to the validity of this équation m a rigorous way by
the energy method [20] The resuit is obtamed via a conjecture on the
asymptotic behavior of the pressure we show the weak L2 convergence and
we have to suppose that the convergence is actually strong
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HOMOGENIZATION OF THE STOKES SYSTEM 207

In Section 4 we study the limit équation when the roughness is an actually
periodic one and existence and uniqueness results are proved.

In Section 5, we study the limit of the previously mentionned équation
when X tends to infinity. The obtained équation can be associated to the
Stokes roughness and seems to indicate that no flow occurs in the oscillating
part of the gap. The last section is devoted to the limit équation obtained
when X tends to zero (Reynolds roughness). In that case, the study can be
rigorously made by making first r\ tend to zero and then e, which is nothing
else than the homogenization of the classical Reynolds équation [4].

For a mechanical use, we summarize the conclusions so :
— all the three limiting équations are of the Reynolds type but different,
— the height of the roughness has no influence on the qualitative aspect

of these équations,
— the second équation représentative of the Stokes roughness is of very

easy and cheap treatment, but a complete mathematical proof is missing,
— in the last case (Sect. 6) the results of Christensen [9] can be used with

confidence for small roughness spacing.
A complete mathematical study is not yet available. If the assumptions of

the full periodic roughness seems to be overcome by way of a space
discretization, the conjecture of Section 3 is related to a finer difficulty. It is
to be noted also that in the case of a thin plate with rapidly varying
thickness, no complete proof of the different cases related to the ratio of the
two small parameters exists at this time [12], contrary to the problem of a
thin composite structure where only the elasticity coefficients are periodic
and not the shape of the plate [7].

II. BASIC NOTATIONS AND ASYMPTOTIC PROPOSED EQUATION FOR CONSTANT

II. 1. Geometrical data and notations

We shall write X = (xl9x2,x3) for a current point in IR3 and x = (xu x2)
for its projection in IR2.

ca is an open set in U2 with a Lipschitz boundary 3o>.
E is a small parameter related to the roughness wavelength scale. h is a

smooth function, defined for x in co and y in IR2, periodic with period
Yiinyl (Î = 1,2).

We set Y= [0, Yx] x [0, Y2], the periodic cell.
The real gap between the two surfaces is given by :

t)hz(x) = r\h(x7x/e) x e & .

The three dimensional domain occupied by the fluid is :

vol. 23, n° 2, 1989



208 G. BAYADA, M. CHAMBAT

II.2. The basic équations

We are concerned with the thin-film hydrodynamic lubrication of rough
surfaces, that is the study of an incompressible viscous fluid flow between
two surfaces in motion as the thickness of the gap is smalL To make the
model easier to study, we suppose that one of the surface is horizontal,
smooth and moves with a constant velocity whereas the other one is rough
and motionless.

The basic Stokes System is : (the viscosity is taken equal to 1)

1 )
(2.1)

infh
div («">) = O (2.2)

Boundary conditions are added to solve équations (2.1) (2.2) ; classical
operating conditions are Dirichlet ones :

u^ = (k 8 \0 , 0) on 8fteT1

with

[0 on 2ET1

s on co (s G R+ )

where 2e71 is the oscillating boundary of dClZJ] (fig. 1)

2eT1 = {X G R3
? x e o), x3 = y\he(x)} .

(2.3)

(2.4)

Figure 1. — Domain ft .
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HOMOGENIZATION OF THE STOKES SYSTEM 209

We dénote by Tej] the latéral boundary 3fieT1 - (o> U 2eT1) ; k*1* is not easy to
evaluate experitnentally on TeT1 and we are led to make first the assump-
tions :

k^ e HV2(TZJ]) and ) ker* cos («, x^ do- = 0 (2.5)

(n is the outward unit normal vector on 3net) and da dénotes the surface
measure).

Following [2], we introducé a supplementary condition for kei*. According
to the rescaling, we suppose that there exists a regular link between 0 and s
which does not depend on e and X such that :

\K(x,z) = 0 for hmm(x)^z (2.6)

where

hmm(x) - min h(x,y) Vxew and
yeY

We define :

t(x) = Y1Y2 | K(x, z)dz cos (n,Xl).
J(X^z^hmm(x)

Due to (2.5) there exists a unique solution

(ur,p'") of (S^) in H\CïtJ x L2(Cl^)/U [10].

IL3. The new variables and the local auxiliary problems

We define first the rescaled thickness z = x3/Xe and we introducé the
following operators :

,. 3 3 1 3
divx = 1 1

o o l d , ,

y = ( , ,

We introducé three auxiliary problems (L°)(L1)(L2) in the following
weak formulation :

vol 23, n 2, 1989
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Let:

G. BAYADA, M. CHAMBAT

HY = {£ € (Hl(Bx)f, & is F periodic in the y, variables}

Problem (L0)

Fin g0 in H y and q° in L2(B^) such that :

[ |divx(a°) = O VÇeZ,2(o,)
J Bx

a?(y,h(xyy)) = Q a ° (y ,O)= ( s , 0 , 0 ) .

Problem (L') i" = 1, 2 :

Fin al in HQ and ql in L2(BX) such that :

f f

J £divx gt - O V Ç 6 L Bx .

n.4. Asymptotic proposed équation

A formai study by asymptotic expansion (see [2]) for e and 'n tending to

zero with a constant ratio X = *n/e shows that per*~^~r- such that
e

p~2 is solution of :

Find p ~ 2 in H 1(o> ) such that :

where [4>] dénotes the intégral of <(> on B r
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Hl. THEORETICAL STUDY OF THE ASYMPTOTIC BEHAVIOR OF THE FLOW

In this section we prove the result obtained first by formai asymptotic
expansions in [2]. From now on we suppose :

h*(x) = h(x/e) .

If we want to cancel this assumption, regularity results for solutions of
Stokes problem with respect to the domain have to be obtained.

The behavior of the velocity is easy to study because it can be extended by
zero to a fixed domain including Oe. We use the technic introduced by
Tartar ([18] appendix) to extend the pressure and then the standard energy
method [20]. We suppose the strong convergence of the pressure to have a
complete proof, but only the weak one is proved ; as the formai limit doesn't
depend on the micro variable this seems to be a reasonable conjecture.

III. 1. The rescaled weak formulation

We use a mixed weak formulation for the Stokes system (2.1)-(2.3) in the
rescaled domain

We point out that in spite of the rescaling, this domain is not a fixed one
and this will lead to further difficulties when letting E tend to zero.
Therefore we need to introducé a fixed O involving Oe, in which
convergences can be proved ;

where
hmzx = max h(y) .

yeY

Set :

aB(u, ^ ) = Y ( T —-—-+ —-—- 1 dxdz (3.2)
1-1,3 Jn, \j-ï,2°xj dxj *• 8 3 z dz I

f dxdz-o\

vol, 23, n 2, 1989



212 G. BAYADA, M. CHAMBAT

We dénote by (w%pe) the rescaled solution of (Se71) because the two small
parameters are of the same size. So (uE,pe) satisfies :

ae(u\é) = b*(p\é) Vc^etfo1^)3 (3.4)

be(q,u>) = 0 V^eL 2 (n £ ) (3.5)

ue/dne = (K, 0, 0 ) where K is given by (2.6) .

III.2. Behavior of the velocity

We introducé

Vz = [v e L W f

For any function v defined on He, we dénote by v the function equal to v
on He and extended by zero to £1. Obviously v e H1^) and f = 0 o n
Se imply ÏJ e / ^ ( H ) . We set for £ in H\SïBf :

1/2

• ( 3 - 6 )

THEO REM 3.1 : There exists u* in Vz such that :

2 f weak,

LHSir weak,
dz dz K }

e^Ë. _ , 0 L2(O)3 weöA:, i = l , 2 .

Moreover u* = 0, w* = 0 o?z S, w* = (5, 0, 0) on <o.

Proof: From (2.5) and (2.6) we are able to construct a fixed
l in H\a~ f such that :

ƒ = ( # , 0 , 0 ) on ôn~ and div J = 0 .

Setting A^ = (/1} 72>
 8 ^ 3 ) in ^ " > extended by zero in H,

àKî SKI i a« |
^ ^ + J _ ^ = 0 (3.7)
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We choose ^ = (w8 - Ke) as a test function in (3.4) and q = p* in (3.5).
So:

ae(u\ue) = ae(ue,Kz)

and | |« e | |E^ | | r | | £ ^ C / e 2 ^ 8 )

C being a constant with respect to e, by taking the Poincaré inequality in the
z-direction we obtain :

and
L2(ü)

L2(O)

^C/e i = 1,3 j = 1,2

and we can extract subsequences such that uB, ~^~ , e — weakly converge
dz dXj

in L2(ü)3. This implies that -=- also converges in 3D'(fi) and the last a

priori estimate gives that the limit of e ̂ ^ is zero. Moreover for each
dx}

function in Vz, we can define a trace on 6fî such that the application
v -• vnz is a linear continuous operator from V\ in /f " 1/2(9fl)3. So the values
of û8 on the boundary S U a> which are constant are preserved by letting e
tend to zero.

(3.5) is true for any <(> in L2(H). Taking the ümits of all terms in
^e(<t>ï we), it follows :

f
Jn

6 w 3*
— dxdz = 0 V<|>e3)(n)

and u* = 0 because of its values on the boundary, D

IIL3. A priori estimâtes for the pressure

PROPOSITION 3.1 :

(7 = 1 , 2 ) ; WZ- C/e.

Proof: Taking successively (4)^0 ,0) , (0, <f>2,0) and (0, 0, <J>3) with
), 6 H&(Clz) in (3.4) we get for / = 1, 2 :

pE^-dxdz = ^ 34»,

vol 23, n" 2, 1989
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and the estimâtes on the velocity mduce

f H 1(aB) ff<J(nj

By the same way

dz j u 1(Cl£) HQ(£Ï6)

which ends the proof D

Og being a bounded Lipschitz domain, we have [22]

where the constant dépends on the domain, that is to say on e and we don't
know how ît dépends on E SO we have to defme a continuation of the
pressure to O, to prove convergence

III.4. Continuation of the pressure to i l

L Tartar has introduced a continuation of the pressure for a flow in
porous media (see [18] appendix) This construction apphes to penodic
holes in a domain QSJ] when each hole is stnctly contained into the penod
cell We cannot use directly the results m our case because the « holes » are
along the boundary S£T1 ot ilgT1 , moreover tne scaies of me geometry uf ihe
actual domain £lzr] are different in the x-direction (the macro one) and m the
x3-direction (the micro one) This fact will mduce several limitations m the
results obtained by usmg the method, especially in view of the convergence
for the pressure

Recallmg that h is a function of y only, the basic cell Bx defined in § II 2 is
now a fixed one

B={(y,z)eR\ yeY, 0<z</*(v)}

We suppose from now on
Hl the surface roughness is made of detached smooth humps penodically

given on the upper part of the gap (*) ,
H2 co is covered by an exact fimte number of penod e Y,

We consider a smooth surface mcluded in B and surroundmg the hump
such that B is split into two areas Bf and Bm such that (fig 2)
H3 dB,,, ï s a C 1 mamfold

From the fluid point of view '
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Hmax

Figure 2. — The basic ceU B.

We note

Bs = U\{BmUBf)
S = bBmn dBf .

V = {veH^Uf, v = 0on2} .

We set

In the following, we'll use the Poincaré norm both in Hx(Il) and
Hl{Bm), all the function involved being zero on a part of the boundary.
Moreover C dénotes constant with respect to e which can be function of k.

LEMMA 3.1 : For given v in V, there exists w in ^(B^3 such that ;

w/S - v/S and w/dBm\S - 0 .

Moreover there exists a constant C which does not depend on v such that :

and

vo\ 23, n° 2, 1989
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Proof First we construct a lift of the boundary condition From H3
v/dBm hes m (Hm(dBm))3 and we defme p1 m Hl{Bmf by

- AK p1 = 0, p1 = v on S, p1 = 0 on dBm\S

By regulanty theorem

from H3 and classical trace theorem
Secondly we introducé

dxvx(v)dydz\/mes(Bm)

I f = - I Ë 1 - 3 + | « • » + | ^ * S
J^m Ja5m JsBm JBBS

where n— (n\,n2, ^n3), n outward normal to Bm

Hl and the définition of g1 imply

f
So there exists p2 in HQ(B„)3 such that [22]

g l l ^ ^ (byH3)

It remains to solve an homogeneous Stokes system There exists a pair
(p3, q) m Hl{Bmf x L\Bm) such that

divx g
3 = 0

For this problem the classical estimation gives

Then >v = p1 + p2 + P3 is solution m H\Bmf of the following Stokes
system

(3 10)divx w = divx 1? + I divx v ] /mes

vv/5 - v/S w/3Bm\S - O
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and obviously we have :

217

which ends the proof. D
This lemma allows us to construct a restriction O6 defined in the physical

variables (xl9x2,x3) and to deduce a continuation of the pressure.

LEMMA 3.2 : There exists an operator :

Rz : Hl{CL„f -> J/d(ftE )3 such that :

T|

v e H^(nH)3 => RE(v) = v

\\Re(v)\\^C\\v\\ \ . (3.11)
div v = O^div Rz(v) = 0

Proof: For any v en V, lemma 3.1 allows us to define R(v) in
by:

'S if (y,z)eBf

R(v)= \w if (y,z)eBm

0 if (y,z)eB,

which satisfies

(3.12)

Suppose that Co = ]0, sY^ x ]0, EY2[ X ]0, r\hmax[ is contained in ü.^ and
define Ck where k = (ku k2) by :

Ck = , x e co, (JCJ — ,

H2=>iï =

u x2 - k2 eY2, x3) e Co}

We define Re by applying R to each period. More precisely for any
v in H^n^)3, we call v_k its restriction to Ck, and

V-kiyii yi> z) = ̂ ( ^ ï + ̂ 1 8^i? zJi + ̂ 2 e^2' z ) is defined on II. So Rs is
defined on each C^ by applying /? to v_k. Obviously Re(v) lies in
HQ(O,ei))

3 and is equal to v if £ is zero on ft<n\fte<n. Now using (3.12) we
obtain :

\\R>(v_)f = e Ce = C

(3.11)4 is obvious from (3.9 )2 and the définition of R\ D

vol. 23, n° 2, 1989



218 G. BAYADA, M CHAMBAT

THEOREM 3.2 : There exists Pz in L2(OTl) such that VPe is an extension of
VpE. Moreover there exists P* in L2(£l)/R such that a subsequence vérifies :

2 2 (3.13)

Proof: For any £ in H^(nf, we define FE by :

<f'.*>-( g . «,-(•)) + ( g.«<•>) + { g . ««*))

where < , ) is for the duality product between H~l and HQ either on fl or
on n£

<f<> *> —

From (3.8) and (3.11) :

| < r , ̂ > | ^ ||MeT1|| | |^ e(è) | | ^ C ^ | | « 1 J < H ^ Ce-3 /2 | |^| | . (3.15)

So fer1^)3 .

If div ($) = 0 then by (3.11) div (/?8(^)) = 0 and (F\ i> = 0. So there
exists F 8 in L2(n^) such that :

F - V J P 8 - (3.16)

We remark that if £ belongs to HQ(O,BJ])
3, Re($) = $ and Fe reduces to

VpE. So we have constructed a continuation of the pressure gradient. We use
(3.15) to give a priori estimâtes on the « new pressure » in the fixed domain
fl. (To simplify we keep the same notation for the pressure in fl+) :

1 9<4>3

J r~\ 1 1
a \ dxi bx2 XE dz

We get :

( i = 1 , 2 ) I l e ^
II ÖZ
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and (3.13) follows from the inequality

219

and (3.14) by noting that e converges also in H~ x(ü) weak. D

IIL3. The limit équation

THEOREM 3.3 : With the conjecture that the pressure convergence is strong
in L2(ft), P* satisfies :

with the boundary condition :

1,2 1,2 XJ

«?]»,) =Y1Y2t(x).

Proof: New rescaled problems (Ll
e) can be defined in (fte) from problem

(L1) defined in the basic cell, which doesn't depend on x, like function h.
We extend the functions a1 and ql used in the proof of lemma 3.2 by
periodicity for y in U2 and 0 <: z < /z (y ).

Setting otie = a'(x/8, z), ^Ie = ^'(x/e, z) and
H* = {$ G J / ^ e K i | w = é|2E = Q, * is eY periodic in x} .

Rescaled problems L\ are : (/ = 1, 2)

Find (a'% ̂ Ie) in if* x such that :

e H* (3.17)

(3.18)

f*= ( 1 , 0 , 0 ) , / 2 e = ( 0 , 1 , 0 )

and problem L° is defined in the same way with a 0 8 ! ^ ^ (s, 0 , 0 ) and

fe = 0. Extending alt by zero to the whole ft, we have for i = 0, 1, 2 :

and taking account of the rescaling in z :

da'

II 3* IkW
vol. 23, n° 2, 1989
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