
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

MITCHELL LUSKIN

GEORGE R. SELL
Approximation theories for inertial manifolds
Modélisation mathématique et analyse numérique, tome 23, no 3
(1989), p. 445-461
<http://www.numdam.org/item?id=M2AN_1989__23_3_445_0>

© AFCET, 1989, tous droits réservés.

L’accès aux archives de la revue « Modélisation mathématique et analyse
numérique » implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1989__23_3_445_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


I MATHEMATICALMODEUJNGANDNUMERICALANALYSIS
I MODBJSATKW MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 23, n°3, 1989, p. 445-461)

APPROXIMATION THEORIES FOR INERTIAL MANIFOLDS (*)

by Mitchell LUSKIN (*) and George R. SELL (2)

0. INTRODUCTION

During the last few years it has been shown that some infinité dimensional
nonlinear dissipative evolutionary équations have inertial manifolds. This
discovery has profound significance in the study of the long-time behavior of
the solutions of these équations for the following reasons :
• The inertial manifold 901 is a positively invariant finite dimensional

manifold in the ambient infinité dimensional phase space, and the given
evolutionary équation reduces to a finite dimensional ordinary differential
équation, an ODE, on SR.

• Every attractor, incîuding the global attractor, lies in 9K.
• Every solution of the nonlinear evolutionary équation is tracked at a

exponential rate by a solution on 9Pt. This means that there is an
-n :> 0 such that for every solution u{t) of the original evolutionary
system, there is a solution v(t) on 3JI such that

| | M ( O - » ( O I I *Ke-*, f > 0 , (0)

where K dépends on w(0).
In some models the decay rate T] appearing above is very large. When this

happens the solutions on the inertial manifold also give useful information
about the short-time behavior of an arbitrary solution u(t), provided
w(0) is near SPÎ.
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446 M. LUSKIN, G. R. SELL

Because the existence of an inertial manifold implies that the dynamics of
the original evolutionary équation is completely described by a finite
dimensional ODE, with no error, this should lead to substantial improve-
ments in the computational efficiency of numerical methods used to study
the evolutionary équation. In order to realize this efficiency, it is important
to find good algorithms for approximating the inertial manifolds. The main
objective in this paper is to examine several approximation théories for
inertial manifolds. Since every existence theory is a potential spawning
ground for an approximation theory, we begin with a brief review of the
three known classes of existence théories for inertial manifolds.

The first existence theory uses the Lyapunov-Perron method, which is
based on the variation of constants formula. While the Lyapunov-Perron
method is very useful for deriving properties of inertial manifolds (in
addition to proving existence), it is not a very promising arena for finding a
good approximation theory. The main fault of the Lyapunov-Perron
method is that it uses backward intégration of the evolutionary équation.
Since the backward intégration is in the « unstable » direction of the
evolutionary équation, one will encounter a blow-up of the solutions, which
in turn is an inherent source of computational inefficiency.

The second class of existence théories use the Hadamard method, or the
graph transform method. The basic idea here is to start with some initial
approximation to the inertial manifold. This initial approximation is an
easily computed manifold of the correct dimension, call it 9Jt0. One then Iets
the dynamics of the given evolutionary équation act on 30?o, thereby
obtaining a set 9Jt, at each time t > 0. One then proves, under suitable
hypotheses of course, that each $Jlt is representable as the graph of some
function(1), that the limit

Hm mt = m

exists, and that SPÎ is the inertial manifold.
Approximation théories based on the Hadamard method will be better

than théories based on the Lyapunov-Perron method because one is
integrating forward in time, i.e., in the stable direction. Because of
inequality (0) one expects that

for an appropriate T ;> 0. Approximation théories based on the Hadamard
method try to approximate StWT. Such approximations can be easily

Hence the term graph transform method.
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implemented when T is small, or when the constant TI in (0) is large. The
Euler-Galerkin method, which is introduced in Foias, Sell and Titi (1988)
and described in Section 3 below, is an illustration of a Hadamard-type
approximation. If the convergence of SPÎf to SER is slow, then the Hadamard-
type approximation théories will require the time parameter T to be large in
order to get good approximations. We expect that in these situations, one
will get better approximations by using the following alternative.

The third method for proving the existence of inertial manifolds is based
on the method of elliptic regularization which Sacker (1964, 1965, 1969)
used in the study of finite dimensional invariant manifolds. The extension of
the Sacker method to infinité dimensional dynamical Systems is presented in
Fabes, Luskin and Sell (1988) and Luskin and Sell (1988). A description of
the main ideas of this method is presented in Sections 4-5 below.

I. INERTIAL MANIFOLDS

The type of équation we study can be reduced to an abstract evolutionary
équation of the form

u' +Au = F(u) , u(Q) = uQ (1)

on a Hubert space H. We will assume that A is a self adjoint operator
defined on a dense domain Q = & (A ) a H and that A is positive with
compact résolvent. This means that —A générâtes an analytic semigroup
e~At, and that the fractional powers Aa, are defined for ail a === 0, see Pazy
(1983). Furthermore, for every a, 0 < a =s 1, there is a constant Ma such
that

\e-Atx-x\^Mat
a\A«x\ , xe3{A«). (2)

The nonlinear term F is assumed to be a C ̂ fonction

where 0 < P =s= 1 is fixed, satisfying the following two properties :

(A) There is a constant Co such that

(B) There is a constant Cx such that the Gâteaux derivative DF(u)
satisfies

\A^DF(u)v\ *zCx\Av\ , u9ve@(A). (3)
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448 M. LUSKIN, G R. SELL

Because of (3) the function F satisfies a global Lipschitz condition, Le.,

Cx\AUl~Au2\ (4)

for ail «!, u2 e
We also assume that F : 3(Al~^) -• H is locally Lipschitz continuous.

This implies that for u0 G 2{Al~^) there is a unique mild solution of (1).
We will represent this solution as S{t ) u0, where

«o

This solution is a classical solution for t > 0, and when w0 e &(A), it is
differentiable for 0 =s r.

Finally we assume that F has bounded support, i.e., there is a constant
P > 0 such that

F(u) = 0 , when \Au\ > p .

We will not describe in detail how nonHnear (parabolic-type) partial
differential équations are reformulated as an abstract evolutionary équation
of the type described above. Such reformulations can be found in the two
recent books by Haie (1988) and Temam (1988), and in the papers Foias,
Sell, and Temam (1986), Mallet-Paret and Sell (1988), and Constantin,
Foias, Nicolaenko, and Temam (1988, 1989). An important feature in these
problems is that the original équation is dissipative. This means that there is
a bounded set B ci H such that for every u0 G <3{Al~^) there is a time
T = T(u0) such that S(t)uoe B for ail t => T. Since the operator A has
compact résolvent, the dissipative property implies that there is a global
attractor 21 for (1) and that 21 is compact and invariant, see Billotti and La
Salle (1971). Furthermore, 2ï has finite Hausdorff dimension, see Mallet-
Paret (1976), Foias and Temam (1979), and Marié (1981). The 2D Navier-
Stokes équation, the Kuramoto-Sivaskinsky équations, the Cahn-Hilliard
équations, and many reaction diffusion équations can be reduced to (1) with
the given properties on F. In each case the réduction step involves a
modification of the nonlinearities of the given partial differential équation
outside of some neighborhood of the global attractor. This modification is a
common feature in handling such équations. We will not describe the
modification hère, but instead refer the reader to the références cited
above.

A subset 90Î c: H is said to be an inertial manîfold for (1) if StR satisfies the
following four conditions :
(A) 9JÎ is a finite dimensional Lipschitz manifold in H.
(B) SOI is smooth, i.e., SPI is of class C1.
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APPROXIMATION THEORIES FOR INERTIAL MANIFOLDS 449

(C) 9JÎ is positively invariant, Le., if u0 e SOÎ then S(t)uoe
<SR for ail

(D) 5PÎ is exponentially attracting, Le., there is a |JL > 0 such that for every
u0 6 H there is a constant A' = K(u0) such that

dist ( 5 ( 0 % Î R ) ^ X e " M / , f 3*0.

The smoothness of ÏR, which is not a part of the définition of an inertial
manifold as presented in Foias, Sell and Temam (1986), is an important
property and it will be used below. The smoothness of the inertial manifold
is not a major issue. Most théories which yield the existence of a Lipschitz
manifold 2R also imply the smoothness of SÎR, see Chow, Lu, and Sell (1988)
and Mallet-Paret and Sell (1988).

The methods for finding inertial manifolds begin with a splitting of the
Hubert space H into two parts PH and QH, where P is an orthogonal
projection on H with finite dimensional range and Q = I — P. The
prototypical choice for this splitting occurs when P is the orthogonal
projection onto Span {wl9 ..., wM), where wt is the f-th eigenvector of A
with associated eigenvalue \ , and

0 < \x === \ 2 ^ -̂3 ̂  * * * ^ ^n ~* °° •

The usual existence théories for inertial manifolds seek to realize 501 as
the graph of a smooth fonction

We shall say more about the properties of 901 and <ï> later. One should note
that with P as described above, then for any Lipschitz mapping
<I> : PH -• QH, its graph is an M-dimensional Lipschitz manifold in H.

The list of références on inertial manifolds is growing rapidly, and any
attempt to cite ail such papers is bound to have some omissions. The
following papers will be included in the ultimate « complete » list : Chow,
Lu, and Sell (1988), Constantin (1988), Constantin, Foias, Nicolaenko, and
Temam (1988, 1989), Doering, Gibbon, Holm, and Nicolaenko (1988),
Foias, Nicolaenko, Sell, and Temam (1988), Foias, Sell and Temam (1986),
Foias, Sell and Titi (1988), Ghidaglia (1988), Haie and Sell (1988), Henry
(1981), Jolly (1988), Kamaev (1981), Mallet-Paret and Sell (1987), Mané
(1977), Marion (1988), Mora (1983), Mora and Solà-Morales (1987, 1988),
Nicolaenko, Scheurer, and Temam (1987), Sell and You (1988), and
Taboada (1988).

In this lecture we will present three methods for approximating inertial
manifolds. All of these methods can be viewed as modified Galerkin
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approximations. In order to present a uniform framework for viewing these
approximation théories, we describe next the Galerkin and modified
Galerkin methods.

II. MODIFIED GALERKIN APPROXIMATIONS

The classical theory of Galerkin approximations for nonlinear evoiutio-
nary équation (1) can be best described by first fixing two integers
M 5= 1 and N ^ 1, and letting P and Q dénote the orthogonal projection
onto

S p a n {wly ...,wM} a n d S p a n {wN + l9 ...,wN + M} ,

respectively. Next let R = / - P - g . For u e H set p = Pu, q = Qu,
r — Ru. By applying P, Q and R to (1) we obtain the equivalent System :

pf + APp = PF (p + q + r) , dimp = M
q' +AQq = QF (p + q + r) , dim q - TV (5)
r' + ̂ 4/?r = RF (p + # + r) , dim r = oo

where we have used the commutativity relationships PA = A ? , QA = AQ
and /L4 = AR, which hold on @(A).

The classical Galerkin approximation of (1), or equivalently of (5),
involves setting certain terms in (5) equal to 0. Thus the (M + N)-
dimensional Galerkin approximation is formed by setting r = 0 in (5) and
thereby « obtainmg »

[p' + APp =PF(p+q), dim/7 = M , ffix

\q' +AQq = QF (p + q) , dimq = N , W

while the M-dimensional Galerkin approximation is

p' +APp = PF(p) , dimp = M, (7)
i.e., set r = 0 and q = 0.

Let us concentrate on (6) for the moment. If it happens that

then the (M + N )-dimensional system (6) describes the dynamics of (5) on
the invariant manifold

r = 0 .

Of course, this rarely happens. However it is oftentimes the case that
RF(p + q) is small. In fact, the raison d'être behind the Galerkin approxi-
mations is the following :
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The function RF (p + q) is small and the dynamics o f (6) is a good
approximation to the dynamics of(5),provided (M + N)is sufficiently large.
One expects, and there are théories which prove, that the approximation gets
better as the dimension (M + N ) gets larger. In particular, for N large, the
(M + N ydimensional system (6) is expected to generate a better approxi-
mation to the dynamics o f (5) than the M-dimensional system (7).

The modifîed Galerkin approximations begin with (5) and, as a first step,
one sets r = 0 to obtain (6). The modification now occurs in the second step.
Instead of setting q = 0 to obtain (7) one uses q = Q>a{p) to obtain the
modified équation

pf +APp = PF(p + <ï>a(p)), dimp^M. (8)

One wants to take advantage of the theory of inertial manifolds in order to
détermine the function ^„(p). The main idea behind the modified Galerkin
approximations is the following :

When (5) has an inertial manifold, then the long-time dynamics of (5) can
be better approximated by the M-dimensional system (8) than by the
{M + N )-dimensional system (6), for any N ^ 1.

Naturally the approximation (8) is préférable in this situation.
Assume now that the System (5) has an inertial manifold SCR and that 9JÎ =

Graph <î> where * = (®q, <ï>r) is a smooth function

Then the dynamics on SÖÏ is completely and accurately described by the M-
dimensional system

p' +APp = PF(p + %(p) + Or(p)) , (9)

which is called an inertial form in Foias, Sell and Temam (1986). In other
words, the long-time behavior of any solution u(t) = S(t)u0 of (5) is
completely determined (with no error) by an associated solution

where p{t) is an appropriate solution of the inertial form (9). In this way the
long-time dynamics of the infinité dimensional system (5) are completely
and accurately described by the dynamics of the M-dimensional system (9).

Under a spectral gap condition on the eigenvalues of A, one can show that
there is a constant Kl7 which does not depend on N, such that

| |* , | | 0 0«S.«:I (XM+ W + I ) - | J , (10)
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452 M. LUSKIN, G. R. SELL

where the norm is given by

{\A4>r(p)\:pePH} ,

see Foias, Sell and Temam (1986), and Foias, Sell and Titi (1988).
Therefore if one chooses

* . = * ,

for équation (8), it follows from (4) and (10) that the error term

Error (p) = F(p+ %(p) + *r(p)) - F(p + ®a

satisfies

def

||Error||= sup {|ApError (p)\ :pePH}

)

In the remainder of this paper we shall describe alternate choices for
4>a. In each case we believe that the calculation of <ï>fl is easier than the
calculation of <t>q, on the one hand, and under suitable hypotheses

I*.-*,IL
is smail, on the other.

m . EULER-GALERKIN APPROXIMATION

The Hadamard method is one of the methods used in the proof of the
existence of inertial manifolds for (5). The idea hère is to begin with the flat
manifold

in H and set

Then SU, is a subset of H, and under a suitable cône condition,
yjlt can be represented as the graph of a function

mt = Graph W ,

where V: PH -> QH © RH is a Lipschitz continuous function, see Mallet-
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Paret and Sell (1988) and Constantin, Foias, Nicolaenko and Temam
(1988). Furthermore one can show that the limit

lim V = 4>

exists, and ÎR = Graph <ï> is an inertial manifold. More precisely, there are
constants b > 0, |x > 0, and K2 >• 0 such that

ll^'U^è and

for ail t > 0. The value of b, |x and K2 depend on M, the dimension of 501. In
many cases one has

lim sup K2 <= + oo
M-oo

while

è -• 0 and jx -• oo

as M -> oo, see Mallet-Paret and Sell (1988), and Foias, Sell and Titi (1988).
What this implies is that for every s > 0 and T :> 0 there is an Mo such that if
dim PH =s= Mo and the spectral gap condition holds, so that 9JÎ = Graph <I> is
an inertial manifold (with bounded support), where <t>:PH-^>QH®
RH, then

The Euler-Galerkin method, which is introduced in Foias, Sell and Titi
(1988), uses the implicit Euler method for approximating ^T. The implicit
Euler method for the System (5) can be summarized as follows : Let
(p0, q0, r0) be a given initial condition and let (p{r), # ( T ) , r(x)) dénote the
corresponding solution of (5) at t = T. The implicit Euler approximation
(Pa(T)> <Ia(T)> rû(T)) i s 8iven by letting pa(t) be the solution of

and then setting

?«0O = qo + T[-AQqa(r) + QF (pa(T) + qa(r) + rfl(T))] ,

rfl(T) = r0 + T [ - ^i?ra(T) + RF(pa(T) + 9fl(T) + rfl(T))] . (11)

One can also describe this by asking that the « slope » of the line segment
joining (p0, q0, r0) to (pfl(x), 9 0 (T) , rfl(T)) being given by evaluating the
(#> O-equations at the terminal point (PÖ(T), ^ Ö (T) , ra(x)). Next we define
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V= (^1,^2) = 0?fl(
T)> ra(r)). Since the mapping p0 -+p = pa(r) is a

homeomorphism of PH, the solution ^ of (11) can be written in the form :
1 [q0 +

(
1 [T0 + TRF(p + ^ ( p ) + ¥ ( ) ) ]

The existence of a solution of the System (12) can be derived by use of the
contraction mapping theorem.

In applying the implicit Euler method to estimate ^ T we begin with
(p0, q0, r0) G SRQ, i-e., q0 = 0, r0 = 0. Furthermore, the first itération of the
method of successive approximations 4>fl = (<ï>1? 4>2), where

already leads to a useful approximation of the inertial manifold, see Foias,
Sell and Titi (1988). This method is applied to a numerical study for the
Kuramoto-Sivashinsky équation in Foias, Jolly, Kevrekides, Sell and Titi
(1988).

IV. ELLIPTIC REGULARIZATION

A short time ago Sacker (1964, 1965) introduced a new method for
proving the existence of invariant manifolds for finite dimensional dynamical
Systems This method is based on the theory of elliptic regularization of the
underlying first order partial differential équation which defines the
invariant manifold.

This method can be extended to the infinité dimensional Systems
considered hère. In order to motivate the Sacker method, let us return to
the situation where (5) has a inertial manifold of the form

9JÎ = Graph <ï>,

where <E> = (O?, <E>r) is a smooth function. The invariance of 5UI implies that
if p(t) is a solution of the inertial form (9) then

*(p(0)= («(0. KO) = (*,(p(0).*r(p(0))
is a solution of the (q, /-)-system

q' +AQq = QF(p(t)+q
r' +ARr = RF(p(t) + q +

Since 4> = <ï> (p ) is smooth we dénote the derivative with respect to p by
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The chain rule then implies that

By combining this fact with (9) and (13) we then obtain

(- APp + PF(p + ®q(p) + * r (p))) =
= - AQ®q(p) + QF(p + <Pq(p)

(14)
PF(p + <ï>q(p) + <

For the moment, let us drop the r-equation above and set <I>r = 0 in the q~
équation. Also replace D<bq by V<ï>?. One then has

- APp + P F O + ^ ) ) + ^ 0 ^ = ÖF(p + * , ) , (15)

a first order partial differential System, where dim <&q = N.
By construction the given function <ï> = (<E>Ç, <ï>r) has bounded support,

i.e., one has
0 » when

see Foias, Sell and Temam (1986) and Chow, Lu and Sell (1988). This
means that one is looking for a solution of (14) or (15) that satisfies
<!>(/?) = 0 on 8Hp where

Op= {pePH: \Ap\ <p} .

This suggests that one might try to construct an inertial manifold by solving
(15) in Clp subject to the boundary conditions mentioned above. Since F has
bounded support, it follows that every boundary point of flp is a point of
strict ingress for the inertial form (9). Therefore by using a method of
characteristics one should, in principle, be able to find a sufficiently regular
solution of (15), provided shocks do not develop.

The first step in the Sacker method, which we formulate in terms of (15),
is to replace (15) with the second order partial differential équation

- e A<ï>, + V*,(B(p, * , ) ) + AQ<Pq = QF(p + ®q), (16)

where B(p, 4>ç) = - APp + PF (p + <î>q). One then seeks a solution
Oç of (16) which satisfies one of the boundary conditions

®q(p) = 0, on 3ftp,
or

**(P) = O, at \p\ = oo .
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The object is to study the behavior of solutions of (16) as e -• 0+ By
denving suitable a priori bounds on the solutions of (16), bounds which are
independent of e, one can show that the limit as e -> 0+ exists and is a weak
solution of (15) For the inertial manifold problem m an infinité dimensional
space H, we seek a priori bounds which are independent of both s and
N = dim <5>q One then shows that the limit as e -• 0+ and N -* oo exists and
describes an invariant manifold for the original infinité dimensional system
(5)

In addition to studying the behavior of solutions of (16) as e -> 0+ , the
extension of the Sacker method to the study of mertial mamfolds involves
two mathematical issues which did not anse m Sacker (1964,1965) The first
of these is that the solution <ï> = (<E>9, <3>r) has range m an infinité
dimensional space Secondly the domain of <ï> is PH and is no longer a
compact manifold without boundary

The a priori bounds, which are independent of s, do not corne freely In
order for the limit

h m <£>q

to be smooth, one needs assumptions on the coefficients, especially
B(p,<î>q) and QF(p + ®q), which prevent shock phenomena from develop-
îng m (15) Such shocks would be evident m the regularized problem (16)
for small e ;> 0 The hypotheses which guarantee that the a priori bounds be
independent of s and N are analogous to the spectral gap conditions
appeanng m Foias, Sell and Temam (1986), for example The following
theorem is proved in Fabes, Luskm and Sell (1988)

THEOREM 1 Let (1) be given satisfying the conditions stated above with
P = 1 Then there is a constant K, which dépends only on Co and
C1? such that if

then there is a weak solution of<& o f (15) with<b(p) - 0 at \p\ = oo and such
that

where

H*|lHri« = sup {|^<ï>0)| .pePH} +sup {\AD<t>(p)\ .pePH)

and R dépends on Co, C1 and the spectral gap

For équation (15) with fixed M, finite N ^1 and fixed e > 0, ît is possible
to obtain information on the error between the solution <ï>e N of (15) and the
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inertial manifold <ï> for the full problem (5). These bounds will be described
in the next section, where we use the Sacker method to introducé a
parabolic regularization of (5).

V. PARABOLIC REGULARIZATION

In this section we want to take another point of view in analyzing (15) and
(16), but with the same objective in mind. The basic observation is that one
can view the Laplacian term ( - E A<Ï>) in (16) as a perturbation term added
to (1) or (5). More precisely let B = - A be given on fl? with the boundary
condition <ï> = 0 on aty,. The effect of adding ( - s A<ï>) to (15) is then
equivalent to perturbing the (p, q, r) équations (5) to

+ APp = PF{p + <î>q + O r)

+ (AQ + sBQ) * , = QF(p + * , + * r ) (17)
; + (AR + eBR )<î>r

where s > 0. This perturbation is a parabolic regularization of the original
System (5).

We shall say that <î>£ = (*J, <ï>r
e) is a solution of (17) if <ï>£ = <ï>e(p) is a

function of p e PH with the following property : whenever p (t ) is a solution
of

p' + APp - PF (p + &qip) + * r (p) )

then (p(t),®*q(p(t))9&r(p(t))) satisfies

p(ty+APp{t) = PF(p(t) + * ; ( p ( 0

+ (AÖ + eBfi) <^J(P(O) = Gf (P(O

(AR +

The solution <ï>e = (4> ,̂ <E>̂) is said to be smooth if <ï>̂  and <ï>* a r e smooth as

functions of p e Pif. Let Q = g + i?.
The problem we address is to find a family <ï>e = (<ï>̂ 5 <ï>̂ ) of smooth

solutions of (17) for s > 0 with the property that <ï>6 -» >̂° (as e ^
0+ ) where the graph of <ï>° is an inertial manifold of (5). Part of the problem
is to describe the topology in which <ï>£ converges to <ï>° and to estimate the
différence ||<ï>e - <&°|| in a suitable norm.

Bef ore stating our main resuit, it is convenient to outline our basic
approach to the problem described above. We use the Lyapunov-Perron
method for constructing invariant manifolds for (17), see Foias, Sell and
Temam (1986), Foias, Sell and Titi (1988) and Chow, Lu and Sell (1988).
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