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(Vol. 23, n° 3, 1989, p. 535-540)

REMARKS ON THE UNIQUENESS OF RADIAL SOLUTIONS

by J. SMOLLER (X), A. WASSERMAN (*)

We are concerned with the uniqueness of radial solutions of the following
boundary-value problem :

+ ƒ [ « ( * ) ] = 0 , xeDn
 ( 1 )

au(x)-$du(x)/dn = 0 , x e dDn .

Here Dn is an «-bail, say of radius R, a and p are constants, a2 +
P2 = 1, and ƒ is a C^function. Radial solutions of (1) are functions
depending only o n r = |x | , and thus satisfy

u"(r) + ?—^ut{r) + f[u(r)] = 0, 0 <= r < R
r (2)

u'(0) = 0 = cxu(R) - $u'(R) , (r - d/dr) , V ^
where the condition u' (0) = 0 is needed in order that u be smooth. We can
rewrite (2) as the first order system

«' = !>, v' = - ^ — U - / ( M ) , (3a)

t?(0) = 0 = a

The solution of the initial value poblem (3a) which satisfies u(0) =
/? > 0, Ü(0) = 0, will be denoted by u(r,p) ; Le., we can parametrize radial
solutions by p. In order to be able to consider solutions having many zéros,
we first define Q(r,p) by

0(r,/?)-tan-1 [v(r,p)/u(r,p)] ,
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and set

Oo^tan"1 ( a / p ) , - 7 T ^ e o < O

Then define, for any non-negative integer k, the function Tk(p) by the
condition

®[Tk(p),p] = $Q — fa (4)

A solution of (3a) which satisfies (4) wül be said to belong to the k-th-nodal-
class of ƒ with respect to the given boundary conditions Thus m this
framework, Tk(p) plays the role of R, and R varies with/?

Note that the function Tk(p) plays a role in the umqueness problem for
radial solutions , indeed, if Tk is monotone m a neighbourhood of some
p, then the radial solution u{. ,p) is locally unique in the sense that for
small enough q > 0, if u ( . , p ) is a solution to (3) m the fc-th nodal class and
\p-p\^q then/? = p

The result that we discuss here states that near a hyperbohc zero, 7, of ƒ
(ie ƒ (7) = 0, ƒ ' (7) < 0) and for each nodal class k, Tk is monotone near 7
More precisely, there exists qk >- 0 such that Tk> 0 on (7 - qk, y)

If e0 = — 77/2 and k = 0, i e , if we consider positive solutions to the
Dinchet problem (1) then this result was obtained by Clement and Sweers
[1] by entirely different methods

Umqueness results for solutions of (2) are interesting in their own nght
but there are implications of this result concernmg the existence of
asymmetrie solutions of (1) In particular, it was shown m [3] that near a
hyperbohc zero of ƒ and for any nodal class k and any ô > 0 there exist
bifurcation points p e (y — h, y) Taking ô to be qk above, our result shows
that there is no radial bifurcation, thus we must have symmetry breakmg at
P

We now hst the hypotheses on ƒ and F that we require (Here
F' ^ ƒ and F(0) = 0)

1) ƒ is C1

11) there exists 0 <: 7 with ƒ (7) = 0 and F (7) > F(u)
for 0 =s= u =s= 7

111) ƒ'(7) < 0
îv) there is a (greatest) b -< 0 with F (b) = F (y)
v) if f(b) = 0 then ƒ'(&)<()
vi) uf(u) + 2[F(y)-F(u)]>0 for b < u < 7

H

Remark H 1), n) and îv) guarantee the existence of radial solutions of (3)
m any nodal class Conditions m), v) and vi) and are rmld technical
assumptions and could possibly be ehmmated with further effort

The first result is proved m [3]
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T H E O REM 1 : Suppose that fsatisfies H i), ii) and iv) and let k e Z+. Then
there exists qk>0 such that if y — qk < p < y then u ( . ,p)isa solution to (2)
in the k-th nodal class with R~ Tk(p). Furthermore, Tk(p) —> oo as
p^y.

It is easy to show that Tk(p) is differentiable, see [2]. The main resuit is
given by

THEOREM 2 : If f satisfies hypotheses (H) and ke Z+ then there exists
hk > 0 (ôfc < qk) such that Tk(p)>Q for p - hk<p <y.

In the remainder of this note we sketch a proof of Theorem 2.
The équations (3a) define a flow, &r(p) on (an open subset of)

IR3. If q = (u, v, r) G R3 we define a vector field Xq =

v, -izA- / ( M ) , i l ; we then have ^M) = x*M)' L e t ^ : R 3 ""

R3 be the projection TT(W, r ; y) = (w, ü, 0).

LEMMA 1 : ƒƒ

i;2 + ! L l ! !„ ;+„ƒ( , , )>() ( *)

a/ong an or ĵf {°"r(*?) : r ^ 0} ^ƒ ^ ^ e n ^ e vectors ir<yr(q)7 X<jr(q), and
(0, 0, 1) form a basis of R3 at each point of the orbit.

Let p= (p,0,0) and assume that (*) holds along the orbit {vr(p):
r 5̂  0} . Then we can write

A crr{p) = amrr(p) + ô ^ ) + c(0, 1,1) (5)

w/iere a = a(r,p) etc.

LEMMA 2 : If H vi) /zoto ?̂ en (*) holds along orbits {<Jr(p) : 0 =s rTk{p))
for p sufficiently close to y.

The proof is a bit long and tedious.
Our reason for introducing the fonctions a, b, c is given by the following

two propositions.

PROPOSITION 3 : For p sufficiently close to y we have b[Tk(p),p] =

PROPOSITION 4 : For p near y, the functions a and b satisfy the first order
linear system of équations

Ja' = vè?a-?—^v2b

n 1 ( 6 )

Jb' = - u t a + 0 r
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with initial conditions a(0) = - , è(0) = 0. Hère a = a(r,p), u — u(r,p),

etc, J= uf{u)+ (n-l)— + v2, and <$>= f(u)-uf'(u).

Both propositions are proved by differentiating (5) and equating compo-
nents.

By Proposition 3 we must prove b\p, Tk(p)] <: 0 and we use (6) to that
end. We first note that for p near 7, we may assume J > 0 by Lemma 2.
Furthermore, we have <t>(7)>0 by H iii) and thus <J>(«)>0 in a
neighbourhood Ux of 7. Thus, if p e U, the second équation of (6) yields
b' (p, 0) < 0 and hence b (p, r) < 0 for small r. Furthermore, a (p, r) > 0 for
small 7 also by continuity. We set z(p, r) = — b(p, r)/a(p, r) and (sup-
pressing the dependence on p) note that z(r) => 0 for small r. We prove
Theorem 2 by showing that z(y) => 0 for 0 <: 7 =s= Tk(p). The theorem then
follows since [a(r), b(r)] ^ (0,0) for any r {(0, 0) is a rest point of (6)) and
then noting that a cannot go to zero before b by the first of équations (6) (at
a = 0 sgn a' = sgn 6 if 1; ̂  0). Thus z(p, r) > 0 for 0 < r =s ^ O ) implies

We note that z satisfies the differential équation

(n 1 ) V2 2

While (7) is obviously intractable we can compare (7) with an équation of
the form z' = — k1 z

2 + k2 z + k3 for various choices of fc1? A:2, A:3. Consider
the projection of an orbit <rr(p) = [u(p, r), r(p, r), r] to the (w, v) plane as
depicted in figure 1. Hère A is chosen sufficiently close to 7 so that
<!>(w) < 0 for w > A and T^(p) is defined by w[p, Ts

A(p)] = A (the 5-th time
orbit meets u = A) and r f is defined by v[p, T?(p)] = 0 (the 5-th
Neumann time). We assume f(b) =^0 (the case f(b) = 0, treated in [4], is
more complicated notationally.

PROPOSITION 5 : In région I, 0 =s r ^ Tf(p)y we have lim z [ r fO) ] =

00. Furthermore lim Tf(p) = 00.

The proof follows by comparing (7) with an équation of the form
Z' = _A: lZ

2+/c3 .
The behavior of z(r) in région II, Tf^r^ T*, can be controlled since

Ti(p) ~ T\(P) i s uniformly bounded (by M say) ; see [3].

PROPOSITION 6 : There exists N > 0 5WC/Ï that z(T)^N implies
(T + r)>0 for O^r^M.
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«rif)

Figure 1. — The Une 0 = 60 represents the boundary conditions.

The proof compares (7) to z' = - klz
2 + k2z and several cases must be

considered
Next we consider région III Hère z(r) decreases but we still have

z(r):>0 because <}> > 0 for u^A hence z'>-0 In particular, z(7f):>
0 The proof of Theorem 2 obviously must use induction on k and we have
just shown that for p sufficiently close toy, z(p,r) >0 for r =s= T^{p) i e for
one complete révolution of the orbit To continue the argument we need

PROPOSITION 7 If z (r ) > 0 for T$s + 2 (p ) ^ r ^ T?s + 3 (p ) then
K> as p^y

The proof is agam by companson with an équation of the form
z' = -klZ

2^k3

Proposition 7 allows us to repeat the argument agam k times to conclude

Complete proof s will appear elsewhere, [4]
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