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MATHEMATICA!. MODELUNG AND NUMEFUCAL ANALYStS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 24, n° 4, 1990, p 457 à 500)

FINITE ELEMENT APPROXIMATION
OF NONLINEAR ELLIPTIC PROBLEMS

WITH DISCONTINUOUS COEFFICIENTS (*)

Miloslav FEISTAUER (l) and Veronika SOBOTÎKOVÂ

Communicated by P G CIARLET

Abstract — The paper présents a detailed theory of the finite element solution of second-order
nonhnear elhptic équations wit h discontinuous coefficients in a gênerai nonpolygonal domain
Cl with nonhomogeneous mixed Dinchlet-Neumann boundary conditions In the discretization of
the problem we proceed in the usual way the domain Cl is approximated by a polygonal one,
conforming piecewise hnear tnangular éléments are used and the intégrais are evaluated by
numencal quadratures We prove the solvabihty of the discrete problem and study the
convergence of the method both in strongly monotone and pseudomonotone cases under the only
assumption that the exact solution ue Hl(Cl) Provided u is piecewise of class H2 and the
problem is strongly monotone, we get the error estimate O(h)

Résume —• Dans cet article nous présentons une théorie détaillée des éléments finis pour la
solution des équations elliptiques non linéaires de second ordre avec des coefficients discontinus,
dans le domaine Cl général, avec les conditions aux limites de Dinchlet-Neumann non
homogènes Nous discrétisons le problème de la façon habituelle le domaine Cl est remplacé par
le domaine polygonal et on utilise les éléments finis linéaires conformes et l'intégration
numérique Nous démontrons l'existence de la solution du problème discret et étudions la
convergence de la méthode dans les cas strictement monotones ou pseudo-monotones dans
l'hypothèse où la solution exacte u e HX{CÏ) Supposé que u appartient dans la classe
H1 par morceaux et le problème est strictement monotone, nous obtenons l'estimation de l'erreur
O (h)

INTRODUCTION

A series of processes in technology and science is described by partial
differential équations of the type
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458 M. FEISTAUER, V. SOBOTÏKOVÂ

The coefficients at and right-hand side ƒ usually depend on the properties of
materials that form the device represented by the domain Ci. In gênerai,
at and ƒ have different values and structures in particular subregions
fls cz fi, J = 1 , ..., m, made from différent materials. Hence, ai and ƒ are
discontinuous across the common boundaries of fl5, s — 1, ..., m, where
instead of équation (0.1) the so-called transition conditions are used.

As a typical example the stationary magnetic field in a plane domain
Q, a R2 can be introduced. It is described by équation (0.1) of the form

(0-2) - | ^

Hère vt = 1/fX/, where JJL, is the permeability, u is the magnetic field
potential and j represents the current density. Provided Cl consists e.g. of
iron, copper and (holes of) air, then vt is discontinuous, since it is equal to
différent constants in copper and air and it is a nonlinear function of
|Vw|2 in iron. Also the right-hand side j can be discontinuous. Often,

j = 0 in air and iron, and j = const. ^ 0 in copper wire conductors. (Cf. e.g.
[10, 11, 14, 17].)

We get a similar situation in heat conductivity processes described by the
équation for the absolute température u :

(0.3) - V A (k(x, u(x), Vu (x)) | ^ (x) ) = ƒ (x) , x G H .V A (

If Q consists of several different materials, then the heat conductivity
coefficient k and the heat sources density ƒ are discontinuous in gênerai.
Other examples can be found in nuclear physics.

The weak solvability of a problem with discontinuous coefficients can be
proved by the methods and techniques treated in [16, 19]. Some results
concerning the properties and numerical solution of problems with disconti-
nuous coefficients can be found e.g. in [1, 13, 20, 21, 22].

In this paper we present a gênerai theory of the finite element solution to
nonlinear équation (0.1) with discontinuous coefficients in a bounded
domain Ci c= R2. We generalize hère the methods and techniques from [6-9].
One of our starting points is also the work [12], where the finite element
discretization of nonlinear problems with discontinuous coefficients in
polygonal domains was studied and computer realization was carried out.
Hère we consider the problem in a gênerai nonpolygonal domain.

In Section 1 we give the classical formulation of the problem and dérive
the generalized weak formulation. Section 2 is devoted to the discretization
of the problem. We procède as it is usual in practice : the domain O is
approximated by a polygonal domain nA, which is triangulated in a suitable
way. We use conforming piecewise linear finite éléments. The intégrais are
evaluated by numerical quadratures. (By Strang [24] we commit basic
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NONLINEAR ELLIPTIC PROBLEMS 459

variational crimes.) In paragraph 2.3 we prove the existence of approximate
solutions. Paragraph 3.1 deals with their convergence in the space
H{(Q) to an exact solution. As a by-product the solvability of the
continuous problem in H](fl) is obtained. No additional assumption on the
regularity of the exact solution is needed.

Provided the problem is strongly monotone and the exact solution is
piecewise of class H2, i.e. u \fls e H2(QS) for s = 1,..., m, we prove in
paragraph 3.2 that the error is of order O{h). We use hère an improved
version of the Green's theorem method. Near the boundary TN, where the
Neumann condition is considered, we use the « triple application of Green's
theorem », proposed in [7] (1).

1. CONTINUOUS PROBLEM

1.1. Assumptions

1.1.1. Assumptions concerning the domain and the boundary

Let ft, ftb ..., ft m a R2 be bounded domains with Lipschitz-continuous
boundaries 8ft, 8ft,, ..., 3ft m and let

m

(1.1) ft = I ^ J f t , , O , n fir = 0 for r,s= 1, ..., m , r ¥= s ,
s = 1

m

(1.2) bn = TDuTN, r D n r i V = 0 , meas ! (rD) > o .

H, Ùs, TD etc. dénote the closures of ft, ft5, TD etc., measj dénotes one-
dimensional measure defined on 8ft, aft! etc. We set

(1.3) r„ = Tsr = bilr Pi dü,s, r, s = 1, ..., m , r ^ s ,

Ï\D = r 0 n aftv, r5iV = r^ n aft5, 5 = 1 , . . . , m.

Let TD, TN, Trs be formed by a fmite number of open arcs (i.e. arcs without
their endpoints) or simple closed curves. It is evident that

Of course, some of the sets Tsn TsN, TsD can be empty. (See fig. 1.1.)

{') It shouid be noted that simultaneously with this paper and independently on it the same
problem has been treated in [27]. The approach from [27] is quite different to our approach.

vol. 24, na 4, 1990



460 M FEISTAUER, V SOBOTÏKOVÂ

1 D

Figure 1.1.

In the discretization of the problem (see Section 2) we shall work with
polygonal approximations Clh of Cl and Clsh of Cls for h e (0, h0) (h0>0).
Let Cl* be bounded domains such that

(1.5) V / I G ( 0 5 / z 0 ) , 5 = 1 , . . . , m .

1.1.2. Functwn spaces

By the symbols C*
/f*(n), ^ ^ ( f t ) , W^lïG0(ft*) etc., etc. we shall dénote the well-known
spaces of continuously-differentiable functions and Lebesgue and Sobolev
spaces of measurable functions, equipped with their usual norms (see e.g.
[15, 18, 2]). We put C (n ) = C°(fî). By ||.||0>n, | | . | |Mfl , \\.\\,pü,

fc,p,n w e d e n o t e t h e norms in the spaces L2{Ci\
JHk(n) (= ^ 2 ( n ) ) s H^^(fî), respectively. In

H\Ü,) beside the norm

l o > j P , a n >

(1-6) IMI,,n

we shall use the seminorm

(1-7) | i i | ,

(M2+
1/2
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NONLINEAR ELLIPTIC PROBLEMS 461

(We set Vu = (—,— ).) The norm ||. ||, ft in H\to) is induced by the

scalar product (.,. ) i a defined on Hl(Ü) x Hl(ü) :

(1.8)

We shall also consider the mentioned spaces over other open sets and use a
similar notation.

By meas we shall dénote the two-dimensional Lebesgue measure.

1.1.3. Assumptions on the coefficients in équation (0.1) and on data

(A) a) fse W^itl*), f:no-+Rx and ƒ |ft, = f,\Cls (s = l,...,m ).
b) dO and 3ÛS (s = 1?..., m ) are Lipschitz-continuous and piecewise of

class C3.
c) q:TN -*R\ q e Lm(TN)f q is piecewise of class C2 on fN.

d) uD:YD-> R\ uD = u*\ TD, where w* e Wl>p(R2) with p > 2.

There exist functions af: fl* x R3 -^ R] (i = 0, 1, 2, 5 = 1, ..., m ),
a/ = af(x5 g), x = (xl5 x2) € n* s Ç = (lo, Si, €2) e ^3

5
 w i t h t h e following

properties ;

(B) af (i = 0 , 1, 2 ) are continuous in O5* x R3 ; there exists a constant
c0 > 0 such that

j =0

i = 0, 1, 2 , s = 1?..., m .

9a/ .
(C) The derivatives — are continuous and bounded in il* x R :

9%

(Dj) There exist constants Cj > 0, c2 5= 0 such that

t = 0

Vxeüf,

vol. 24, n° 4, 1990



462 M FEISTAUER, V SOBOTÎKOVÂ

(D2) There exists a constant a > 0 such that

\ VG = ( 0 , , 9 2 ) e R2, 5 = 1 , . . . , m .

9< . ,
(E) The derivatives — are continuous in Û,* xi? and

bal

Âr = 0

= 0, 1,2,

In Section 3.2 instead of (Dj) and (D2) we shall consider the following
assumption :

(D) There exists a constant a > 0 such that

^ = 0

(It is easy to prove that (D) and (B) => (D^ and (D2) and (B), cf. [9].)

1.1.4. Remark

Assumption (A, d) says that the function uD (from Dirichlet condition
(1.11)), defmed on the set TD^dfl, has an extension to a function
M* G W}>P(R2). This is possible, if e.g. uD = $\TD and the function
<(> : 8f2 -• Rl is obtained by intégration of a function <p : Lp(dCL) along
6H. This situation is often met in applications (we can remind stream
function problems in fluîd dynamics, cf. e.g. [5, 6]). The assumption
w* G H2(R2) usually used in the fmite element analysis is rather strong and
unrealistic in some cases.

We assume that the coefficients in (0.1) have the form

(1.9) at(x90 = < ( * , £ ) V x e O 9 , VgGi? 3 , i = 0, 1,2, s = l , . . . ,m.

Thus, the functions at : f!0 x R3-+ R* and / r f l o - ^ i ? 1 can have discon-
tinuities across Trs.

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTÏC PROBLEMS 463

1.2. Classical Formulation

If u Ù -> R\ then by us we dénote an extension of u\VLs onto

fls Let ns(x) = (nf(x), n|(x)) dénote the unit outer normal to d l \

Obviously, ns(x) = - 7f(r) for x e FM

We shall study the followmg

12 1 Boundary value problem

Fmd w : iï -> i?1 satisfymg the équation (0 1) in Ho, i e

(110) - V J-f l l(x,M(x),Vtt(x)) + a0(x,«(x),Vii(x))=/(x), x e n 0 ,

the boundary conditions

(1 11) u(x) = uD(x), x e FD (Dmchlet condition),

(1 12) £ aft*, W
5(x), VM'(X)) nt(x) =q(x),

i i

^ e TsM , 5 = 1 , , m (Neumann condition)

and the transition conditions

(113) £ a?(x, «J(x), VW *(x)) /if(x) = - £ <(x, « rW, Vw V ) ) <(*) ,

\ e T n , / , s = 1, , » i , f ^ s

h is obvious, how to define a classical solution of this problem

1 2 2 Définition

We call u.Ù-^R[ a classical solution of problem (1 10)-(l 13), if
ueC (Ü), use C2(ÜS) for s = l, ,m and (1 10)-(l 13) are satisfied

1.3. Generalized Weak Formulation

Let us put

(ï 14) r = {ve c°°(â), suppucznur^},

where supp tf dénotes the support of the function v, and define the space V
as the closure of y m H\ù)

(1 15) V = y - H ^ = {v G i f \ ü ) , v\YD =

vol 24, n 4, 1990



464 M FEISTAUER, V SOBOTÎKOVÂ

Since measj (TD) > 0, the seminorm 1.1 x a is a norm in V, equivalent to

l l - l l i . O :

(1.16) IMIi . o**3Mi,n V t ; e v

with a constant c3 >• 0 independent of v.
Let us assume that u is a classical solution of problem (1.10)-(L13). If we

multiply équation (1.10) by an arbitrary D e f , integrate over £l0 and apply
Green's theorem for each fls, s = l, ..., m, then by (1.12), (1.13) and the
fact that meas (H — Ho) = 0, we get the identity

(1.17) f [ V at(-, u9 Vu ) | î + flo(-.
 M> Vw ) i>] dfc =

f f
= l / u dx + ^Ü ds Vu e 1T .

This leads us to the concept of a generalized weak solution. Let us dénote

(1.18) a(u, v) = f [ V flï(., M, Vw ) | i + ao(., M, VW ) Ü 1 ̂ x

for M, v G

(1.19) L n ( i ? ) = f f v d x 9 L T ( v ) = f q v d s ,
J a J r

(1.20) £(Ü) = Z,n(i?) + £r(u) , u e / f ^ n ) .

1.3.1. Définition

We say that u: Ù->R} is a weak solution of problem (1.10)-(1.13), //

(1.21) à) ueHl(Q,)3

b) u-u*eV ,
c) a(u,v) = L(v) Vu 6 V .

1.3.2. Properties of the forms a, Lil, Lr, L

Under assumptions 1.1.3 (A), (B) there exists a constant c > 0 such that

(1.22)

(1.23)

Hence, for each ueHx(Cl) the functional a(u,.) and the functionals
La, LY

3 L are continuous and linear on Hl(Q).

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELUPTIC PROBLEMS 465

1.3.3. Remark

It is possible to show that any classical solution in the sense of Définition
1.2.1 is a weak solution. On the other hand, if u is a weak solution and
us E C2(ÙS) for each s = 1, ..., m, then w is a classical solution.

Weak problem (1.21, a-c) and its solvability can be treated under much
weaker assumptions (cf. [1, 19]). Our strong assumptions will be necessary
for the fmite element analysis.

2. DISCRETE PROBLEM

In this section we shall suppose that assumptions (1.1), (1.2), (1.9) and
1.1.3 (A), (B) are satisfied.

2.1. Triangulations

Let us consider Systems {^h}he {QJIQ) and {tlsh}he (O/io), s = 1, ..., m,

h0 r> 0, of polygonal approximations of O and £ls, respectively, with the
following properties :

m

(2 .1) nh={jnslt, ashnflrh = 0 fo r r * s , r,s = \,...,m.

(2.2) dQ,h and dftsh are formed by fmite numbers of simple closed
piecewise linear curves the vertices of which are lying on aft and
d£ls, respectively.

Let TSA and T5jA dénote triangulations of £lh and Q,sh, respectively, formed
by fmite numbers of closed triangles. We assume that

(2.3) a) Kh

b) nh= [JT9 nsh= {JT;
TeTS/, Te-Gsh

(2.4) if Tu T2e T5A, Tx # T2i then either Tx C\ T2 = 0 or Tx D T2 is a
common vertex or Tx n T2 is a common side of Tx, T2;

(2.5) if T e 15sh (s = 1, ..., m ), then at most two vertices of Tare lying on

We dénote by vh = {Pu ..., P N} and vsh the set of all vertices of
T)/j and TS5A, respectively, and let

(2.6) a) <jh c Ü, ajA c Ö„ a^ n 9ftA c 8H, a5^ n 6ft^ c 312,, j = 1, ..., m,

6) TD n r ^ c CTA,

vol. 24, n° 4, 1990



466 M FEISTAUER, V SOBOTÎKOVÂ

m

c) the points from l l a O ^ , where either the condition of C3-
V =H 1

smoothness of 8H5 or the condition of C2-smoothness of q are not
satisfied, are éléments of uh.

From the above assumptions it follows that

(2.7) a) to each Te ¥>h there exists exactly one s e {l, ..., m } such that

sh, Le. r e ^ ;

c) BH n r „ c <rA for r ^ s and f̂  5] n T,2,2 c ŒA for

{ n ^ i } ^ {'"2^2}. n ^ 5 l 5 r 2 ^ 5 2 .

By hT and -dr we shall dénote the length of the maximal side and the
magnitude of the minimal angle of T e TS/,, respectively. We set

(2.8) h = max hT9 ^h = m m
 ^T-

TeTVl TE TS/(

We shall assume that the System {¥>h}he (Q h
 1S regular. It means that

there exists # 0 > 0 such that

(2.9) fy^fto^O VA G (0,A0)-

Further, by Tùh and YNh we dénote the parts of dCïh approximating

TD and TN, respectively. Similarly we defîne TsDh, TsNh and Trsh (r ^ 5) as the

parts of dQ,sk approximating TsD, TsN and Trs.

2.2. Finite Element Discretization of the Problem

Approximate solutions to problem (1.21, a-c) will be sought in the finite-
dimensional space of conforming piecewise linear éléments Xh a / / l(OA) :

(2.10) Xh= {vh;vhe C(Ùh) , üA is affine on each T e "6 A} .

The space V will be approxirnated by

(2.11) Vh= {vheXh;vh\rm=0}

= {vlt 6 Xh ; vh{P,) = 0 VP, 6 ah n TD} .

In [26] it was proved that the seminorm | • | j n is a norm on Vh, uniformly

equivalent to ||. || 1 fl . It means that there exists a constant c3 independent of
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NONLINEAR ELLIPTIC PROBLEMS 467

vhe V h and h such that

(2.12) l l - l l i , n ^ 3 | . | , , n A VüA G Vh , V* e (0, * 0 )

(cf also [6]).

Instead of the function q : f N -> 7?x we shall use its approximation

Qh '• F/v/7 -» R1 defined in the same way as in [8, § 2.2].

Let rh : H
](Q,h) Pi C (ÖA) ^ X^ be the operator of the Lagrange interpola-

tion :

(2.13) rhveXh for v e H \£lh) n C H

From 1.1.3 (A, d) and the imbedding theorem ([15, 18]) it follows that

(2.14)

It is evident that

(2.15) «**(/>,) ^ 7

The forms a, La, Lr and Z> will be approximated by

m f T m a« "I
(2.16) flA(M, i? ) = X X < ( - M, VM ) | - + a6(., M, Vu ) 17 Lfcc,

2.2.1. Discrete problem

It can be written quite analogously as continuous problem (1.21, a-c)
find ük: Ùk ^ Rl such that

(2.17) fl) 2 * 6 ^ ,

b) üh - uf E Vh ,

c) ah(üh,vh) = Lh(vh) Vvhe Vh.

vol 24, n" 4, 1990



468 M FEISTAUER, V SOBOTÎKOVÂ

2.2.2. Numerical intégration

In practice the intégrais in (2.16) are evaluated by numerical quadratures.
We write

(2.18) a) [ Fdx= Y \ Fdx>

f ^
b) F dx ~ meas (T) £ &Tk F(xTk), if F e C(T).

Hère xTk e T and o>r k e Rl. We shall assume that

(2.19) à)<ùTk>Qi b) £ wj;* = 1 .

Similarly we evaluate intégrais over r^A :

(2.20) a) f Fds= % \ Fds,

r

b) Fds~s(S)YtPs,jF(xS.j)> if FeC(S),
J s j = i

where s(S) is the length of the side SczTNh (of a triangle Te75h),

xSj e S and fisj e R\ We assume that

(2.21) the degrees of précision of formulas (2.18, b) and (2.20, b) are ̂  1.

If we approximate the forms âh, L% and L\ by means of the formulas

(2.18, a-b) and (2.20, a-b\ we get

(2.22) ah(uhivh) =

m f 2 plu, k7

•.,),v«*|r)

(2.23)

where

(2.24) a) L^(vh) = £ ^ meas (J)

M2 AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 469

Let us notice that ifx r y G vk, xSJ e vh C\ TN, then in practical calculations
it is not necessary to extend the coefficients at from fls onto Q* and to defïne
the function qh. Now we come to the définition of

2.2.3. Discrete problem with the use of numerical intégration

Find uh : £Ïh -• Rl such that

(2-25) d) uheXh,

b) uh - u$ e Vh ,

c) ah(uh, vh) = Lh(vh) VvheVh.

2.3. Existence of Approximate Solutions

Let us consider assumptions (1.1), (1.2), (1.9), 1.1.3 (A), (R), (C),
(DO, (E) and assumptions from 2.1 and 2.2. (i.e., (2.1)-(2.6), (2.9), (2.19),
(2.21)).

In the sequel the symbol c will dénote a genene positive constant,
independent of h, which can have different values at different places.

First let us draw our attention to the effect of numerical intégration in the
forms Lh and ah :

2.3.1. Lemma

There exists a constant c > 0 such that

(2 26) |z>^(f) — L^(v) I < ch II v II

VveXh, V/*e ( 0 , * 0 ) ,

(2,28) \ah(u,v)~ ah(u,v)\ ^ch(\ + | | " | | l j f t A ) | M | ^

Vtt,»eJTA , V / ÏG (0,A0)-

Proofoi assertions (2.26) and (2.28) can be carried out on the basis of [8,
Lemma 2.2.5] (which is a special case of [2, Theorem 4.1.5]) by a similar
technique as in [8, Theorems 2.2.4 and 2.2.7]. E.g., in view of (2.16) and
(2.22), we can write

ah(u,v)-ah(u,v) =IX + Il9

vol. 24, n° 4, 1990



470 M FEISTAUER, V SOBOTÎKOVÂ

where

' ai?

1
- meas (T) £ « ^ a/(xr>,, u (xZj),Vu\T)\ ,

/2 = £ X f f og(., M,

1
- meas (T) ^ co^, ̂ ( ^ r , , , w(^r,yX VM | T) v(xTj\ .

Now we estimate the expressions in parenthesis in the same way as in [8,
Theorem 2.2.7].

Concerning estimate (2.27), see [25, Theorem 5]. •
Further, it is easy to prove the existence of a constant c > 0 such that

(2.29) | î j? (») | , \L\(v)\, \L(v)\ « c | | » | | l i n A

V U E H\ah), VA £ (0, /z0) ,

(2.30) | a A ( « , i > ) | ' S c ( l + | | M | | i n A ) | M | i n A

V « , i ; e J ï l ( n A ) , VA E (0, Ao) ,

(2.31) | £ / > ) | , | ^ r ( f ) | , |L (o ) | * c | | » | | l i n A

Vv € A-;, , VA e (0, A8) .

(2.32) K ( « , » ) | « c ( l + ||«||I>Oik)||»||1>n/t

V M . Ü 6 J T * , VA e ( 0 , A 0 ) .

In the proof of these assertions we procède similarly as in [8, Lemma 3.2.2
and Theorem 3.1.2],

The proof of the solvabihty of discrete problems (2.17, a-c) and (2.25, a-c)
is based on the following

2.3.2. Lemma

There exist constants c, c >0 such that

(2.33) ah(ut + v,v)-Lh(v)&

^ 1 c 3 - 2 | K ^ - c ( l + |M|lifljh+ K*lilsn/I)(
1+ H * W

V P G F / Ï 5 V/ IG (0,A0)
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and

(2.34) ah(u? + v,v)-Lh(v)&

* C i C Ï 2 \ \ ' > \ \ U h - c U + I M I , . < > , + l l « * * l l , i n A ) ( 1 + H M * l l i , n A )

V u e Vk, V / z e ( 0 , / z 0 ) .

(wA* e Xh are fonctions defined by (2.14); cx and c3 are constants from
assumptions 1.1.3 (Dj) and (2.12), respectively).

Proof : If we use assumptions 1.1.3 (B), (Dj), the inclusion flsh c= O5* and
write r\ = (-ft + r\ ) — ft, we easily prove that

(2.35) £ <(x, * + Ti) ^ s* ClCnï + -ni) -

, v - n = (•no,-

with a constant c depending on c0, cx and c2 from 1.1.3 only.
Now, let v e Vh. Then, by (2.16) and (2.35),

(2.36) v,v)= Y f \YaX;UÏ + v,

+ <zo
5(., w^* + v,V (u£ + t

^ c , f] f f |Vi?|2dx-c/

where

r
[ 1 + | v I + I Vv | + | uj? | + | V«A* | ] . [ 1 +

Using the Cauchy inequality, we get

|

This, (2.12), (2.29) and (2.36) immediately yield (2.33).
In proof of (2.34) we procède quite analogously. For v e Vh we have

m */

(2.37) ah(u£ + v9 v ) = £ £ meas (T) £ «r,, G f,, ,
s = \ Tm%sh y = l
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In virtue of (2.35),

(2.38) Gs
TfJ*cl\V

»)Or,,X V O * + v) \ T) v(xTfJ)

+ \v(xTj)\+ | ( V i ? |

[ 1 +

max T) \

max | T) 1 |"l + max

Now, by (2.37), (2.38), (2.19, a-b), (2.31), the estimate

(2.39) max \v\ ^ c(meas (71))"l/2 ||t;||0 r

, , VA e (0,*0)

valid with a constant c independent of v, T, h (see [8, Lemma 2.2.6]), the
relations

(2.40) meas (T)\(Vw\T)\2 = \]T,

meas (T)\(Vw\T) = \ \Vw\dx,

and the repeated application of the Cauchy inequality we corne to
(2.34). •

2.3.3. Lemma

We have

(2.41) a) \âh(u{,v)-âh(u2,v)\ ^c\\ux-u2\\XÇïh |Mli,nA

Vuuu2,veH\nh), V/*e (0, Ao) ,

b) \ah(uuv)-ah(u2,v)\ ^ c || ux - u2\\ { ^ \\v\\hùh

Vuuu2iveXh, VA e (0, Ao)

wzïA a constant c independent of M,, W2> U aw<i A.
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Proof: Let us prove the second inequality. By (2.22), provided
v, wb u2 e Xh,

m kr

(2.42) ah(uhv)~ah(u2, v) = £ £ meas (T)

where
2

T
ü,ux{xTj), Vux\T) - as

0(xT>J, u2(xTj), Vu2\T)] v

In view of assumption 1.1.3 (C), we can apply the mean value theorem :

2 f1 9af
flf(x,ri) -^(x,o = y ^ ( ^ i + K-n-e)

for all x e {!/ and Ç, TI e 7?3 and get the estimate

|<|)J
riy| ^ 2 c o * / m a x | v | + \(W\T)\\ x

x f max \ux-u2\ + | (V(MJ - u2) \ T)\ \ .

Substituting into (2.42), using (2.39), (2.40) and the Cauchy inequality, we
come to the desired result (2.41, b). The proof of (2.41, a) is analogous, but
simpler. •

Finally, we come to the main result of this paragraph — the solvability
theorem for the discrete problem.

2.3.4. Theorem

To each h s (0, h0) there exists at least one solution üh of problem (2.17, a-
c) and at least one solution uh of problem (2.25, a-c). Moreover, if

(2.43) ll«**lli,nA*c* V A e (°'*o).

where c* is a constant independent of h, then there exists a constant
c > 0 such that

(2.44) | |S„ | | l f V K | | l i f i ^ c V/*e (0,/ .0).

Proof : Let us prove the existence of a solution uh of problem (2.25, a-c).
(The existence of üh as a solution to problem (2.17, a-c) can be proved in the
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same way.) We shall seek uh in the form uh = u% + zk, where zh e Vh. From
(2.31) and (2.32) it follows that for each zh e Vh the mapping

vhe Vh-+ah{ujf + zA , vh)-Lh(vh)e R {

is a continuous linear functional and hence, by the well-known Riesz
theorem, we can write

(2.45) ah{u? + z / p vh) - Lh(vh) = {Th{zh)9 v h ) l t l h ,

where (., . )i)n/I i§ the scalar product in H](Qh) which induces the norm

11.11, n / (compare with (1.8)) and Th(zh) e Vh with

(2.46) \\ ^ \ \ / \ \ \ \ h ç i h

vh*Q

Hence, Th : Vh -• Vh and the problem (2.25, a-c) is equivalent to the
équation

(2.47) Th(zh) = 0

in the fmite-dimensional space Vh. From (2.41, b) we see that the operator
Th is continuous. Moreover, by (2.34),

(2.48) 2 ^

where the constant c is independent of h and v E Vh. This yields the
existence of a constant K > 0 such that (Th(v)i v ) s= 0 for all D É F ^ with
lit? IL n = K. Hence, by [16, Chap. 1, Lemma 4.3] équation (2.47) has at

least one solution zh e Vh, which gives a solution uh = u* + zA of problem
(2.25, a-c).

Now, let (2.43) be satisfied. Then, in view of (2.47) and (2.48),

0 = ( T h ( z h ) , z k ) { n h 3 * P ( \ \ z h \ \ u a f ) ^h G ( 0 , A o ) 9

where p{t) = cx c3"
212 - c{\ + c*) t - c{\ + c*)2. As q c "̂2, c(l + c*),

c(l + c * ) 2 > 0 are constants independent of h, there exists c => 0 such that
||zA || j n ^ c for all /Ï e (0, h0). Now it is evident that uh satisfies (2.44) with

c = c + c*. •

2.3.5. Remark

The approximate finite element solutions MA or wA to continuous problem
(1.21, öt-c) are obtained on the basis of the discretization process without or
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