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D’T:\’\”} MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
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(Vol 24, n° 4, 1990, p 457 a 500)

FINITE ELEMENT APPROXIMATION
OF NONLINEAR ELLIPTIC PROBLEMS
WITH DISCONTINUOUS COEFFICIENTS (*)

Miloslav FEISTAUER (') and Veronika SOBOTIKOVA (1)

Communicated by P G CIARLET

Abstract — The paper presents a detailed theory of the finite element solution of second-order
nonlinear elliptic equations with discontinuous coefficients n a general nonpolygonal domain
Q with nonhomogeneous mixed Dirichlet-Neumann boundary conditions In the discretization of
the problem we proceed m the usual way the domain §) 1s approximated by a polygonal one,
conforming piecewise linear triangular elements are used and the integrals are evaluated by
numerical quadratures We prove the solvability of the discrete problem and study the
convergence of the method both i strongly monotone and pseudomonotone cases under the only
assumption that the exact solution ue H'(Q) Provided u 1s piecewise of class H? and the
problem 1s stiongly monotone, we get the error estimate O(h)

Résume — Dans cet article nous présentons une théorie détaillée des éléments fims pour la
solution des équations elliptiqgues non hnéaires de second ordre avec des coefficients discontinus,
dans le domaime Q) général, avec les conditions aux Ilwutes de Duwrichlet-Neumann non
homogénes Nous discrétisons le probléme de la facon habituelle le domaine ) est remplacé par
le domaine polygonal et on utilise les éléments finis hnéaires conformes et l'intégration
numérique Nous démontrons l'existence de la solution du probléme discret et étudions la
convergence de la méthode dans les cas strictement monotones ou pseudo-monotones dans
I’hypothése o la solution exacte ue H'(Q) Supposé que u appartient dans la classe
H? par morceaux et le probléme est strictement monotone, nous obtenons l'estimation de l'erreur

O(h)

INTRODUCTION

A series of processes in technology and science 1s described by partial
differential equations of the type

2

©.1) - Z 58; a,(x,u(x), Vu (x)) + ag(x, u(x), Vu (x)) = f(x), x € Q.

1=1 i
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458 M. FEISTAUER, V. SOBOTIKOVA

The coefficients a; and right-hand side f usually depend on the properties of
materials that form the device represented by the domain Q. In general,
a; and f have different values and structures in particular subregions
Q,cQ, s=1,...,m made from different materials. Hence, a; and f are
discontinuous across the common boundaries of Q, s =1, ...,m, where
instead of equation (0.1) the so-called transition conditions are used.

As a typical example the stationary magnetic field in a plane domain
Qc R? can be introduced. It is described by equation (0.1) of the form

0.2) -3

i (1w e 2 ) <0
Here v, = 1/p;, where p; is the permeability, » is the magnetic field
potential and j represents the current density. Provided  consists e.g. of
iron, copper and (holes of) air, then v, is discontinuous, since it is equal to
different constants in copper and air and it is a nonlinear function of
|Vu|? in iron. Also the right-hand side j can be discontinuous. Often,
7 = 01in air and iron, and j = const. # 0 in copper wire conductors. (Cf. e.g.
[10, 11, 14, 17].)

We get a similar situation in heat conductivity processes described by the
equation for the absolute temperature u :

ou (x)) — f(x), xeQ.

0x,

0.3) — _Z % (k(x,u(x), Vu (x))

i=1 i

If Q consists of several different materials, then the heat conductivity
coefficient k and the heat sources density f are discontinuous in general.
Other examples can be found in nuclear physics.

The weak solvability of a problem with discontinuous coefficients can be
proved by the methods and techniques treated in [16, 19]. Some results
concerning the properties and numerical solution of problems with disconti-
nuous coefficients can be found e.g. in [1, 13, 20, 21, 22].

In this paper we present a general theory of the finite element solution to
nonlinear equation (0.1) with discontinuous coefficients in a bounded
domain Q = R%. We generalize here the methods and techniques from [6-9].
One of our starting points is also the work [12], where the finite element
discretization of nonlinear problems with discontinuous coefficients in
polygonal domains was studied and computer realization was carried out.
Here we consider the problem in a general nonpolygonal domain.

In Section 1 we give the classical formulation of the problem and derive
the generalized weak formulation. Section 2 is devoted to the discretization
of the problem. We procede as it is usual in practice : the domain Q is
approximated by a polygonal domain ,, which is triangulated in a suitable
way. We use conforming piecewise linear finite elements. The integrals are
evaluated by numerical quadratures. (By Strang [24] we commit basic
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NONLINEAR ELLIPTIC PROBLEMS 459

variational crimes.) In paragraph 2.3 we prove the existence of approximate
solutions. Paragraph 3.1 deals with their convergence in the space
H'(Q) to an exact solution. As a by-product the solvability of the
continuous problem in H'(Q) is obtained. No additional assumption on the
regularity of the exact solution is needed.

Provided the problem is strongly monotone and the exact solution is
piecewise of class H> i.e. ulf e HZ(QS) for s=1,...,m, we prove in
paragraph 3.2 that the error is of order O (k). We use here an improved
version of the Green’s theorem method. Near the boundary I'y, where the
Neumann condition is considered, we use the « triple application of Green’s
theorem », proposed in [7] (V).

1. CONTINUOUS PROBLEM
1.1. Assumptions

1.1.1. Assumptions concerning the domain and the boundary

Let Q, Q,, ..., @ ,, « R? be bounded domains with Lipschitz-continuous
boundaries 32, 3Q2, ..., 3Q ,, and let

m

(1.1) ():UQ:, Q. NQ, =g for r,s=1,...,m, r#s,

s=1

WALE

s=1

Q

(1.2) =T, uUly, T)NI'y=&, meas, (I'p)=0.

Q, Q,, T, etc. denote the closures of Q, Q, T, etc., meas, denotes one-

dimensional measure defined on 3Q, 3, etc. We set

(1.3) [,=T,=080,Nn3Q,, r,s=1,...,m, r#s,
Fp,=T,Nnaq,, T,y=TynaQ,, s=1,...,m.

Let I'p, I'y, T',, be formed by a finite number of open arcs (i.e. arcs without
their endpoints) or simple closed curves. It is evident that

(1.4) aﬂx = I:sN U rsD U Ul:rs d I_ﬂN = UFSN > I_ﬂD = UI_-‘SD .

r=1 s=1 s =
r#s
Of course, some of the sets ', [',y, T, can be empty. (See fig. 1.1.)

(") Tt should be noted that simultaneously with this paper and independently on it the same
problem has been treated in {27). The approach from [27] is quite different to our approach.

vol. 24, n° 4, 1990



460 M FEISTAUER, V SOBOTIKOVA

Figure 1.1.

In the discretization of the problem (see Section 2) we shall work with
polygonal approximations , of  and Qg of Q, for 2 € (0, ) (hy=0).
Let QF be bounded domains such that

(1.5) Q*50Q,UQ, Vhe (0,hy), s=1,...m.

1.1.2. Function spaces

By the symbols C*(Q), CQ,), L?(Q), LP(3Q), L"(Ty), W-r(Q),
HAQ), Wh2(Q), W"®(Q¥) etc., etc. we shall denote the well-known

spaces of continuously-differentiable functions and Lebesgue and Sobolev
spaces of measurable functions, equipped with their usual norms (see e.g.

[15, 18, 2]). We put C(Q):CO(Q)~ By ”'”0,99 “'”o,an’ H'”O,p,ﬂ’
N0, 00> W-llka> I-lg , o We denote the norms in the spaces LY(Q),

L*(8Q), LP(Q), LP(3Q), H*Q) (= W*2(Q)), WP (Q), respectively. In
H'(Q) beside the norm

12
(1.6) “ulll,ﬂ = <J (u?+ |Vu|2)dx)
o)
we shall use the seminorm

1/2
(1.7) lul, o = (J |Vu|2dx> .
¢

M? AN Modélisation mathématique et Analyse numerique
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NONLINEAR ELLIPTIC PROBLEMS 461

(We set Vi = ( Su du ).) The norm |. |, , in H'(Q) is induced by the
axl 8x2 ’

scalar product (., .), o defined on H'(Q) x H'(Q):

(1.8) (4, 0)) 0= J (uv + Vu.Vv )dx.
Q

We shall also consider the mentioned spaces over other open sets and use a
similar notation.
By meas we shall denote the two-dimensional Lebesgue measure.

1.1.3. Assumptions on the coefficients in equation (0.1) and on data

(A) a) f,e Whe(QF), f:0y— R! and [l =fQ (s=1,....,m).
b) 3Q and 3 (s = 1, ..., m ) are Lipschitz-continuous and piecewise of
class C>.

¢) g:Ty > R', ge L®(Ty), q is piecewise of class C? on T.
d) up:Tp— R, up =u*|T,, where u* € W"?(R?) with p = 2.

There exist functions «f:Q* x RPSR' (1=0,1,2, s=1,..,m),
a = al(x, &), x=(x,x,) € Q¥ &= (&,£,£,) € R®, with the following
properties :

(B) @} (i =0,1,2) are continuous in Q* x R?; there exists a constant
¢y > 0 such that

2
‘af(x,g)[sco(l+2 1gj|) Vxe QF, VieR?,

=0
i=0,1,2, s=1,..,m.
LB . . 3
(C) The derivatives 5 e continuous and bounded in QF x R”:
J
da;

oF;

(x,g)’sc(;" VxeQ¥, VéEeR?>, i,j=0,1,2, s=1,..,m.

(D,) There exist constants ¢; >0, ¢, =0 such that

2

2
Z aj(x, ) & = ci (& + &) —cz( Z & + 1)
1=0

=0
Vxe QF, VEeR? s=1,..,m.

vol. 24, n° 4, 1990



462 M FEISTAUER, V SOBOTIKOVA

(D,;) There exists a constant a >0 such that

3

z (x £)0,0, = a(6] +63)

Vxe QF, VeEeR®, Vo= (0,6,)eR? s=1,..,m.

N

(E) The derivatives 6—' are continuous in QF* x R*® and
X
g

da;

a O g)\ <c;*(1+kzo |gj|)

VxeQ*, VeEeR, 1=0,1,2, ;=1,2.

In Section 3.2 instead of (D;) and (D,) we shall consider the following
assumption :
(D) There exists a constant a > 0 such that

Z (x £)m, M =a(nf +m3)

=0

VxeQFX, VEeR>, VYn= (mn,.m)€ER', s=1,...m.
(It is easy to prove that (D) and (B) = (D);) and (D,) and (B), ¢f. [9].)

1.1.4. Remark

Assumption (A, d) says that the function uj, (from Dirichlet condition
(1.11)), defined on the set I' — 3£}, has an extension to a function
u* e W4“P(R?. This is possible, if e.g. up =¢|I', and the function
¢:9Q — R' is obtained by integration of a function ¢:L?(3Q) along
3Q. This situation is often met in applications (we can remind stream
function problems in fluid dynamics, c¢f. e.g. [S, 6]). The assumption
u* € H*(R? usually used in the finite element analysis is rather strong and
unrealistic in some cases.

We assume that the coefficients in (0.1) have the form

(19) a(x,&) =a’(x, &) VxeQ,, VEeR?, i=0,1,2,s5s=1,..,m

Thus, the functions a,: Qy;x R*—» R' and f:Q,— R' can have discon-
tinuities across I',,.

M? AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 463

1.2. Classical Formulation

If u & R', then by u' we denote an extension of u|Q  onto

Q, Let #*(x) = (nj(x),n3(x)) denote the umt outer normal to 3Q;
Obviously, 7°(x) = — 1'(x) for xe T,
We shall study the following

121 Boundary value problem

Find u: Q — R! satisfying the equation (0 1) 1n Qg 1¢

k)

(110 - Z % a, (o, u(x), Vu (x)) + ap(x, u(x), Vu (x)) = f(x), x € Qy,

the boundary conditions

(111) u(x) = up(x), xel, (Dirchlet condition),
2
(112) Y ai(x, u’(x), Vu'(x)) ni(x) = g(x),
|
xely, s=1, ,m (Neumann condition)

and the transition conditions

k)

(113) ¥ al(x, w'(x), Vu'(x)) n)(x) = — Z a/(x, u'(x), Vu'(x)) n/(x) ,

1 =1

vel, . rov=1, ,m, 15

It 1s obvious, how to define a classical solution of this problem
122 Defmition

We call u.Q - R' a classical solution of problem (1 10)-(113), 1f
ue C(Q), u’'e CHQ,) for s=1, ,m and (110)-(1 13) are satisfied
1.3. Generalized Weak Formulation

Let us put
(1 14) ¥V = {ve C2(Q),suppr=QUT,},

where supp v denotes the support of the function v, and define the space V
as the closure of ¥ i H'(Q)

(115) V=77 (ve H'(Q), v|T) =0}

vol 24, n° 4, 1990



464 M FEISTAUER, V SOBOTIKOVA

Since meas; (I'p) > 0, the seminorm |.|, , is a norm in ¥, equivalent to
-1y, 0
(1.16) loll, o <élv|, g YveV
with a constant ¢; > 0 independent of v.

Let us assume that u is a classical solution of problem (1.10)-(1.13). If we
multiply equation (1.10) by an arbitrary v € ¥~, integrate over £}, and apply

Green’s theorem for each Q, s =1, ...,m, then by (1.12), (1.13) and the
fact that meas (2 — Qy) = 0, we get the identity

(1.17) L [i a,(., u, Vi ):_)';+ ao (-, 1, Vi )v] dx =

1=1

=ffudx+f quds VYve? .
Q0 Ty

This leads us to the concept of a generalized weak solution. Let us denote
2 v

. = wu, Vu ) — wu, V d
(1.18) a(u,v) J-n [,Zlat( u u)ax[+a0( u, u)v:| x
for u, ve H'(Q),
(1.19) L%) = J fvdx, LT(v)= j qu ds ,

Q r

(1.20) L()=L%)+L"v), ve H'(Q).
1.3.1. Definition

We say that u: Q —» R' is a weak solution of problem (1.10)-(1.13), if

(1.21) a) ue H'(Q),
b) u—u*eV,
¢) a(u,v)=L(v) YveV.

1.3.2. Properties of the forms a, L, L', L

Under assumptions 1.1.3 (A), (B) there exists a constant ¢ > 0 such that
(1.22) |a(u,v)| <c(1 + ““”1,:1)”””1,9 Yu,ve H(Q),
(1.23) |[L(v)] = |L“(v)| + ]Lr(v)] =<c|v] Lo Yve H'(Q).

Hence, for each ue H!(Q) the functional a(y,.) and the functionals
L® L', L are continuous and linear on H'(Q).

M? AN Modéhsation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



NONLINEAR ELLIPTIC PROBLEMS 465

1.3.3. Remark

It is possible to show that any classical solution in the sense of Definition
1.2.1 is a weak solution. On the other hand, if « is a weak solution and

u*e C*Q,) for each s = 1, ..., m, then u is a classical solution.
Weak problem (1.21, a-¢) and its solvability can be treated under much

weaker assumptions (c¢f. [1, 19]). Our strong assumptions will be necessary
for the finite element analysis.

2. DISCRETE PROBLEM

In this section we shall suppose that assumptions (1.1), (1.2), (1.9) and
1.1.3 (A), (B) are satisfied.

2.1. Triangulations

Let us consider systems {{;,}, ©. ko) and {Qg},_ Oy 5= 1, .., m,

hy =0, of polygonal approximations of Q and €, respectively, with the
following properties :

2.1 ﬁh=Uﬁsh, QuNQy= forr#s, r,s=1,..,m.
s=1

2.2) 08Q, and 3Q, are formed by finite numbers of simple closed
piecewise linear curves the vertices of which are lying on 82 and
0(), respectively.

Let B, and B, denote triangulations of Q, and Q, respectively, formed
by finite numbers of closed triangles. We assume that

(2.3) a) B, =\_J)Bau>
s=1
b) 0=\ JT, Q4= \T;
Te Ty, Te Ty

24) f T, T,e Gy, T\ # T, then either T/ NT, = or T),NT,is a
common vertex or 77 N 7, is a common side of T}, T5;

2.5) ifTe Gy (s=1,..,m), then at most two vertices of T are lying on
Q)

5

We denote by o, = {P,,..., P 5} and oy the set of all vertices of
T, and G, respectively, and let

26) @) 0,c 0,040, 0,N08Q0,c8Q, 0, NN, cdQ,s5=1,..,m
b) FD N FN < Oy,

>

vol. 24, n® 4, 1990



466 M FEISTAUER, V SOBOTIKOVA

¢) the points from UaQs, where either the condition of C*

s=1
smoothness of 8, or the condition of C*smoothness of ¢ are not
satisfied, are elements of o,

From the above assumptions it follows that

(2.7) a) to each T € G, there exists exactly one se€ {1, ..., m } such that
T<Q, ie. Te B,;

b) op = \_Joas

s=1

Nl co, for r#s and T, NT,  co, for
{ri, 81} # {ry, 82}, 1 #58y, Ny # 5.
By A and 9 we shall denote the length of the maximal side and the

magnitude of the minimal angle of T € G,, respectively. We set .
(2.8) h=max hy, 9, = min 9.
Te T, Te T,
We shall assume that the system {T,}, (.4 'S regular. It means that
? >0
there exists 93 = 0 such that
2.9) V,=29,=>0 Vhie (0,h).

Further, by T, and Ty, we denote the parts of 3, approximating
T, and Ty, respectively. Similarly we define T,,,, Ty, and Ty, (v 5 5) as the
parts of 30y, approximating I,,, I,y and T,

2.2. Finite Element Discretization of the Problem

Approximate solutions to problem (1.21, a-¢) will be sought in the finite-
dimensional space of conforming piecewise linear elements X, = H'(Q,):

2.10) X, = {v,, ;0, € C(£,), v,is affine on each T € "G’,,} .

The space ¥ will be approximated by

(211) th {thXh;vh,FDh:O}
= {vy€ X;;v,(P)=0 VP, €0, NTp}.
In [26] it was proved that the seminorm |. |, , is a norm on V', uniformly

equivalent to |[.[|, , . It means that there exists a constant ¢; independent of

M? AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 467
v, € V', and A such that

(2.12) -1 Lo, S C3|'|1,Qh Vvo,eV,, VYhe (0,hy)

(cf. also [6]).

Instead of the function ¢:Ty — R' we shall use its approximation
g, : Ty, — R' defined in the same way as in [8, § 2.2].

Let r, : H'(Q,) N C(£;) - X, be the operator of the Lagrange interpola-
tion :

(2.13) r,ve X, for ve H'(Q,) N C(Q,),
ro(P)=v(P) VP, e0,.
From 1.1.3 (A, d) and the imbedding theorem ({15, 18]) it follows that
u*|Q, e H'(Q,) N C(Q,). Let us set
2.14) uf =ryu*.
It is evident that

(2.15) up#(P)) =up(P)) VP,ec,NT,.

The forms a, LY L' and L will be approximated by

s=1 s=1

2.16) a,(u,v) = Z J [ Z a’(., u, Vu )§—£ + ag(., u, Vu ) v] dx ,
Q, 1
uve H'(Q,),

E?(u):ij fovdx, ve H(Q,),
s=1 Q

sh

ZE(U)=J qn v ds, ve H'(Q,),

Ty
A,
2.2.1. Discrete problem

It can be written quite analogously as continuous problem (1.21, a-c) :
find i, : Q, —» R' such that

(217) a) izh € Xh )
b) #,—ufeV,,
) @iy, vy) = Ly(v,) Vo, e V.

vol 24, n° 4, 1990



468 M FEISTAUER, V SOBOTIKOVA

2.2.2. Numerical integration

In practice the integrals in (2.16) are evaluated by numerical quadratures.
We write

(2.18) a) Fdx = z .[Fdx,
T

‘Qh Te Gy

AT
b) j F dx =~ meas (T) Z o7 F(xr ), if FeC(T).
T k=1

Here x7, € T and oy, € R'. We shall assume that
At
(2.19) a) or,=>0, b Y or,=1.
k=1
Similarly we evaluate integrals over 'y, :

(2.20) a) Fds = Z F ds,

rNh STy N

b) JFds——es(S) ZS Bs, Fxs,), if FeC(S),
S

7 =1

where s(S) is the length of the side STy, (of a tnangle T € G,),
x5, € S and By, € R'. We assume that

(2.21) the degrees of precision of formulas (2.18, b) and (2.20, b) are = 1.

If we approximate the forms &,, L{ and L} by means of the formulas
(2.18, a-b) and (2.20, a-b), we get

(2.22) a,(upv,) =

m 2 avh kr
= Z Z meas (T)[ Z g T Z T, als('xT,j:uh('xT,j)r Vuth)
s=1 Te"Gf, =1 t J=1
k-
+ wr,, ag(xr,,, uy(xr,,), Vuy | T) v, (xr,) |
=1
(2.23) Ly (vy) = Li(vy) + Li(v,) ,
where
m kr
(24 a) L) = Y Y meas (T) ¥ wr, fi(xr,) v4(xr,),
s=1Te By J=1
ks
b) Lj(v,) = Y s(S) Y Bs, aun(xs,,) v,(xs,)-
ScTyy 1=

M? AN Modélisation mathématique et Analyse numeérnque
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NONLINEAR ELLIPTIC PROBLEMS 469

Let us notice that if x,; € 0y, x5 ; € 0, N Ty, then in practical calculations

it is not necessary to extend the coefficients a; from €, onto Q* and to define
the function g,. Now we come to the definition of

2.2.3. Discrete problem with the use of numerical integration
Find u,: Q, —» R' such that
(2.25) a) u,€ Xy,

b) uh—u;ike Vlz’

C) ah(uh, vh) =Lh(vh) Vvhe Vh'

2.3. Existence of Approximate Solutions

Let us consider assumptions (1.1), (1.2), (1.9), 1.1.3 (A), (B), (O),
(D), (E) and assumptions from 2.1 and 2.2. (i.e., (2.1)-(2.6), (2.9), (2.19),
(2.21)).

In the sequel the symbol ¢ will denote a generic positive constant,
independent of 4, which can have different values at different places.
First let us draw our attention to the effect of numerical integration in the

forms L, and a,

2.3.1. Lemma

There exists a constant ¢ = 0 such that

(2.26) |Li() = L} ()| < chlv], 4,
2.27) |Li(0) = Li@)| < chlv]l, o,

Yve X,, VYhe (0,h),

(2.28) |an(u, v) — @, (u, v)| <ch(l+ Nl g 01 g,
VV,UEXh, Vhe (O,ho)

Proof of assertions (2.26) and (2.28) can be carried out on the basis of [8,
Lemma 2.2.5] (which is a special case of [2, Theorem 4.1.5]) by a similar
technique as in [8, Theorems 2.2.4 and 2.2.7]. E.g., in view of (2.16) and
(2.22), we can write

&Il(u’v)_ah(u’v) :Il+125

vol. 24, n° 4, 1990



470 M FEISTAUER, V SOBOTIKOVA

where

m

2
s=1TeGgy 1=1

~
Il

ov T” @, u, Vu|T) dx —
ox, T

kr
— meas (T)Z or,, a/(xg,, u(xg,), Vu|T)} ,

J=1

Izzi Z {jTag(.,u, Vu|T)vdx —

s=1TeBy

kr
— meas (T) z mT,] as(xT,/’ M(XT,j)’ Vu | D v(xT,_/)} -

=1

Now we estimate the expressions in parenthesis in the same way as in [8,
Theorem 2.2.7].

Concerning estimate (2.27), see [25, Theorem 5. H

Further, it is easy to prove the existence of a constant ¢ > 0 such that

(2.29) | L (v)

()],

> E(U)I sC”"”l,n,,
Vve H'(Q,), VYhe (0,hy),
(2.30) |@(u, v)| <1+ Jlull, o)Vl g,
Vu,ve H'(Q,), Vhe (0,hy),
(2.31) |LE®)], |La)], |L@)] <clvll,
Vve X,, Vhe (0,hy).
(2.32) lay(u, v)| < c(1+ Jull, oIVl o,

k)

Vu,ve X,, Yhe (0,h).

In the proof of these assertions we procede similarly as in [8, Lemma 3.2.2
and Theorem 3.1.2].

The proof of the solvability of discrete problems (2.17, a-¢) and (2.25, a-c)
is based on the following

2.3.2. Lemma
There exist constants ¢, ¢ >0 such that
(2.33) a,(uf +v,0) — L,(v) =
=0 C§2||”||%,Qh (i + ol o, + lluif “1,9,‘)(1 + [uirll q,)
YveV,, Yhe (0,hy)

M? AN Modehsation mathematique et Analyse numerique
Mathematical Modelling and Numerical Analysis



NONLINEAR ELLIPTIC PROBLEMS 471
and
(2.34) a,(uf +v,0) - Ly(v) =
=c 52 oll] g, — e+ vl g, + Nuill, o )0+ luifll, o)
YveV,, Yhe (0,hy).

(u;f € X, are functions defined by (2.14); ¢, and c¢; are constants from
assumptions 1.1.3 (D)) and (2.12), respectively).

Proof : If we use assumptions 1.1.3 (B), (D,), the inclusion Qg < QF and
write 1 = (9 + n) — 9, we easily prove that

2

(235 Y @(x, ¥ +m)m, =c (] +m3) -
=0

—c(1+ i (|n.] + |1‘},|)> (1+é:0 |ﬁ,|)

1=0

Vs = 1,...,m, VXEQ‘/,, Vo = (’80,'&1, '82), VT| = (7]0,1]1, 1']2)ER3

with a constant ¢ depending on ¢j, ¢, and ¢, from 1.1.3 only.
Now, let v € V,. Then, by (2.16) and (2.35),

m 2 v
2.36 a4, (u = S, u ik —_—
( 3) ah(uh +U,U) z J‘Qm [Z al(’“h +vaV(uh +U)) ox +

s=1 =1 ]

(LufF+v,V(ut+v))v]dx
Z { Vv]zdx—cls} ,

where

Y Io= J [1+ o] + | Vo] + Juf| + |VuiF|]. [+ Juif] + | VuiF]] dx
s=1 Q;.
Using the Cauchy inequality, we get

m

Y Lisc(l+ ol o, + Nuilll, o)+ [l o,)

s=1
This, (2.12), (2.29) and (2.36) immediately yield (2.33).
In proof of (2.34) we procede quite analogously. For v € V', we have

kg

(2.37) a(uf +v,v) = Z Z meas (7)) Z or,Gr, >

s=1TeTgy J=1

vol 24, n” 4, 1990
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where
K} 2 s * X* ov
GT,/ = Z al(‘xT,_/’ (uh +v)(xT,j)>V(uh +l’)IT)5; T+
1 =1 1
+ ay(xr,,, (uif +0)(xg,), V(uF +0)|T) v(xy,) .
In virtue of (2.35),
(2.38) G%’J 2c1|Vv|iT—c[1+ |v(xT,j)| + |[(Vo|T)| + |u,:"(xT’j)| +
+ | (VuF| |1+ |uf(xep)) | + [ (VuiF| D)1=

= G~T:=c1|Vu|iT—c|:l+max o] + [(Vo|T)| +
T
+ max |uf| + |(Vu,;“|T)|][1+max || + |(Vu,;“|7)|].
T T

Now, by (2.37), (2.38), (2.19, a-b), (2.31), the estimate

(2.39) max |v| < c(meas (7)) 72|

Ul 7
T

Vve X,, VT e®,, Yhe (0,h

valid with a constant ¢ independent of v, T, & (see [8, Lemma 2.2.6]), the
relations
(2.40) meas (T)|(Vw|T)|* = |w|?

1, T

meas (7)|(Vw|T)| =J |Vw|dx, weX,,
T

and the repeated application of the Cauchy inequality we come to
(2.34). =

2.3.3. Lemma
We have

(2.41) a) I&h(ul,v)—&h(uz,v)i $Cl|ul _uzlll,ﬂh ”UII]-Qh
Vu,u,ve H(Q,), Yhe (0,h),
b) Iah(ulsu)_ah(ubv)' Sc”“l““lel’nh ”vlll,nh

Vul, u2,vEXh, Vhe (O,ho)

with a constant c¢ independent of u,, u,, v and h.

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



NONLINEAR ELLIPTIC PROBLEMS 473

Proof: Let us prove the second inequality. By (2.22), provided
v, Uy, U € Xy,

kr

@42 apuyv) —a(uyv) = 3 Y meas (T) ¥ or, &,

s=1TeTg 7=1

where

2

ov
T, = 3 (@, ui(xr,), Vu | T) — ai(er, ), ua(xg,,), Vua | T)] Py T

+ [aa(xﬂ/s ul('xT,/)= Vul l T) - aS(XT,,: uZ(xT,j)a Vu2| T)] U(XT’]).

In view of assumption 1.1.3 (C), we can apply the mean value theorem :

2 19 lS
ai(x, m) - al(x, €) = ¥ J e Cot (=) di(n — %)
j=0v0 7]

for all xe QF and &, ne R3 and get the estimate

|5, | s2co*<max Iv] + |(Vv|T)|> x
T

X (max fu; —uy| + |(V(u1—u2)|T)|) .
T

Substituting into (2.42), using (2.39), (2.40) and the Cauchy inequality, we
come to the desired result (2.41, b). The proof of (2.41, a) is analogous, but
simpler. W

Finally, we come to the main result of this paragraph —— the solvability
theorem for the discrete problem.

2.3.4. Theorem

To each h € (0, hy) there exists at least one solution i, of problem (2.17, a-
¢) and at least one solution u, of problem (2.25, a-c). Moreover, if

(2.43) |l L= c* Yhe (0,h),

where ¢* is a constant independent of h, then there exists a constant
¢ >0 such that

(2.44) lull, g5 Nenll, g, <c Ve (0, ho).

Proof : Let us prove the existence of a solution u;, of problem (2.25, a-¢).
(The existence of #, as a solution to problem (2.17, a-¢) can be proved in the
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