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CURVE MESH FAIRING AND GC2 SURFACE INTERPOLATION

by H. NOWACKI O, P. D. KAKLIS 0) and J. WEBER O

Abstract. — A two-stage meihod for générât ing a fair surface from discrete, noisy data is
present éd. First, an approximating regular curve mes h is fïtted through the given m x n point
data set minimizing a fairness functional subject to maximum, déviation inequality constraints.
This results in a faired orthogonal mesh of curves. Second, a curvature continuous surface is
interpoîated through the curve mesh by means of a Boolean sum construction. The Bèzier surface
equivalent o f this method was implemented and verifiedby test examples, which demonstrated the
effectiveness of this surface fairing approach.

Résumé. — Réseau de courbe d'ajustement et interpolation GC 2de surface. On présente une
méthode à deux étapes pour générer une surface ajustée à partir de données discrètes en présence
de bruit. En premier on ajuste un réseau régulier de courbes par rapport aux m y. n points donnés
par minimisation d'une fonctionnelle de « régularité » sous des contraintes de type distances
maxima. Cela donne un réseau régulier et orthogonal de courbes. Ensuite une surface à courbure
continue est interpolée par ce réseau de courbes au moyen d'une construction de sommes
Booléennes. La surface de Bézier équivalente obtenue par cette méthode a été implémentée et
vérifiée à l'aide d'exemples tests, qui démontrent l'efficacité de cette approche d'ajustement de
surface.

1. INTRODUCTION

This article présents a two-stage method for achieving a fair surface from
noisy data : fïrst, a mesh of curves, interconnected at their intersection
points and treated as an elastic continuüm, is faired on the basis of a strain
energy criterion. Second, a Boolean sum surface is interpoîated through the
resulting mesh curves, ensuring curvature continuity at cross patch bound-
aries. Thus a fair, GC 2 continuous, surface is generated.

This work was motivated by the expérience of the first of the authors
regarding the diffîculty in achieving fair surfaces by single-stage procedures.
In earlier work by Nowacki and Reese (1983) it had been attempted to
develop a fair surface from given data points by applying a strain energy

0) Technische Universiteit Berlin, Fachbereich 12 Verkehrswesen, Institut fur Schiffs- und
Meerestechnik, Sckr. SG 10, Salzufer 17/19, Geb 12, D-1000 Berlin 10.
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114 H. NOWACKI, P. 0 . KAKLIS, J. WEBER

minimization to the surface patches and using a Coons Cartesian product
interpolation of the data. The expérience was that, whenever the data points
were not prefaired and exhibited tendencies that caused unfair boundary
curves, or mesh lines, then the resulting surface would also suffer from
fairness flaws. The application of the surface fairness criterion alone did not
prevent local defîciencies. This suggested that the quality of the input curve
set should be improved by a fairing process before interpolating a surface.

This approach is further in good conformance with manual design practice
where surface définitions are usually produced from drawings in which
suitable sets of curves are faired and adjusted until the curves are consistent
with each other and promise to yield a fair surface. In the current approach,
ail curves in the mesh are faired simultaneously so that the problem of
consistency does not arise.

The Boolean sum approach of interpolation with curvature continuity
(GC2) was newly developed by Weber (1990). It nécessitâtes fairly high
degrees in the polynomial surface représentation, strictly degrees of 15 by 15
in the regular mesh case, but it ensures that fairness quaHties present in the
curve mesh are retained by the surface. Thus the two stages of mesh fairing
and surface interpolation cornbined promise to yield surfaces of very high
fairness quality. This hypothesis was tested and verified by the methods
implemented and the examples examined in this work.

2. CURVE MESH FAIRING

2.1. History, State of the Art

In the spline literature the problem of fairing (= smoothing) 3D noisy
data by using bivariate splines has been addressed by numerous authors.
Not attempting a complete bibliography, one should refer to the works of
Anselone and Laurent (1968), Nielson (1973, 1974), Hayes and Halliday
(1974), Wahba (1979, 1983, 1984), Utreras (1979, 1987), Wahba and
Wendelberger (1980), Dierckx (1981, 1982), Dyn and Wahba (1982), Cox
(1984), Hu and Schumaker (1985, 1986) and the références cited therein (l).
In the majority of the afore-mentioned works, the fairing problem is
formulated as a minimization problem of the form : find the unique
minimizer s e X of the objective functional: /fair(j) + A/near(.y), where
Ifmr(s) is a functional measuring the fairness of the fairing bivariate spline s,
e-g*> jffair = (5xx+ sxy + syy) dx dy in the case of the so-called «thin-

plate » or « Laplacian » smoothing splines, Inear(s) is a functional measuring

(') See also the well known survey papers of Schumaker (1976) and Barnhill (1977).
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CURVE MESH FAIRING AND GC 2 SURFACE INTERPOLATION 115

the nearaess between the noisy and the faired data (/near is usually the
average sum of the square Euclidean distances between the noisy and the
faired data), and X is a function space sufficiently rich to work with, e.g., X
is the Hubert space H1. Finally, À is a real parameter controlling the tradeoff
between the fairness of the solution and the nearness to the noisy data. This
parameter can be either user speeified, in which case the fairing problem is a
linear one, or determined in the context of a statistically oriented criterion,
such as the GCV (= Generalised Cross-Validation) criterion (see, e.g.,
Wahba (1979)), which incorporâtes both the noisy and the faired data set,
thus rendering the fairing problem non-linear.

The curve mesh fairing approach, apparently introduced by Hosaka
(1969), is a two stage fairing process. At the fïrst stage, the noisy data set is
faired by constructing the so-called fairing curve mesh h, which, in analogy
with the fairing bivariate spline, minimizes a functional of the form
f̂air(A) + ^nearW- At the second stage, the faired bivariate spline is

obtained by interpolating the so obtained faired data. In Hosaka's work (2),
which adopts a mechanical interprétation of the curve mesh fairing problem,
Jfair(/2) represents the elastic strain energy contained in the mesh curves,
considered as elastic beams of constant stiffness. Furthermore, IncàT(h) is
the weighted sum of the square Euclidean distances between the noisy and
the faired data, the weights being interpreted as the stiffness factors of
elastic springs attached to the data points, and, fmally, the smoothing
parameter À is but the inverse of the constant stiffness of the mesh curves. It
is not known to the authors whether Hosaka published any numerical results
with his method. In this connection, Kakishita (1970), Goult (1985) and
Nowacki et al. (1989) have developed and computationally implemented
linearized versions of Hosaka's work.

2.2. À curve mesh fairing criterion : formulation and vvell-posedness

This section deals with the présentation and theoretical investigation of a
new curve mesh fairing criterion for fairing three-dimensional noisy data
defmed on a rectangular and noise free grid in the physical (x, j)-plane. The
apparent novelty of this criterion résides in the combination of the curve
mesh concept and the concept of fairing in a statistical framework
introduced by Reinsch (1967, 1971). Let us begin with the formulation of
the fairing criterion as a constrained minimization problem, henceforth
referred to as

The curve mesh fairing problem. Given a set of data {(xJ9 yf, z^),
i = 1,..., NJ = l,.,., M,x{ -<x2 < • • < xMfy{ < y2 < • - . *<yN}> with the

(2) Hosaka's method is also described in detail in the textbooks by Ding and Davies (1987)
and Su and Liu (1989).
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116 H NOWACKI, P D KAKLIS, J WEBER

z-components of the interior data (i = 2, ..., N — l9 j = 2, ..., M — 1) (3)
being considered as noisy, the noise having normal density distribution, zero
mean and equal variance a2. Find a curve mesh h = {(x, yl9 hxl{x)),
hxl(x)e C2[xuxM], i = 19...9N9 (xJ9 y, hyj(y))9 hyj(y) e C2[yl9yN]9

j — 1, ..., M }, which minimizes the fairness functional

N ÇxM M ÇyN

i = 1 J *1 y = ! J _y j

dy, (1)

and satisfies the following constraints :

(i) The accuracy constraint.

h„ {x,) - zy )2 - e ̂  0 , (2a)

o-2(/c - V2^) ^S^<J\K + V2T) , K = (N - 2)(M - 2) s* 2 .

(ii) 7%e interior compatibility constraints :

hxXx}) = hy](yt) . (3)

(iii) The type-I {or - / / ' ) boundary constraints :

hxl(x,)=zlJ9 A ^ ( ^ ) = r f j a j ( o r A ^ ( ^ ) = 0 ) , 1 = 1 , . . . , ^ , 7 = l , M ,
(4a)

A w ( ^ f ) = z v , A; j(y l) = rfw(or*;y(yI)=0), i = U , j = l } . . . , M ,

(46)

^ y 5 i = 1, ..., jV, j — 1, M, and dyip i = 1, iV, j = 1, ..., M, being given
fini te real numbers.

In order to examine the well-posedness of the above problem we appeal
to the following resuit due to Wong (1984).

LEMMA 2.2.1 : Let V a reflexive Banach space, K a closed convex set in V
with non-empty interior, S a strictly normed Banach space, T:V->S a
bounded linear operator such that T(V) is closed in S, and A : V —> R^ a
continuons linear map from V onto R ,̂ such that Null {A) n
NullÇT) = {0} . Then the constrained minimization problem :

minimize || Th || \ subject to : h e X = K n {h e V : Au = r } , (5)

admits of a unique solution if X =£ 0.

(3) Within sections 2 2 and 2 3 the following notational convention is adopted if the range
of 1 and/or j is not exphcitly given then / = 2, , N — 1 and/or j = 2, , M — 1
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CURVE MESH FAIRING AND GC 2 SURFACE INTERPOLATION 117

In order to apply the above lemma, we first define the working space
V = Vx x Vy9 where V. = H\l.) X • • - x (N or M times) x • • • x H2(I%),
I% = (#ls mL) with • = x or y, and L — M or N, respectively. Space V is
endowed with a norm as follows : let h — (h^ hy) with
h.= {h.l,...,h.t)eV, then \\h\\ y = \hx\ ^ + \\hy\\y with | | / * . | | F . =

Z ll^#f II H2(i w n e r e l l ^ l l j ï 2 = Y. 11^ IIL2 ^ n e s P a c e ^ is a reflexive
£ = 1 * k = Q

Banach space for it is defmed as the cartesian product of a fînite number of
reflexive Banach spaces (see, e.g., Kufner et al (1977, § 0.16 and § 5.4)).

Second, we introducé the set

K = \h e V :hx,(Xj) = h„(y,) , Y V (hx,(Xj) - ztJ)
2 - e « o) . (6)

The set K is non-empty for any curve-mesh consisting of cubic splines which
interpolate the set of the interior noisy data belongs to K. Furthermore, by
virtue of the Cauchy-Schwarz inequality and the fact that V is the cartesian
product of a finite number of proper subspaces of C°(Im)(H2(I9) a
C{(Im)), one can easily prove that K is also convex and closed.

Third, we define the space S = Sx x Sy9 with S9 - L2(I.) x • • - x (N or M
times) x • • * x L 2(/#). Space S is endowed with a norm by simply replacing
H2by L2in the définition of the norm in the working space F. Furthermore,
S is strictly normed (or strictly convex or rotund), which implies that
L2 is a strictly normed space (see, e.g., Singer (1970, p. 111).

Fourth, we introducé the operator T : V -• S as follows : Th = h " with
hT = (A;, * ; ) , K = (*;,, -..,* ;L). Recalling the définition of \\m\\v and
|| • || ̂  it is readily inferred that r i s a bounded linear operator from Kinto S.
As regards the question on the closedness of T(V) in S9 the answer is in the
affirmative since the équation d2h/dx2 = g is solvable in //2(0, 1) for any
g e L2(0, 1), which in its turn implies that d2fdx2 is surjective on
L2(0, 1).

Fifth, we introducé the linear operator A:V-^Rq, q = 4(TV + M)9

defmed as follows :

Ah= {hxt(^Xhf
xl(x)(or0) , x = xl9xM9 i = l,...9N9

hyj(y), h'yj(y)(or 0) , y =yuyN, j = 1,..., M } ,

according as type-/ (or -II ') boundary constraints are imposed. Exploiting
the imbedding relation H2(Im) a Cl(I9), we can easily prove that A is a
bounded linear map from V into Rq. Furthermore, the problem : given an
r e Rq fïnd an h G V : Ah — r, is solvable by the curve mesh of cubic
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118 H. NOWACKI, P. D. KAKLIS, J WEBER

polynomials which satisfy the type-/ (or -II') boundary conditions specifled
by the vector r. Thus A is also onto R .̂

In conclusion, the previously defined spaces V, S, the set K and the
operators Tand A fulfïll the requirements cited in Lemma 2.2.1, and, on the
other hand, the minimization problem (5) resulting from them is but the
curve mesh fairing problem in the space V. Accordingly, we can state.

THEOREM 2.2.1 : The curve mesh fairing problem possesses a unique
solution in the space V.

2.3. Construction of the Solution

In this section a process is developed for constructing the unique solution
of the curve mesh fairing problem (see Eqs. (l)-(4)). To start with, we note
that 7fair and 7acc are quadratic functionals, whereas the compatibility and the
boundary constraints are linear ones. The curve mesh fairing problem may
then be considered as a convex-programming problem (see, e.g., Ioffe and
Tihomirov (1979, chap. 1.1.2)). In other to treat this problem by means of
the Kuhn-Tucker theorem, we fîrst note that /fair(^) and Iacc(h) are Fréchet
differentiable everywhere in V, which can be easily proved by exploiting the
définition of | | • || v, the imbedding relation H2<^ C\ and the Cauchy-
Schwarz inequality. Furthermore, the Fréchet derivatives of /fair(^)
Iacc(h) are given by the formulae

êh = 2 2, dhxÀX) KM

and
hxl(x}) - z ) 8hxl(x}) , (106)

respectively. Finally, the so-called Slater condition is satisfied by the cubic
curve-mesh which interpolâtes the noisy data and satisfles the boundary
conditions (4). Then, recalling a stronger version of the Kuhn-Tucker
theorem we are led to.

THEOREM 2.3.1 :IfheX= {he V : constraints (3), (4) are fui f il led}
is a solution of the curve mesh fairing problem, then it is necessary and
sufficient that there exists a Lagrange multiplier A 5= 0 such that, for any
8 h e V with h + 8 h e X, the following inequalities hold

ôh + AAacc(/ï) Sh = 0, (lia)

^ 0 , A / a c c ( / 2 ) = 0 . (llb)
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Let us now restrict ourselves t o a C 2 spline subspace F* of F. Performing
then twice intégration by parts in (lia) and taking into account the
Lagrange lemma, as well as that that 5/z* satisfies the constraints (3), (4),
and that 8h*xl(Xj) are in gênerai linearly independent, we finally get that
(lid) is equivalent to the following set of equalities

+ A(A. X I (^ ) -z y ) = 0 . (12)

Summarizing the hitherto obtained results, we state

COROLLARY 2.3.1 : If h*tX*= { / i6F*: constraints (3), (4) are
f ui f il led} is a solution of the curve mesh fairing problem, then it is
necessary and sufficient that htxli i = 1, ..., N and hnyp j — 1, ..., Af, are
C2 cubic splines and a Lagrange multiplier A === 0 exists so that (llb) and
(12) are fulfilled.

The boundary cubic splines hmxl, h^xN and h+yU h^yM are uniquely
determined by the C2 continuity requirements and the boundary conditions
(4). From now on we shall confine our attention to determining the interior
cubic splines. For this purpose, we fïrst adopt the following cubic spline
représentation :

- qx) + gJ + lqx+A2
XJg;F(l - qx) + A%g^x F(qx) , (13)

where x s (xp xJ + l), AXj =xJ + l - xp qx= (xJ + l~ Xj)/A^ a n d F(q) =
(q3 - q)/6. It can easily be seen from (13) that Kxl(Xj - ) = Kxi(xj + ) a r e

sufficient conditions ensuring that hxl e C2[xu xM]. Combining these con-
ditions with équations (12) and taking into account the boundary constraints
(4), we get after some straightforward but elaborate algebra the following
matrix équation :

MxlHf+Mxf)Zj=Bx
r, (14)

when Zf is an (N — 2) x (Af— 2) matrix containing the faired z-compo-
nents of the interior noisy data, Hx is an (N~2)x (Af—2) matrix
containing the second order jc-derivatives of the faired curve mesh
h* at the interior grid points and Afxl9 Mxl are two (Af - 2) x (Af - 2)
symmetrie and tridiagonal matrices, the non-zero éléments of which are
given by the following formulae :

+ l =-l/AXJ, (15a)

= 3/2 AxX + 1/A^ , ( A f c 0 ) M . XtM_} = 3/2 AX>M_ , + l/Ax>M_2,

(15b)

vol 26, n° 1, 1992



120 H. NOWACKI, P. D. KAKLIS, J. WEBER

)JJ _ ! = Axj _ J6 , (MX2)JJ = AxJ _ J3 + Axj/3 ,

) j J + l =Axj/6, (16a)

(Mx2)22 = AJ4 + Ax2J3 , (Mx 2)^„ U M _ ! = 4, i A ,_ ,/4 + 4c.*-2/3 , (166)

with 7 = 3, ..., Af — 2. Finally, Bx is an (N — 2) x (M - 2) sparse matrix
expressing the influence of the boundary conditions (4). Choosing the cubic
spline représentation (13) for h*yJ(y), j = 1, ..., M, and working similarly,
we arrive at the following matrix équation

My2 H f + My0 Zj = B^ (17)

the matrices My0, My2 and By being defmed with direct analogy to
Mx0, Mx2 and Bx, respectively. Rewriting now équations (12) in the context
of the cubic spline représentation (13) and combining the resulting set of
équations with the matrix équations (14) and (17), we get the following
matrix équation for Zf :

ZfMR + MLZf + AZy = AZ + B, (18)

where Z is an (N - 2) x ( M - 2) matrix containing the z-components of
the interior noisy data and

MR = Mxö Mxl
x MxQ + BGx , ML = MyQ My2

l M^ + BGy . (19)

Finally, B, BGx, BGy are sparse matrices expressing the influence of the
boundary conditions (4). More specifically, in the case of type-I boundary
conditions BGx is an (M — 2) x (M - 2) diagonal matrix whose non-zero
éléments are given by

(BGx)22 = 31 A\x, (BGx)M_XtM_x = 3 / 4 „ _ ! , (20)

whereas in the case of type-IF boundary conditions BGx dégénérâtes to the
null matrix. Obviously, a directly analogous statement can be made for
BGy

Let us now investigate the well-posedness of the matrix équation (18). At
first, relations (15) and (16) readily imply that Mx2 is positive defînite and
Mço is non-negative defînite. To examine whether zero is an eigenvalue of
Mço we appeal to a well known resuît of Taussky (1948) stating that, if a
matrix is irreducible and an eigenvalue lies on the boundary of one of the
associated Gerschgorin circles, then it should lie on the common boundary
of ail Gerschgorin circles. By virtue of relations (16) it can easily be seen
that 0 + 10 is not a common boundary point of all the Gerschgorin circles of
MXQ. On the other hand, Mx0 is irreducible for it can be obtained by
replacing zero entries of an irreducible matrix, namely the matrix
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CURVE MESH FAIRING AND GC SURFACE INTERPOLATION 121

(Mx2)hJ _, = AXJ _ ,/6 , {Mx2)}] = 0 , (Mx2)J;, + , = AXJ/6 , (21)

by non-zero ones (see, e.g., Lankaster and Tismenetsky (1985, p. 530)).
Thus M^ is eventually positive defmite. The same statement can be clearly
made for My2 and My0. Finally, by virtue of the remarks made above,
BGx and BGy are non-negative definite. Recalling now that, given two
matrices, A, B with À positive definite and B non-singular, then
BAB T is also positive definite (see, e.g., Voyevodin (1983, chap. 9, § 77)),
that the matrices MR and ML are positive definite. Then, standard matrix-
equation theory (see, e.g., Gantmacher (1977, vol. 1, chap. VIII, §3))
yields.

LEMMA 2.3.1 : For every X s= 0 matrix équation (18) possesses a unique
solution.

Next, we investigate the existence of A for which conditions (llb) are

fulfilled. For this purpose, it will suffice to study the properties of

Iacc(Zf(X)) as a function of A. To start with, we set /acc in the form

acc(Z^(A )) = 2̂  (Z(/(A ) ep Zd{X ) ej) , Z^(A ) = Zy(A ) — Z , (22)

where (., . ) dénotes the inner product in RM~2 and eJ9 7 = 1, ...,
M - 2 , is an orthonormal basis in RM~2 given by ex = {1,0, ...,0 } r ,
e2 = {0, 1, ..., 0 } T and so on. Differentiating (22) with respect to A, we find
after some straightforward matrix algebra

dIacc(Zf(X))/dX = - 2 £ (*(CdeJ9£dej) +

+ {ldeJ,MLCdeJ) + ejMR(£j^d)eJ), (23)

where ^ = ( s y # + A/AC)"1 Zd, with M being a linear operator acting on the
space of (N — 2) x (M — 2) rectangular matrices according to the formula
JKm = 9MR + ML; and /the identity matrix of dimension K X K . Recalling
that ML and MR are positive definite matrices, we readily conclude that the
right-hand side of équation (23) is négative for A s* 0. We thus have that
/acc is a strictly decreasing function of A on [0, oo], which in turn leads to

LEMMA 2.3.2 : There exists a unique X in [0, oo ] satisfying inequalities
(lié). If /aoc(Zy(0)) =s0 then X = 0. Otherwise, X is found by applying a
standard Newton-Raphson method to the System of équations

Lemmas 2.3.1 and 2.3.2 yield.

vol 26, n° 1, 1992
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THEOREM 2,3.2 : The curve mesh fairing problem admits of a unique
cubic spline solution h* in the C2 spline subspace V* of V.

The question naturally arises whether h* coincides with the solution h ôf
the curve mesh fairing problem in the space V, whose existence and
uniqueness has been established in Section 2.2. To investigate this question
we appeal to the following identity

'fairC^* ~ flO + A/accC** ~ 9 ) + Jfair(*O + A/acc(/**) =
A/acc(0), (24)

which is valid for any curve-mesh g e X. The above identity is but the first
intégral relation for the fairing cubic-spline curve-meshes (see Kaklis (1989,
App. 2)). From (24) it is readily inferred that h* minimizes I^\X{Q) +
À7inf(#) in F. On the other hand, h* satisfies by construction the inequality
constraints (116). Theorem 2.2.1 then implies that h* = h.

2.4. Computational Ex périment s

The fairing method developed in Sections 2.2 and 2.3 has been submitted
to extensive Monte Carlo expérimentation. These experiments have been
carried out along the following lines. First, an orthogonal curve mesh
hiâ, henceforth referred to as the idéal curve mesh, is drawn from an idéal
(= noise free) and smooth surface sid defined on a rectangular domain in the
(x,j)-plane. Second, using a Gaussian pseudo-random deviate generator
we insert noise of specifled standard déviation a to the z-components of the
interior data. The so obtained noisy data are then interpolated by the so-
called noisy curve mesh hm which consists of C2 cubic splines satisfying the
type-I (or-II') boundary constraints induced by the idéal surface. Finally,
the noisy data are faired by constructing the faired curve mesh h, as
described in the preceding Section 2.3.

Figure 1 contains the graphical output of a Monte Carlo experiment with
the ship-like C1 surface z = *id)Ship(x, y) = f(x)g(y)9 0 ^ x ^ 12,
0 =s y =s 2, with ƒ (x) - 5 for 0 *= JC, = x/12 ^ 0.4, ƒ (x) « 2.5 -
23.15(x! - 1.3)(JC! - 0 . 4 ) 2 for 0.4 ^ ^ =s 1 and g (y) = 1 - (1 -yx)

10 for
0 ^yx = y/2 === 1 (see Kuo (1971, chap. 3)). The chosen idéal curve mesh
consists of 40 curves (20 uniformly spaced curves along the x- and the y-
direction). Furthermore, a = 0.01, s = O~2(K — \Jl K ) with K = 18 x 18
and boundary constraints of type I have been imposed, the required first-
order boundary derivatives being calculated using z ~ sid ship(*, y). Finally,
A = 1 706.

The fairing criterion formulated in Section 2.2 can be easily extended to
less structured (= scattered) data sets whose spatial distribution is, ho wever,
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