
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

H.-P. SEIDEL
New algorithms and techniques for computing
with geometrically continuous spline curves
of arbitrary degree
Modélisation mathématique et analyse numérique, tome 26, no 1
(1992), p. 149-176
<http://www.numdam.org/item?id=M2AN_1992__26_1_149_0>

© AFCET, 1992, tous droits réservés.

L’accès aux archives de la revue « Modélisation mathématique et analyse
numérique » implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/legal.php). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1992__26_1_149_0
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


r r f n m MATMEMATICAIMOOEUJHGANONUMERICALAHALYSIS
j / J . M i j MOOtUSATTONMATHeMATWOEETAKAiVSEWMÉRJOÜÊ

(Vo l 26, n° 1, 1992, p 149 à 176)

NEW ALGORITHMS AND TECHNIQUES FOR COMPUTING
WITH GEOMETRICALLY CONTINUOUS SPLINE CURVES

OF ARBITRARY DEGREE (*)

by H.-P. SEIDEL O

Abstract — The concept of universal sphnes provides new techniques for Computing with
geometncally continuous sphne curves of arbitrary degree These techniques lead to new
algonthms for computmg bot h the sphne control points and the Bezter points, for Computing
locally supported basis functions, and for knot insertion As a resuit we obtain a generahzation of
polar forms to geometncally continuous sphne curves The presented algonthms have been coded
in Maple and concrete examples illustrate the approach Maple output can be stored in look-up
tables and allows the inclusion of geometncally continuous sphne curves in interactive
applications

Catégories and Subject Descriptors : 1.3.5 [Computer Graphics] Computational Geometry
and Object Modelhng - curve, surface, sohd, and object représentations

General Terms : Algonthms, Design
Additional Key Words and Phrases : Bézier point, blossom, de Boor algonthm, B-sphne,

3-sphne, connection matrix, control point, geometrie continuity, knot insertion, knot vector,
osculating flat, polar form, sphne control point, universal sphne.

Resumé — Nouveaux algorithmes et techniques pour calculer avec des courbes sphnes
géométriquement continues de degrés arbitraires La notion de Sphne universel fournit de
nouvelles techniques pour le calcul avec des courbes sphnes géométriquement continues de
degrés arbitraires Ces techniques mènent à de nouveaux algorithmes pour calculer les points
de contrôle du sphne et ceux de Bézier, les fonctions de bases à support local et les insertions
de nœuds Comme conséquence nous obtenons une généralisation des formes polaires aux
courbes sphnes à continuité géométrique Les algorithmes exposés ont été codés en « Maple »
et des exemples concrets illustrent la démarche Les sorties Maple peuvent être rangées dans
des tableaux de recherche et permettent V insertion de sphne géométriquement continues dans
des applications interactives
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Council of Canada through Strategie Operatmg Grant STR0040527
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150 H.-P. SEIDEL

1. INTRODUCTION

During the last decade, geometrically continuous spline curves have
received considérable attention among the graphies and CAGD communi-
ties. However, up to now, algorithms for manipulating geometrically
continuous spline curves of arbitrary degree have not been available. While
it is known that B-spline-like basis functions exist for geometrically
continuous spline curves of arbitrary degree [27], [37], this lack of
algorithms has so far prevented their use in practical applications. In
particular, algorithms for constructing the Bézier points from the given
spline control points, and algorithms for knot insertion, have been missing.

Recently, such algorithms have been developed in [62]. The development
is based on the new concept of universal splines and yields geometrie
constructions for both the spline control points and the Bézier points, as
well as new algorithms for constructing locally supported basis functions and
for knot insertion. As a resuit of this development one obtains a
generalization of the polar form of a i?-spline to geometrically continuous
spline curves.

This paper reviews the techniques and algorithms given in [62] and
augments the présentation in [62] by a more detailed discussion of some
implementational issues in computing the Bézier points of a geometrically
continuous spline curve from the given control points. The paper is
organized as follows : Section 2 gives a brief introduction to geometrie
continuity and sets up our notation. Section 3 introduces the concept of
universal splines, which is essential for the constructions that. foliow.
Section 4 présents a geometrie construction for the spline control points of a
geometrically continuous spline curve and generalizes the polar form of a B-
spline to spline curves with geometrie continuity. Section 5 shows how to
compute the Bézier points of a geometrically continuous spline from the
given control points and how to compute locally supported basis functions.
Section 6 présents an algorithm for knot insertion and generalizes the de
Boor algorithm for the évaluation of a l?-spline to geometrically continuous
spline curves. Section 7 discusses some details of our Maple implementation.
Section 8 contains concluding remarks and points out directions for further
research.

2. GEOMETRIC CONTINUITY

Consider a strictly increasing séquence £ = (xy-)jîj °f rea^ numbers. A
spline F of degree n over f is a continuous pieeewise polynomial of degree
n on the interval [x$, xç + x] with breakpoints Xj such that the derivatives
from the left and the derivatives from the right at Xj are related to each

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



GEOMETRICALLY CONTINUOUS SPLINE CURVBS 151'

other. One way to specify this relationship between right and left derivatives
is by means of connection matrices : Let :

and

Dk
+ F(u) := OF; (II), Ff; (M), ..., F f >(«))'

Dk_ F{u) .« (FL (u), Fl (M), ..., F <*>(M))'

(1)

(2)

be the column vectors that contain the first k derivatives of F from the right
and from the left, respectively. The équation

sets up a linear connection between the right and left derivatives of the
spline curve F at the breakpoints Xj. The k x k -matrix Cj is therefore called
a connection matrix.

If the connection matrix

C = (4)

is the identity matrix then F is parametrically Cfc-continuous. If

c =
a a2

Pi P\
P3 ^ P \ Pi

, P (5)

is a so-called j8-matrix [1], [3], [5], [22], [23], [33] then F is geometrically
Gfc-continuous. In other words : F can be reparametrized to obtain a
Cfe-parametrization without altering the shape of the curve. If

C =

\

I

(6)

is lower tr iangular with cti = c\x then F is called Frenet-f rame or
i^ -con t inuous . Addit ional information on connection matr ices is given in
[1], [23], [27], [34], [32], [37], [38], [40], [42], [44], [53]. Following the
standard convention [27], [37] we will assume throughout that the lower
triangular connection matrices Cj are nonsingular and totally positive, but
otherwise arbitrary.

vol. 26, n° 1, 1992



152 H.-P. SEIDEL

In order to specify the order of continuity k at the breakpoints, knot
multiplicities are introduced : If a breakpoint Xj is listed with multiplicity
jjij we require that the fïrst (n - ^j) derivatives of F from the left and from
the right are constrained by Cj. In other words : C; is an
(n — JA j) x (n - /*,^-matrix. The complete séquence of breakpoints, inclu-
ding multiplicities, is called the knot vector T. Using the Standard
convention of (n + 1 )-fold end knots it is easy to see that the knot vector

T= ( x p ^ - x Q, x^.jjc i, - , -y t^-^U X f ^ b ^ . ^ u ij - (ti)ïto+X (7)
n-\- 1 M-i Pi « + 1

can be indexed by / from 0 to n + m + 1 with

Xo Xi X2 X\

Xo X\ X2 Xi

Figure 1. — Breakpoints, knots, and connection matrices.

If a knot vector T = (?ï)rJ"o"+1 a n d a séquence of connection matrices
(CJ)J = l at the interior breakpoints xu ..., x 2 are given (see fig. 1) we will
dénote by

srd(T9 c) = srd((tdT+s + \ (^)y = i) (9)

the corresponding space of spline curves in Rd. For d — 1 we get e.g. real-
valued splines, for d = 2 we get splines in the plane, for d = 3 we get splines
in R3, etc.

As shown in [27] and [37], the total positivity of the connection matrices
(Cj)j = l impiies the existence of ^-spline-like basis functions N"(u)9

i = 0, ..., m satisfying the following properties :

JV"(M) = 0 for u i (ti9 ti + n+l) (minimal support) (10)

iV7(M)>0 for u e (ti9ti + n+l) (positivity) (11)

£ Nï(u) = 1 (partition of unity) . (12)
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 153

Hence, every spline curve Fe £f d{T, C) has a unique représentation

F(u)= ^N:(u).dt. (13)
i = 0

The coefficients dt e M.d are called control points.
Setting higher coordinates to 0 we obtain a natural inclusion

, C) c S?Z(T9 C) c ... , (14)

and we dénote by S?(T, C) the union of all these spaces, i.e.

{ J ) . (15)

Thus Sf{T,C) contains all spline curves over a given knot vector
T with a given séquence of connection matrices, no matter what dimension
space these curves lie in.

3. UNIVERSAL SPLINES

In this section we show that the study of the whole spline space
T, C ) can be reduced to the study of a single spline curve F in

, C). At first it seems surprising that the study of the infïnitely many
curves in S?(T,C) can be reduced to the study of the single curve
F. The fundamental insight arises from the observation that S?(T,C) is
closed under affine maps : If F is an arbitrary spline curve in Sf (T, C ), then
every image of F under an affine map 0 will again be a spline in

All we have to do, therefore, is find a spline F in SP(T,C) with the
property that any other spline F in Sf ( T, C ) is an image of F under a
unique affine map 0, i.e. that there exists a unique affine map

<P : Aff ( iO^Aff (F) (16)

satisfying

ƒ•(!#)= # ( / ( M ) ) , (17)

where

Aff (ƒ•)= span {F(u)\ue [*b,*f + 1]} (18)

dénotes the affine space that is spanned by the points on the curve

vol. 26, n° 1, 1992



154 H.-P. SEIDEL

F, Such an F is called a universal spline for S^(T, C). It will turn out that
universal splines always exist and are essentially unique. In order to gain
insight into their construction we first look at polynomials :

EXAMPLE 3.1 (Normal Curve) : Let 0>n be the space of all degree n
polynomials. We consider the Bézier curve

F{u) = £ BRu) . bk (19)
A; = 0

in W1 + l whose Bézier points bk are given by the unit vectors in Mn + 1, i.e.

£* .« (0, ..., 0, 1 , 0 , . . . ,0 ) , * = 0 , . . . , n . .(20)

I
k

Then F is a polynomial curve of degree n in W1 + l wit h the proper ty that any
other degree n polynomial F is an image of F under a unique affine map <P :
If the Bézier points of F are denoted by bki the affine map <P :
Aff ( / ) - Aff (F) is given by

bk, * = 0, ...,*. (21)

Therefore F is universal for the space êr71 of all degree n polynomials. •

This observation has been exploited in a different context in [63] for a
geometrie characterization of cubics in the plane. The foliowing algorithm
generalizes the above construction from polynomials to splines :

ALGORITHM 3.2 (Universal spline in Bézier form) : Given a strictly
increasing séquence (xj)j ZQ of breakpoints, a series (JAJ)* = Y of multiplicities,
the corresponding knot vector

T= (

n + 1

£

wit h m = n+ £ ft j « as, given by (8),' and a series (C7)j= 1 of connection
j = i

matrices, the algorithm sets up the universal spline F of if (71, C) as a
piecewise Bézier curve in Mm + l.

• Since we have adopted the convention of using (n + 1 )-fold end knots
t0 ~ . . . = tn and tm + ! = • •. = tn + m + la the first non-trivial segment of
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 155

F is the n-th segment Fn over [̂ o, x t] — [tn, tn + l] with Bézier points

bn 0, ..., bnn. Motivated by the previous example, we set

£ B j f c t e ( 0 , . . . , 0 , l , 0 , . . . , 0 ) , fc = 0 , . . . , / i . (23)

Suppose that the segments Fm Fn + tll> ..., F n + y M. have already been
j = \

h {• h r- / , h
constructed. Then the Bézier points bn+ £ ^ O ï ..., 6 n + £ ^ „ of Fn+ ^ ^.

y = i 7 = 1 y = i

over //ze nex* interval [xh, xh+l] are defined as follows :

— For k = 0, ..., n — yu. A //ze points bn+ y M >Jk öre defined in such a way

that the derivatives F&l V M.(xA) an^ Êfl ^ ^ (xA) satisfy équation (3)

/e>r 1 ^k ^n — JX h.

— For k = n-fjLh+l, ..., n the points bn, f „ are defined as
-t-i ]'

bn+ j ; ^ i f c - ( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) . • (24)

Two examples should clarify this approach :

EXAMPLE 3.3 (C 2-contimious cubics) : We consider a cubic spline with
breakpoints

x0 = 0, xx = 1, x2 = 2, x3 - 4, x4 = 5, x5 = 6 (25)

of multiplicity

^o = 4. Mi = M2 = M3 = M4 = U M 5 = 4 (26)

Z/Ï<3? ?/ïe corresponding knot vector T is given by

T = (r,)-Lo = (0, 0, 0, 0, 1, 2, 4, 5, 6, 6, 6, 6) (27)

fft n = 3,m = 7. The (n - /iy-) x (« — JX^-connection matrices Cj at
are given by

vol. 26, n° 1, 1992
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156 H.-P. SEIDEL

i.e. the resulting spline is parametrically C2-continuous. The Bézier points

6, 2>

^7, is 7̂,2> ^7,3 o f the universal spline F in Bézier représentation are given by
the rows of the following table :

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
1
0

- 2
- 12

0
6

35/2
0

-35/2
- 6 4

0

0
0
1
0

- 1
- 4
0
8

44
0

- 2 2
- 6 4

0
64
234

0

0
0
0
1
2
4
0

- 8
- 4 0

0
20
58
0

- 5 8
-212

0

0
0
0
0
0
0
1
3
9
0

-9 /2
-51/4

0
51/4
93/2

0

0
0
0
0
0
0
0
0
0
1

3/2
9/4
0

-9 /4
- 15/2

0

0
0
0
0
0
0
0
0
0
0
0
0
1
2

- 4
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

(29)

For the Bézier points b5 j and b5^, e.g., condition (3) translates int o

b5 i = 3 . &4 3 — 2 . b4 2

and

= (0, - 2, 8, - 8, 3, 05 0, 0) e M

5 2 = 9 . £4) 3 - 12 . £4 2 + 4 . b4t ï

= (0 , -12 ,44 , -40 ,9 ,0 ,0 ,0 )6 1

(30)

(31)

(note that the length A5 of the interval from t5 to t6 is given by
A5 = t6 — t5 = 2), while the Bézier point b5 3 is unconstrained and is defined
as

5)3 = (0,0,0,0,0, 1,0,0) el (32)

EXAMPLE 3.4 (G 2-continuous cubic) : Again we consider a cubic spline
with breakpoints

x0 = 0, xx = 1, x2 = 25 x3 = 4, x4 = 5, x5 = 6 (33)
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 157

of multiplicity

= 4

//ire corresponding knot vector T is given by

T = (*,.)}!. o = (0, 0, 0, 0, 1, 2, 4, 5, 6, 6, 6, 6) (35)

n = 3, w = 7. 77ze (n — JJLj) x (n — fxj)-connection matrices Cj at
are given by

and

(36)

(37)

z.e. these splines are geometrically G2-continuous. The Bézier points

^3,0> *3,1» ^ 3 , 2 ' ^3,3» ^4,1» ^4,2» ^ 4 , 3 ' ^5, 1> ^5,2? ^5,3» *6 , 1> ^ 6 , 2 ' ^6,3?

^7, ï» 7̂,2» 7̂,3» of the universal spline F in Bézier représentation are given by
the rows of the following table :

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
1
0

- 2
- 5 2

0
26

155/2
0

- 155/2
- 2 8 4

0

0
0
1
0

- 1
- 4

0
8

204
0

- 102
- 3 0 4

0
304
1114

0

0
0
0
1
2
4
0

- 8
- 2 0 0

0
100
298

0
- 2 9 8
- 1092

0

0
0
0
0
0
0
1
3

49
0

- 4 9 / 2
- 291/4

0
291/4
533/2

0

0
0
0
0
0
0
0
0
0
1

3/2
9/4
0

- 9 / 4
- 1 5 / 2

0

0
0
0
0
0
0
0
0
0
0
0
0
1
2
4
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

(38)

In this example the Bézier point bs j is again given as

bs, i = 3 . b4t 3 - 2 . b4 2

= (0, - 2, 8, - 8, 3, 0, 0, 0) e R8
(39)

vol. 26, n° 1, 1992



158 H.-P. SEIDEL

while b5 2 is defined as

b5a = 49 . 6^3 - 52 . bAA + 4 . è 4 ) 1

= (O, - 52, 204, - 200, 49, O, O, O ) e i 8 .

TTze Bézier point ê5 3 f5 again unconstrained and is set to

b5t 3 = (O, O, O, O, O, 1, O, 0) e IR8. • (41)

Algorithm 4.2 constructs a universal spline / in Bézier form. There are
other ways to construct universal splines. It is easily shown that F is
universal for S?(T, C) iff dim Aff (F) = m. Moreover, any two universal
splines Fx and F2 are equivalent in the following sense : there exists a unique
affine map

<Pli2:Aff ( A ) - A f f (F2) (42)

that is 1 - 1 and onto and that maps the curve Fx onto the curve

It should be clear from the preceding discussion that properties of the
members of a spline space ïf{T> C) that are invariant under affine
transformations can be detected simply by looking at the universal spline
F for S?{T9 C ). Hence a spïine F e S?(T9C) will e.g. salisfy the convex
huil and/or variation diminishing property iff this property is satisfied by the
universal spline F for 6^(T, C). This is rather straightforward.

4. A GEOMETRIC CONSTRUCTION FOR SPLINE CONTROL POINTS

As mentioned in Section 2, the total positivity of the connection matrices
implies the existence of 2?-spline-like basis fonctions N"{u) such that every
spline curve F e Sf (T, C) has a unique représentation

m

F(u) = £ N1{u) . d,. (43)
t = 0

where the coefficients d{ e U.d are the control points. In this section we use
universal splines to construct these control points of a geometrically
continuous spline curve by intersecting osculating flats. This construction
does not work for arbitrary spline curves since arbitrary spline curves may
be degenerate. Ho wever, this construction is al ways guaranteed to work for
universal splines. Since any spline F e Sf {T, C ) is the image of a universal
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 159

spline F for 5^ (T3 C ) under a unique affine map <P, this construction can be
used to construct the control points of a given geometrically continuous
spline curve of any degree.

We start with the définition of osculating flats : let f b e a differentiable
curve in Md. The fïrst k derivative vectors F'{u), F"(u), ..., F ^k\u) span a
linear subspace T\ F of Md. lts translate

(44)

Osc2F{l)

/(0,0,1) J

/(o, o,o) A

OsClF(l)

OsClF{0)
Osc2F(Q)

Figure 2. — Osculating flats and Bézier points for a cubic Bézier curve.

is an affine subspace of M.d and is called the k-th osculating flat of
F at u. Similarly, if F is differentiable from the left or right, then the first
k left, respectively right, derivatives span a linear subspace T„ F'_,
respectively T„ F+, and its translate

respectively

(45)

(46)

is again an affine subspace of M.d.

If F is a polynomial its osculating flats can easily be represented in terms
of its Bézier points : in fact, the fc-th osculating flat of F at 0, respectively at

vol. 26, n9 1, 1992



160 H.-P. SEIDEL

1, is simply the affine space spanned by its first, respectively last,
k + 1 Bézier points, Le.

OsckF{0)= { £ atb
l

and

t=n-k

It has been observed e.g. in [55] that the Bézier points of a non-
degenerate polynomial F as in Example 3.1 can be constructed by
intersecting osculating flats (see fig. 2). In fact, in this situation the A:-th
Bézier point bk is given as

bk = O s c ^ ( 0 ) H Oscn_* / ( l ) . (49)

More generally : let

w i t n M i + • • • + M- A = « (50)

be a séquence of real numbers. Then for a non-degenerate polynomial
F as in Example 4.1 the expression

is always well defined. It follows immediately from this définition that the
map ƒ is symmetrie, and that f satisfies f(u,...,u)=F(u).In addition, it
can be shown that ƒ is affine in every argument. Therefore ƒ is the polar
form or blossom of F [55].

Unfortunately, these définitions break down if the polynomial F is
degenerate in the sense that its Bézier points are affmely dependent. In fact,
the above construction even fails for a simple degree 3 poiynomial in the
plane, since all its osculating planes are equal and hence do not intersect
properly. Therefore this method of intersecting osculating flats is rejected in
[55] for the study of splines.

It turns out, however, that the above construction will always work for
universal splines. In fact, universal splines have been set up in exactly such a
way as to guarantee that osculating fc-flats intersect properly. We are
therefore able to construct the control points of a universal spline
F simply by intersecting osculating flats. If the Bézier représentation of
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 161

F is known this amounts to nothing more than solving a System of linear
équations where the coefficients are given by the Bézier points. Details of
our Maple implementation are given in Section 7. The main results are
summarized in the following theorem :

THEOREM 4.1 : Let F be a universal spline of degree n for a spline space
S?(T9C). Then the following holds :

• Consider a subsequence (**+1, ..., t ?+n) = («,, ..., uu ..., uh9 ..., uh) of

an arbitrary knot vector refinement T* of T and define

Oscn_(liF+(ul) if j = 1

Oscn _ ̂  F(Uj) if 2^j^h-\ (52)

OscMcB

expression

is well'defïned.

• 7%e resulting map f is symmetrie in its n arguments and satisfies

/ ( M , . . . , M ) = / ( « ) . (54)

• If F is parametrically Cn ~ ̂  ̂ continuons at the knots tt then f is

multiaffine [56], [60], and hence is the polar form of F. For arbitrary

connection matrices f is multirational : More precisely : Given a subsequence

(**+i, ..., f *+„_i) of an arbitrary knot vector refinement T7* of T with
t* < **+ i, the points

are collinear, and the expression f(t*+ï, ..., t *, w, t *+ {, ..., t *+ „ _ ± ) zs
rational in u for u G [^, £^+ j].

spline control points d0, ..., dm of F are given by

!> • • • > ' , • + „ ) • ( 5 6 )

vol. 26, n 1, 1992



162 H.-P. SEIDEL

They are affinely independent andform an affine frame for the m-dimension-
al affine space Af f (F) as defined by (18). •

A full proof of Theorem 4.1 is given in [62]. Instead of repeating this
rather technical proof here we will illustrate the workings of Theorem 4.1 by
looking at the two concrete examples of the preceding section :

EXAMPLE 4.2 : We start with Example 3.3. The B-spline control points are
given as follows :

d0 = /(O, 0,0) =Osc0/(0)

dx =/(0,0, 1) =Osc!F(0) nOsc2 /(l)

d2 = /(O, 1,2) = Osc2/(0) nOsc2 /(l) nOsc2/(2)

d7 = /(6,6,6) = Osc0F(6).

Note again that intersecting osculating flats is nothing more than solving a
linear system of équations where the coefficients are given by the Bézier
points. We illustrate this procedure by explicitly computing the control points
d2 — / (O, 1, 2). Since ..., 0, 1, 2, ... is a subsequence of the original knot
vector T, the control point d2 satisfies

d2 = / ( 0 , 1,2) = Osc2 / ( 0 ) n Osc2 F(2), (57)

and (47), (48) yield

O s c 2 / ( 0 ) = span {£3j0, 63>1, è3 2} (58)

and

Osc2 F(2) = span {b4> u bA2i b4>3) . (59)

Therefore d2 satisfies both

d2 = bxo . r0 + b3 ! . rx + bX2 . r2, r0 + rt + r2 = 1 (60)

4 2
s2 + 53 = 1 . (61)
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GEOMETRICALLY CONTINUOUS SPLINE CURVES

Using the results of Table (29) together with the condition

r0 + r\ + r2 = 1

this yields the following system of équations :
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(62)

\\

0
0
0
0

U

0
1
0
0
0
1

0
0
1
0
0
1

0
0
1
-2
0
0

0
-1
4
-4
0
0

0
0
0
0
-1
0

/M
o
o
o
o

(63)

Solving for r0, rl5 r2ï su s2, s3 we obtain

ro = O, rj = - 1, r 2 = 2

and

and d2 is given as

sx = 2, s2 = - 1,

= O .
3 2

- ( O , - 1 ,2 ,0 ,0 ,0 ,0 ,0) E

(64)

(65)

(66)

(67)

The results below have been obtained using the Hnalg package of Maple [18].
The control points d0, ..., d7 are given by the rows of the following table

1
0
0
0
0
0
0
0

0
1

-1
3

- 17
29
-64
0

0
0
2

-10
62

- 106
234
0

0
0
0
8

-56
96

-212
0

0
0
0
0
12
-21
93/2
0

0
0
0
0
0
3

-15/2
0

0
0
0
0
0
0
4
0

0
0
0
0
0
0
0
1

(68)

Note that it is obvious from this table that the B-spline control points

d0, .„, dj of F are in f act affinely independent. M

EXAMPLE 4.3 : Next we consider the /3-spline of Example 3.4. As suggested
by Theorem 4.1 the table of p-spline control points below shows the same
pattern as the corresponding table in the previous example. Again, the f3-
spline control points d0, ..., J7 are given by the rows of the following table :
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1
0
0
0
0
0
0
0

0
1
-1
29/23
-77
129

-284
0

0
0
2

- 110/23

302
-506
1114

0

H.-P. SEIDEL

0
0
0

104/23
-296
496

- 1092
0

0
0
0
0
72

- 121
533/2
0

0
0
0
0
0
3

- 15/2
0

0
0
0
0
0
0
4
0

0
0
0
0
0
0
0
1

(69)

= f (0,1,2)

Figure 3. — An affine image F of the universal spline F of Example 4.3. Note particularly the
spline control points d0,..., d 7 and the Bézier pointe bs 0 — /*(2, 2, 2 ), bs 1 = ƒ (2, 2, 4 ),
b52 = f (2, 4, 4 ) and * 5 3 = ƒ (4, 4, 4 ).

We conclude this section by pointing out that the computations above are
invariant under affine maps : Given an arbitrary spline F = 0 (F) we can
therefore compute its spline control points d0,..., d m by simply applying the
affine map <P to the control points Jo, ..., dm of the universal spline
F9 i.e.

dt - <P(dt), i = 0, ..., m. (70)

5. COMPUTING THE BÉZIER POINTS

A suitable method for rendering £-splines is to convert from the /3-spline
représentation to the représentation as a piecewise Bézier curve : Once the
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