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AN ITERATIVE CLOUGH-TOCHER INTERPOLANT

by G. FARIN O and P. KASHYAP O

Abstract. — We present a methodfor scattered data interpolation that is based on the classical
Clough-Tocher element in Bézier formulation. It uses a modified form of the standard element in
an itérative way.

Résumé. — Un interpolant itératif du type « Clough-Tocher ». Nous présentons une méthode
pour l'interpolation de données dispersées basée sur l'élément classique de Clough-Tocher sous
sa forme de Bézier. Cette méthode utilise une modification itérative de la formulation standard.

1. INTRODUCTION

Clough-Tocher interpolants were inventée! as a tool for the finite element
method [5], but for some years they have been used in the field of CAGD
(Computer Aided Geometrie Design) in the area of scattered data
interpolation [1], [7], [12].

A Clough-Tocher interpolant produces a C1 pieeewise polynomial
surface, defmed over a triangulation of scattered data sites. Previously the
original interpolant was modified, [7], to increase the smoothness of the
overall interpolant by using the available degrees of freedom. In this paper
we use an itérative scheme to further increase the smoothness of the overall
interpolant.

The itérative scheme is then compared to the other methods by using an
interrogation technique which simulâtes reflection lines [7].

It is assumed that the reader is familiar with the theory of Bézier
triangular patches, as outlined in [8], [6]. An w-th degree Bernstein-Bézier
triangular patch is of the form

6»(u) = £ b.BlXn) (1)
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where the Bernstein polynomials B"(u) are defîned by-

w
k.

= n

the b{ are Bézier ordinates which form the control net of the triangular
patch ; u = (u, v,w ) are the barycentric coordinates of the domain triangle,
and i = (i,j, k ) is a multi-index with | i | = i +j +k.

Now consider two adjacent domain triangles and Bézier nets defîned on
each of them ; we want to fïnd the conditions which the nets must satisfy in
order for the surface patches defîned by the two nets be C1 or
C2

Figure 1. — Continuity conditions of Bézier triangular patches :
top, C1 continuity, bottom, additional C2 continuity.

the C'1 case figure i (top) illustrâtes the resuit: the condition for
C l continuity of the interpolant is that the emphasized pairs of triangles
should be coplanar.

For the C2case : the emphasized pairs of triangles in figure 1 (bottom) are
constructed to be coplanar. Each of the extension points (marked points) as
found from the two triangles would have a différent z-value. The condition
for C2 continuity is that these two values be identical. These extension
points are analogous to the extension points used to defme C2 conditions for
spline curves in Bézier form, see [4] or [6].
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2. THE CLOUGH-TOCHER INTERPOLANT

Given the z-values and gradients over a set of triangulated data points, we
want a « good » (in terms of continuity) piecewise cubic interpolant over the
data set. As a fîrst approximation, the 9-parameter piecewise cubic
Bernstein-Bézier interpolant [8] can be used. Its 9 boundary ordinates (ail
bljk except 61,1,1) are determined from the data by univariate cubic
Hermite interpolation, the remaining ordinate is given by

* (̂  + ̂  + * + ̂  + ̂  + &

- g (&3, 0, 0 + ^0, 3, 0 + ^0, 0, 3 ) •

This choice of & 1,1,1 ensures quadratic précision.
This interpolant is only C° in gênerai, and needs to be modifled if one

desires an overall Cl smoothness. This can be done by splitting each triangle
in the given triangulation into three minitriangles (for an algorithm see [8]).
This subdivided domain now has enough degrees of freedom (twelve per
subdivided triangle instead of ten before subdivision) to allow for
C1 continuity of the overall interpolant.

Figure 2. — Cross boundary derivatives : the Bézier ordinates that
are invoived in the C1 and C2 conditions.

In figure 2, let C, P2i P3 and C', P3, P2 be the vertices of two adjacent
minitriangles (coming from two different macro triangles). Expressing
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center points C and C' in ternis of barycentric coordinates of opposite
triangles C', P3, P2 and C, P2, P?> respectively :

C =u' C H-17' P 3 +w' P2

and
C' = wC + vP2 + wP3 .

The C * conditions for adjacent Bézier triangles are fulfilled by the
subtriangle pair formed by c6, c9, c10 and c4., c10, c9 and pair c4,
c7, c8 and c6>, c8, c7 (same tangent plane). So the only condition for a
C1 patch is that the middle pair of subtriangles should be coplanar Le.,

c$ - uc5 + vc% + wc9 . (2)

This can be achieved by following the given scheme : chose a direction 1 (the
components tu t2* 3̂ a r e ^s barycentric représentation in terms of triangle
C, P2, P3), not parallel to the triangle edge P2P3. Then the directional
derivative of mini-cubic 0*x deflned over the niinitriangle C, P2, P3 is a
univariate quadratic Bézier polynomial with Bézier ordinates

c9 + î3 c10) , 3 (£! c5 + 12 c8 + f 3 c9) ,

C4+ 2̂̂ 7 + ^3^) •

We can fix the unknown c5 by choosing a linear variation for the directional
derivative. This choice can be expressed as

(ty C6 + î2 C9 + f 3 C10) " 2 (tx C, + ^ C8 + f 3 C9)
+ ^ iC 4 + £2c7 + f3c8) = 0, (3)

see [2]. The unknown C5 may be found from (2), or by an analogous
procedure for the other mini cubic ^ 2

 o v e r t n e niinitriangle C ',
P 3, F 2- It îs imperative the 1 dénotes the same direction both in
0>l and ^2- ^ n e waY OI^ d°ing tnis is by choosing 1 to be perpendicular to
edge P2, P3, although it makes the interpolant affinely variant (perpendicu-
lar lines, in gênerai do not map to perpendicular Unes in an affine
transformation).

After finding all three center points of the macro triangle, we can
compute the rest of the interior points by applying the C1 conditions four
times.

3. SMOOTHING THE INTERPOLANT

The Cl condition (2) has two unknowns, one of which can be fixed by
chosing the linear cross boundary derivative condition (3). This appears to
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be quite arbitrary and so in this section we describe conditions which would
improve the smoothness of the surface [7], In section 3, we observed that
C1 cubics over split triangles enjoy an extra degree of freedom (this is
manifested in (2) which has two unknowns in one équation). We can
improve upon condition (3) by trying to achieve

uc3 + vc5 + wc6 = uf c2 + v' c\ + w' c'5 (4)

and

UC2 + VC4 + WC5 = U' C3 + V' C*5 + W' C'6 , (5)

thereby hopefully minimizing the jump in the second derivative across the
boundary.

So we have a constrained minimization problern : minimize the sum of
errors in (4), (5) constrained by (2). We use the standard Lagrange
multiplier method to obtain

c'5 = (usi + uan + u2s2 + r3 au)/D

where

sx = 2(vr{ + wr2) , s2 = - 2(w' r} + v' r2)

and
rx = u' c'2 + y ' £4 — wc3 — wc§

r2 = w' C3 4- w ' Cg — uc2 — vc4

a,, =2(t ; 2
 + M;2)

aX2 — — 2(i?w' + wv' )

a22 = 2(w'2 + i;'2)

and the denominator

D = 2 uan + u2a22 + öii •

The unknown c5 then can be found from (2). After fixing the center points of
the macro triangle, the inner points are recomputed using the C1 conditions.

4. ITERATIVE IMPROVEMENT

In the previous section, the C2 error across the macro triangle was
reduced by adjusting the center points cs and c's ; based on the same idea, we
now present an itérative scheme which further improves the smoothness of
the overall interpolant by changing the inner points. These points can be
found either by :
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a) Form the control net over the macro triangle hy using the 9-parameter
interpolant, then subdivide it at the centroid into three subnets (use de-
Casteljau algorithm). The inner points are Bézier ordinates neighboring the
centroid. This interpolant is C00 over the macro triangle but only
C° across them.

b) Find the center points using the linearized cross boundary derivative
condition (2) ; the inner points are then found by using the Cx conditions in
the macro triangle. The resulting global interpolant is C2 at the centroid of
the macro triangle and C1 all over.

Neither of these two schemes produces the « best » C2 global interpolant.
So we see that minimization of C2 error (section 5) could yield smoother
surfaces if we could start with « better » inner points.

The itérative idea is based on the fact that after application of the
C2 error minimization scheme, the C2 error is reduced, hence the new inner
points are « better » than the old ones. Now using these « better » inner
points and once again applying the minimization scheme we can reduce the
C2 errors further.

The itérative improvement weakens the locality of the standard or of the
modified Clough-Tocher schemes : suppose just one data value were
nonzero. Using the standard Clough-Tocher scheme, ail triangular patches
sharing the corresponding data site would be nonzero. Using the modified
method, ail neighboring patches would be nonzero as well. With the
itérative method, one further layer of triangles is added per itération. This
graduai loss of locality may explain the apparent shape improvement of the
resulting surfaces ; the less local a scheme is, the more potential exists for
« ironing out » shape imperfections.

5. REFLECTION LINES

In order to judge the performance of different interpolation schemes, one
may print out errors relative to known test fonctions, one may compare
perspective views, or one may inspect contour plots. We have found that a
third method is far more powerful : this is the use of reflection unes. The
idea cornes from the automotive industry. Hère designers judge the
aesthetic appearance of a car body by placing it under parallel fluorescent
light bulbs. These reflect in the car surface, and instead of judging the car
body directly, one judges how the light sources reflect. Tiny imperfections
are détectable with this method. We use this method of quality inspection to
evaluate our new interpolants. For literature on reflection lines etc., see [8],
[3], [9], [10].

As shown in [8], the problem of fînding reflection lines of surfaces of the
form z = f(x,y) amounts to4 contouring a directional derivative of that
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Figure 3. — Reflection Unes : the original Clough-Tocher interpolant
with linearlzed cross-boundary derivatives.

Figure 4. — Reflection Unes : the modifïed Clough-Tocher interpolant
with no itérations.
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Figure 5. — Reflection Unes : the itéra ted Clough-Tocher interpolant
after ten itérations.

surface. Since we are using triangular cubic patches, its directional
derivatives are quadratic patches, the contours of which are conic sections
[11].

The test function that we used is :

ƒ O, y) = O - 0.3)3 + x(y - 0.3 )2 - 0.1 x

with exact gradients. The data sites consist of the corners of the unit square
with two additional points (0.4, 0.7) and (0.6, 0.6).

In figures 3, 4, 5, we can see that the boundaries of the minitriangles are
much more visible in the reflection Unes of the older methods, and in
gênerai the new scheme produces visually more pleasing (smoother)
reflection line patterns.

We are currently experimenting with a scheme that would, by suitably
adjusting control points within a macro-triangle, produce surfaces with the
promise of cubic précision. If successful, this research will be reported
elsewhere.
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