B.-Y. GUO
W.-M. CAO

Spectral-finite element method for compressible fluid flows

<http://www.numdam.org/item?id=M2AN_1992__26_4_469_0>
Abstract. — In this paper, a combined Fourier spectral-finite element method is proposed for solving \(n \)-dimensional \((n = 2, 3)\), semi-periodic compressible fluid flow problems. The strict error estimation, as well as the convergence rate, is presented.

Résumé. — Dans cet article, on propose une méthode combinant les approches spectrales (de type Fourier) et les éléments finis pour résoudre des problèmes semi-périodiques de fluides compressibles en dimensions 2 et 3. On obtient des majorations d’erreur, ainsi que la vitesse de convergence.

I. INTRODUCTION

\(n \)-dimensional \((n = 2, 3)\) compressible fluid flow problems satisfy the following equations \([1, 2]\):

\[
\begin{aligned}
\partial_t U^{(\ell)} + (U \cdot \nabla) U^{(\ell)} - \frac{1}{\rho} \partial_t (\kappa \nabla \cdot U) - \frac{1}{\rho} \sum_{j=1}^{n} \partial_j [\nu (\partial_j U^{(\ell)} + \partial_j U^{(j)})] &+ \\
+ \frac{1}{\rho} \partial_t p = f^{(\ell)}, \quad \ell = 1, \ldots, n,
\end{aligned}
\]

\[
\begin{aligned}
\partial_t T + (U \cdot \nabla) T - \frac{1}{\rho T S_T} (\nabla \cdot \mu \nabla) T - \frac{\nu}{2 \rho T S_T} \sum_{i,j=1}^{n} (\partial_i U^{(j)} + \partial_j U^{(i)})^2 &+ \\
- \frac{\kappa}{\rho T S_T} (\nabla \cdot U)^2 - \frac{\rho S_p}{S_T} (\nabla \cdot U) &+ \partial_t (U \cdot \nabla) \rho + \rho (\nabla \cdot U) = 0,
\end{aligned}
\]

\(\ell = 1, \ldots, n\).

(*) Received January 1990.
(1) Shanghai University of Science and Technology, Shanghai, China.
where \(\partial_t = \partial / \partial t, \partial_x = \partial / \partial x _t, U = (U_1, ..., U_n) \) is the velocity. \(T \) is the absolute temperature. \(\nu(T, \rho) \) is the viscous coefficient. \(\kappa(T, \rho) = \nu'(T, \rho) - \frac{2}{3} \nu(T, \rho) \), with \(\nu'(T, \rho) \) being the second viscous coefficient. \(\mu(T, \rho) \) is the coefficient of heat conduction. \(S(T, \rho) \) is the entropy, \(S_T = \partial S / \partial T, S_\rho = \partial S / \partial \rho \).

Under certain conditions, Tani [2] proved the local existence of the classical solution to (1.1). Much work has been done to the numerical solutions of this problem. The most classical one is the finite difference method [1, 3]. By using this method, Guo Ben-yu proposed a class of schemes to solve the periodic problem and the first kind boundary condition problem of (1.1), and proved the error estimations strictly [4, 5]. Finite element method is often used to solve (1.1) [6], too. This method is particularly suitable for problems with irregular domains. Recently, the Fourier spectral method has also been applied to solve the periodic solution of (1.1) [7]. However, for many practical problems, the boundary conditions are neither fully periodic nor fully nonperiodic. A appropriate strategy to tackle such problems is to combine the Fourier spectral method with finite difference method or finite element method. Now, there are a lot of papers devoted to the analysis of such combined methods [8-10]. The present authors once used the Fourier spectral-finite element method for solving the semi-periodic problems of incompressible fluid flow. The numerical results were quite encouraging [11-13].

In this paper, we continue the work of [11-13] by applying the Fourier spectral-finite element method to solve the semi-periodic problem of (1.1). Assume \(Q \subset \mathbb{R}^{n-1} \) is a polygonal domain (it is an open interval, when \(n = 2 \)). \(I = (0, 2 \pi) \),

\[
\Omega = Q \times I = \left\{ x = (x_1, ..., x_{n-1}, x_n) \mid (x_1, ..., x_{n-1}) \in Q, x_n \in I \right\}
\]

We consider the solution of (1.1) in the domain \((x, t) \in \Omega \times [0, t_0]\). We suppose that all the functions in (1.1) have the periodicity \(2 \pi \) in \(x_n \) direction, and that \(U \) and \(T \) satisfy the homogeneous first kind boundary conditions. These mean that

\[
\begin{align*}
\eta \big|_{x_n = 0} &= \eta \big|_{x_n = 2 \pi}, & \forall (x_1, ..., x_{n-1}, t) \in Q \times [0, t_0], & \eta = U, T, \rho, \\
\eta \big|_{(x_1, ..., x_{n-1}) \in \partial Q} &= 0, & \forall (x_n, t) \in I \times [0, t_0], & \eta = U, T.
\end{align*}
\]

Besides, we assume that the initial values of (1.1) are the following,

\[
\eta \big|_{t = 0} = \eta_0, \quad \eta = U, T, \rho.
\]

To avoid « negative density » (i.e. \(\rho < 0 \)), which is likely caused by the round off errors during the computations, and which generates a non-
physical solution and instabilize the computations, we adopt the idea of Guo Ben-yu [4, 5], i.e., we seek $\varphi = \ln \rho$ by (1.1) instead of calculating ρ directly. Besides, we assume the fluid satisfies the following equation of state,

\[p = R\rho T, \]

where R is a positive constant. Consequently (1.1) can be rewritten into the following form,

\[
\begin{align*}
\frac{\partial_t U^{(l)}}{L} + (U \cdot \nabla) U^{(l)} - e^{-\varphi} \nabla \cdot (\kappa \nabla \varphi) - \\
- e^{-\varphi} \sum_{j=1}^{n} \partial_j \left[\nu (\partial_j U^{(l)} + \partial_j U^{(l)}) \right] + R \partial_t T + R T \partial_t \varphi = f^{(l)}, \quad l = 1, \ldots, n, \\
\frac{\partial_t T}{L} + (U \cdot \nabla) T - e^{-\varphi} T^{-1} S_l^{-1} (\nabla \cdot \mu \nabla) T - \\
- \frac{1}{2} \nu e^{-\varphi} T^{-1} S_l^{-1} \sum_{l,j=1}^{n} (\partial_l U^{(l)} + \partial_j U^{(l)})^2 \\
- \kappa e^{-\varphi} T^{-1} S_l^{-1} (\nabla \cdot U)^2 - S_{\varphi} S_l^{-1} (\nabla \cdot U) = 0,
\end{align*}
\]

We suppose ν, μ, κ and s are sufficiently smooth to each of their variables, and there exist positive constants $B_0, B_1, B_2, \nu_0, \nu_1, \mu_0, \mu_1, \kappa_1, A_0, A_1, S_0, S_1, S_2, \Phi_0$ and Φ_1, such that for $B_0 < T < B_1$ and $|\varphi| \leq B_2$,

\[
\begin{align*}
\nu_0 < \nu < \nu_1, \quad \mu_0 < \mu < \mu_1, \quad |\kappa| < \kappa_1, \quad \min (nk + (n + 1) \nu, \nu) > A_0 \\
S_0 < S_T < S_1, \quad |S_{\varphi}| < S_2, \quad \Phi_0 < e^{-\varphi} < \Phi_1, \\
\frac{\partial \eta}{\partial z} \leq A_1, \quad \text{where} \quad \eta = \nu, \mu, \kappa, \nu, S_T, S_{\varphi}, \quad z = T, \varphi.
\end{align*}
\]

II. NOTATIONS

Suppose $\Omega \subset \mathbb{R}^m$ ($m = 1, 2$ or 3) is a bounded open domain, with its boundary being locally Lipschitz continuous. $p \geq 1$ and $s \geq 0$ are real numbers. We denote by $W^{s, p}(\Omega)$ the classical Sobolev spaces, with the norm $\| \cdot \|_{s, p, \Omega}$ and the semi-norm $| \cdot |_{s, p, \Omega}$ (see [14]). In particular, we set $H^1(\Omega) = W^{1, 2}(\Omega)$, $\| \cdot \|_{s, \Omega} = \| \cdot \|_{s, 2, \Omega}$, $| \cdot |_{s, \Omega} = | \cdot |_{s, 2, \Omega}$, and $L^p(\Omega) = W^{0, p}(\Omega)$, and we denote by $\| \cdot \|_{\Omega}$ and $(\cdot, \cdot)_{\Omega}$ the norm and the inner product of $L^2(\Omega)$. For simplicity, we shall omit the domain notations whenever $\Omega = \Omega$.

vol. 26, n° 4, 1992
Suppose \mathcal{B} is a Banach space, and $\vartheta \subset \mathbb{R}^1$ is an interval. We define the abstract measurable function spaces as follows:

\[L^2(\vartheta ; \mathcal{B}) = \left\{ \frac{\eta}{\eta} : \vartheta \rightarrow \mathcal{B}, \| \eta \|_{L^2(\vartheta ; \mathcal{B})} \right\} = \left\{ \left(\int_\vartheta \| \eta(t') \|_{\mathcal{B}}^2 dt' \right)^{1/2} < \infty \right\}, \]

\[H^1(\vartheta ; \mathcal{B}) = \left\{ \frac{\eta}{\eta} : \vartheta \rightarrow \mathcal{B}, \| \eta \|_{H^1(\vartheta ; \mathcal{B})} \right\} = \left\{ \left(\| \eta \|_{L^2(\vartheta ; \mathcal{B})}^2 + \| \frac{\partial \eta}{\partial t'} \|_{L^2(\vartheta ; \mathcal{B})}^2 \right)^{1/2} < \infty \right\}, \]

\[C(\vartheta ; \mathcal{B}) = \left\{ \frac{\eta}{\eta} : \vartheta \rightarrow \mathcal{B} \text{ is strongly continuous}, \| \eta \|_{C(\vartheta ; \mathcal{B})} \right\} = \max_{t' \in \vartheta} \| \eta(t') \| < \infty \}, \text{ etc.} \]

For $\alpha, \beta \geq 0$, we define the non-isotropic Sobolev spaces as follows [15],

\[H^{\alpha, \beta}(\Omega) = L^2(I ; H^\alpha(Q)) \cap H^\beta(I ; L^2(Q)), \]

\[X^{\alpha, \beta}(\Omega) = H^{\beta + 1}(I ; H^\alpha(Q)) \cap H^\beta(I ; H^{\alpha + 1}(Q)), \]

each equipped with the following norm, respectively,

\[\| \eta \|_{H^{\alpha, \beta}(\Omega)} = (\| \eta \|_{L^2(I ; H^\alpha(Q))}^2 + \| \eta \|_{H^\beta(I ; L^2(Q))}^2)^{1/2}, \]

\[\| \eta \|_{X^{\alpha, \beta}(\Omega)} = (\| \eta \|_{H^{\beta + 1}(I ; H^\alpha(Q))}^2 + \| \eta \|_{H^\beta(I ; H^{\alpha + 1}(Q))}^2)^{1/2}. \]

If $\alpha, \beta \geq 1$, we define furthermore that

\[Y^{\alpha, \beta}(\Omega) = H^{\alpha, \beta}(\Omega) \cap H^1(I ; H^{\alpha - 1}(Q)) \cap H^{\beta - 1}(I ; H^1(Q)), \]

equipped with the norm

\[\| \eta \|_{Y^{\alpha, \beta}(\Omega)} = (\| \eta \|_{H^{\alpha, \beta}(\Omega)}^2 + \| \eta \|_{H^1(I ; H^{\alpha - 1}(Q))}^2 + \| \eta \|_{H^{\beta - 1}(I ; H^1(Q))}^2)^{1/2}. \]

Define $C^\infty_0(\Omega)$ be the set of infinitely differentiable functions on Ω, which have the periodicity 2π in x_n direction. We denote by $H^s_p(\Omega)$, $H^{\alpha, \beta}_p(\Omega)$, $X^{\alpha, \beta}_p(\Omega)$ and $Y^{\alpha, \beta}_p(\Omega)$ the closure of $C^\infty_0(\Omega)$ in $H^s(\Omega)$, $H^{\alpha, \beta}(\Omega)$, $X^{\alpha, \beta}(\Omega)$ and $Y^{\alpha, \beta}(\Omega)$, respectively. Besides, we set $H^{s}_0(\Omega) = H^s(\Omega) \cap L^2(I ; H^0(\Omega))$, $Y^{\alpha, \beta}_0(\Omega) = Y^{\alpha, \beta}(\Omega) \cap L^2(I ; H^0(\Omega))$.

Mathematical Modelling and Numerical Analysis
III. THE SCHEMES

By integration by parts, we have that the generalized solution of (1.2)-(1.4),

\[(U, T, \varphi) \in [C(0, t; H^1_{0, p}(\Omega) \cap C(\bar{\Omega}))^n \times \times [C(0, t; H^1_{0, p}(\Omega) \cap C(\bar{\Omega}))] \times [C(0, t; H^1_{0, p}(\Omega) \cap C(\bar{\Omega}))],

satisfy the following equations:

\[
\begin{cases}
(\partial_t U, v) + ([U \cdot \nabla] U, v) + R(\nabla T, v) + R(T \nabla \varphi, v) + \\
+ \sum_{\alpha = 1}^{3} J_{\alpha}(T, \varphi, U, v) = (f, v), \quad \forall v \in (H^1_{0, p}(\Omega))^n, \\
(\partial_t T, w) + ([U \cdot \nabla] T, w) + J_{4}(T, \varphi, w) + J_{5}(T, \varphi, U, w) = 0, \\
\forall w \in H^1_{0, p}(\Omega), \\
(\partial_t \varphi, \chi) + ([U \cdot \nabla] \varphi, \chi) + (\nabla \cdot U, \chi) = 0, \quad \forall \chi \in H^1_{p}(\Omega),
\end{cases}
\]

where

\[
\begin{align*}
J_1(T, \varphi, U, v) &= (\kappa(T, \varphi) \nabla \cdot U, \nabla \cdot (e^{-\varphi} v)), \\
J_2(T, \varphi, U, v) &= \sum_{t, j=1}^{n} (\nu(T, \varphi) \partial_j U^{(t)}, \partial_j (e^{-\varphi} v^{(t)})), \\
J_3(T, \varphi, U, v) &= \sum_{t, j=1}^{n} (\nu(T, \varphi) \partial_t U^{(j)}, \partial_j (e^{-\varphi} v^{(t)})), \\
J_4(T, \varphi, w) &= (\mu(T, \varphi) \nabla T, \nabla (e^{-\varphi} T^{-1} S_T^{-1} w)), \\
J_5(T, \varphi, U, w) &= -\left(\frac{1}{2} \nu e^{-\varphi} T^{-1} S_T^{-1} \sum_{t, j=1}^{n} (\partial_j U^{(t)} + \partial_t U^{(j)})^2 + \\
&\quad + \kappa e^{-\varphi} T^{-1} S_T^{-1}(\nabla \cdot U)^2 + S_{\varphi} S_T^{-1}(\nabla \cdot U), w \right).
\end{align*}
\]

Obviously, any classical solution of (1.2)-(1.4) satisfies (3.1). Now we construct the Fourier spectral-finite element approximation of (3.1). Let \(\{C_h\}_h \) be a regular family of finite triangulations of \(\bar{Q} \), such that

vol. 26, n° 4, 1992
\(\bar{Q} = \bigcup_{m=1}^{M_h} K_m \) (\(K_m \) are small intervals when \(n = 2 \), and small triangles when \(n = 3 \)). Define

\[
 h_m = \text{diam} \ (K_m),
\]
\[
 h'_m = \begin{cases}
 h_m, & \text{for } n = 2, \\
 \text{the diameter of the inscribed circle in } K_m, & \text{for } n = 3.
 \end{cases}
\]

\[
 h = \max_{1 \leq m \leq M_h} (h_m), \quad h' = \min_{1 \leq m \leq M_h} (h'_m).
\]

We assume in addition that \(\{C_h\} \) satisfies the « inverse assumption », i.e. there exists a positive constant \(d \), such that \(h/h' \leq d \), for any \(C_h \in \{C_h\} \).

Let \(k \geq 1 \) be an integer. We denote by \(\mathbb{P}_k \) the set of all the polynomials defined on \(\mathbb{R}^{n-1} \) with degree \(\leq k \). Define the subspaces for finite element approximations in non-periodic directions as follows:

\[
 X^k_h(Q) = \{ \eta \in \mathbb{P}_k, 1 \leq m \leq M_h \} \cap H^1(Q),
\]
\[
 X^k_{0,h}(Q) = X^k_h(Q) \cap H^1_0(Q).
\]

Let \(N \geq 1 \) be an integer, we define the subspaces for Fourier spectral approximations in periodic direction as follows:

\[
 S_N(I) = \left\{ \eta(x_n) = \sum_{|j| \leq N} \eta_j e^{ijx_n}, \eta_j = \overline{\eta}_{-j} \right\}.
\]

Let \(\delta = (h, N, k) \). By combining the above two kinds of approximations, we can approximate \(H^1_p(\Omega) \) and \(H^1_{0,p}(\Omega) \), by the following finite dimensional subspaces

\[
 V_\delta(\Omega) = X^k_h(\Omega) \otimes S_N(I), \quad V_{0,\delta}(\Omega) = X^k_{0,h}(\Omega) \otimes S_N(I).
\]

Let \(\tau \) be the mesh size of time, and \(\Theta_\tau = \left\{ t = \ell \tau/0 \leq \ell \leq \left[\frac{t_0}{\tau} \right] \right\} \). We approximate \(\delta_t \eta(t) \) by its first order difference quotient, i.e.

\[
 \eta_t(t) = \frac{1}{\tau} (\eta(t + \tau) - \eta(t)).
\]

The fully discrete Fourier spectral-finite element schemes for solving (2.4) is to find the pair

\[
 (u_\delta(t), T_\delta(t), \varphi_\delta(t)) \in [V_{0,\delta}(\Omega)]^n \times [V_{0,\delta}(\Omega)] \times [V_\delta(\Omega)] \text{ for } t \in \Theta_\tau,
\]

\(M^2 \) AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
satisfying
\[
(u_{\delta t}, v) + (u_{\delta} \cdot \nabla) u_{\delta}, v) + \nabla T_{\delta}, v) + R(T_{\delta}, \nabla \varphi_{\delta}, v) +
+ \sum_{m=1}^{3} J_{m}(T_{\delta}, \varphi_{\delta}, u_{\delta}, v) = (f, v), \quad \forall v \in [V_{0,\delta}(\Omega)]^{n},
\]
\[
(T_{\delta t}, w) + (u_{\delta} \cdot \nabla) T_{\delta}, w) + J_{4}(T_{\delta}, \varphi_{\delta}, w) +
+ J_{5}(T_{\delta}, \varphi_{\delta}, u_{\delta}, w) = 0, \quad \forall w \in V_{0,\delta}(\Omega),
\]
\[
(\varphi_{\delta t}, \chi) + (u_{\delta} \cdot \nabla) \varphi_{\delta}, \chi) + (\nabla \cdot u_{\delta}, \chi) = 0, \quad \forall \chi \in V_{\delta}(\Omega).
\]

We approximate the initial value condition (1.3) by its combined \(L^{2}\)-orthogonal projection in \(x_{n}\) direction and piecewise Lagrange's interpolation in other directions. More precisely, define \(P_{N}\) be the orthogonal projection operator from \(L^{2}(\Omega)\) onto \(S_{N}(I)\), and define \(\pi_{k}^{h}\) from \(C(\bar{\Omega})\) onto \(X_{k}^{h}(\Omega)\) be the piecewise Lagrange's interpolation operator of order \(k\), i.e., for any \(\xi \in C(\bar{\Omega}), \pi_{k}^{h} \xi |_{K_{m}}, 1 \leq m \leq M_{h},\) is the Lagrange's interpolation of order \(k\) of \(\xi |_{K_{m}}\), and \(\pi_{k}^{h} \xi\) is continuous in \(\bar{\Omega}\). The composite operator
\[
\mathcal{F}_{\delta} : L^{2}(I, C(\bar{\Omega})) \rightarrow V_{\delta}(\Omega)
\]
\[
\text{is defined as } \mathcal{F}_{\delta} = P_{N} \circ \pi_{k}^{h} = \pi_{h}^{k} \circ P_{N}, \text{ i.e., if } \eta(x) = \sum_{1}^{\infty} \eta_{j}(x_{1}, ..., x_{n-1}) e^{ijx_{n}} \in L^{2}(I ; C(\bar{\Omega})),
\]
\[
(\mathcal{F}_{\delta} \eta)(x) = \sum_{1}^{N} (\pi_{h}^{k} \eta_{j})(x_{1}, ..., x_{n-1}) e^{ijx_{n}}.
\]
Thus we approximate (1.3) in the following way:
\[
u_{\delta}(0) = \mathcal{F}_{\delta} U_{0}, \quad T_{\delta}(0) = \mathcal{F}_{\delta} T_{0}, \quad \varphi_{\delta}(0) = \mathcal{F}_{\delta} \varphi(0) = \mathcal{F}_{\delta} \ln \rho_{0}.
\]

Remark 1: We may approximate the initial condition by other methods, e.g., the interpolation over \(x_{1}, ..., x_{n-1}\) and \(x_{n}\) directions, the orthogonal projection with \(L^{2}(\Omega)\)-norm or \(H^{1}(\Omega)\)-norm, etc. Then the analysis below is still valid provided that these approximations are of the same convergence rates as \(\mathcal{F}_{\delta}\).

IV. LEMMAS

Lemma 1 [8, 12]: If \(\alpha > \frac{n-1}{2}, \beta \geq 0, \bar{\alpha} = \min (\alpha, k + 1),\) then there exists a positive constant \(C\) independent of \(h\) and \(N\), such that for all \(\eta \in H_{p}^{\alpha, \beta}(\Omega),\)
\[
\| \eta - \mathcal{F}_{\delta} \eta \| \leq C (h^{\bar{\alpha}} + N^{-\beta}) \| \eta \|_{H^{\alpha, \beta}(\Omega)}.
\]

vol. 26, n° 4, 1992
LEMMA 2 [8, 12]: If \(Nh \ll \text{Cst.}, \ \alpha > \frac{n-1}{2}, \ \alpha \geq 1, \ \beta \geq 1, \ \bar{\alpha} = \min (\alpha, k + 1) \), then there exists a positive constant \(C \) independent of \(h \) and \(N \), such that for all \(\eta \in Y^\alpha,\beta (\Omega) \),
\[
\| \eta - \mathcal{F}_\delta \eta \|_1 \leq C \left(h^{\bar{\alpha} - 1} + N^{1 - \beta} \right) \| \eta \|_{Y^\alpha,\beta (\Omega)}.
\]

LEMMA 3: If \(\alpha > \frac{n-1}{2}, \ \beta > 1/2 \), then there exists a positive constant \(C \) independent of \(h \) and \(N \), such that for all \(\eta \in X^\alpha,\beta (\Omega) \),
\[
\| \mathcal{F}_\delta \eta \|_{1, \infty} \leq C \| \eta \|_{X^\alpha,\beta (\Omega)}.
\]

Proof: Suppose that \(\eta (x) = \sum_{i=1}^{\infty} \eta_j (x_1, \ldots, x_{n-1}) e^{ij x_n} \in X^\alpha,\beta (\Omega) \).

Since \(\alpha > \frac{n-1}{2} \), we have from Sobolev’s embedding theorem that
\(X^\alpha,\beta (\Omega) \hookrightarrow L^2 (I, C (\bar{\Omega})) \) and hence,
\[
(\mathcal{F}_\delta \eta) (x) = \sum_{i=1}^{N} (\pi^k_h \eta_j) (x_1, \ldots, x_{n-1}) e^{ij x_n}.
\]

Moreover, since \(\{C_h\}_h \) is a regular family of triangulations of \(\bar{\Omega} \), and satisfies the «inverse assumption», we have by the error estimates of function interpolations in finite element method that [16]
\[
\| \pi^k_h \eta_j \|_{0, \infty, Q} \leq C \| \eta_j \|_{\alpha, Q},
\]
\[
| \pi^k_h \eta_j |_{1, \infty, Q} \leq C \| \eta_j \|_{1 + \alpha, Q}.
\]

Thus
\[
\| \mathcal{F}_\delta \eta \|_{1, \infty} \leq \sum_{i=1}^{N} \left\{ \left(1 + |j|\right) \| \pi^k_h \eta_j \|_{0, \infty, Q} + | \pi^k_h \eta_j |_{1, \infty, Q} \right\}
\]
\[
\leq C \sum_{i=1}^{N} \left\{ \left(1 + |j|\right) \| \eta_j \|_{\alpha, Q} + \| \eta_j \|_{1 + \alpha, Q} \right\}
\]
\[
\leq C \left\{ \sum_{i=1}^{N} \left[\left(1 + |j|^{2 + 2\beta} \right) \| \eta_j \|_{\alpha, Q}^2 + \left(1 + |j|^{2 \beta} \right) \| \eta_j \|_{1 + \alpha, Q}^2 \right]^{1/2} \right\}^{1/2}
\]
\[
\leq C \| \eta \|_{X^\alpha,\beta (\Omega)}.
\]
LEMMA 4: There exists a positive constant C_0 independent of h and N, such that for all $\eta \in V_\delta(\Omega),$

(i) $|\eta|^2 \leq (C_0 h^{-2} + N^2) \|\eta\|^2,$
(ii) $\|\eta\|_{0, \infty}^2 \leq C_0 h^{1-n} N \|\eta\|^2,$
(iii) $\|\eta\|_{0, \infty}^2 \leq C_0 \bar{D}(h, N) \|\eta\|_1^2,$

where

$$\bar{D}(h, N) = \begin{cases} \ln N, & \text{for } n = 2, \\ \frac{N}{\ln h}, & \text{for } n = 3. \end{cases}$$

Proof: The proof of conclusion (i) may be found in [11, 12]. Now we prove conclusion (ii). Suppose

$$\eta(x) = \sum_{1 \leq i \leq N} \eta_j(x_1, \ldots, x_{n-1}) e^{ijx_n},$$

then $\eta_j \in X_h^k(Q) \subset H^1(Q)$. Since $\{C_h\}_h$ is regular and satisfies the inverse assumption, we have from the inverse inequalities in finite element method that [16]

$$\|\eta_j\|_{0, \infty, Q} \approx C_0 h^{(1-n)/2} \|\eta_j\|_{0, 2, Q}.$$

Hence, we can complete the proof of (ii) in the following way,

$$\|\eta\|_{0, \infty} \leq \sum_{1 \leq i \leq N} \|\eta_j\|_{0, \infty, Q} \approx C_0 h^{(1-n)/2} \sum_{1 \leq i \leq N} \|\eta_j\|_{0, 2, Q}$$

$$\leq C_0 h^{(1-n)/2} \left(\sum_{1 \leq i \leq N} \|\eta_j\|_{0, 2, Q}^2 \right)^{1/2} \left(\sum_{1 \leq i \leq N} 1 \right)^{1/2}$$

$$\approx C_0 h^{(1-n)/2} N^{1/2} \|\eta\|.$$

Next we prove conclusion (iii) for $n = 2$ and $n = 3$ separately. If $n = 2$, then we have clearly that

$$|\eta| \leq \sqrt{N} \cdot \sqrt{1}.$$

Thus

$$\|\eta\|_{0, \infty} \leq \sum_{1 \leq i \leq N} \|\eta_j\|_{0, \infty, Q} \approx C \sum_{1 \leq i \leq N} \|\eta_j\|_{0, 2, Q} \|\eta_j\|_{1, 2, Q}^{1/2}$$

$$\leq C \left\{ \sum_{1 \leq i \leq N} (1 + j^2) \|\eta_j\|_{0, 2, Q}^2 \right\}^{1/4} \times$$

$$\times \left\{ \sum_{1 \leq i \leq N} \|\eta_j\|_{1, 2, Q}^2 \right\}^{1/4} \left\{ \sum_{1 \leq i \leq N} (1 + j^2)^{-1/2} \right\}^{1/2}$$

$$\approx C_0 (\ln N)^{1/2} \|\eta\|_1.$$
If \(n = 3 \), then by the inverse inequality on the subspaces \(X_h^k(Q) \) (cf. Lemma 1.1 in [17]) that

\[
\| \eta_j \|_{0, \infty, Q} \leq C |\ln h|^{1/2} \| \eta_j \|_{1, Q}.
\]

Thus

\[
\| \eta \|_{0, \infty, Q} \leq \sum_{|j| \leq N} \| \eta_j \|_{0, \infty, Q} \leq C |\ln h|^{1/2} \sum_{|j| \leq N} \| \eta_j \|_{1, Q}
\]

\[
\leq C |\ln h|^{1/2} \left(\sum_{|j| \leq N} \| \eta_j \|_{1, 2, Q} \right)^{1/2} \left(\sum_{|j| \leq N} 1 \right)^{1/2}
\]

\[
\leq C_0 |\ln h|^{1/2} N^{1/2} \| \eta \|_1.
\]

Lemma 5: If \(\psi \in H^1(\Omega) \cap C_p(\Omega), \, \xi, \, \eta \in V_{0, \delta}(\Omega) \), then

\[
(\psi \partial_\xi \eta, \partial_j \eta) = (\psi \partial_\xi \eta, \partial_j \eta) - (\partial_\xi \psi \partial_j \xi - \partial_j \psi \partial_\xi \xi, \eta), \quad \forall 1 \leq \ell, \, j \leq n.
\]

Proof: Denote by \(\vec{n} = (n_1, ..., n_n) \) the unit outward normal vector of \(\partial(K_m \times I) = (\partial K_m \times I) \cup (K_m \times \partial I) \) (see fig. 1). Then we have by integration by parts that

\[
(\psi \partial_\xi \eta, \partial_j \eta) = \sum_{m=1}^{M_h} \int_{K_m \times I} \psi(x) \partial_\xi \eta(x) \partial_j \eta(x) \, dx
\]

\[
= \sum_{m=1}^{M_h} \left\{ \psi \eta \partial_\xi \eta \vec{n}_j \big|_{\partial(K_m \times I)} \right.
\]

\[
- \int_{K_m \times I} \eta(x) (\psi(x) \partial_j \partial_\xi \eta(x) + \partial_j \psi(x) \partial_\xi \eta(x)) \, dx \bigg\}
\]

\[
= \sum_{m=1}^{M_h} \left\{ \psi \eta (\partial_\xi \xi \vec{n}_j - \partial_j \xi \vec{n}_\ell) \big|_{\partial(K_m \times I)} + \int_{K_m \times I} \psi(x) \partial_j \partial_\xi \eta(x) \partial_\xi \eta(x) \, dx
\]

\[
- \int_{K_m \times I} \eta(x) (\partial_j \psi(x) \partial_\xi \xi(x) - \partial_\xi \psi(x) \partial_j \xi(x)) \, dx \right\}.
\]

Clearly, if the following two equalities are proved,

\[
A_1 = \sum_{m=1}^{M_h} \left\{ \psi \eta (\partial_\xi \xi \vec{n}_j - \partial_j \xi \vec{n}_\ell) \right\} \big|_{K_m \times \partial I} = 0,
\]

\[
A_2 = \sum_{m=1}^{M_h} \left\{ \psi \eta (\partial_\xi \xi \vec{n}_j - \partial_j \xi \vec{n}_\ell) \right\} \big|_{\partial K_m \times I} = 0,
\]
then this lemma can be easily seen. By the periodicity of ψ, ξ and η, we have clearly that $A_1 = 0$. Now we prove $A_2 = 0$. Firstly, if $\ell = j$, then we have trivally $A_2 = 0$; Next, if $\ell \neq j$, but one of them is equal to n, say $j = n$, we have in this case that n_j vanishes on $\partial K_m \times I$. Thus

$$
\psi \eta \frac{\partial \xi}{\partial \tau} \cdot n_j \big|_{\partial K_m \times I} = 0, \quad 1 \leq m \leq M_h .
$$

On the other hand, since $\xi \in V_{0, \delta}(\Omega)$ and $j = n$, we have $\partial_j \xi \in V_{0, \delta}(\Omega)$. Therefore $\partial_j \xi \in C(\bar{Q})$, and $\partial_j \xi \big|_{\partial Q \times I} = 0$. Hence

$$
\sum_{m=1}^{M_h} \psi \eta \frac{\partial \xi}{\partial \sigma} \cdot n_j \big|_{\partial K_m \times I} = \psi \eta \frac{\partial \xi}{\partial \sigma} \cdot n_j \big|_{\partial Q \times I} = 0 .
$$

Thus we have also $A_2 = 0$; Finally, if $\ell \neq j$, and neither ℓ nor j equals to n, then there must be in this case $n = 3$, $\ell = 1$ and $j = 2$, or $n = 3$, $j = 1$ and $\ell = 2$, say the former. Then we have in this case

$$
(\partial_1 \xi \cdot n_2 - \partial_2 \xi \cdot n_1) \big|_{\partial K_m \times I} = \frac{\partial \xi}{\partial \sigma} \big|_{\partial K_m \times I}
$$

where $\sigma = (n_2, -n_1, 0)$ is the unit tangential vector on $\partial K_m \times I$. Since ψ, ξ and η are continuous in \bar{Q}, and ξ vanishes on $\partial Q \times I$, we have

$$
\sum_{m=1}^{M_h} \psi \eta (\partial_1 \xi \cdot n_2 - \partial_2 \xi \cdot n_1) \big|_{\partial K_m \times I} = \psi \eta \frac{\partial \xi}{\partial \sigma} \big|_{\partial K_m \times I} = 0 .
$$

By combining the above arguments, we complete the proof of this lemma.

Lemma 6 [3]: Suppose the following conditions are fulfilled:

(i) η is a non-negative function defined on Θ_τ, ρ_0, B_0, $a_\ell(h, N)$ and M_ℓ, $1 \leq \ell \leq m$, are non-negative constants;

(ii) $\rho(t) = \rho(\eta(0), \eta(\tau), \ldots, \eta(t - \tau))$ satisfies that $\rho(t) \leq \rho_0$ for all $\eta(t') \leq M_{\ell}/a_0(h, N)$;

vol. 26, n° 4, 1992
(iii) \(H_\eta(t) = \eta(t) \left[M(\eta(t)) + a_0(h, N) B(\eta(t)) \eta(t) \right] + \sum_{\ell=1}^m \xi_\ell(\eta(t)), \)

where \(M(\eta(t)) \leq M_0 \) and \(B(\eta(t)) \leq B_0 \) for all \(\eta(t) \leq M_0 \); and
\(\xi_\ell(\eta(t)) \leq 0 \) for all \(\eta(t) \leq M_0(h, N) \), \(1 \leq \ell \leq m \);

(iv) \(G_\eta(t) = G(\eta(t), \eta(t - \tau)) \geq \eta(t); \)

(v) \(\eta(0) \leq \rho(0) \leq \rho_0 \), and

\[
G_\eta(t) \leq \rho(t) + \tau \sum_{t'=0}^{t-r} H_\eta(t'), \quad \forall t \in \Theta_\tau.
\]

(vi) \(\rho_0 e^{(1 + B_0)M_0 t_1} \leq \min_{0 \leq \ell \leq m} \left(M_\ell a_\ell(h, N) \right); \)

Then we have for all \(t \in \Theta_\tau \) and \(t \leq t_1 \) that

\[
\eta(t) \leq \rho_0 e^{(1 + B_0)M_0 t}.
\]

V. ERROR ESTIMATIONS

Let \((U, T, \varphi)\) be the solution of (3.1). Define \(u_* = \mathcal{F}_\delta U, \quad T_* = \mathcal{F}_\delta T, \quad \varphi_* = \mathcal{F}_\delta \varphi \). Then we derive from (3.1) that

\[
\left\{\begin{align*}
(u_{*t}, v) + ([u_* \cdot \nabla] u_*, v) + R(\nabla T_*, v) + R(T_* \nabla \varphi_*, v) + \\
&\quad + \sum_{m=1}^3 J_m(T_*, \varphi_*, u_*, v)
\end{align*}\right. = (f_1, v) + (f_{*1}, v) + \sum_{m=1}^3 \tilde{H}_m(v), \quad \forall v \in [V_0, \delta(\Omega)]^n,
\]

\[
(T_{*t}, \omega) + ([u_* \cdot \nabla] T_*, \omega) + J_4(T_*, \varphi_*, \omega) + J_5(T_*, \varphi_*, u_*, \omega)
\]

\[
= (f_{*2}, \omega) + \sum_{m=4}^5 \tilde{H}_m(\omega), \quad \forall \omega \in V_0, \delta(\Omega),
\]

\[
(\varphi_{*t}, \chi) + ([u_* \cdot \nabla] \varphi_*, \chi) + (\nabla \cdot u_*, \chi) = (f_{*3}, \chi), \quad \forall \chi \in V_\delta(\Omega), \quad (5.1)
\]

where

\[
\tilde{f}_1 = u_{*t} - \partial_t U + [u_* \cdot \nabla] u_* - [U \cdot \nabla] U + \\
+ R[\nabla(T_* - T) + T_* \nabla \varphi_* - T \nabla \varphi],
\]

\[
\tilde{f}_{*2} = T_{*t} - \partial_t T + [u_* \cdot \nabla] T_* - [U \cdot \nabla] T,
\]

\[
\tilde{f}_{*3} = \varphi_{*t} - \partial_t \varphi + [u_* \cdot \nabla] \varphi_* - [U \cdot \nabla] \varphi + \nabla \cdot (u_* - U),
\]
\[\tilde{H}_m(v) = J_m(T, \varphi, u, v) - J_m(T, \varphi, u, v), \quad m = 1, 2, 3, \]
\[\tilde{H}_4(\omega) = J_4(T, \varphi, \omega) - J_4(T, \varphi, \omega), \]
\[\tilde{H}_5(\omega) = J_5(T, \varphi, u, \omega) - J_5(T, \varphi, u, \omega). \]

Let \((\tilde{u}_\delta, T_\delta, \varphi_\delta)\) be the solution of scheme (3.2)-(3.3). Define \(\bar{u} = u_\delta - u_*, \quad \bar{T} = T_\delta - T_*, \quad \bar{\varphi} = \varphi_\delta - \varphi_*\). Then we have by (3.3) that \(\bar{u}(0) = 0\) and \(\bar{T}(0) = \bar{\varphi}(0) = 0\). By subtract the formulas in (5.1) from the corresponding ones in (3.2), we obtain that
\[
\begin{align*}
(\bar{u}, v) + \sum_{m=1}^{3} F_m(v) + \sum_{m=1}^{3} \bar{J}_m(v) &= -(\bar{f}_1, v) - \sum_{m=1}^{3} \tilde{H}_m(v), \quad \forall v \in [V_0, \delta(\Omega)]^n, \\
(\bar{T}, \omega) + F_4(\omega) + \sum_{m=4}^{5} J_m(\omega) &= -(\bar{f}_2, \omega) - \sum_{m=4}^{5} \tilde{H}_m(\omega), \quad \forall \omega \in V_0, \delta(\Omega)^n, \\
(\bar{\varphi}, \chi) + \sum_{m=5}^{6} F_m(\chi) &= -(\bar{f}_3, \chi), \quad \forall \chi \in V_\delta(\Omega),
\end{align*}
\]
where
\[
\begin{align*}
F_1(v) &= ([\bar{u} \cdot \nabla] u_*, v) + ([u_* + \bar{u}] \cdot \nabla] \bar{u}, v), \\
F_2(v) &= R(\nabla \bar{T}, v) \\
F_3(v) &= R(\bar{T} \cdot \nabla \varphi_*, v) + R((T_* + \bar{T}) \cdot \nabla \bar{\varphi}, v), \\
F_4(\omega) &= ([\bar{u} \cdot \nabla] T_*, \omega) + ([u_* + \bar{u}] \cdot \nabla] \bar{T}, \omega), \\
F_5(\chi) &= ([\bar{u} \cdot \nabla] \varphi_*, \chi) + ([u_* + \bar{u}] \cdot \nabla] \bar{\varphi}, \chi), \\
F_6(\chi) &= (\nabla \cdot \bar{u}, \chi), \\
\bar{J}_m(v) &= J_m(T_* + \bar{T}, \varphi_* + \bar{\varphi}, u_* + \bar{u}, v) - J_m(T_* + \bar{T}, \varphi_*, u_*, v), \quad m = 1, 2, 3, \\
\bar{J}_4(\omega) &= J_4(T_* + \bar{T}, \varphi_* + \bar{\varphi}, \omega) - J_4(T_*, \varphi_*, \omega), \\
\bar{J}_5(\omega) &= J_5(T_* + \bar{T}, \varphi_* + \bar{\varphi}, \omega) - J_5(T_*, \varphi_*, \omega).
\end{align*}
\]
We put \(v = \bar{u} + \tau \bar{u}_t, \quad \omega = \bar{T} + \tau \bar{T}_t, \quad \chi = \bar{\varphi} + \tau \bar{\varphi}_t\) in (5.2), and add up the three equalities resulted. Note the following identity [3]
\[
2(\bar{\eta}_t, \bar{\eta}) = (\| \bar{\eta} \|^2)_t - \tau \| \bar{\eta}_t \|^2,
\]
vol. 26, n° 4, 1992
we get that
\[
(\|\bar{u}\|^2 + \|\bar{T}\|^2 + \|\bar{\varphi}\|^2) + \tau (1 - \epsilon)(\|\bar{u}_t\|^2 + \|\bar{T}_t\|^2 + \|\bar{\varphi}_t\|^2) \\
+ 2 \sum_{m=1}^{3} F_m(\bar{u} + \tau \bar{u}_t) + 2 F_4(\bar{T} + \tau \bar{T}_t) + 2 \sum_{m=5}^{6} F_m(\bar{\varphi} + \tau \bar{\varphi}_t) \\
+ 2 \sum_{m=1}^{3} \bar{J}_m(\bar{u} + \tau \bar{u}_t) + 2 \sum_{m=4}^{5} \bar{J}_m(\bar{T} + \tau \bar{T}_t) \\
\leq \|\bar{u}\|^2 + \|\bar{T}\|^2 + \|\bar{\varphi}\|^2 + \left(1 + \frac{\tau}{\epsilon}\right) \sum_{m=1}^{3} \|\bar{f}_m\|^2 \\
+ 2 \sum_{m=1}^{3} \bar{H}_m(\bar{u} + \tau \bar{u}_t) + 2 \sum_{m=4}^{5} \bar{H}_m(\bar{T} + \tau \bar{T}_t),
\]
(5.3)

where \(\epsilon > 0\) is a suitably small constant. Next we estimate the terms \(F_m, \bar{J}_m\) and \(\bar{H}_m\) in (5.3) separately. We assume that \(u, T\) and \(\varphi\) are sufficiently smooth, \(B_0 < T < B_1\) and \(|\varphi| < B_2\), then we have \(B_0 < T_* < B_1\) and \(|\varphi_*| < B_2\), if \(h^{-1}\) and \(N\) are large enough. Thus we conclude from (ii) of Lemma 4 that there exist a suitably small constant \(\bar{B} > 0\), such that \(B_0 < T_* + \bar{T} < B_1\) and \(|\varphi_* + \bar{\varphi}| < B_2\), for all \(\bar{T}\) and \(\bar{\varphi}\) satisfying that
\[
\|\bar{T}\| \leq \bar{B} h^{(n-1)/2} N^{-1/2}, \quad \|\bar{\varphi}\| \leq \bar{B} h^{(n-1)/2} N^{-1/2}.
\]
(5.4)

Under these assumptions, we have the boundedness of the variables in (1.5) valid for all \(T_* + \bar{T}\) and \(\varphi_* + \bar{\varphi}\). For simplicity, we define \(D(h, N) = C_0 \bar{B} h^2 + N^{-2}\) (cf. Lemma 4), and denote by \(M\) a positive constant independent of \(h, N\) and \(\tau\), but may depend on \(\epsilon, R, \|\eta\|_{X^{\alpha,\beta}}\), \(\alpha' > \frac{n-1}{2}, \beta' > \frac{1}{2}, \eta = U, T, \varphi\), \(\|U\|_2, \|T\|_2\) and \(k_1, \nu_1, \Phi_1, s_1\), etc., and may be of different values in different expressions. At first, we have from Lemma 3 and Lemma 4 that
\[
|F_1(\bar{u})| \leq |u_*|_{1,\infty} \|\bar{u}\|^2 + \|u_* + \bar{u}\|_{\infty} \|\bar{u}\|_1 \|\bar{u}\| \\
\leq \epsilon \|\bar{u}\|^2 + M (1 + \|\bar{u}\|_{0,\infty}) \|\bar{u}\|^2 \\
\leq \epsilon \|\bar{u}\|^2 + M (1 + D(h, N) \|\bar{u}\|^2) \|\bar{u}\|^2,
\]
\[
|F_2(\bar{u})| \leq \epsilon \|\bar{T}\|_1^2 + M \|\bar{u}\|^2,
\]
\[
|F_3(\bar{u})| \leq M \left\{\left(\|\bar{T}\| + \|\bar{\varphi}\| + \|\bar{\varphi}\|_1 \right) \|\bar{u}\| + \|\bar{\varphi}\|_0 \|\bar{u}\|_1 \right\}
\]
\[
+ \|\bar{\varphi}\|_{0,\infty} \left(\|\bar{u}\|_1 + \|\bar{T}\|_1\right)
\]
\[
M^2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
\[
\begin{align*}
\text{and similarly,} & \\
\left| F_4(\bar{T}) \right| & \leq \varepsilon \left| \bar{T} \right|^2 + M (\| \tilde{u} \|^2 + \| \bar{T} \|^2 + D (h, N) \| \tilde{u} \|^2 \| \bar{T} \|^2), \\
\left| F_5(\varphi) \right| & \leq \left| (\| \tilde{u} \| \nabla \varphi, \varphi) \right| + \left| (\nabla (\varphi^2/2), u_* + \tilde{u}) \right| \\
& = \left| (\| \tilde{u} \| \nabla \varphi, \varphi) \right| + \left| (\tilde{\varphi}^2/2, \nabla (u_* + \tilde{u})) \right| \\
& \leq M (\| \tilde{u} \|^2 + \| \tilde{\varphi} \|^2) + MD (h, N) \| \tilde{\varphi} \|^2 \| \tilde{u} \|^2 , \\
\left| F_6(\varphi) \right| & \leq \varepsilon \left| \tilde{u} \right|^2 + M \| \tilde{\varphi} \|^2 .
\end{align*}
\]

Next, we estimate \(\tilde{J}_m(\tilde{u}) \), \(1 \leq m \leq 3 \), and \(\tilde{J}_4(\bar{T}) \). It is not difficult to verify that
\[
\tilde{J}_1(\tilde{u}) = (e^{-\varphi^2 \kappa (T_0 + \bar{T}, \varphi + \bar{\varphi})}(\nabla \tilde{u})^2) + \sum_{q=1}^{5} \tilde{J}_{1,q}(\tilde{u}) , \quad (5.5)
\]

where
\[
\begin{align*}
\tilde{J}_{1,1}(\tilde{u}) & = \left[(e^{-\varphi^2 \kappa (T_0 + \bar{T}, \varphi + \bar{\varphi})} - e^{-\varphi^2 \kappa (T_0, \varphi) \kappa (T_0, \varphi)} \right] \nabla u_* \nabla \tilde{u} , \\
\tilde{J}_{1,2}(\tilde{u}) & = - (e^{-\varphi^2 \kappa (T_0 + \bar{T}, \varphi + \bar{\varphi})} - e^{-\varphi^2 \kappa (T_0, \varphi) \kappa (T_0, \varphi)}) (\nabla \cdot u_*)(\nabla \varphi) (\tilde{u}) , \\
\tilde{J}_{1,3}(\tilde{u}) & = - (e^{-\varphi^2 \kappa (T_0 + \bar{T}, \varphi + \bar{\varphi})} - e^{-\varphi^2 \kappa (T_0, \varphi) \kappa (T_0, \varphi)}) (\nabla \cdot \tilde{u})(\nabla \varphi) (\tilde{u}) , \\
\tilde{J}_{1,4}(\tilde{u}) & = - (e^{-\varphi^2 \kappa (T_0 + \bar{T}, \varphi + \bar{\varphi})} - e^{-\varphi^2 \kappa (T_0, \varphi) \kappa (T_0, \varphi)}) (\nabla \cdot \nabla \varphi) (\tilde{u}) , \\
\tilde{J}_{1,5}(\tilde{u}) & = - (e^{-\varphi^2 \kappa (T_0 + \bar{T}, \varphi + \bar{\varphi})} - e^{-\varphi^2 \kappa (T_0, \varphi) \kappa (T_0, \varphi)}) (\nabla \cdot \nabla \varphi) (\tilde{u}) .
\end{align*}
\]

We have from Lemma 3, Lemma 4 and (1.5) that
\[
\begin{align*}
\left| \tilde{J}_{1,1}(\tilde{u}) \right| & \leq \varepsilon \left| \tilde{u} \right|^2 + M (\| \bar{T} \|^2 + \| \bar{\varphi} \|^2) , \\
\left| \tilde{J}_{1,2}(\tilde{u}) \right| & \leq M (\| \tilde{u} \|^2 + \| \tilde{\varphi} \|^2) , \\
\left| \tilde{J}_{1,3}(\tilde{u}) \right| & \leq \varepsilon \left| \tilde{u} \right|^2 + M \| \tilde{u} \|^2 , \\
\left| \tilde{J}_{1,4}(\tilde{u}) \right| & \leq M \| \tilde{u} \|_{0,\infty} \| \tilde{u} \|_{1} \| \varphi \|_{1} \\
& \leq \varepsilon \left| \tilde{u} \right|^2 + MD (h, N) \| \tilde{\varphi} \|^2 \| \tilde{u} \|^2 .
\end{align*}
\]
If we assume \(u \in [C (0, t ; H^2_0(\Omega))]^2 \), then we have by integration by parts that
\[
\bar{J}_{1,5}(\bar{u}) = \sum_{q=1}^{3} z_q(\bar{u}) ,
\]
where
\[
\begin{align*}
Z_1(\bar{u}) &= - (e^{\psi_s} \kappa (T_s + \bar{T}, \varphi_s + \bar{\varphi}) - e^{\psi_t} \kappa (T_s, \varphi_s)) \times \\
&\quad \times (\nabla \cdot u_s)(\nabla \bar{\varphi}), \bar{u}) , \\
Z_2(\bar{u}) &= - (e^{\psi_s} \kappa (T_s, \varphi_s)[\nabla \cdot (u_s - U)](\nabla \bar{\varphi}), \bar{u}) , \\
Z_3(\bar{u}) &= - (e^{\psi_t} \kappa (T_s, \varphi_s)(\nabla \cdot U)(\nabla \bar{\varphi}), \bar{u}) \\
&= (\bar{\varphi}, \nabla \cdot [e^{\psi_t} \kappa (T_s, \varphi_s)(\nabla \cdot U) \bar{u}]) .
\end{align*}
\]
It is easy to verify that
\[
\begin{align*}
|Z_1(\bar{u})| &\leq \varepsilon |\bar{u}|^2_1 + MD (h, N)(\|T\|^2 + \|\bar{\varphi}\|^2), \\
|Z_2(\bar{u})| &\leq M |u_s - U|^2_1 + MD (h, N)\|\bar{\varphi}\|^2_1, \\
|Z_3(\bar{u})| &\leq \varepsilon |\bar{u}|^2_1 + M (\|\bar{u}\|^2 + \|\bar{\varphi}\|^2) .
\end{align*}
\]
By substitute the above estimates into (5.5), we obtain that
\[
\left| \bar{J}_1(\bar{u}) - (e^{\psi_s} \kappa (T_s + \bar{T}, \varphi_s + \bar{\varphi}), (\nabla \cdot \bar{u})^2) \right| \leq \alpha (\bar{u}, \bar{T}, \bar{\varphi}, h, N) ,
\]
where
\[
\alpha (\bar{u}, \bar{T}, \bar{\varphi}, h, N) = \varepsilon |\bar{u}|^2_1 + \\
+ M (1 + D (h, N)) \|\bar{\varphi}\|^2_1 (\|\bar{u}\|^2 + \|\bar{T}\|^2 + \|\bar{\varphi}\|^2) \\
+ MD (h, N)(\|T\|^2 + \|\bar{\varphi}\|^2) |\bar{u}|^2_1 + M |u_s - U|^2_1 .
\]
Similarly, we have
\[
\left| \bar{J}_2(\bar{u}) - \left(e^{\psi_s} \kappa (T_s + \bar{T}, \varphi_s + \bar{\varphi}), \sum_{\ell,j=1}^{m} (\partial^2 u^{(\ell)}(\bar{\varphi})) \right) \right| \leq \\
\leq \alpha (\bar{u}, \bar{T}, \bar{\varphi}, h, N) .
\]
By Lemma 5, we have in the same way that
\[
\left| \bar{J}_3(\bar{u}) - (e^{\psi_t} \kappa (T_s + \bar{T}, \varphi_s + \bar{\varphi}), (\nabla \cdot \bar{u})^2) \right| \leq \alpha (\bar{u}, \bar{T}, \bar{\varphi}, h, N) .
\]
Still by the analogy to the proof of (5.6), we can get that

\[
\begin{align*}
 & \left| \tilde{J}_4(\tilde{T}) - (e^{-\psi* - \phi} U(T_* + \tilde{T}, \varphi_* + \tilde{\varphi})(T_* + \tilde{T})^{-1} \times \\
 & \quad \times S_\tau^{-1}(T_* + \tilde{T}, \varphi_* + \tilde{\varphi}), \sum_{j=1}^n (a_j \tilde{T})^2) \right| \\
 & \leq \varepsilon |\tilde{T}|^2 + M (1 + D(h, N) \| \tilde{\varphi} \|^2)(\| \tilde{T} \|^2 + \| \tilde{\varphi} \|^2) \\
 & \quad + MD(h, N) \| \tilde{\varphi} \|^2 |\tilde{T}|_1^2 + M |T_* - T|_1^2.
\end{align*}
\]

Now we estimate \(\tilde{J}_m(2 \tau \tilde{u}_l), 1 \leq m \leq 3 \), and \(\tilde{J}_4(2 \tau \tilde{T}_l) \). Let \(\lambda = \tau(C_0 h^{-2} + N^2) \), and assume that \(\lambda \leq \lambda^* = \text{Cst} \). Then we have from (i) of Lemma 4 that

\[
\tau |\eta_l|^2 \leq \lambda |\eta_l|^2, \quad \eta = \tilde{u}, \tilde{T}, \tilde{\varphi}.
\]

Since

\[
\| \nabla \cdot \tilde{u} \|^2 \leq n |\tilde{u}|_1^2,
\]

we have from (1.5) that

\[
\begin{align*}
 & \left| (e^{-\psi* - \phi} \kappa(T_* + \tilde{T}, \varphi_* + \tilde{\varphi}) \nabla \cdot \tilde{u}, 2 \tau \nabla \cdot \tilde{u}_l) \right| \leq \\
 & \leq 2 \tau \Phi_1 \kappa_1 \| \nabla \cdot \tilde{u} \| \| \nabla \cdot \tilde{u}_l \| \leq \frac{T}{8} |\tilde{u}_l|^2 + 8 \lambda n^2 \Phi_1^2 \kappa_1^2 |\tilde{u}_l|^2
\end{align*}
\]

and we have furthermore that

\[
\begin{align*}
 & |\tilde{J}_1(2 \tau \tilde{u}_l)| \leq \frac{T}{8} |\tilde{u}_l|^2 + 8 \lambda n^2 \Phi_1^2 \kappa_1^2 |\tilde{u}_l|^2 + \beta(\tilde{u}, \tilde{T}, \tilde{\varphi}, h, N),
\end{align*}
\]

where

\[
\beta(\tilde{u}, \tilde{T}, \tilde{\varphi}, h, N) = \varepsilon \tau |\tilde{u}_l|^2 + \\
\quad + M(|\tilde{u}|^2 + |\tilde{T}|^2 + |\tilde{\varphi}|^2) + MD(h, N) |\tilde{\varphi}|^2 |\tilde{T}|_1^2.
\]

Analogously, we have

\[
\begin{align*}
 & |\tilde{J}_2(2 \tau \tilde{u}_l)| \leq \frac{T}{8} |\tilde{u}_l|^2 + 8 \lambda \Phi_1^2 \nu_1^2 |\tilde{u}_l|^2 + \beta(\tilde{u}, \tilde{T}, \tilde{\varphi}, h, N), \\
 & |\tilde{J}_3(2 \tau \tilde{u}_l)| \leq \frac{T}{8} |\tilde{u}_l|^2 + 8 \lambda n^2 \Phi_1^2 \nu_1^2 |\tilde{u}_l|^2 + \beta(\tilde{u}, \tilde{T}, \tilde{\varphi}, h, N), \\
 & |\tilde{J}_4(2 \tau \tilde{T}_l)| \leq \frac{T}{2} |\tilde{T}_l|^2 + 2 \lambda \Phi_1^2 \mu_1^2 B_0^{-2} S_0^{-2} |\tilde{T}_l|^2 + \\
 & \quad + \varepsilon \tau |\tilde{T}_l|^2 + M(|\tilde{T}|^2 + |\tilde{\varphi}|^2) + MD(h, N) |\tilde{\varphi}|^2 |\tilde{T}|_1^2.
\end{align*}
\]
Moreover, it is not difficult to check that
\[
2 \bar{J}_5(\bar{T} + \tau \bar{T}_t) \leq \varepsilon \tau \| \bar{T}_t \|^2 + \varepsilon \| \bar{T} \|_1^2 + M (\| \bar{u} \|^2 + \| \bar{T} \|^2 + \| \bar{\phi} \|^2).
\]
Finally, analogously to the estimates of \(\bar{J}_m \), we can bound \(\bar{H}_m(\bar{u} + \tau \bar{u}_t) \), \(1 \leq m \leq 3 \), and \(\bar{H}_m(\bar{T} + \tau \bar{T}_t) \), \(4 \leq m \leq 5 \), as follows
\[
2 \sum_{m=1}^{3} |\bar{H}_m(\bar{u} + \tau \bar{u}_t)| + 2 \sum_{m=4}^{5} |\bar{H}_m(\bar{T} + \tau \bar{T}_t)| \leq \\
\leq \varepsilon \tau (\| \bar{u}_t \|^2 + \| \bar{T}_t \|^2) + \varepsilon \| \bar{u} \|^2 + \varepsilon \| \bar{T} \|_1^2 + M (\| \bar{u} \|^2 + \| \bar{T} \|^2 + \| \bar{\phi} \|^2) + \\
M (\| u_* - U \|^2 + \| T_* - T \|^2 + \| \varphi_* - \varphi \|^2).
\]

Define
\[
\tilde{A}(T_* + \bar{T}, \varphi_* + \bar{\phi}) = \min (n \kappa (T_* + \bar{T}, \varphi_* + \bar{\phi}) + \\
+ (n + 1) \nu (T_* + \bar{T}, \varphi_* + \bar{\phi}), \nu (T_* + \bar{T}, \varphi_* + \bar{\phi}))
\]
\[
\tilde{F}(\mathscr{D}) = (e^{-\varphi_*-\bar{\phi}}[\kappa (T_* + \bar{T}, \varphi_* + \bar{\phi}) + \nu (T_* + \bar{T}, \varphi_* + \bar{\phi})], (\nabla \cdot \bar{u})^2)_{\mathscr{D}}
\]
\[
+ \left(e^{-\varphi_*-\bar{\phi}} \nu (T_* + \bar{T}, \varphi_* + \bar{\phi}), \sum_{i,j=1}^{n} (\partial_j \bar{\mu}^{(t)})^2 \right)_{\mathscr{D}}
\]
\[
\Omega^+ = \{ x \in \Omega / \kappa (T_* + \bar{T}, \varphi_* + \bar{\phi}) + \nu (T_* + \bar{T}, \varphi_* + \bar{\phi}) > 0 \},
\]
\[
\Omega^- = \Omega \setminus \Omega^+.
\]
We have by (5.4) and (1.5) that \(\tilde{A}(T_* + \bar{T}, \varphi_* + \bar{\phi}) > 0 \). On the other hand, it is obvious that
\[
\tilde{F}(\Omega^+) \equiv \left(e^{-\varphi_*-\bar{\phi}} \tilde{A}(T_* + \bar{T}, \varphi_* + \bar{\phi}), \sum_{i,j=1}^{n} (\partial_j \bar{\mu}^{(t)})^2 \right)_{n^*}.
\]
By the following inequality
\[
(\nabla \cdot \bar{u})^2 \leq n \sum_{j=1}^{n} (\partial_j \bar{\mu}^{(j)})^2,
\]
we can easily check that (5.7) is also valid for \(\Omega^- \). Thus we get
\[
(e^{-\varphi_*-\bar{\phi}}[\kappa (T_* + \bar{T}, \varphi_* + \bar{\phi}) + \nu (T_* + \bar{T}, \varphi_* + \bar{\phi})], (\nabla \cdot \bar{u})^2) + \\
+ \left(e^{-\varphi_*-\bar{\phi}} \nu (T_* + \bar{T}, \varphi_* + \bar{\phi}), \sum_{i,j=1}^{n} (\partial_j \bar{\mu}^{(t)})^2 \right)
\]
\[
= \tilde{F}(\Omega^+) + \tilde{F}(\Omega^-)
\]
\[
\equiv \left(e^{-\varphi_*-\bar{\phi}} \tilde{A}(T_* + \bar{T}, \varphi_* + \bar{\phi}), \sum_{i,j=1}^{n} (\partial_j \bar{\mu}^{(t)})^2 \right).
\]
By combining the above estimates for F_m, J_m and H_m, we derive from (5.3) that

$$(\|\tilde{u}\|^2 + \|\tilde{r}\|^2 + \|\tilde{\varphi}\|^2) + \tau \left(5/8 - 3\varepsilon\right)(\|\tilde{u}\|^2 + \|\tilde{r}\|^2 + \|\tilde{\varphi}\|^2) +$$

$$+ (2 e^{-\varphi - \tilde{\varphi}} A (T_\ast + \tilde{T}, \varphi_\ast + \tilde{\varphi})$$

$$- 12 \varepsilon - MD (h, N)(\|\tilde{T}\|^2 + \|\tilde{\varphi}\|^2), \sum_{i,j=1}^{n} (\partial_j \tilde{u}(t))^2)$$

$$+ (2 e^{-\varphi - \tilde{\varphi}} (T_\ast + \tilde{T})^{-1} S_0^{-1} (T_\ast + \tilde{T}, \varphi_\ast + \tilde{\varphi})$$

$$\times \mu (T_\ast + \tilde{T}, \varphi_\ast + \tilde{\varphi}) - 6 \varepsilon - MD (h, N)\|\tilde{\varphi}\|^2, \sum_{j=1}^{n} (\partial_j \tilde{T})^2)$$

$$- 8 \lambda \Phi_1^2 (n^2 \kappa_1^2 + (n^2 + 1) \nu_1^2)$$

$$\times |\tilde{u}|_1^2 - 2 \lambda \Phi_1^2 \mu_1^2 B_0^{-2} S_0^{-2} |\tilde{T}|_1^2 \leq \tilde{R} (\tilde{u}, \tilde{T}, \tilde{\varphi}) + \tilde{Z},$$

where

$$\tilde{R} (\tilde{u}, \tilde{T}, \tilde{\varphi}) = M [1 + D (h, N)(\|\tilde{u}\|^2 + \|\tilde{T}\|^2 + \|\tilde{\varphi}\|^2)] \times$$

$$\times (\|\tilde{u}\|^2 + \|\tilde{T}\|^2 + \|\tilde{\varphi}\|^2).$$

$$\tilde{Z} = M (\|u_\ast - U\|^2_1 + \|T_\ast - T\|^2_1 + \|\varphi_\ast - \varphi\|^2_1) + \left(1 + \frac{\tau}{\varepsilon}\right) \sum_{m=1}^{3} \|\tilde{f}_m\|^2.$$

Suppose a be a non-negative number, and

$$\lambda < \min \left(\frac{A_0 \Phi_0}{\delta \Phi_1^2 (n^2 \kappa_1^2 + (n^2 + 1) \nu_1^2)} \frac{\mu_0 \Phi_0 B_0^2 S_0^2}{2 \mu_1^2 \Phi_1^2 B_1 S_1}\right).$$

(5.9)

Define

$$\tilde{E}_a (\tilde{\eta}, t) = \|\tilde{\eta}(t)\|^2 + \tau \sum_{t'=0}^{t-\tau} \left(\alpha, \sum_{j=1}^{n} (\partial_j \tilde{\eta}(t'))^2\right) + \frac{\tau^2}{2} \sum_{t'=0}^{t-\tau} \|\tilde{\eta}_j(t')\|^2,$$

$$\tilde{G}(t) = \tilde{E}_{\phi_0 A_0^2} (\tilde{u}, t) + \tilde{E}_{\phi_0 A_0 B_1^{-1} S_1^{-1/2}} (\tilde{T}, t) + \tilde{E}_0 (\tilde{\varphi}, t).$$

By sumerizing (5.8) for all $t \leq t - \tau$, and $t \in \Theta_\tau$, we obtain that

$$\tilde{G}(t) \leq \rho(t) + \tau \sum_{t'=0}^{t-\tau} \left\{\tilde{R}(\tilde{u}(t'), \tilde{T}(t'), \tilde{\varphi}(t')) +$$

$$+ \sum_{m=1}^{2} \xi_m (\tilde{u}(t'), \tilde{T}(t'), \tilde{\varphi}(t'))\right\}.$$
where
\[\rho(t) = \tau \sum_{t'=0}^{t-\tau} \tilde{Z}(t'), \]
\[\xi_1(\bar{u}, \bar{T}, \varphi) = - (2 e^{-\varphi_t} - \bar{\varphi}) \tilde{A}(T_* + \bar{T}, \varphi_* + \bar{\varphi}) - \frac{1}{2} \Phi_0 A_0 - \]
\[- 8 \lambda \Phi_1^2 (n^2 \kappa_1^2 + (n^2 + 1) \nu_1^2) - 12 \epsilon \]
\[- MD(h, N) (\| \tilde{T} \|^2 + \| \varphi \|^2, \sum_{\ell, j=1}^{n} (\partial_j \tilde{u}(t))^2), \]
\[\xi_2(\bar{u}, \bar{T}, \varphi) = -(2 e^{-\varphi_t} - \bar{\varphi}) (T_* + \bar{T})^{-1} S_T^{-1} (T_* + \bar{T}, \varphi_* + \bar{\varphi}) \times \]
\[\times \mu (T_* + \bar{T}, \varphi_* + \bar{\varphi}) - \frac{1}{2} \Phi_0 \mu_0 B_1^{-1} S_{1^{-1}}^{-1} \]
\[- 2 \lambda \Phi_1^2 \mu_1^2 B_0^{-2} S_{0^{-2}}^{-2} - 6 \epsilon - MD(h, N) \| \tilde{\varphi} \|^2, \sum_{j=1}^{n} (\partial_j \tilde{T})^2). \]

By applying Lemma 6, with \(a_0(h, N) = C_0 h^{-2} + N^2, \ a_1(h, N) = a_2(h, N) = D(h, N) \), we conclude that if (5.4) holds, and there exists \(t_1 \in \Theta_r \), such that
\[\rho(t_1) \leq M_1 \min \left(1/D(h, N), 1/(C_0 h^{-2} + N^2) \right), \quad (5.10) \]
where \(M_1 > 0 \) is a suitably small constant, independent on \(h, N \) and \(\tau \), then there exist positive constants \(M_2 \) and \(M_3 \), such that for all \(t \leq t_1 \) and \(t \in \Theta_r \),
\[\tilde{G}(t) - M_2 \rho(t) e^{M_3 t}. \quad (5.11) \]

Since (5.10) implies (5.4), so we need only to estimate \(\rho(t) \) and to examine condition (5.10), to obtain the convergence rate.

Analogously to the estimates for \(|F_m|, 1 \leq m \leq 6 \), we get that
\[\sum_{m=1}^{3} \left\| \tilde{f}_m \right\|^2 \leq \left\| u_* - \partial_i U \right\|^2 + \left\| T_* - \partial_i T \right\|^2 + \left\| \varphi_* - \partial_i \varphi \right\|^2 \]
\[+ M \left(\left\| u_* - U \right\|^2 + \left\| T_* - T \right\|^2 + \left\| \varphi_* - \varphi \right\|^2 \right). \]

By Taylor's formula of expansion and Lemma 1, we have
\[\left\| \eta_* - \partial_i \eta \right\| \leq \left\| \eta_* - \eta_t \right\| + \left\| \eta_t - \partial_i \eta \right\| \]
\[\leq \frac{1}{\tau} \left\| \int_{t}^{t+\tau} \left[\tilde{F}_h \left(\frac{\partial \eta}{\partial t} (t') \right) - \frac{\partial \eta}{\partial t} (t') \right] dt' \right\| + \]
\[+ \frac{1}{\tau} \left\| \int_{t}^{t+\tau} (t + \tau - t') \frac{\partial^2 \eta}{\partial t^2} (t') dt' \right\| \]
\[M^2 \quad \text{AN Modélisation mathématique et Analyse numérique} \]
Mathematical Modelling and Numerical Analysis
\[\eta_\delta - \eta \leq M(t) (\tau^2 + h^{2(\alpha - 1)} + N^{2(1 - \beta)}) , \]

where \(M(t) > 0 \) is depending only on \(\| \eta \|_{C(0, t; L^2(\Omega))} \),
\[\| \frac{\partial \eta}{\partial t} \|_{L^2(0, t; H^{\alpha - 1, \beta - 1}(\Omega))} \],
\[\| \frac{\partial^2 \eta}{\partial t^2} \|_{L^2(0, t; L^2(\Omega))} \], \(\eta = U, T, \varphi \),
\[\| U \|_{C(0, t; H^2(\Omega))}, \| T \|_{C(0, t; H^2(\Omega))}, \| R \|, \| \varepsilon \|, \text{ etc.} \]

We assume that \(h = \frac{1}{a} \), \(a \geq 1 \), and that the following condition holds,
\[\begin{align*}
\bar{\alpha} & > 2 - \frac{1}{a} - \frac{n}{2a}, \\
\beta & > a + \frac{n}{2},
\end{align*} \]

then we have \(\rho(t) = o(1/D(h,N)) \). Thus we have (5.10) valid for \(t = t_0 \), provided \(h^{-1} \) and \(N \) are sufficiently large.

By all the above arguments, together with the triangle inequalities,
\[\| \eta_\delta - \eta \| \leq \| \eta_* - \eta \| + \| \tilde{\eta} \|, \quad \eta = U, T, \varphi \]

we obtain the following theorem:

Theorem 1: Assume the solution \((U, T, \varphi)\) of (3.1) satisfies that
\[U \in C(0, t_0; [Y_{0, p}^{\alpha, \beta}(\Omega) \cap X_\rho^{a_1, \beta_1}(\Omega) \cap H^2(\Omega)]^n) \]
\[\cap H^1(0, t_0; [H_p^{\alpha - 1, \beta - 1}(\Omega)]^n) \]
\[\cap H^2(0, t_0; [L^2(\Omega)]^n) \],

vol. 26, n° 4, 1992
\[T \in C (0, t_0; Y_{0,p}^{\alpha', \beta'}(\Omega) \cap X_{p}^{\alpha', \beta'}(\Omega) \cap H^2(\Omega)) \]
\[\cap H^1(0, t_0; H_p^{\alpha - 1, \beta - 1}(\Omega)) \]
\[\cap H^2(0, t_0; L^2(\Omega)), \]
\[\varphi \in C (0, t_0; Y_p^{\alpha, \beta}(\Omega) \cap X_p^{\alpha', \beta'}(\Omega) \cap H^1(0, t_0; H_p^{\alpha - 1, \beta - 1}(\Omega)) \]
\[\cap H^2(0, t_0; L^2(\Omega)), \]

with \(\alpha \geq \frac{n + 1}{2} \), \(\beta \geq 1 \), \(\alpha' \geq \frac{n - 1}{2} \), \(\beta' \geq \frac{1}{2} \), \((u_\delta, T_\delta, \varphi_\delta) \) is the solution of scheme (3.2)-(3.3), \(\bar{\alpha} = \min (\alpha, k + 1) \). Suppose the following two conditions are fulfilled

(i) \(B_0 < T < B_1 \), \(|\varphi| < B_2 \), and (1.5) holds.

(ii) \(h = N^{-\alpha} \), with \(\alpha \geq 1 \), \(\lambda = \tau \left(C_0 h^{-2} + N^2\right) \), and (5.9), (5.12) hold; then there exist two positive constants \(M_4 \) and \(M_5 \), independent of \(h, N \) and \(\tau \), such that when \(h, N^{-1} \), and \(\tau \) are small enough, we have for all \(t \in \Theta_\tau \) that

\[
\|u_\delta(t) - U(t)\|^2 + \|T_\delta(t) - T(t)\|^2 + \|\varphi_\delta(t) - \varphi(t)\|^2 \leq \]
\[
\leq M_4 e^{M_5 \tau^2} (\tau^2 + h^{2(\alpha - 1)} + N^{2(1 - \beta)}) .
\]

Remark 5.1 : Generally, the solution of (3.1) possesses a good regularity in the periodic direction, then the Fourier spectral method adopted in this direction usually has a higher ability of resolution. Thus the step size \(N^{-1} \) in \(x_n \) direction can be set larger than that in the other directions, to save computations. Hence the assumption \(\alpha \geq 1 \) is reasonable. Numerical results available also give positive evidences to this observation (cf. e.g. [8, 11]).

REFERENCES

vol. 26, n° 4, 1992