C. Schwab

Boundary layer resolution in hierarchical models of laminated composites

M2AN - Modélisation mathématique et analyse numérique, tome 28, n ${ }^{\circ} 5$ (1994), p. 517-537
http://www.numdam.org/item?id=M2AN_1994__28_5_517_0
© AFCET, 1994, tous droits réservés.
L'accès aux archives de la revue «M2AN - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

BOUNDARY LAYER RESOLUTION IN HIERARCHICAL MODELS OF LAMINATED COMPOSITES (*)

by C. Schwab (${ }^{1}$)
Communicated by P G Ciarlet

Abstract

The hierarchical modelling of a linear heat conduction problem in an orthotropic sandwich plate of thickness $2 d$ is analyzed and the asymptotic structure of the solution and the boundary layers are obtained A famıly of lower dimensional, hierarchical models with increased model order in a $O(d|\ln d|)$ vicinity of the lateral edge is constructed by energy projection It is shown that these models converge in the energy norm with optimal order as $d \rightarrow 0$ to the exact solution regardless of the boundary layers

Résumé - On analyse l'équation de la chaleur dans une plaque sandwich trıdimensıonnelle d'épaisseur $2 d$ du bord Lipschitzien Pour des données régulıeres, quı ne remplıssent aucune conditıon de la compatıbılité au bord de la plaque, on obtıent la structure asymptotıque et les couches limıtes de la solutıon trıdimensionnelle quand l'épalsseur tend vers zéro On construit une classe hiérarchıque des modeles bidımensıonnels d'ordre élevé dans le voısınage du bord par la méthode Galerkın On démontre que ces modèles convergent optımalement vers la solutıon trıdımensionnelle en présence des couches limıtes quand l'épatsseur approche zéro ou, autrement dit, que ces modèles hiérarchiques résolvent les couches limites trıdımensionnelles

1. INTRODUCTION

In recent years, structures made of laminated composites have become increasingly important in a number of industries. Often the structural components are in addition thin, l.e. we deal with beams, rods, plates and shells. The accurate and effective numerical prediction of their macroscopic as well as of their microscopic responses under external forces has therefore become increasingly important. Typically one exploits the special geometry of the structure by adoptıng a lower dimensional model, which is obtained by asymptotic techniques as outlined, for example, in [4]. The laminated materials, on the other hand, are dealt with by proposing «averaged»

[^0][^1]effective models with fictitious, homogeneous materials prior to the asymptotic analysis While accurately predicting the macroscopic response of the structures, this class of models does not allow for an accurate assessment of the microscopic features, such as interlamina stresses and boundary effects, which govern the onset of delamination

In the present paper we analyze therefore an alternatıve approach for a model problem of heat conduction in a thin plate which consists of a stack of orthotropic layers ideally bonded together As in [9] we replace the threedimensional boundary value problem by a hierarchy of two dimensional problems which approximate the original problem as both thickness tends to zero and the order of the model tends to infinity Moreover, accuracy and complexity of the models are independent of the number of layers, and already low order models allow to resolve cross-sectional micro effects accurately, even for a large number of layers, in contrast to the above mentioned «effective» models We view hierarchical modelling as an optimized numerical method for the approximation of three dimensional boundary value problems with special structure - here a stratified material and a thin geometry The effectiveness of this approach depends strongly the boundary layers - solution components that decay exponentially off the lateral boundary of the plate and play an important role in the onset of delamination We show in this paper that a local increase of the model order in a $O(d|\ln d|)$ - neighborhood of the lateral boundary of the plate results in a plate model which resolves the boundary layers of the exact solution, 1 e the modelling error is of optimal asymptotic order Models of the type investıgated here have also been computationally realized and successfully used in engineering applications [2] and are amenable to an adaptive selection of the model order («d-adaptıvity ») [3], [5]

2. PROBLEM FORMULATION

Let $\omega \subset \mathbb{R}^{n}$ be a domain with Lipschitz boundary $\gamma=\partial \omega$ and define, for $0<d \leqslant 1$, the domain $\Omega=\omega \times(-d, d)$ and its lateral boundary $\Gamma=\gamma \times(-d, d)$ We consider the boundary value problem

$$
\begin{align*}
L u & =0 & \text { in } & \Omega \\
\gamma_{0} u & =0 & \text { on } & \Gamma \tag{array}\\
\gamma_{1} u & =f^{ \pm} & \text {on } & R_{ \pm}
\end{align*}
$$

where $R_{ \pm}=\omega \times\{ \pm d\} \quad$ The operator L is defined by

$$
L=\frac{\partial}{\partial y}\left(a\left(\frac{y}{d}\right) \frac{\partial}{\partial y}\right)+b\left(\frac{y}{d}\right) \nabla_{x} \cdot\left(C(x) \nabla_{x}\right)
$$

where $a, b \in L^{\infty}(-1,1)$ are independent of $d, \nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)^{\top}$, and

$$
\begin{equation*}
0<\underline{A} \leqslant a(z), \quad 0<\underline{B} \leqslant b(z) \tag{2.2}
\end{equation*}
$$

γ_{0} denotes the trace operator and γ_{1} the distributional conormal derivative, defined on $H_{L}(\Omega):=\stackrel{\circ}{H}^{1}(\Omega) \cap\left\{u \mid L u \in L^{2}(\Omega)\right\}$ via Green's formula. The matrix function $C(x)$ is assumed to be symmetric, positive definite, with C^{∞} coefficients which satisfy

$$
\begin{equation*}
\underline{C} \xi^{\top} \xi \leqslant \xi^{\top} C(x) \xi \leqslant \bar{C} \xi^{\top} \xi \quad \forall x \in \bar{\omega}, \quad \forall \xi \in \mathbb{R}^{n} \tag{2.3}
\end{equation*}
$$

for some constants $0<\underline{C} \leqslant \bar{C}$. We introduce the (strictly positive) differential operator

$$
\begin{equation*}
A=-\nabla_{x} \cdot C(x) \nabla_{x}, \tag{2.4}
\end{equation*}
$$

with domain $\mathscr{\mathscr { D }}(A) \subset \stackrel{\circ}{H}^{1}(\omega)$ and, obviously, $\mathscr{D}\left(A^{1 / 2}\right)=\stackrel{\circ}{H}^{1}(\omega)$.
The weak form of (2.1) reads: Find $u \in H^{1}(\Omega, \Gamma)$ such that

$$
\begin{equation*}
B(u, v)=F(v) \quad \forall v \in H^{1}(\Omega, \Gamma), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
H^{1}(\Omega, \Gamma)=H^{1}(\Omega) \cap\left\{u \mid \gamma_{0} u=0 \text { on } \Gamma\right\}, \\
B(u, v)=\int_{\Omega}\left\{a\left(\frac{y}{d}\right) \frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+b\left(\frac{y}{d}\right) \nabla_{x} u \cdot C(x) \nabla_{x} v\right\} d y d x \\
F(v)=\int_{\omega}\left(f^{+} v(x, d)+f^{-} v(x,-d)\right) d x
\end{gathered}
$$

THEOREM 2.1: For every pair $f^{+}, f^{-} \in L^{2}(\omega)$ and every $0<d \leqslant 1$, there exists a unique weak solution u of (2.5).

We assume in what follows for convenience that

$$
f^{+}=f^{-}=f, \quad a(z)=a(-z), \quad b(z)=b(-z), \quad z \in(-1,1) .
$$

Then the weak solution $u(x, y)$ of (2.5) satisfies $u(x, y)=u(x,-y)$ for a.e. $x \in \omega$.

Remark 2.1 : The assumptions (2.2) and (2.3) imply in particular that on $H^{1}(\Omega, \Gamma)$ the expressions $\|u\|_{E(\Omega)}:=\sqrt{B(u, u)}$ and $|u|_{H^{1}(\Omega)}=$ $\left(\int_{\Omega}|\nabla u|^{2} d x d y\right)^{1 / 2}$ are equivalent norms :

$$
\begin{equation*}
\min \{\underline{A}, \underline{B} C \underline{C}\}|u|_{H^{\prime}(\Omega)} \leqslant\|u\|_{E(\Omega)} \leqslant \max \{\bar{A}, \bar{B} \bar{C}\}|u|_{H^{1}(\Omega)} \tag{2.6}
\end{equation*}
$$

vol $28, n^{\circ} 5,1994$

3. HIERARCHICAL MODELLING

Motivated by the special geometry of Ω, we approximate (2.1)-(2.5) by dimensionally reduced models, i.e. by elliptic boundary value problems on $\omega \subset \mathbb{R}^{n}$. Denote by

$$
\mathscr{P}:=\left\{\omega_{\imath} \mid \omega_{l} \subseteq \omega, 1 \leqslant i \leqslant M\right\}
$$

a partition of ω into M domains with Lipschitz boundaries, i.e. $\omega_{\imath} \cap \omega_{\jmath}=\emptyset$ for $i \neq j$ and $\bar{\omega}=\cup \bar{\omega}_{l}$. We associate with each ω_{\imath} a non-negative integer q_{1}, to which we will refer as the order of the model on ω_{l} and we define

$$
\begin{equation*}
S(\mathscr{P}, q):=\left\{u \in H^{1}(\Omega, \Gamma)|u|_{\omega_{i}}=\sum_{j=0}^{q_{i}} X_{J}(x) \varphi_{J}\left(\frac{y}{d}\right), \omega_{\imath} \in \mathscr{P}\right\} \tag{3.1}
\end{equation*}
$$

and $q=\left\{q_{1}, \ldots, q_{M}\right\}$. Here X_{J} are unknown coefficient functions to be determined and $\varphi_{l}(z), z \in(-1,1)$, are d-independent, a priori selected coefficient functions. For a given selection of $\left\{\varphi_{l}\right\}, \mathscr{P}, q$, the (\mathscr{P}, q)-model is obtained by energy projection : Find $u(\mathscr{P}, q) \in S(\mathscr{P}, q)$ such that

$$
\begin{equation*}
B(u(\mathscr{P}, q), v)=F(v) \quad \forall v \in S(\mathscr{P}, q) \tag{3.2}
\end{equation*}
$$

We observe that the modelling error $e(\mathscr{P}, q):=u-u(\mathscr{P}, q)$ is optimal, i.e.

$$
\begin{equation*}
\|e(\mathscr{P}, q)\|_{E(\Omega)}=\inf _{w \in S(\mathscr{P}, q)}\|u-w\|_{E(\Omega)} \tag{3.3}
\end{equation*}
$$

Another important property of the modelling error is
Theorem 3.1: Assume that φ_{0} is constant. Then

$$
\begin{equation*}
\int_{-d}^{d} b\left(\frac{y}{d}\right) e(x, y) d y=0 \quad \text { a.e. } \quad x \in \omega \tag{3.4}
\end{equation*}
$$

Proof: Since $q_{l} \geqslant 0$ and $\varphi_{0}(z)=1$, we have $\stackrel{\circ}{H}^{1}(\omega) \otimes 1_{y} \subset S(\mathscr{P}, q)$, hence, from (3.2),

$$
B(e(\mathscr{P}, q), v)=0 \quad \forall v(x, y)=V(x) \otimes 1_{y}
$$

t.e.

$$
0=\int_{\Omega} b\left(\frac{y}{d}\right) \nabla_{x} V \cdot C(x) \nabla_{x} e d x d y \quad \forall V \in \stackrel{\circ}{H}^{1}(\omega) .
$$

We obtain with Fubini's theorem and integration by parts that

$$
\begin{aligned}
& A\left(\int_{-d}^{d} b\left(\frac{y}{d}\right) e(x, y) d y\right)=0 \quad \text { in } \omega, \\
& \gamma_{0}\left(\int_{-d}^{d} b\left(\frac{y}{d}\right) e(x, y) d y\right)=0 \quad \text { on } \quad \gamma,
\end{aligned}
$$

with A as in (2.4). Now (3.4) is a consequence of the strict positivity of A.

For the analysis of the modelling error e in (3.3) and to obtain an insight into a good selection of the basis functions $\varphi_{1}(z)$ in (3.1) we investigate now the asymptotic structure of the exact solution u.

4. ASYMPTOTIC ANALYSIS OF u

In this section we analyze the structure of the weak solution u of (2.5) as $d \rightarrow 0$. We show that it can be separated into a limiting solution u_{0}^{N} which has product form and into boundary layers $u_{B L}^{N}$, which have three dimensional character.

Theorem 4.1: Assume that $f \in H^{2 N}(\omega), N \in \mathbb{N}_{0}$. Then we have for $0<d \leqslant 1$

$$
\begin{equation*}
\left\|u-u_{0}^{N}-u_{B L}^{N}\right\|_{E(\Omega)} \leqslant C_{N} d^{2 N+1 / 2}\left\|A^{N} f\right\|_{L^{2}(\omega)} . \tag{4.1}
\end{equation*}
$$

The constant C_{N} is independent of d and given by

$$
C_{N}=\left\{\begin{array}{cl}
\left\|\sqrt{a} \psi_{2 N+2}^{\prime}\right\|_{L^{2}(-1,1)}, & \text { if } \quad N \geqslant 1 \\
2 \Lambda^{1 / 2} & \text { if } \quad N=0
\end{array}\right.
$$

with Λ as in (4.11) below. Further,

$$
\begin{equation*}
u_{0}^{N}=\sum_{J=0}^{N} d^{-1+2_{J}}\left(A^{J-1} f\right)(x) \psi_{2_{J}}\left(\frac{y}{d}\right) \tag{4.2}
\end{equation*}
$$

and, for $N \geqslant 1$,

$$
\begin{equation*}
u_{B L}^{N}=\sum_{j=1}^{N} d^{-1+2_{j}} U_{j}(x, y) \tag{4.3}
\end{equation*}
$$

($u_{B L}^{N}=0$ if $N=0$). The functions $\psi_{2,}$ in (4.2) are even and defined recursively by

$$
\begin{equation*}
\int_{-1}^{1} a(z) \psi_{0}^{\prime} v^{\prime} d z=0 \tag{4.4}
\end{equation*}
$$

vol. $28, \mathrm{n}^{\circ} 5,1994$

$$
\begin{gather*}
\int_{-1}^{1} a(z) \psi_{2}^{\prime} v^{\prime} d z+\int_{-1}^{1} b(z) \psi_{0} v d z=v(-1)+v(1), \tag{4.5}\\
\int_{-1}^{1} a(z) \psi_{2,}^{\prime} v^{\prime} d z+\int_{-1}^{1} b(z) \psi_{2_{j-2}} v d z=0 \quad j=2,3, \ldots, \tag{4.6}
\end{gather*}
$$

for all $v \in H^{1}(-1,1)$ and U_{J} is the solution of the Saint-Venant problem

$$
\begin{align*}
L U_{J} & =0 \quad \text { on } \quad \Omega \\
\gamma_{0} U_{J} & =-\psi_{2 J}\left(\frac{y}{d}\right) \gamma_{0}\left(A^{J-1} f\right)(s) \text { on } \Gamma \tag{4.7}\\
\gamma_{1} U_{J} & =0 \quad \text { on } R_{ \pm}
\end{align*}
$$

Remark 4.1: From (4.4) we obtain that ψ_{0} is constant. The constant is determined uniquely from the requirement that the Neumann problem (4.5) is solvable. Analogously we see that $\psi_{2 j}, j \geqslant 1$, are uniquely determined and satisfy

$$
\begin{equation*}
\int_{-1}^{1} b(z) \psi_{2 \jmath}(z) d z=0, \quad j \geqslant 1 \tag{4.8}
\end{equation*}
$$

Proof: i) Case $N=0$: Here $\mathscr{P}=\{\omega\}, q=\{0\}$ and $u(\mathscr{P}, q)=$ $X_{0}(x) \psi_{0}\left(\frac{y}{d}\right)$ where $X_{0}(x)$ satisfies

$$
\begin{aligned}
D A X_{0} & =d^{-1} f & & \text { in } \quad \omega \\
X_{0} & =0 & & \text { on } \quad \gamma
\end{aligned}
$$

and $\quad D=\frac{1}{2} \int_{-1}^{1} b(z) \psi_{0}^{2} d z$. Thus $u(\mathscr{P}, q)=d^{-1} D^{-1} A^{-1} f \psi_{0}\left(\frac{y}{d}\right)=$ $u_{0}^{0}(x, y)$, and, since ψ_{0} is constant, we have

$$
\begin{equation*}
B(e, v)=0 \quad \text { for all } \quad v \in \stackrel{\circ}{H}^{1}(\omega) \otimes 1_{y} . \tag{4.9}
\end{equation*}
$$

Now

$$
\|e\|_{E(\Omega)}=\sup _{\substack{0 \neq v \in H^{1}(\Omega, \Gamma)}} \frac{B(e, v)}{\|v\|_{E(\Omega)}}
$$

and, by (4.9), the supremum needs only be taken over all $v \in H^{1}(\Omega, \Gamma)$ for which

$$
\begin{equation*}
\int_{-d}^{d} b\left(\frac{y}{d}\right) v(x, y) d y=0 \quad \text { a.e. } \quad x \in \omega \tag{4.10}
\end{equation*}
$$

Since ψ_{0} is constant we have

$$
\begin{aligned}
B(e, v)= & F(v)-B\left(u_{0}^{0}, v\right)= \\
& =F(v)-\psi_{0} \int_{\omega}\left(\nabla_{x}\left(\int_{-d}^{d} b\left(\frac{y}{d}\right) v(x, y) d y\right) \cdot C(x) \nabla_{x} X_{0}\right) d x
\end{aligned}
$$

and the volume terms vanish due to (4.10). Therefore

$$
\begin{aligned}
\|e\|_{E(\Omega)}^{2} & =\sup _{0 \neq v \in H^{1}(\Omega, \Gamma)} \frac{\left(\int_{\omega} f(x)(v(x, d)+v(x,-d)) d x\right)^{2}}{\|v\|_{E(\Omega)}^{2}} \\
& \leqslant \sup _{0 \neq v \in H^{1}(\Omega, \Gamma)} \frac{\left(\int_{\omega} f(x)(v(x, d)+v(x,-d)) d x\right)^{2}}{\int_{-d}^{d} a\left(\frac{y}{d}\right)\left(\frac{\partial v}{\partial y}\right)^{2} d y} \\
& =4 \Lambda d\|f\|_{L^{2}(\omega)}^{2} .
\end{aligned}
$$

Here

$$
\Lambda^{-1}=\inf _{H^{1}(-1,1)} \frac{\int_{-1}^{1} a(z)\left(\psi^{\prime}\right)^{2} d z}{|\psi(1)|^{2}}
$$

and the infimum is taken over all even functions ψ which satisfy $\int_{-1}^{1} b(z) \psi(z) d z=0$. Let us calculate Λ. Taking variations, we find that necessarily $\left(a(z) \psi^{\prime}\right)^{\prime}=$ Const., i.e.

$$
\psi(z)=\alpha\left(\int_{-1}^{z} \frac{\xi}{a(\xi)} d \xi+\beta\right)
$$

since ψ is even. Here $\alpha \neq 0$ is arbitrary and, from (4.10),

$$
\beta=-\left(\int_{-1}^{1} \int_{-1}^{z} \frac{\xi}{a(\xi)} d \xi b(z) d z\right) / \int_{-1}^{1} b(z) d z
$$

Consequently,

$$
\begin{equation*}
\Lambda=\frac{\int_{-1}^{1} b(z)\left(\int_{z}^{1} \frac{\xi}{a(\xi)} d \xi\right) d z}{\int_{-1}^{1} b(z) d z \int_{-1}^{1} \frac{z^{2}}{a(z)} d z} \tag{4.11}
\end{equation*}
$$

vol. $28, n^{\circ} 5,1994$
ii) Case $N \geqslant 1:$ Changing variables $z=y / d$, we find that

$$
B(u, v)=d^{-1} a(u, v)+d b(u, v),
$$

where

$$
\begin{gathered}
a(u, v):=\int_{\omega} \int_{-1}^{1} a(z) u^{\prime} v^{\prime} d z d x, \\
b(u, v):=\int_{\omega} \int_{-1}^{1} b(z) \nabla_{x} v \cdot C(x) \nabla_{x} u d z d x
\end{gathered}
$$

are independent of d and a prime denotes $\frac{d}{d z}$. For any $v \in H^{1}(\Omega, \Gamma)$, we have

$$
\begin{aligned}
B\left(u-u_{0}^{N}, v\right)= & F(v)-B\left(u_{0}^{N}, v\right) \\
= & F(v)-\sum_{J=1}^{N} d^{-2+2 J} a\left(\left(A^{J-1} f\right) \psi_{2 J}, v\right) \\
& -\sum_{J=0}^{N} d^{2 J} b\left(\left(A^{J-1} f\right) \psi_{2 J}, v\right)
\end{aligned}
$$

since ψ_{0} is constant. We combine terms with equal powers of d and get

$$
\begin{align*}
B\left(u-u_{0}^{N}, v\right)=F(v) & -\sum_{j=0}^{N} d^{2 J}\left\{b\left(\left(A^{J-1} f\right) \psi_{2_{J}}, v\right)+a\left(\left(A^{J} f\right) \psi_{2_{j}+2}, v\right)\right\} \\
& -d^{2 N} b\left(\left(A^{N-1} f\right) \psi_{2 N}, v\right) \tag{4.12}
\end{align*}
$$

Integrations by parts with respect to x and (4.5), (4.6) give for $J \geqslant 1$ that

$$
a\left(\left(A^{J} f\right) \psi_{2 j+2}, v\right)=-b\left(\left(A^{J-1} f\right) \psi_{2 \jmath}, v\right)+d^{-1} R_{\jmath}(v)
$$

where

$$
R_{j}(v)=\int_{-d}^{d} \int_{\gamma}\left(\gamma_{0} v\right)(s, y) b\left(\frac{y}{d}\right) \gamma_{1}\left(A^{j-1} f\right)(s) d s \psi_{2 J}\left(\frac{y}{d}\right) d y
$$

For $j=0$ we get analogously

$$
a\left(f \psi_{2}, v\right)=-b\left(\left(A^{-1} f\right) \psi_{0}, v\right)+F(v)+d^{-1} R_{0}(v) .
$$

Inserting into (4.12) yields

$$
B\left(u-u_{0}^{N}, v\right)=-\sum_{J=0}^{N-1} d^{2 J-1} R_{J}(v)-d^{2 N} b\left(\left(A^{N-1} f\right) \psi_{2 N}, v\right)
$$

Now, since $v \in H^{1}(\Omega, \Gamma), R_{j}(v)=0$ for $0 \leqslant j \leqslant N-1$, and

$$
b\left(\left(A^{N-1} f\right) \psi_{2 N}, v\right)=-a\left(\left(A^{N} f\right) \psi_{2 N+2}, v\right)
$$

from integration by parts. We have therefore proved

$$
B\left(u-u_{0}^{N}, v\right)=d^{2 N} a\left(\left(A^{N} f\right) \psi_{2 N+2}, v\right)
$$

Since $u_{0}^{N} \notin H^{1}(\Omega, \Gamma)$, we correct the nonzero trace of u_{0}^{N} on Γ and add

$$
u_{B L}^{N}=\sum_{j=1}^{N} d^{-1+2 j} U_{j}(x, y)
$$

where U_{J} solves (4.7). Then obviously $u_{0}^{N}+\left.u_{B L}^{N}\right|_{\Gamma}=0$, and, since $B\left(u_{B L}^{N}, v\right)=0 \forall v \in H^{1}(\Omega, \Gamma)$,

$$
\begin{aligned}
& B\left(u-u_{0}^{N}-u_{B L}^{N}, v\right)=d^{2 N} a\left(\left(A^{N} f\right) \psi_{2 N+2}, v\right) \leqslant \\
& \quad \leqslant d^{2 N}\left\|A^{N} f\right\|_{L^{2}(\omega)}\left\|\sqrt{a} \psi_{2 N+2}^{\prime}\right\|_{L^{2}(-1,1)}\left\|\sqrt{a} \frac{\partial v}{\partial z}\right\|_{L^{2}(\omega \times(-1,1))}
\end{aligned}
$$

Changing variables $y=z d$, we find

$$
\begin{aligned}
B\left(u-u_{0}^{N}-u_{B L}^{N}, v\right) & \leqslant \\
& \leqslant d^{2 N+1 / 2}\left\|A^{N} f\right\|_{L^{2}(\omega)}\left\|\sqrt{a} \psi_{2 N+2}^{\prime}\right\|_{L^{2}(-1,1)}\left\|\sqrt{a} \frac{\partial v}{\partial y}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

from where (4.1), (4.2) follow.
Remark 4.2 : In the case of Neumann conditions on Γ, the above result is also true ; the only modification consists in that U_{j} is now a solution of the Saint Venant problem (4.7) with the boundary conditions

$$
\gamma_{1} U_{J}=-\gamma_{1}\left(\psi_{2 J}\left(\frac{y}{d}\right)\left(A^{J-1} f\right)(s)\right) \quad \text { on } \quad \Gamma
$$

Remark 4.3 : If $a=b=1$, i.e. the material is homogeneous, the functions $\psi_{2 J}$ are polynomials and it was shown in [7] that $C_{N}=\sqrt{\frac{2}{3}}\left(\frac{\pi}{2}\right)^{-2 N}$.

Remark 4.4: Based on Theorem 3.1 we select the functions φ_{J} in the definition 2.1 of $S(\mathscr{P}, q)$ such that u_{0}^{N} is well approximated, i.e.

$$
\begin{equation*}
\varphi_{J}=\psi_{2 J} \quad j=0,1,2, \ldots \tag{4.13}
\end{equation*}
$$

If $a(z), b(z)$ are piecewise constant, the ψ_{2}, are uniquely determined piecewise polynomials (splines) which can be efficiently computed for any
given material by solving the Neumann problems (4)-(46) with a one dimensional finite element method

This selection ensures also that the models will converge at fixed $d>0$

Proposition 41 [9, II, Theorem 2 1]
The sequence $\left\{\psi_{2 J}\right\}_{j-0}^{\infty}$ is dense in $H^{1}(-1,1) \cap\{\psi \mid \psi(z)=\psi(-z)\}$
Remark 45 We will also admıt $q_{t}=\infty \mathrm{in}$ (3 1) By Proposition 4 1, this corresponds to solving locally, 1 e on ω_{i}, a three-dimensional problem

5 BOUNDARY LAYER RESOLUTION

The result (4 1) on the asymptotic structure of the solution (25) allows, together with the quasioptımality (3) of the modelling error for an estımate of $\|e\|_{E(\Omega)}$ Let us first consider an uniform model order $q, 1 \mathrm{e}$

$$
\begin{equation*}
\mathscr{P}=\{\omega\}, \quad q=\{q\}, \quad q \geqslant 0 \tag{array}
\end{equation*}
$$

THEOREM 51 With (\mathscr{P}, q) as in (5 1) there holds

$$
\|e(\mathscr{P}, q)\|_{E(\Omega)} \leqslant C(q) d^{1 / 2}\|f\|_{L^{2}(\omega)}
$$

and the rate $d^{1 / 2}$ ls optimal
Prouf

$$
\|e\|_{E(\Omega)}=\sup _{0 \neq v \in H^{1}(\Omega \Gamma)} \frac{B(e, v)}{\|v\|_{E(\Omega)}}
$$

and the supremum is taken over all v such that $B(v, w)=0 \forall w \in S(\mathscr{P}, q)$ Hence we can estımate as in the proof of Theorem 41 (Case $N=0$) The optımality of the rate \sqrt{d} is seen from Theorem 41 , too To obtain for example $d^{5 / 2}$, we would have to include $u_{B L}^{1}$ into $u(\mathscr{P}, q)$ However, $u_{B L}^{1} \notin S(\mathscr{P}, q)$ for any q

In the remainder of this section we show that the optimal asymptotic rate $d^{2 N+1 / 2}$ in Theorem 41 can be recovered by simply using a more sophisticated model in an $O(d|\ln d|)$-neighborhood of γ and uniform order $q=N$ in the interior of ω We start by proving some technical results used in the subsequent analysis

5.1. Technical Preliminaries

We analyze $B(.,$.$) in weıghted spaces Let B(.,$.$) be a bilinear form on$ Hılbert spaces $H_{1} \times H_{2}$, with respective norms $\|\circ\|_{1}$, $\|\circ\|_{2}$ Then
$B(.,$.$) is (C, \delta$)-regular if there exist positive constants C and δ such that

$$
\begin{gather*}
|B(u, v)| \leqslant C\|u\|_{1}\|v\|_{2} \quad \forall u \in H_{1}, \forall v \in H_{2}, \tag{5.2}\\
\inf _{\|u\|_{1}=1} \sup _{\|v\|_{2}=1}|B(u, v)| \geqslant \delta>0, \tag{5.3}\\
\sup _{\|u\|_{1}=1}|B(u, v)|>0 \quad \forall 0 \neq v \in H_{2} . \tag{5.4}
\end{gather*}
$$

If $B(.,$.$) is (C, \delta)$-regular, it is well known (see, for example, [1]) that for every bounded, linear functional $F($.$) on H_{2}$ there exists exactly one $u \in H_{1}$ such that

$$
B(u, v)=F(v) \quad \forall v \in H_{2},
$$

and, if

$$
\begin{equation*}
\sup _{\|v\|_{2}=1}|F(v)| \leqslant A \tag{5.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\|u\|_{1} \leqslant A / \delta \tag{5.6}
\end{equation*}
$$

Below we will use the space

$$
\begin{equation*}
H_{\varphi}:=\left\{u \in H^{1}(\Omega, \Gamma) \left\lvert\, \int_{-d}^{d} b\left(\frac{y}{d}\right) u(x, y) d y=0 \quad\right. \text { a.e. } \quad x \in \omega\right\} \tag{5.7}
\end{equation*}
$$

furnished with the norm $\|\circ\|_{\varphi}$ given by

$$
\begin{equation*}
\|u\|_{\varphi}^{2}:=\int_{\omega} \varphi^{2}(x) \int_{-d}^{d}\left\{a\left(\frac{y}{d}\right)\left(\frac{\partial u}{\partial y}\right)^{2}+b\left(\frac{y}{d}\right) \nabla_{x} u \cdot C(x) \nabla_{x} u\right\} d y d x \tag{5.8}
\end{equation*}
$$

Then there holds.
Lemma 5.1: Assume that $u(x, y) \in H_{\varphi}$. Then, for all open subsets $\sigma \subseteq \omega$,

$$
\begin{align*}
& \int_{\sigma \times(-d, d)} b\left(\frac{y}{d}\right) \varphi^{2}(x)|u(x, y)|^{2} d y d x \leqslant \\
& \leqslant C_{3}^{2} d^{2} \int_{\sigma \times(-d, d)} a\left(\frac{y}{d}\right) \varphi^{2}(x)\left(\frac{\partial u}{\partial y}\right)^{2} d y d x \tag{5.9}
\end{align*}
$$

vol $28, n^{\circ} 5,1994$
where

$$
\frac{1}{C_{3}^{2}}=\inf _{\psi \in H^{\prime}(-1,1)} \frac{\int_{-1}^{1} a(z)\left(\psi^{\prime}\right)^{2} d z}{\int_{-1}^{1} b(z) \psi^{2}(z) d z}
$$

and the infimum is taken over all

$$
\psi \in H^{1}(-1,1) \cap\left\{\psi \mid \int_{-1}^{1} b(z) \psi(z) d z=0\right\}
$$

Proof: For smooth $u(x, y)$ and all $x \in \omega$, we have

$$
\int_{-d}^{d} b\left(\frac{y}{d}\right) u^{2}(x, y) d y \leqslant C_{3}^{2} d^{2} \int_{-d}^{d} a\left(\frac{y}{d}\right)\left(\frac{\partial u}{\partial y}\right)^{2} d y
$$

by the definition of C_{3} and a scaling argument. Multiplying both sides by $\varphi^{2}(x)$ and integrating over σ completes the proof.

Now we can prove.
THEOREM 5.2: Let $0<\varphi \in W^{1, \infty}(\omega)$ and denote

$$
\begin{equation*}
Q=\max _{1 \equiv l \leqslant n}\left\|\frac{\partial \varphi}{\partial x_{l}} / \varphi(x)\right\|_{L^{\infty}(\omega)} \tag{5.10}
\end{equation*}
$$

Then the bilinear form $\boldsymbol{B}(.,$.$) is (1, \delta)$-regular on $H_{\varphi} \times H_{\varphi}$ with

$$
\begin{equation*}
\delta=\left(1-C_{4}(\omega, n) Q d\right)\left(1+4 \sqrt{n \bar{C}} Q d C_{3}\left(1+\sqrt{n \bar{C}} Q d C_{3}\right)\right)^{-1 / 2} \tag{5.11}
\end{equation*}
$$

Proof: It is easily seen from Schwartz' inequality that (5.2) holds with $C=1$.

Let us prove (5.3). We consider $u \in H_{\varphi}$ and define $v_{u}=u \varphi^{2}$. Then $v_{u} \in H_{\varphi^{-1}}$ and we have

$$
\begin{aligned}
\left\|v_{u}\right\|_{\varphi^{-1}}^{2}=\int_{\Omega} \varphi^{-2}\left\{\varphi^{4} a\left(\frac{y}{d}\right)\right. & \left(\frac{\partial u}{\partial y}\right)^{2}+ \\
& \left.+b\left(\frac{y}{d}\right) \nabla_{x}\left(\varphi^{2} u\right) \cdot C(x) \nabla_{x}\left(\varphi^{2} u\right)\right\} d y d x
\end{aligned}
$$

Since

$$
\begin{aligned}
& \nabla_{x}\left(\varphi^{2} u\right) \cdot C \nabla_{x}\left(\varphi^{2} u\right)=\varphi^{4} \nabla_{x} u \cdot C \nabla_{x} u+ \\
&+2 u \varphi^{2} \nabla_{x} u \cdot C \nabla_{x}\left(\varphi^{2}\right)+u^{2} \nabla_{x}\left(\varphi^{2}\right) \cdot C \nabla_{x}\left(\varphi^{2}\right)
\end{aligned}
$$

we find with Lemma 5.1

$$
\left\|v_{u}\right\|_{\varphi^{-1}}^{2} \leqslant\left(1+4 \sqrt{n \bar{C}} Q d C_{3}\left(1+\sqrt{n \bar{C}} Q d C_{3}\right)\right)\|u\|_{\varphi}^{2}
$$

Further,

$$
B\left(u, v_{u}\right)=\|u\|_{\varphi}^{2}+\int_{\Omega}\left\{b\left(\frac{y}{d}\right) u \nabla_{x}\left(\varphi^{2}\right) \cdot C(x) \nabla_{x} u\right\} d x d y
$$

Since

$$
\left|\nabla_{x}\left(\varphi^{2}\right)\right|_{2}^{2} \leqslant 4 n Q^{2} \varphi^{4}
$$

where $|\circ|_{2}$ denotes the Euclidean norm in \mathbb{R}^{n}, we have

$$
\begin{aligned}
\left\lvert\, \int_{\Omega}\left\{b\left(\frac{y}{d}\right)\right.\right. & \left.u \nabla_{x}\left(\varphi^{2}\right) \cdot C(x) \nabla_{x} u\right\}\left.d x d y\right|^{2} \leqslant \\
& \leqslant C_{1}^{2} \int_{\Omega}\left\{b\left(\frac{y}{d}\right)|u|^{2} \varphi^{-2}\left|\nabla_{x}\left(\varphi^{2}\right)\right|^{2}\right\} d x d y \int_{\Omega} \varphi^{2}\left|\nabla_{x} u\right|^{2} d x d y \\
& \leqslant 4 n Q^{2} C_{1}^{2} C_{2}^{2} \int_{\Omega} \varphi^{2} b\left(\frac{y}{d}\right)|u|^{2} d x d y\|u\|_{\varphi}^{2} \\
& \leqslant 4 n Q^{2} C_{1}^{2} C_{2}^{2} C_{3}^{2} d^{2} \int_{\Omega} \varphi^{2} a\left(\frac{y}{d}\right)\left(\frac{\partial u}{\partial y}\right)^{2} d x d y\|u\|_{\varphi}^{2}
\end{aligned}
$$

by Lemma 5.1, so that finally

$$
\left|\int_{\Omega}\left\{b\left(\frac{y}{d}\right) u \nabla_{x}\left(\varphi^{2}\right) \cdot C(x) \nabla_{x} u\right\} d x d y\right| \leqslant C_{4} Q d\|u\|_{\varphi}
$$

where $C_{4}:=2 \sqrt{n} C_{1} C_{2} C_{3}$. Thus

$$
B\left(u, v_{u}\right) \geqslant\left(1-C_{4}(\omega, n) Q d\right)\|u\|_{\varphi}^{2}
$$

and we see that (5.3) holds with δ as in (5.11). Condition (5.4) follows readily from the symmetry of B.

Remark 51 Below, we shall use in partıcular $\varphi(x)=$ $\exp \{\beta$ dist $(x, \gamma)\}, \beta \in \mathbb{R}$. If γ is Lipschitz, we have $\varphi \in W^{1, \infty}(\omega)$ (see, for example, [8, Chap. 6.3]). Then

$$
\begin{equation*}
Q=|\beta| R(\omega), \quad R(\omega)=\max _{1 \leqslant i \leqslant n} \| \frac{\partial}{\partial x_{i}} \text { dist }(x, \gamma) \|_{L^{\infty}(\omega)} \tag{5.12}
\end{equation*}
$$

and $B(.,$.$) is (1, \delta)$ regular with $\delta>0$ independent of d, provided

$$
\begin{equation*}
|\beta|<1 /\left(2 C_{4} R(\omega) d\right) \tag{5.13}
\end{equation*}
$$

vol $28, n^{\circ} 5,1994$

5.2. Decay Estimates for the Boundary Layers

With Theorem 5.2 we can prove that $u_{B L}^{N}$ in Theorem 41 is indeed a boundary effect, 1 e. that $u_{B L}^{N}$ decays exponentially off γ.

Lemma 5.2 : Consider the Saint Venant problem

$$
\begin{align*}
L U & =0 \quad \text { in } \quad \Omega \\
\gamma_{0} U & =g(s) \psi\left(\frac{y}{d}\right) \quad \text { on } \quad \Gamma, \tag{array}\\
\gamma_{1} u & =0 \quad \text { on } \quad R_{ \pm}
\end{align*}
$$

where $g \in H^{1 / 2}(\gamma)$ and $\psi \in H^{1}(-1,1)$ satusfies

$$
\begin{equation*}
\int_{-1}^{1} b(z) \psi(z) d z=0 \tag{5.15}
\end{equation*}
$$

Then the solutıon U satısfies (4 10) and, if β satısfies (5.13),

$$
\|U\|_{\varphi} \leqslant C_{8}(\omega, n) d^{1 / 2}\|\psi\|_{H^{1}(-11)}\|g\|_{H^{1 / 2}(\gamma)}
$$

Proof We cast (5.14) into the variational form. Find $U \in H^{1}(\Omega)$ such that $U=g(s) \psi\left(\frac{y}{d}\right)$ on Γ and

$$
\begin{equation*}
B(U, V)=0 \quad \forall V \in H^{1}(\Omega) \tag{5.16}
\end{equation*}
$$

To construct a particular solution $\tilde{G}(x, y)$ of (5.16), we observe that since γ is Lipschitz, there exists an extension $g(x)$ such that (see, for example, [6])

$$
\|g\|_{H^{1}(\omega)} \leqslant C_{5}(\omega)\|g\|_{H^{1 / 2}(\gamma)}
$$

Hence $\tilde{G}(x, y)=g(x) \psi\left(\frac{y}{d}\right)$ is an extension of $g \psi$ to $H^{1}(\Omega)$ and, by Lemma 5.1 with $\varphi=1$, we have the estimate

$$
\begin{align*}
\|\tilde{G}\|_{H^{1}(\Omega)}^{2}=|\tilde{G}|_{H^{1}(\Omega)}^{2}+\underline{B}^{-1}\|\sqrt{b} \tilde{G}\|_{L^{2}(\Omega)}^{2} & \leqslant \\
& \leqslant\left(1+\underline{B}^{-1} \bar{A} C_{3}^{2} d^{2}\right)|\tilde{G}|_{H^{1}(\Omega)}^{2} \tag{517}
\end{align*}
$$

Further,

$$
\begin{equation*}
\|\tilde{G}\|_{H^{1}(\Omega)}^{2} \leqslant C_{6} d^{-1}\|\psi\|_{H^{1}(-11)}^{2}\|g\|_{H^{1 / 2}(\gamma)}^{2} \tag{5.18}
\end{equation*}
$$

where C_{6} depends only on ω. Now define $G(x, y):=\tilde{G} / \varphi(x)$, with $\varphi(x)$ as in (5.12). Then

$$
\|G\|_{\varphi}^{2} \leqslant \max \{\bar{A}, \bar{B} \bar{C}\} \int_{\Omega}\left\{\left(\frac{\partial \tilde{G}}{\partial y}\right)^{2}+\varphi^{2}\left|\nabla_{x}\left(\tilde{G} \varphi^{-1}\right)\right|^{2}\right\} d x d y
$$

Setting $\rho(x):=\operatorname{dist}(x, \gamma)$, we find

$$
\left|\nabla_{x}\left(\varphi^{-1} \tilde{G}\right)\right|^{2} \leqslant 2 \varphi^{-2}\left\{\left|\nabla_{x} \tilde{G}\right|^{2}+\beta^{2}\left|\nabla_{x} \rho\right|^{2}|\tilde{G}|^{2}\right\}
$$

and, since \tilde{G} satisfies (4.10), we can use Lemma 5.1 with $\varphi=1$ to get

$$
\begin{aligned}
\int_{\Omega}\left|\nabla_{x} \rho\right|^{2}|\tilde{G}|^{2} d x & \leqslant n R^{2}(\omega) \underline{B}^{-1} \int_{\Omega} b\left(\frac{y}{d}\right)|\tilde{G}|^{2} d x d y \\
& \leqslant n R^{2}(\omega) \underline{B}^{-1} C_{3}^{2} d^{2} \int_{\Omega} a\left(\frac{y}{d}\right)\left|\frac{\partial \tilde{G}}{\partial y}\right|^{2} d x d y
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|G\|_{\varphi}^{2} \leqslant C_{7}(\omega, n)|\tilde{G}|_{H^{1}(\Omega)}^{2} \tag{5.19}
\end{equation*}
$$

provided that β satisfies (5.13). Combining (5.19) with (5.18), we arrive at

$$
\begin{equation*}
\|G\|_{\varphi} \leqslant C_{6} C_{7} d^{-1 / 2}\|\psi\|_{H^{1}(-1,1)}\|g\|_{H^{1 / 2}(\gamma)} . \tag{5.20}
\end{equation*}
$$

Now we split the solution $U=W+G$, where W solves the problem : Find $W \in H^{1}(\Omega, \Gamma) \cap H_{\varphi}$, such that

$$
B(W, V)=-B(G, V)=: G(V) \quad \forall V \in H^{1}(\Omega, \Gamma)
$$

By Theorem 5.1, $B(.,$.$) is (1, \delta)$ regular on $H_{\varphi} \times H_{\varphi^{-1}}$, hence

$$
|G(V)|=|B(G, V)| \leqslant\|G\|_{\varphi}\|V\|_{\varphi^{-1}},
$$

and from (5.6) we find $\|W\|_{\varphi} \leqslant\|G\|_{\varphi} / \delta$, i.e.

$$
\|U\|_{\varphi} \leqslant\|W\|_{\varphi}+\|G\|_{\varphi} \leqslant\left(1+\delta^{-1}\right)\|G\|_{\varphi}
$$

and referring to (5.20) completes the proof.
The previous Lemma implies the desired decay estimate of $u_{B L}^{N}$.
THEOREM 5.3: Assume that $f \in H^{2 N}(\omega), \quad N \geqslant 1$, and that $\varphi(x)=\exp \{\beta$ dist $(x, \gamma)\}$ with β satisfying (5.13). Then

$$
\begin{equation*}
\left\|u_{B L}^{N}\right\|_{\varphi} \leqslant C_{8}(\omega, n) d^{1 / 2} \Phi(N, f, d) \tag{5.21}
\end{equation*}
$$

vol. $28, \mathrm{n}^{\circ} 5,1994$
where

$$
\Phi(N, f, d)=\sum_{j=1}^{N} d^{2 J-2}\left\|\psi_{2 J}\right\|_{H^{1}(-1,1)}\left\|\gamma_{0}\left(A^{J-1} f\right)\right\|_{H^{1 / 2}(\gamma)}
$$

remains bounded as $d \rightarrow 0$.
Proof: Recall that for $N \geqslant 1$ (see (4.3))

$$
u_{B L}^{N}=\sum_{J=1}^{N} d^{-1+2_{J}} U_{j}(x, y)
$$

where U_{J} solves (5.14) with

$$
g(s)=-\gamma_{0}\left(A^{J-1} f\right), \quad \psi=\psi_{2_{J}}
$$

Due to $f \in H^{2 N}(\omega)$ and (4.8), the assumptions of Lemma 5.2 are satisfied for $1 \leqslant J \leqslant N$ and we get

$$
\left\|U_{j}\right\|_{\varphi} \leqslant C_{8}(\omega, n) d^{-1 / 2}\left\|\psi_{2 j}\right\|_{H^{\prime}(-1,1)}\left\|\gamma_{0}\left(A^{J-1} f\right)\right\|_{H^{1 / 2}(\gamma)}
$$

Hence we have (5.21)

5.3. Boundary Layer Resolution

We will now prove that the optimal asymptotic rate of convergence of $d^{2 N+1 / 2}$ can be recovered, if we use instead of the uniform model order N in (5.1)

$$
\begin{equation*}
\mathscr{P}=\left\{\omega_{t}, \sigma_{t}\right\}, \quad q=\{N, M\} \tag{5.22}
\end{equation*}
$$

where $\omega_{t}:=\{x \in \omega \mid \operatorname{dist}(x, \gamma)>t\}, \sigma_{t}=\omega \backslash \bar{\omega}_{t} t>0$ is a parameter at our disposal and $M \gg N$ is an elevated model order near the edge γ of the plate.

THEOREM 5.4 : Let $(\mathscr{P}, q$) be as in (5.22) with $M=\infty$ (see Remark 4.5 for the meaning of infinite model order) and $f \in H^{2 N}(\omega)$. Then there exist constants $C_{11}=8 N C_{4}(\omega, n) R(\omega)$ and C_{12} which are independent of d so that

$$
\|u-u(\mathscr{P}, q)\|_{E(\Omega)} \leqslant C_{12} d^{2 N+1 / 2}
$$

provided that

$$
\begin{equation*}
t \geqslant C_{11} d|\ln d| \tag{5.23}
\end{equation*}
$$

Proof: Due to (3.3), we estimate for any $\omega \in S(\mathscr{P}, q)$

$$
\begin{aligned}
\|e(\mathscr{P}, q)\|_{E(\Omega)} \leqslant\|u-w\|_{E(\Omega)} & \leqslant \\
& \leqslant\left\|u-u_{0}^{N}-u_{B L}^{N}\right\|_{E(\Omega)}+\left\|u_{0}^{N}+u_{B L}^{N}-w\right\|_{E(\Omega)}
\end{aligned}
$$

and by Theorem 4.1 it remains to estimate the last term. Let $\tilde{\chi}(\xi)$ be a nonnegative C^{∞} cut-off function satisfying

$$
\tilde{\chi}(\xi)= \begin{cases}1 & 0 \leqslant \xi \leqslant 1 / 2 \tag{5.24}\\ 0 & 1 \leqslant \xi\end{cases}
$$

and define $\chi(x):=\tilde{\chi}(\operatorname{dist}(x, \gamma) / t)$ for $t>0$. Then with Remark 5.1 $\chi \in W^{1, \infty}(\omega) \quad$ and $\quad \operatorname{supp}(1-\chi(x)) \subseteq \bar{\Omega}_{t / 2}$. We select $\quad w=u_{0}^{N}+$ $\chi u_{B L}^{B} \in S(\mathscr{P}, q)$ and have

$$
\left\|u_{0}^{N}+u_{B L}^{N}-w\right\|_{E(\Omega)}^{2}=\left\|(1-\chi) u_{B L}^{N}\right\|_{E\left(\Omega_{t / 2} \backslash \Omega_{t}\right)}^{2}+\left\|u_{B L}^{N}\right\|_{E\left(\Omega_{t}\right)}^{2}
$$

where $\Omega_{t}=\omega_{t} \times(-d, d)$. We estimate

$$
\begin{aligned}
& \left\|(1-\chi) u_{B L}^{N}\right\|_{E\left(\Omega_{t / 2} \backslash \Omega_{t}\right)}^{2} \leqslant \\
& \leqslant \int_{\Omega_{t / 2} \backslash \Omega_{t}}\left\{a\left(\frac{y}{d}\right)\left(\frac{\partial u_{B L}^{N}}{\partial y}\right)^{2}+\bar{C} b\left(\frac{y}{d}\right)\left|\nabla_{x}\left((1-\chi) u_{B L}^{N}\right)\right|^{2}\right\} d x d y \\
& \leqslant \int_{\Omega_{t / 2} \backslash \Omega_{t}}\left\{a\left(\frac{y}{d}\right)\left(\frac{\partial u_{B L}^{N}}{\partial y}\right)^{2}+2 \bar{C} b\left(\frac{y}{d}\right)\left|\nabla_{x} u_{B L}^{N}\right|^{2}\right. \\
& \left.+\frac{C_{9}^{2}(\omega)}{t^{2}} b\left(\frac{y}{d}\right)\left(u_{B L}^{N}\right)\right\} d x d y
\end{aligned}
$$

where $C_{9}^{2}=2 n \bar{C}\left\|\tilde{\chi}^{\prime}\right\|_{L^{\infty}} R^{2}(\omega)$. Using Lemma 5.1 on the last term, we find that

$$
\left\|(1-\chi) u_{B L}^{N}\right\|_{E\left(\Omega_{t / 2} \backslash \Omega_{t}\right)}^{2} \leqslant C_{10}^{2}\left\|u_{B L}^{N}\right\|_{E\left(\Omega_{t / 2} \backslash \Omega_{t}\right)}^{2}
$$

where

$$
C_{10}^{2}(\omega)=\max \left\{1+C_{9}^{2} C_{3}^{2} d^{2} t^{-2}, 2 \bar{C} / \underline{C}\right\}
$$

On $\omega_{t / 2}$ obviously $\exp (\beta t / 2) \leqslant \exp (\beta$ dist $(x, \gamma))$ for $\beta \geqslant 0$, hence

$$
e^{\beta t}\left\|u_{B L}^{N}\right\|_{E\left(\Omega_{t / 2} \backslash \Omega_{t}\right)}^{2} \leqslant\left\|u_{B L}^{N}\right\|_{\varphi}^{2} \leqslant C_{8}^{2} d \Phi^{2}(N, f, d)
$$

by Theorem 5.3. Analogously

$$
\left\|u_{B L}^{N}\right\|_{E\left(\Omega_{t}\right)}^{2} \leqslant e^{-2 \beta t} C_{8}^{2} d \Phi^{2}(N, f, d)
$$

Hence we find

$$
\begin{equation*}
\left\|u_{0}^{N}+u_{B L}^{N}-w\right\|_{E(\Omega)} \leqslant d^{1 / 2} e^{-\beta t / 2} C_{8}\left(1+C_{10}^{2}\right)^{1 / 2} \Phi(N, f, d) \tag{5.25}
\end{equation*}
$$

vol. $28, n^{\circ} 5,1994$
and we observe that (5.23) implies the boundedness of C_{10} as $d \rightarrow 0$. Now we require the bounds (5.25) and (4.1) to be of the same order in d, i.e.

$$
\begin{equation*}
C_{N} d^{2 N}\left\|A^{N} f\right\|_{L^{2}(\omega)} \sim e^{-\beta t / 2} C_{8}\left(1+C_{10}^{2}\right)^{1 / 2} \Phi(N, f, d) \tag{5.26}
\end{equation*}
$$

Selecting $\beta=1 /\left(2 C_{4} R(\omega) d\right)$ as in (5.13), we get for t satisfying (5.23) and for $0<d \leqslant 1$ that

$$
\begin{aligned}
e^{-\beta t / 2} C_{8}\left(1+C_{10}^{2}\right)^{1 / 2} \Phi(N, f, d) & \leqslant e^{-\frac{C_{11}|\ln d|}{4 C_{4} R}} C_{8}\left(1+C_{10}^{2}\right)^{1 / 2} \Phi \\
& =d^{\frac{C_{11}}{4 C_{4} R}} C_{8}\left(1+C_{10}^{2}\right)^{1 / 2} \Phi
\end{aligned}
$$

Selecting $C_{11}=8 N C_{4} R(\omega)$, we see that (5.26) is satisfied for all sufficiently small d. Adding (5.25) and the upper bound in Theorem 4.1, we obtain the assertion of the theorem with $C_{12}:=C_{N}\left\|A^{N} f\right\|_{L^{2}(\omega)}+$ $C_{8}\left(1+C_{10}^{2}\right)^{1 / 2} \Phi(N, f, d)$ where Φ is as in (5.21) and remains uniformly bounded as $d \rightarrow 0$.
We have actually proved the following stronger assertion.
Remark 5.2. Let \mathscr{P} be as in (5.22) and t as in (5.23). Then, if $S(\{\omega\}, N) \subset S(\mathscr{P}, q)$,

$$
\begin{align*}
\|e(\mathscr{P}, q)\|_{E(\Omega)} \leqslant C_{N} d^{2 N+1 / 2}+ & \\
& +\inf _{w \in S(\mathscr{P}, q)}\left\|x\left(u_{0}^{N}+u_{B L}^{N}\right)-w\right\|_{E\left(\Sigma_{t}\right)} \tag{5.27}
\end{align*}
$$

where

$$
\Sigma_{t}:=\sigma_{t} \times(-d, d) .
$$

This, together with Proposition 4.1, shows that Theorem 5.4 also holds if a finite, sufficiently large model order $M(N, d)$ is selected in σ_{t}.

6. CONCLUDING REMARKS

In this final section we briefly address the design of $S(\mathscr{P}, q)$ in the vicinity of γ. To this end we assume that for a mesh $\Delta_{0}=\left\{z_{j} \mid-1:=\right.$ $\left.z_{0}<z_{1}<\cdots<z_{K}:=1\right\} \subset[-1,1]$ the functions $a(z), b(z)$ are piecewise constant on $\left(z_{j}, z_{j+1}\right)$ and that γ is smooth. Then it is well known that u and $u_{B L}^{N}$ become singular on the sets $\gamma \times\{z, d\}$, due to edge - and interface singularities (see fig. 1 for $K=3$ layers). The functions $\psi_{2 j}$ in (4.4)-(4.6) are in this case piecewise polynomials of degree $2 j$ and the size of M necessary in (5.27) is governed by the regularity of $u_{0}^{N}+u_{B L}^{N}$ in
Σ_{t}. Although the subspace $S(\mathscr{P}, q)$ in (3.1) has a simple structure, it is not very well suited for the approximation of singular solutions. Remark 5.2 allows to alter $S(\mathscr{P}, q)$ in σ_{t} to obtain better approximation properties, as long as $S(\{\omega\}, N) \subset S(\mathscr{P}, q)$. Let us indicate how to obtain a suitable modification of $S(\mathscr{P}, q)$.

Figure 1. - 3-layer laminate with edge ($e_{ \pm}$) and interface ($i_{ \pm}$) singularities

For a mesh $\Delta:=\left\{z_{J} \mid-1:=z_{0}<z_{1}<\cdots<z_{L}:=1\right\}$ in $[-1,1]$ and a polynomial degree vector $\underline{p}:=\left\{p_{1}, \ldots, p_{L}\right\}, S^{p}(\Delta)$ denotes the space of continuous, piecewise polynomial functions of degrees p_{l} on $(-1,1)$, and with basis $\varphi_{k}(z)$. Partition ($0, t$) with t as in (5.23) into M subintervals : $t=: t_{0}>t_{1}>\cdots>t_{M}:=0$ and define

$$
\sigma_{j}:=\omega_{t_{j}} \backslash \omega_{t_{j-1}}, \Sigma_{j}:=\sigma_{j} \times(-d, d), j=1, \ldots, M, \sigma_{0}=\omega_{t}, \Sigma_{0}=\Omega_{t}
$$

where $\omega_{t}:=\{x \in \omega \mid$ dist $(x, \gamma)>t\}$. Then associate with each σ_{j} a mesh Δ, on $(-1,1)$ and a polynomial degree distribution p_{j}, satisfying

$$
\begin{equation*}
\Delta_{j-1} \subseteq \Delta_{j}, \underline{p}_{j-1} \leqslant \underline{p}_{j} \text { componentwise } j=1, \ldots, M \tag{6.1}
\end{equation*}
$$

l.e. all meshes Δ_{j} are refinements of Δ_{0} and the interfaces between layers are mesh-points. If we set $\underline{p}_{0}=\{2 N, \ldots, 2 N\}$, we have

$$
\begin{equation*}
\psi_{2_{\imath}} \in S^{p_{0}}\left(\Delta_{0}\right) \subseteq S^{p_{\jmath}}\left(\Delta_{j}\right), \quad i=1, \ldots, N, j=1, \ldots, M . \tag{6.2}
\end{equation*}
$$

Now the subspace $S(\mathscr{P}, q)$ is defined as follows :

$$
\begin{equation*}
S(\mathscr{P}, q):=\left\{u|u|_{\Sigma_{j}}=\sum_{\ell} X_{\ell}^{(ر)}(x) \varphi_{\ell}^{(j)}\left(\frac{y}{d}\right), X_{\ell}^{())} \in H^{1}\left(\sigma_{j}\right), j=1, \ldots, M\right. \tag{6.3}
\end{equation*}
$$

and $\left.\left.\quad u\right|_{\Omega_{t}}=\sum_{\ell} X_{\ell}^{(0)}(x) \psi_{2 \ell}\left(\frac{y}{d}\right), X_{\ell}^{(0)} \in H^{1}\left(\omega_{t}\right)\right\} \cap H^{1}(\Omega, \Gamma)$.
Then (6.2) implies that $S(\{\omega\}, N) \subset S(\mathscr{P}, q)$ and a suitable selection of the vol. $28, n^{\circ} 5,1994$
meshes Δ_{j} and the sequence $\left\{t_{J}\right\}$ amounts to $h-p$ refinement towards the singularities Figure 2 shows a possible subdivision of the domain Ω in lateral normal direction with $M=3$

Figure 2. - Effective domain partitıoning using $\bar{M} \tilde{I}=3$ ıayers

So far we only analyzed the semidiscretization error under the assumption that the coupled, elliptic system for the unknown coefficient functions $X_{\ell}^{(t)}$ in (6 3) can be solved exactly Our conclusions remain valid, however, if this system is also discretized with a sufficiently accurate finite element method The resulting scheme is a conforming discretization of the three dimensional problem (21) with $h-p$ refinement in the boundary layer and a single layer of «brick» elements with the nonpolynomial shape functions $\psi_{2 j}$ in the cross section for the interior of the plate

REFERENCES

[1] I Babuska, K Aziz, 1972, Survey lectures on the mathematical foundation of the finite element method in The mathematical foundations of the finite element method with applıcatıons to partıal differentıal equatıons, A K Azız, Ed, Academic Press, New York, 3343
[2] I. Babuška, B. A Szabo, R. Actis, 1992, Hierarchic Models for Laminated Composites, Int Journ Num Meth Eng, 33, 503-536.
[3] I. Babuška, C. Schwab, 1994, A posteriorı error estımatıon for hierarchic models of elliptic boundary value problems on thin domains (in press in SIAM J. Numer. Anal.).
[4] P. G. Ciarlet, 1992, Plates and Junctions in Elastic Multustructures, Masson Publıshers and Sprınger Verlag, Parıs and New York.
[5] S. Jensen, 1992, Adaptive dimensional reduction solution of monotone quasilınear boundary value problems, SIAM J Num Anal, 29, 1294-1320.
[6] J. NeČAs, 1967, Les Méthodes Directes en Théorte des Equatıons Ellıptıques, Masson, Paris.
[7] C. Schwab, Boundary Layer Resolution in Hierarchical Plate Modelling, Preprınt 92-13, Dept of Mathematics \& Statistics, UMBC.
[8] E. M. Stein, 1970, Singular Integrals and Differentiability Properttes of Functions, Prınceton University Press, Princeton, NJ.
[9] M. Vogelius, I. Babuška, 1981, On a dimensional reduction method, part I, II \& III, Math Comp, 37, 31-68 and 361-384.

[^0]: (1) Partially supported by AFOSR Grant No F49620-92-J0100

 Department of Mathematics and Statistics, Unıversity of Maryland, Baltımore County, Baltımore, Maryland 21228-5398, USA

[^1]: M^{2} AN Modelisation mathématıque et Analyse numérıque 0764-583X/94/05/\$ 400 Mathematical Modelling and Numerical Analysis (C) AFCET Gauthier-Villars

