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STABILIZED FINITE ELEMENT METHODS
FOR MISCIBLE DISPLACEMENT IN POROUS MEDIA (*)

by YUTING WEI O

Commumcated by J. DOUGLAS Jr

Abstract — In this paper, we shall dérive a new model for the miscible displacement of one
incompressible fluid by another in porous media using simple physical conservation laws For a
dilute mixture m which the density can be approximated by a constant, this new model reduces
to the standard one used for the last decade The model is governed by a nonlinear system
consisting of pressure and concentration équations The pressure équation is elliptic, while the
concentration équation is parabolic but normally convection-dominated We then present and
analyze some extensions of the stabihzed finite element methods that have been developed for
steady convection-diffusion problems to the Systems of miscible displacement The analysis is
first g iv en to the concentration équation for a given vélo city field, and then extended to the
gênerai case where the velocity is obtained by solving pressure équations with a mixed finite
element method In both cases, the stabilities and error estimâtes are given

Résumé — Dans cet article, nous présentons un nouveau modèle pour le déplacement
miscible d'un fluide incompressible par un autre dans les milieux poreux utilisant des lois
simples physiques de conservation Pour un mélange dilué dans lequel la densité peut être
approchée par une constante, ce nouveau modèle se réduit a celui utilisé depuis ces dix
dernières années Le modèle est décrit par un système non linéaire composé des équations de la
pression et de la concentration U équation de la pression est elliptique tandis que V équation de
la concentration est parabolique, mais normalement dominée par la convexion Nous
présentons et analysons quelques extensions au système de déplacement miscible des méthodes
d'éléments finis stabilisées qui ont été développées pour les problèmes de convexion-diffusion
stationnaires On considère d'abord l'équation de la concentration pour un champ de vitesse
donné puis le cas gêner al ou la vitesse est obtenue par la résolution de V équation de la pression
par une méthode d'éléments finis mixtes Dans les deux cas, on donne les estimations de la
stabilité et de l'erreur
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1 INTRODUCTION

The numencal simulation of fluid displacement processes m porous media
has been widely applied in analyzmg petroleum recovery Miscible displace
ment of one fluid by another is one such recovery process that has attracted
considérable attention m the petroleum industry It involves injection of a
solvent at certain (injection) wells m a petroleum reservoir, with the intention
of displacmg the resident oïl to other (production) wells ([15])

The standard model for this process derived several year ago has been used
m the series of papers written by Douglas, Ewing, Russell, Wheeler, and
others [9], [10], [15], [16] and [32] Recently Douglas et al [11] derived a
new model usmg the homogenization theory after fmding that the old model
is correct only for the special dilute mixture m which density is approximately
a constant Here we shall redenve this new model based only on simple
physical conservation laws, which may give us better interprétations for the
Darcy's velocity and concentration As we shall see later, the new model,
which consists of one parabolic équation for the concentration and one
elliptic équation for the pressure, coïncides with the old model for a dilute
mixture The concentration équation is usually convection-dommated and
difficult to solve There have been many numencal methods developed to
solve these types of équations

It is known that for the convection-dommated problems, standard fmite
element and fimte différence methods often exhibit nonphysical oscillation
because they are designed for problems with smooth solutions, as occur
when diffusion dominâtes convection Upwmd schemes are first used to
stabilize convective flow, especially m reservoir simulation (see références
m [25]) These methods suppress the oscillations by ïncorporatmg artificial
diffusion and often reduce over- and undershooting effects However, these
methods may introducé numencal diffusion of the first order m the spatial
grid size and can smear out sharp fronts and produce solutions that strongly
depend on the orientation of the différence grid relative to the direction of the
streamhnes of the flow

By noting the almost hyperbohc nature of these problems, Douglas et al
([13]) proposed and analyzed an approximation method for convective flow
based on the characteristics of the hyperbohc part of the differential équation
This method was later apphed successfully to the modelmg of miscible
displacement m porous media when combmed with a variety of approxi-
mation techniques for the pressure équation , (see [7, 8, 14, 16, 17], and [32]
for the formulation and analysis for some of these procedures)

Godunov schemes are often used m the numencal approximations of
conservation laws Recently, Dawson ([6]) used an operator-splitting
technique to split the convection-diffusion problem into two parts, convective
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and diffusive. He then applied a Godunov scheme to the convective part and
a mixed method to the diffusive part, and obtained a maximum principle and
L2 estimâtes.

Since the convective part possesses hyperbolic features, it is natural to
look at some successful schemes for hyperbolic conservation laws. Recently,
several high resolution schemes have been invented for scalar conservation
laws with nonlinear fluxes ; examples include TVD (Total Variation
Diminishing) [28], TVB (Total Variation Bounded) [33], and ENO (Essen-
tially NonOscillatory) [21]. The schemes have been shown theoretically and
numerically to converge to entropy solutions and are usually stable with
respect to total variation ; hence, they can capture sharp fronts without
introducing oscillation.

Further, Cockburn et al. ([5]) combined Discontinuous Galerkin Methods,
first introduced by LeSaint and Raviart in 1974, for solving the neutron
transport équation, with Runge-Kutta methods for time stepping to approxi-
mate conservation laws. These schemes have been shown to be total
variation bounded. One advantage of such schemes over TVD, TVB, or
ENO schemes is that they can handle more complex boundary data in
multidimensional spaces. These schemes are more local in the sense that
higher orders are achieved by involving more moments in a single cell,
instead of using neighboring cells.

By using splitting techniques as described in [6], Wei ([35]) recently
combined a discontinuous Galerkin finite element method with a mixed finite
element procedure for a convection-dominated diffusion problem. The
combination of these two schemes is natural because both are based on a
weak form of the differential équation and utilize discontinuous approxi-
mation spaces. The main results were the dérivation of a maximum principle,
L2 error estimâtes, and the TVD property.

Stabilized methods for an advective problem were introduced by Hughes
and Brooks ([22]), ([23]), ([4]), who referred to these methods as SUPG
(Streamline-Upwind-Petrov-Galerkin) methods. Later, Johnson et al. (see
références in [26]) gave a convergence analysis for these methods ; they
referred to them as SD (Streamline-Diffusion) methods. More recently, a
canonical form for these methods was given by Hughes et al. ([24]), who
called them GLS (Galerkin-Least-Square) methods, and further improve-
ments were suggested by Franca et al. ([19, 18]), where a new terminology,
SFM (Stabilized-Finite-Method), was introduced. The technique to be
studied for the miscible displacement problem in this paper is closely related
to this collection of stabilized procedures.

This paper is organized as follows. In the next section, we shall dérive our
model for the incompressible miscible displacement of one fluid by another.
Our model, derived by homogenization theory in [11], is slightly different
from the one used in [10], [9], and [15].
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614 Y WEI

Our primary concern is the approximation of the concentration In § 3, as a
first step, we apply stabilized methods to the concentration équation with a
given velocity field , i e , the pressure équation is assumed to have been
solved ïndependently of the concentration équation We demonstrate stability
and convergence results similar to those obtamed m [18] and [19] for linear
problems

Finally, we extend the results above to the coupled miscible displacement
system by approximatmg the concentration équation by stabilized methods
and the pressure équation with mixed fmite element methods

We shall use the following notation throughout this paper

Notation :

n <=/?2

ƒ =

sm -

wk

H

[0,

= n
)
n = II

The domain
The time interval

Standard Sobole1*

u\\w*P(nr

\\u\\k a = l l« l l* 2 o>

'u !

\u\m
 = I I M ( * ' ? m ) | i o a '

I u+ I = hm II u(., O IL n î

(w, v ) = u .v dx ,
Ja

M± = h m u ( . , r )

2. DERIVATION OF THE MODEL

We shall begin by giving a brief dérivation of our miscible displacement
model, derived originally in [11] by homogemzation Here, we redenve the
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FINITE ELEMENT FOR DISPLACEMENT IN POROUS MEDIA 615

model using only simple physical conservation laws We use the notation of
[1]

2.1. Conservation laws in a fluid continuüm

Consider a System composed of a mixture of N chemical species, with
each species formmg a continuüm Different continua may occupy the same
portion of space at the same time, so long as they represent different species
Let dU be a REV (Représentative Elementary Volume) of the multispecies
system Let dma and dm dénote the instantaneous masses of the species a
and the fluid system, respectively, in the REV dU We may then define a
mass density pa of the species a as the mass of the species a per unit volume
of fluid solution as follows

dma
( 2 1 )

It follows that

£ »dma I » \ / dm
2 )

where p is the density of the system
In gênerai, the velocity of species a will be different than that of the fluid

system The velocity ua at a point P (with respect to a fixed coordinate
system) is defined as the average velocity withm dU of the mdividual
molécules of the species a Several kinds of averaged velocities can be
defined for the system as a whole The most common are the mass-averaged
velouty um and volume-averaged velocity uv, which are defined as follows

um= ( l P a Ü / £ P*= ( £ Paua)lp= £ <oaua, (2 3)
\a - 1 / / a = 1 \a = 1 / / a l

N

uv = Y pa va ua , (2 4)

where to a is called the mass fraction of species a, defined as

"„=—, £ «« = 1, (2 5)
" a = 1

va is the partial spécifie volume The velocity um is often interpreted as
momentum per unit mass, since pum represents the momentum per unit
volume
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In a homogeneous incompressible single-species fluid, (N = 1, and
Pa — P)> ua = um = uv In gênerai, these velocities differ both m direction
and magnitude The différences

K = ua - um and û\ = ua-u
v (2 6)

are diffusive velocities of the species a with respect to the mass-averaged
and volume-averaged velocities, respectively Similarly,

PaK = PAua~um) and pau°a=Pa(ua-u
v) (2 7)

are diffusive mas s fluxes of the species a with respect to the mass averaged
velocity and volume-averaged velocities, respectively

In a binary mixture, Fick's law ([1, 2]) relates the diffusive mass fluxes of
the species to the diffusivity of the System by

Pa < = Pa(ua -um) = - PDap Va>a , (2 8)

PaÜl = Pa(ua-U
V)=-Dafi VP a , (2 9)

where Daf3 is the bmary diffusivity
For a species a of a multicomponent System, mass conservation gives

^ 1 + V.(paua) = l a , (2 10)

wnere I a is tne production rate by the chemie al reactions of species a per unit
volume of the System

For simphcity, we restrict our analysis below to a binary mixture System of
species a and /3 Combimng (2 8), (2 9), and (2 10), we can wnte the mass
conservation for species a m terms of mass- and volume-averaged velocities

(2 11)

(2 12)

The similar équations hold for species (3 Adding (2 11) and (2 12) to the
corresponding équations for p species, respectively, gives the mass conser
vations of the whole System m terms of the mass and volume-averaged
velocities as

^ + V. (p«M) = / > (2 13)
dt

^ = V.(pu"-DaeVp) = I , (2 14)
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where / = Ia + /p is the mass production rate of the System per unit volume.
By the équations above, we see that the mass- and volume-averaged
velocities are related by

um-uv = --DafBVp . (2.15)

2.2. Transport équations in porous media

The conservation laws for a fluid System in a continuüm described in the
last section extend easily to the incompressible miscible displacement of one
component, a, by another, /3, in a porous medium by using volume-
averaging techniques or homogenization ([11]) :

* %r + v • (p« um ~ pD V w - ) = 4* ' ( 2 - 1 6 )

01

4>^- + V.(pau'-DVpa) = <Ia, (2-17)
Of

with similar équations holding true for /3 species, and it follows that for the
whole System, we have

+V.(pu) = q, (2.18)
Of

<f>?£- + V. (pu° -DVp) = q , (2.19)
at

where <f> is the porosity of the porous medium, qa = <f>I a is a source of
species a and q = qa 4- q^, and

D = <t>Dap , (2.20)

where, for the moment, the effect of hydrodynamic dispersion is ignored and
only molecular diffusion is considered.

As in (2.15), (2.18) and (2.19) imply that the volume-averaged velocity
uv and mass-averaged velocity um are related by

u» = M« +-D Vp . (2.21)
P

The conservation laws (2.16)-(2.17), expressed in terms of densities, are
not easy to use. More convenient forms are of ten written in terms of
concentrations, which can be mass concentrations (mass fractions), volumet-
ric concentrations (volume fractions), or molar concentrations (mole frac-
tions) ([2]). In the following, we give a spécifie définition [31] of
concentration and then dérive équations.
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In addition to limiting ourselves to a binary mixture, we assume that the
mixture is incompressible and that there are two « end point » (référence)
mixtures 1 and 2, which have known composition pt a and pt p, and
constant densities pt

Pi = P l a + P l ^> Pl = Pi a + Pi & > (2 22)

Pi a P2 (3 ~ Pi fi Pi a ¥> 0

We further assume that our mixture is combined from these two « end point »
mixtures by taking volumes vx of mixture 1 and v2 of mixture 2 Suppose that
mixing takes place at constant température and pressure and without
changing volume Then, the mixture has a volume v = vx + v2 Now, define
the concentration c as the volumetric fraction of mixture 1 (31])

vi vic = — — (2 23)
V !>! + V2

Then the mass ma and density p a of the species a in the mixture can be
wntten in term of référence densities as follows

™« = P i a V i + p 2 a v 2 , (2 24)

™« Pi aVl + P 2 a V2
Pa = — = = P\ a? + Pi «(1 - C) (2 25)

Simnariy, we can wnte trie équation lor species (3 It follows that the density
p of the mixture can be wntten as

p = pa + pp = P i C + p 2 ( l - c ) = p 2( l + <rc),

*= (P1-P2XP2)- 1 , (2 26)

which is the équation of state for the mixture under our assumptions that it is
incompressible and mixed without changing volumes Now, substituting
(2 25) and the similar équation for the species /3 into (2 16)-(2 17), and
noting that px tt, px p, p2 a, and p2 p are ail constants, we have

*ft+V.(cu"-PDVC-)=-qi, (227)

<t> 9 ( 1
8 7 C ) + V - ( ( l - c ) n " - p Z ) v J - = ^ ) = q 2 , (2 28)

<f> — + V . ( c u v - D V c ) = q l , (2 29)

^ 9 ( l - c ) , „
dt

(2 30)
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where ql9 q2 are the volumetric production rates of mixture 1 and mixture 2,
respectively, given by

Pi, a Pl,p ~ P2 , a Pu fi

_ -Pl,fi 4a + P\,a<lfi f0 - „

<?2 = • (2.32)
Pi, a P2,p ~ P2, a P 1, 0

Using (2.26), and adding (2.27) to (2.28) and (2.29) to (2.30), we can rewrite
the System above as

( ) = ^ ' ( 2" 3 3 )

V . ( M " + i " DVc\ =q, (2.34)

^-+V.(c«"-DVc) = ̂ , (2.35)
ot

V . W
ü = q , (2.36)

where # = ^j + ̂  It is interesting to see that we have obtained two sets of
concentration équations, one in terms of mass-averaged velocity (2.33)-
(2.34) and the other in terms of volume-averaged velocity (2.35)-(2.36).
These two forms are equivalent through (2.21), which can now be written as

u» = u
m + -D Vp - um + — - — D Vc . (2.37)

p 1 + crc

The main point in the dérivation above is to clarify um and uv. The relation
between the velocity of a fluid flow in a porous medium and some potential
gradient, is usually called Darcy's law, can be derived from the Navier-
Stokes équations by volume averaging or homogenization ([11]). Since the
Navier-Stokes équations are momentum équations, the Darcy velocity can be
expected to be a mass-averaged velocity. Thus,

um = --(Wp-pg), (2.38)
JA

where ix = fx (c ) and p are the viscosity and the pressure in the fluid mixture,
respectively ; k is the permeability of the porous medium, and g is the
downward-pointing gravity accélération vector. By (2.37), the volume-
averaged velocity is given by

uv = - — (V/7- Pg) + —?L—D Vc. (2.39)
At 1 + ore
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We see that um and uv are different if a # 0 When a « 0, a special case
corresponding to a dilute mixture whose density is approximately a constant,
then um « uv ==« u The two sets of concentration équations comcide, and the
governing équations (2 33)-(2 39) can be summanzed as

+ V ( D S 7 ) ql, (2 40)

V.M = 5 , (2 41)

( Y 0 ) (2 42)

The system (2 40)-(2 42) is the miscible displacement model used in
reservoir simulations by many authors ([12, 10, 9])

As mentioned earher, besides the volume fraction defined by (2 23), the
concentration can also be defined as the mass fraction of a species

(2 43)

It follows that

c* ma

ma + mï

Pa =

PB =

8 ^

pc* ,

P d - c*

P a

p

)

Using the two équations above in conservation laws (2 16)-(2 17) for species
a and B yieids

cf> ( e ^ c ) + V . (pc* um - pD Vc*) = qa , (2 44)
ot

( a p ( 1 C * ) ) c*)) = qP, (2 45)+ V . ( p ( l c ) u p
Ot

) = q a , (2 46)

_,DVp(l -<:*)) = ? , (2 47)
Ot

These équations, together with Darcy's law, form the model for miscible
displacement in porous media But this system is not closed without the
équation of state, which is a relation between p and c for an incompressible
mixture like (2 26), or a relation among p, c, and p for a compressible
mixture For the special dilute mixture where p can be approximated by a
constant, Darcy's law, and the fact that um ^ uv ^ w, allows us to wnte the
system (2 44)-(2 47) above as

3r*
<t> — + V . (c* u - D Vc* ) - q* , (2 48)

ot
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V ,u = q* , (2.49)

« = - - ( V p - p g ) , (2.50)

where #* = #a/p, and <?* = <?* + # | . This system, first derived in [29], is
widely used in reservoir simulation ([15, 30]). We note that for a dilute
miscible displacement, the two models (2.27)-(2.30) and (2.44)-(2.47)
reduce to (2.40)-(2.42) and (2.48)-(2.50), respectively. It is easy to see that
the simplified forms (2.40)-(2.42) and (2.48)-(2.50) have the same form
except for the source terms on the right hand sides which have different
interprétations : the former, qx, is a volumetric production rate of mixture 1,
one of the two « end-point » référence mixtures, while the latter, <? *, is a
volumetric production rate of species a, one of two components in the
mixture.

As previously mentioned, the analysis above is given under the condition
that hydrodynamic dispersion is ignored and only molecular diffusion is
considered (this is a reasonable assumption only if the fluid velocity is very
small). Otherwise, a dispersion term that takes into account the mechanical
mixing caused by heterogeneities in the porous medium has to be included in
the model. Peaceman [30] suggested a dispersion tensor D in the form

D=D(u) = dmI + \u\{d(E(u) + dtE
±(u)} , (2.51)

where dm, d?y and dt are, respectively, the molecular, longitudinal, and
transverse diffusion constants, / the identity transformation, E(u) the
projection in the direction of the flow, and E1- (u) the projection on the
orthogonal complement of the flow vector; i.e.,

ElJ = Ü ^ M | M ' '
H (2.52)

Ex (M) - I -E(u).
We remark here that in reality the longitudinal diffusion constant d$ is larger
than the transverse diffusion constant dt, and we shall make this assumption
in the following analysis.

The new term DVc appearing in (2.34) would cause many
1 + crc

difficulties in the analysis that follows. In this paper, we shall restrict our
study to the special case of a dilute mixture, so that er s» 0 and all models
considered above coincide and can be written as

<f> ^ + V. {uc-D{u)Vc) = cq, (2.53)

V .u = q , (2.54)

^ p ( c ) g ) . (2.55)
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The right-hand side term q on (2.53) is the external source which can be
written as

q = ql~q0, (2.56)

where qt = max (0, q) s= 0 and q0 — max (0, - q) 5= 0 are the flow rates at
injection and production wells, respectively, and c is given by

\ct at injection well, where q = qt 2= 0 ,
\c at production wells, where q = - qo =s 0 ,

and where ct is the given concentration of the injected fluid and
D (ii) is given by (2.51).

For simpler analysis, we assume the following homogeneous boundary
conditions :

c = 0 on a/2 x I , (2.58)

u .n = 0 , on 3/2 x I . (2.59)

Finally, it is necessary to specify the initial concentration,

c(x,0) = c0(Jt). (2.60)
The purpose of this work is to define and analyze an appropriate discrete

approximation method for the problem (2.53)-(2.60). We assume that all data
functions, including q, which in reality is nonzero (and nonsmooth) only at
wells, are smooth.

3. STABILIZED METHODS FOR CONCENTRATION EQUATIONS

In this section, we combine the time-discontinuous Galerkin methods
developed by Johnson et al. ([26]) with the stabilized techniques advocated
by Hughes and Franc a to study a stabilized method for the concentration
équation (2.53), which we simplify here as

f£ ƒ(*), (3.1)

with a given smooth velocity field u that satisfies

V. u = 0 in O , (3.2)
u.n = 0 on df2 , (3.3)

where, in this section, we take </> = 1 in the concentration équation without
loss of generality.
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3.1. Finite element spaces and technical lemmas

We shall introducé some finite element spaces to be used in the following
sections and then prove some technical lemmas. We shall use the notation of
Johnson et aL [26].

Let Th(ï2 ) be a quasiregular subdivision of A 0 = tö <: tx < • • • < tM =
To be a subdivision of the time interval / = [0, r 0 ] , Im= (tm-i> fm)>
m = 1, 2, . . . ,M,

) = {Tm:Tm = TxIm,TeTh(n)} (3.4)

be the corresponding subdivision of sm = fl x I m, with h representing the
maximum of the diameters of Tm e T£, and let

<f> \Tm e P k ( T m ) , Tm = T x I m e T%, 4 > r * i m = O } , (3.5)

Mh = f] Mt, (3.6)
m s= 1

where Pk(Tm) dénotes the set of polynomials of total degree at most k on
Tm. In other words, M™ is the set of piecewise polynomial functions on
Th of degree at most k that are continuous in x, possibly discontinuous in t
across the time levels tm, m = 1, 2, 3, ..., M, and vanish on f = a/2. We
shall assume that M™ is a regular subdivision of sm ; i.e., for each
Tm e T™ there is an inscribed sphère in Tm such that the ratio of the diameter
of this sphère and the diameter of Tm is bounded below, independently of
Tm and h.

The following Standard interpolation error estimate and inverse inequality
have been shown in [34] and [3],

LEMMA 3.1 : There are constants c1 and cinv such that, for any
weW5'p(sm)nC(sm)forwhichw\rxT = 0 ,

m

inf H w - v f f t l l ^ ^ j 2 A f + 1 " r | l w l l ^ + i(5 )* ( 3 * 7 )
wh eM%

r = 0, 1 , 1 *=f ssjfc, p = 2, (3.8)

and, for each vh E M A , f/?e following inverse inequality holds :

^ l l ^ l l ^ ^ ^ e A - ' l l ^ l l ^ . (3.9)

r = 0, ---, Jfc. 1 =£/?=*= oo, (3.10)

on eacA rm = T x /m , m = 1, 2, ...

By following an idea used in [26], we can show the following result.
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