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GLOBAL ERROR CONTROL FOR THE CONTINUOUS
GALERKIN FINITE ELEMENT METHOD

FOR ORDINARY DIFFERENTIAL EQUATIONS (*)

by Donald ESTEP (l) and Donald FRENCH (2)

Communiqué par R TEMAM

Abstract — We analyze a continuons Galerkin fimte element method for the intégration of
initial value problems in ordinary differential équations We dérive quasi optimal a priori and a
posteriori error bounds We use these results to construct a ngorous and robust theory of global
error control We conclude by exhibiting the properties of the error control in a series of
numencal expenments

Resumé — Une methode d'éléments finis de type Galerkin continue pour l intégration des
problèmes initiaux pour les équations aux dérivées ordinaires est analysée Des estimations
d erreur quasi-optimales de type a priori et a posteriori sont démontrées Les résultats sont
employés dans la construction d'une theorie rigoureuse et robuste pour le contrôle global
d'erreur La qualité du contrôle d'erreur est exposée dans une série d'expériences numériques

1. INTRODUCTION

Our main purpose is to outline a rigorous theory of global error control for
the continuous Galerkin fimte element method for
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816 D ESTEP, D FRENCH

The continuous Galerkin (cG) method produces a continuous piecewise
polynomial approximation Y, It has been used previously for certain
évolution problems (see [10], [11], [12]) because it often has the property of
preserving an « energy » naturally associated to the differential équation. We
are interested in adaptive error control for the cG method in order to achieve
accuracy and efficiency in computations. On one hand, it is computationally
impractical and even impossible to use a uniform (small) step-size on many
problems. Examples are Systems obtained from a method of lines discreti-
zation of a partial differential équation and problems which require compu-
tations over long time intervals. On the other hand, it is generally impossible
to a priori choose step-sizes that guarantee accuracy. However, we show
that information obtained from the approximation can be used to make
computations of a specified accuracy.

The theory of adaptive error control we describe is based on a combination
of rigorous a priori and a posteriori error analyses. This is the same
approach that has been used in an ongoing project to develop a theory of
adaptive error control for approximations of partial differential équations
(see [2]-[8], [14] and références therein).

A priori error bounds measure the error by quantities that reflect the
regularity of the solution and the stability properties of the numerical
scheme. The usual dérivation for a différence scheme is based on estimation
of the truncation error by means of Taylor's theorem. In contrast, we use
Galerkin orthogonality to compare the cG approximation to other approxi-
mations in the finite element space. Hence, we obtain optimal order results
rather than the usual sub-optimal bounds derived for différence schemes. In
addition, we prove that the second order cG approximation is superconver-
gent at time nodes, i.e. has an extra order of accuracy at those points.

While a priori error bounds describe the convergence properties of an
approximation, they are not directly useful for error control because they
involve unknown information about the solution. Instead, we use a
posteriori error bounds as adaptive criteria for choosing step-sizes. An a
posteriori bound measures the error by computable quantities that depend on
the regularity of the approximation and the stability properties of the
solution. Suppose that the interval [0, T] is partitioned into N subintervals
lm of length km, and that q dénotes the order of the cG approximation. Our a
posteriori bounds have the form

Y(tn)-y(fn)\ ^S(frt)max *T ' max |Z>?/(y(r), O| , d-2)
/„

for 1 =s= n =s N9 where | . | dénotes the Euclidean norm on Rd, Dq dénotes the
qth order time derivative and S(tn) dépends on tn but not on any
km. Note that k?m

+1 max \Dq
t f{Y(t\ t)\ is computed on each interval and
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GLOBAL ERROR CONTROL FOR FINITE ELEMENT METHODS 817

measures the local regularity of the approximation. We call S(t) the stability
factor and it is a measure of the accumulation of error. It is given by a semi-
norm on the solution of the linear dual problem to (1.1) obtained by
linearizing (1.1) around the solution. We show that S (tn ) can be approximated
using the linear problem obtained by linearizing around the approximation.
Hence, the bound involves only information that can be obtained from the
approximation. If Y is computed so as to keep the quantities on the right-hand
side of (1.2) below a given tolérance, then the error is also kept below the
tolérance.

This theory of adaptive error control is completely different from the
Standard théories for différence schemes which are based on error estimâtes
that are asymptotic in the limit of small step-size, depending on the
boundedness of high order derivatives of the solution. Hence, we avoid some
difficulties associated to this approach, While such asymptotic estimâtes are
valid only when the error is small, there is no computational criteria for
determining if the asymptotic regime has been reached with the chosen step-
sizes. Thus, a small asymptotic estimate does not imply that the error is
small. In fact, the criteria of choosing steps so as to keep these asymptotic
estimâtes valid is generally harsher than Computing approximations of a
given accuracy. For example, this is essentially the root of the issue of
choosing the error-per-step or the error-per-unit-step criteria for the widely-
used strategy called local error control. In this context, we take the goal of
adaptive error control to be to use as large as steps as possible while
producing an approximation of the desired accuracy. Note that the require-
ment of extra regularity of the solution is of particular concern in applications
to nonlinear initial-boundary value problems in partial differential équations.

This approach to error analysis and adaptive error control was initiated by
Johnson in [14], which contains an a priori analysis of the discontinuous
Galerkin (dG) method for autonomous ordinary differential équations. The
dG method produces a discontinuous piecewise polynomial approximation
that is well suited for stiff, dissipative problems. Eriksson and Johnson made
complete a priori and a posteriori analyses of the dG method for linear
parabolic problems in [3] as well as outlined a theory of error control. Estep
did the same for the dG method for non-autonomous ordinary differential
équations in [8], This analysis has been extended in several directions in
recent years, see [2]-[7],

We would like to extend the theory to cover gênerai numerical methods for
a variety of équations and this paper is a step towards this goal. It is natural to
consider the cG method as an alternative to the dG method because its
stability properties make it more suitable for équations with oscillatory and
periodic solutions than the dG method (see § 2 and § 4). The analysis we
present here follows the same lines as the analysis in [8], however the
technical details are altered to account for the différences between the cG and
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818 D. ESTEP, D. FRENCH

dG methods. In particular, we deal with difficulties associated to the fact that
in the cG method, the approximation space and the test space are different.

The paper is arranged as follows. In § 2, we introducé notation and
describe the cG method. In § 3, we present the a priori and a posteriori
results. In § 4, we outline the strategy for adaptive error control based on the
a posteriori resuit as well as discuss some technical points concerning
irnplernentation. We demonstrate the adaptive method on four test problerns,
including the difficult two-body problem. In particular, we present plots of
the error-to-bound ratio as a measure of reliability and efficiency. We also
make a comparison with the dG method on these test cases. We present the
proofs of the a priori results in § 5 and of the a posteriori results in § 6.

2. THE SCHEME AND NOTATION

The finite element method is based on a variational formulation of (1.1)
that reads : find y e C ̂ (0 , T)) such that

r (y, v)dt + I (f(y(t)9t)9v(t))dt = O9

Jo Jo (2.1)
y(O) = y o ,

for ail v e C^(0 , T)% where C^([0, T]) dénote the set of functions with
continuous derivatives of order p and less on [0, T],

We construct a piecewise polynomial approximation Y to y. We partition
[0, T] into

0 := 10 < t m < t, < t3n < t2 < =ztN :=T ,

s e t t i n g km:=tm-tm_l, tm_ 1/2 - tm - k m / 2 , Im *=[tm_utm]9 a n d
A::=max km. We choose the finite element space <g{q)= ^ ( ? )([0, T]) of

m

continuous functions that are polynomials of degree q on each interval

where 0P{q\lm) dénotes the set of polynomials in R^ of degree q on
Im. Because of the continuity, a function in <£(q) has only q degrees of
freedom on each interval. Accordingly, we define the test space

#<*- i> = ^fc-DQo, T]):= [U: U\Ime&to-l\lm)9 1 ̂ m^N) .

Since these functions may be discontinuous, we let f/̂ 1 " dénote the left- and
right-hand limits of U e 2iq~l) at tm and [U]m ^ £/+ - t/~ the jump in
value.
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GLOBAL ERROR CONTROL FOR FINITE ELEMENT METHODS 8 1 9

For 1 =£ n =s N, the cG approximation 7 e <^{M) solves

t f (y(o + /ar(o,o.v(0)* = o,
7(0) = y0

for all V e S ^ " 1 ! 7 can be computed interval by interval as well ; for
1 === m =s= n, it solves

f (tV)dt+{
"m Jim

V)dt+

lim 7(0 - lim 7(0

for all V s0>^-{\lm).
When q = 1, 7 is the piecewise linear function

with coefficient Ym determined by

Ym+ f f(Y(t),t)dt = ¥„,_,.

When q = 2, 7 is the piecewise quadratic function on 7

(2.2)

(2.3)

y ^ (f f
1 m - 1/2 , o \l lm

K

with coefficients determined by

Ym +

- rm) + 7m A a -

Jl

(2.4)

Existence and uniqueness can be shown for /: sufficiently small.

Remark 2,1 : Consider f(y,t) = Ày. The q = 1 scheme (with uniform
step) is

_ 1 -A* /2
m " 1 +A*/2 M - l f

vol. 28, n° 7, 1994



820 D. ESTEP, D. FRENCH

which agrées with the second order trapézoïdal rule at nodes. When
q = 2, the cG approximant agrées at nodes with the fourth order Runge-
Kutta scheme

- \k/2 + A ^ / 1 2 v ,„ «

Both cG schemes are A-stable ; stable for &e(A)**Q and unstable for
^ e ( A ) < 0 . In particular, when ^ e ( A ) > 0 , y decreases in size as time
increases and the cG approximations have the same property without
restriction on the step-size, as would be needed for an explicit scheme for
example. However, note that for fixed ky the factors above tend to one in
magnitude as | A | -• oo. This contrasts both with the behavior of the solution
and the discontinuous Galerkin method. On the other hand, when
gte (A ) = 0 and y is purely oscillatory, the cG approximants are neither
increasing or decreasing in magnitude, indicating that the cG method might
be a good choice for problems with periodic and oscillatory solutions. The
discontinuous Galerkin method is not particularly suitable for such problems
because the approximants exhibit numerical damping. See § 4 for further
discussion on this issue.

We also note that the cG schemes preserves discrete versions of the
conservation properties of Lyapunov functionals which the original System
might possess (see [12]). This property can be used to analyze the stability
properties and the long time behavior of the numerical scheme (see [10] and
[11]).

The cG schemes are not equivalent to any standard Runge-Kutta schemes
when applied to truly nonlinear, non-autonomous problems.

We use the following notation. For an time interval 7, we let

|öf|,:=sup
tel

In addition,

A(t) :=fy(y(tl t\ À := JtHt\ À := | (A + A*) ,

d f

{ ( « , t ) \ u e C 0 ( [ 0 , T ] ) a n d \ u ( t ) - y ( t ) \ ^ Ô f o r O ^ t ^ T } .
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GLOBAL ERROR CONTROL FOR F1NITE ELEMENT METHODS 821

We employ several interpolants and projections of u in ^{q\ Ü satisfies

and on Im> 1 =s m =s n,

The following error bound is easy to show

\km\ü\I , q= 1, 2 ,
(2.6)

dénotes the L2 projection of w into 2){q l) ; in other words,
1] satisfies

for all V e S ( ( ? ^l In places, we abuse notation to let &'@ dénote
^®\im- B y standard results,

|M| dt**km\ù\ ,
Jim

 m

Ckm \ü\ dt^Ckl

(2.7)

For u e Cp + t (/ ), 0 =̂  p ^ <y, we let 3^ M G ̂  (^} dénote the interpolant such
that on 7m, 1 =s= m =s «,

{3 M = u at tm_x>tmJ q — 1, 2 ,

3qu = u at r m _ 1 / 2 , <? = 2 .

From standard theory (see [16]), there is a constant C = C (p) such that

>+\-riy(p+l)i ^ ^2.8)1̂

for 0 ^ r ^ p ^ q. We recall the following inverse result from Ciarlet [1],
there is a C > 0 such that for U e #c<?), 1 =s r ^ oo, 1 =s 5 === oo and
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822 D. ESTEP, D. FRENCH

(f , (2.9)

(with the usual interprétation of r or s — oo).
Finally, to simplify the présentation of the proofs, we use a global

Lipschitz assumption of ƒ and define the domain O := Rd. More sophisticated
assumptions can be used without significantly altering either the results or
the proofs.

3. ERROR ANALYSIS

We now present the analysis of the error that serve as the basis for error
control. We begin with an a priori analysis that reveals the convergence
properties of the cG method. The a priori bound measures the error by
quantities that depend on the regularity of the solution and the stability
properties of the scheme. The first result shows that the cG scheme
converges at the optimal order on the interval [0, T].

THEOREM 3.1 : Assume that y s C q + l([ö, T]) and f is Lipschitz continu-
ons with constant L. Then, for 1 =s n =s iV, # = 1 , 2 and k sufficiently small,

and

|é |
n

+Ltne
CU')ll2ta*K k*+l\y<*+% - O-D

Ltn eCU")112 max kl\/«+ » | , . (3.2)

The second result shows that the cG method is superconvergent at time
nodes for q = 2, if the ratio of the largest step to the smallest step is bounded.
The order of convergence at nodes (2 q) agrées with the order of convergence
of the Runge-Kutta scheme (2.5) for the linear problem in remark 2.1. But,
we note that the form of the bound means that there can be an effective loss
of order if the problem is stiff, for example. We thank J. Schaeffer [16] for
giving us the proof of this result.

THEOREM 3.2 : Assume that q = 2, that y e C3(/), that for ô sufficiently
small, the partial derivatives off of order q are continuons and bounded in
norm by L on Jf B, and that there is a constant p > 0, independent ofk and
N, such that for 1 === n *s N,

kmmax — =£= p .
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Then, for 1 =s n =s N and k sufficiently small,

\e(tn)\ ^

^ Ctn e
CUn{\ + Ltn eCU*f max k4

m • max \y(r)\s (1 + \y(r)\s) , (3.3)

r, s s*0

where C =C(L, p).
The proofs of these results are given in § 5. In both cases, the analysis uses

Galerkin orthogonality to compare the cG approximation to approximations
of the solution in *^(l?) with known interpolation errors. But» unlike
approximations of the solution computed with full global knowledge of the
solution, the error in the cG approximation accumulâtes with time. This is
the reason for the exponentially increasing stability factors. The accumulation
has to account for the worse possible rate of accumulation in the class of
problems under considération. Under these gênerai assumptions, these large
factors are the best possible.

These a priori results are not useful for error control because they involve
unknown information about the solution. Next, we present an a posteriori
resuit that bounds the error by computable quantities that reflect the
regularity of the approximation and the stability properties of the linearized
dual problem to (1.1). As to the latter, we let z dénote the solution of

0, tn>t7*0,

and define a quantity that turns out to be the stability factor for the a
posteriori bound,

5p(«):= P" \z^\dt. (3.5)
Jo

It is convenient to begin the analysis with an a priori bound on
Sr

PROPOSITION 3.3 : Assume that thers is an integratie, bounded function
such that

\A{t)\ «L(r)f (3.3.1)

forO**t**T. Then,

l'nL(t)dt
S^ny^e^ - 1 . (3.6)

If, in addition,

(A(r)w,w)^0, (3.3.2)

vol. 28, n° 7, 1994



824 D. ESTEP, D. FRENCH

for all w e Cd and t e [O, T]9 then

Jö
L{t)dt . (3.7)

Ifwe assume that the partial derivatives of f of order q and less are bounded
in norm by L(t) on Jf ^ then

L(t)dt
(3.8)

This result is proved in § 6.

Remark 3.1 : There are other possibilities for bounds on S2(n). The case
when A(t) is invertible turns out to be computationally important. Then,

/u*
(3.9)

[o, i„

Now, the a posteriori result.

THEOREM 3.4 : Assume that the qth order partial derivatives of f are
continuous on Jf 5, for some S > 0, and that there is an integrable, bounded
function L{t) > 0 such that for all u, v E 12, w>, x e Crf, and t e [0, T],

-v\, (3.4.1)
2 , (3.4.2)

=sCmin {L(t)\u-v\ |w | | x | , | u - v | \w\ \A*(t)x\ } . (3.4.3.)

Then, there is a constant C > 0 such that for k sujficiently smally

! (n ) 4- 1 ) max
m ^ n

1+ 1 ^ ƒ(!-(,), ») (3.10)

, q = 1, 2. If Y is computed so that for some C > 0,

1+ 1 - / ( T O T . O

; n, then

max \er

m*zn

lâm
+ 1

(3.4.4)

(3.11)

M2 AN Modélisation mathématique et Analyse numérique
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^N, q = 1, 2. Finally, for q = 2,

825

4/(y(o. o . (3.12)

This result is proved in § 6. We discuss the construction of an error control
based on theorem 3.4 in § 4. We conclude this section with a result that
shows that the a posteriori bounds are of optimal order.

PROPOSITION 3.5 : Assume that the hypotheses of theorem 3.1, 3.2, and
3.4 hold. Then, for k sufficiently small and q — 1, 2,

while for q = 2,

dt2 iC(L9T,Pjy)k

4. ADAPTIVE ERROR CONTROL

We employ adaptive error control in order to achieve the related goals of
accuracy and efficiency. In the case that a fixed scheme is used, this means
producing approximations of a desired accuracy using the largest possible
step-sizes. In this section, we show how the a posteriori error bound can be
used as the basis for an adaptive error control and then exhibit properties of
the control through a series of experiments.

There are two contributions to the global error in the approximation of an
initial value problem (ignoring round-off error). The first is the interpolation
error made in approximating a gênerai function by piecewise polynomials.
This error is determined by the behavior of certain derivatives of the solution.
The first goal of the adaptive error control is to choose a mesh that allows
interpolation of the solution with an error that is uniform in an appropriate
norm over the interval of computation. The second source of error is due to
the cumulative effects of integrating an initial value problem interval by
interval. The rate of accumulation is determined by the stability properties of
the solution, i.e. the behavior of trajectories that start near the target solution
at a given time. The second goal of the adaptive error control is to choose the
mesh size so that the accumulated error is not too large at specified times.

vol. 28, n' 7, 1994
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Examination of the proof of theorem 3.4 makes it clear that the result
clearly delineates the two sources of error. For example, we quote (3.11)

\en\ kq
m
+1 (4.1)

The quantities inside the maximum taken on the right measure the local
approximation properties of the mesh for functions in <S^. The accounting
of the accumulation of error is made in Si(n) which is a semi-norm of the
solution of the dual problem over the interval of computation. By controlling
the expression on the eight in (4.1) at specified times t*, 1 =s w* === N, we
control the global error at those points as well.

Remark 4.1 : We use (3.11) and compute with the q = 1 scheme for the
purpose of illustration. The other bounds in theorem 3.4 and the higher order
scheme can be used in an analogous fashion.

Because the bound uses a maximum of local quantities, it does not seem
wise to let the local quantities become large at some points. Hence, we adopt
the following strategy : given LTOL > 0, for 1 =s m =s « compute Ym on
Im so that

kq + 1 £ /om o ;LTOL. (4.2)

Note that proposition 3.5 implies that (4.2) can be achieved by taking
km sufficiently small. In practice, km is determined iteratively. From a given
point tm^ït a step k%ed is predicted via

LTOLUpred

and Y%ed is computed. If (4.2) is satisfied with Ym = Yp^ed, the step is accepted
and the computation proceeds. If (4.2) is violated, the itération is repeated
with a new step is predicted via

LTOL

dtq

vred(t\ t)
i

Global error control is achieved by choosing LTOL so that

(4.3)
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GLOBAL ERROR CONTROL FOR FINITE ELEMENT METHODS 8 2 7

for certain «*, 1 =s= n* ̂ N, where GTOL is the desired global error
tolérance. If an a priori bound on S{(n) is known, then a correct LTOL can
be chosen before the computation begins. Unfortunately, the gênerai bound
on Sl(n) given in proposition 3.3 is too large to allow computation past a
short transient. Since Sp(n) is spécifie to the solution of (1.1) that is being
approximated, an alternative is to compute Sp(n) for each problem. Of
course, this is not directly possible in gênerai precisely because this would
require the solution. Instead, consider Ç solving

j - £ + fy{Y(t\ t)* £ = 0 , tn > t =* 0 ,

\£it) d 141 1

We can prove (see [8]).

THEOREM 4.1 : Assume that f has continuous second partial derivatives
and that the assumptions of theorems 3.1 or 3.2 and theorem 3.4 hold.
Further assume that there is a constant 8 > 0 such that for all U e

f fr

max | \U -y\[0 Ty \U - y\ d

f I tP
max max —f(U(t\ t)
m^n p^q+\ [\ dtP

Then, any consistent and stable one step methodfor (4.4) wit h dn = e^l\e~ |
computed on a mesh that includes {tu ..., tN} as nodes converges to z as

We approximate Si(n) by using the values of a trapezoidal rule approxi-
mation for (4.4) in a Simpson's rule formula for

f" \fy(Y(t),t)*£\dt.
Jo

Similarly, we can approximate S2(n) by a quadrature formula for

dfo * '
dt .

Since this approximation of Sp(n) requires an approximation of y over
[0, tn], we resort to an itération to achieve global error control. We begin by
assuming that Sq(n) = 1 and LTOL = GTOL is chosen. Y is computed so as
to satisfy (4.2). Next, Sp(n*) is approximated using Y and (4.3) is checked at
the desired points tn*. If (4.3) is violated, a new local tolérance is chosen via

LTOL..= G T O L

CS^n*)

vol. 28, n' 7, 1994
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Fmally, the computation is restarted with the smallest of the new local
tolérances (presummg (4 3) is violated at some point)

Remark 4 2 The constant C in the bounds in theorem 3 4 is determined
by the technical details of the analysis and, hence, is somewhat problem
dependent For example, it dépends on the choice of norms, and so on the
dimension, on the largest possible step size, and so on To détermine
C precisely, one would have to be more careful in the analysis than we have
been (For example, use optimal estimâtes in each line, etc ) Instead, we
compute C for a hnear problem (presented in example 4 1) in which the
solution is known and use this value m the rest of the computations, which
are all low dimension For many problems, this appears to be a reasonable
value, though in some cases, the scale is clearly off

Remark 4 3 The error control outhned above is robust in the sensé that a
step is accepted only if (4 3) is satisfied and a computation is accepted only if
(4 3) is satisfied In practice, it is possible that the itérative processes used to
achieve (4 2) and (4 3) can produce approximations that are more accurate
than requested Whether this warrants recomputing the step or the compu-
tation is uncertain For the computations below, we did not want compu-
tations that are too accurate We choose, 77, 0 =s 77 < 1, and during the local
step control, accepted a step only if

— f(Y(t\ t) *s LTOL , (4 5)
dtq im

while we accept the computation only if

77GTOL ^ CS^n*)** GTOL , (4 6)

at the desired points tn* The modifications to the itérations outhned above
are straightforward We use 77 = 0 5 in the computations below

Remark 4 4 An important issue in higher dimensions is the choice of the
initial direction vector dn Note that theorem 4 1 requires the initial vector
erJ \en\> which is unknown of course A satisfactory conclusion to this theory
would be a resuit that measures the effect of perturbations in the initial vector
in (4 4) on Sp (n ) together with an a posteriori estimate of en 11 e~ | A rough
heunstic argument suggests that if the local interpolation errors in the a
priori bound m theorems 3 1 is a good measure of the error on the
corresponding intervais, then Y should point largely in the direction of the
error In practice, dn = (Yn — Yn_1)/\Yn — Yn_1\ has proven to be a rehable
choice for many problems It is not clear to us whether this is because the
computation of the stabihty factor is insensitive to the choice of initial
direction on many problems or because this is actually a good choice In the
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c o m p u t a t i o n s b e l o w , w e c o m p a r e r e s u l t s c o m p u t e d w i t h dn = e~/\e~ | a n d

dn(Yn-Yn^)l\Yn-Yn-A-
Next, we present four examples. In each case, we implement the itérative

global error control outlined above. For the successful computation, we
present a plot of the error-to-bound ratio

CSx(n)UTOL
(4.7)

This is a convenient measure of reliability and efficiency. If the ratio
becomes large, then reliability is suspect, while if the ratio becomes small,
then the error control is inefficient.

Example 4.1 : The problem is

with the periodic solution

y{(t) = sin (O,
y2(t) = cos ( 0 .

We use GTOL = 0.05. The error control itération halts after two itérations.
The first itération uses LTOL = 0.045 and the second uses
LTOL = 0.000888 in figure 4.1, we plot the error-to-bound ratio (4.7)
versus time ; the ratio is nearly constant. The error control yielded a constant
stepsize. We plot the stability factor versus time in figure 4.2. The result in
proposition 3.3 gives a bound on S^Qi) that grows linearly in time; the
computational result suggests that such a bound is not too large.

In this example, there is no discernable différence in the results obtained
with the exact and approximate initial data for (4.4).

Continuous Galerkin (q=l), GTOL=.05

10 20 30 40 50
Time

Figure 4.1. — Example 1.
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Continuous Galerkin (q=l)> GTOL=.05

0 10 20 30 40 50

Figure 4.2. — Example l.

Example 4 2 The problem is

= - 0 0 1 y , - 0

= - 1 0 0 y 3 l

with solution

This problem was chosen as an example of a stiff computation. There are
three time scales in the solution's behavior and the problem becomes stiff
when the faster modes have decayed. We use GTOL = 0.001. The error
control itération halts after two itérations. The first itération uses
LTOL = 0.0009 and the second uses LTOL = 0 000304. In figure 4.3, we
plot the error-to-bound ratio (4 7) versus time. The ratio tends to a constant
value after an initial transient région ; stiffness causes no trouble in this
sensé. However, as discussed in [8], the error in this problem changes
direction radically several times in the transient région These changes
correlate to penods when the ratio changes value. In figure 4 4, we plot the
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Continuous Galerkin (q=])y GTOL=.001

831

400

Figure 4.3. — Example 2.

Continuous Galerkin (q-1), GTOL=.001

400

Figure 4.4. — Example 2.

step size séquence versus time. Finally, we plot the stability factor versus
time in figure 4.5. For this dissipative problem, the stability factor should
tend to 3 as time passes, and it clearly does this.

In this problem, the two choices of initial direction for (4.4) yield some
différences in the corresponding stability factors. In figure (4.6), we plot the
stability factors versus time for the exact direction en/|e„| and for
(Yn - Yn _ ! )/1 Yn - Yn _ j |. After the transient région, the values become

Continuous Galerkin (q-i), GTOL=,001

400

Figure 4.5. — Example 2.
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Continuous Galerkin (q=l), GTOL=.001

100 200
Time

— Exact data • Approximate data

Figure 4.6. — Example 2.

300 400

close. In figure (4.7), we plot the error-to-bound ratios versus time for the
two choices.

Conunuous Galerkin (q=i)y GTOL=.001

— Exact data ° Approximate data

Figure 4.7. — Example 2.

400

Example 4.3 : The problem is

2(1 + 0
, y{(0)=

with the solution

3^(0 = y/l + t COS (t2),

J2(O = \/l + t sin (f2).

The solution is dynamically unstable, so we might expect that the error
bounds will be sharp. We use GTOL = 0.02. The error control itération halts
after two itérations. The first itération uses LTOL = 0.018 and the second
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uses LTOL = 0.000223. In figure 4.8, we plot the error-to-bound ratio (4.7)
versus time and the ratio does remain fairly constant. If figure 4.9, we plot
the step size séquence versus time. The solutions oscillate with increasing
amplitude, which is reflected in the time steps. Finally, we plot the stability
factor versus time in figure 4.10. The stability factor reflects the instability of
the solution.

In this example, there is no discernable différence in the results obtained
with the exact and approximate initial data for (4.4).

Example 4A : The last example is the two body problem,

Continuous Galerkin (q=l), GTOL=.02

Time

Figure 4.8. — Example 3.

Continuous Galerkin (q=l), GTOL=.02
0.03

Time

Figure 4.9. — Example 3.
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Continuous Galerkin (q=])> GTOL=.02

Figure 4.10. — Example 3.

with the periodic solution

3^(0 = cos ( r ) - 0 . 6 ,
;y2(O = 0.8sin ( T ) ,
3>3(O = - s in (r)/(l - 0 . 6 cos ( r ) ) ,
y4(t) = 0.8 cos (r)/(l - 0.6 cos (r)) ,

r : T - 0.6 sin (r) = t .

This is a well known test problem that is difficult both in terms of performing
error control and choosing stability properties of the numerical method. The
accumulated error grows rapidly with each successive period and it is not
clear that tracking particular trajectories of this problem is meaningful, but it
is an interesting test case for this theory. We use GTOL = 0.01 and compute
just past three periods. The error control itération takes three itérations in this
example because the second itération overpredicts the bound on the error.
The first itération uses LTOL = 0.009, the second uses
LTOL = 0.000000139, and the third uses LTOL = 0.000000669. In this
problem, very small local tolérances are used to counteract the tremendous
rate of accumulaton of error. In figure 4.11, we plot the error-to-bound ratio
(4.7) versus time. While the ratio remains below one, it is disappointing that
it decreases as time passes. The bound is clearly overpredicting the size of
the error. On the other hand, the error accumulâtes at a tremendous rate. We
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Continuous Galerkin (q-l), GTOL .̂01

835

i . , , , i . . . • i

Figure 4.11. — Ëxample 4.

plot the stability factor versus time in figure 4.12. Note the vertical scale. If
figure 4.13, we plot the step size séquence versus time. The oscillating
behavior of the solutions is reflected in the range of step sizes.

There is little différence in the bounds given for the two choices of initial
data for (4.4). In figure 4.14, we plot the error-to-bound ratios versus time,
where some différence is notable. But, this is not the reason that the error is
overpredicted.

Remark 4.5 : In an effort to understand the results in example 4.4, we
discuss the stability properties of the cG method in more detail. We recall the
analysis of the discontinuous Galerkin (dG) method carried out in [8]. The

15000
Continuous Galerkin (q=l)> GTOL=.01

vol. 28, n° 7, 1994



836 D ESTEP, D. FRENCH

Conünuous Galerkin (q-l)t GTOL=01

Figure 4.13. — Example 4.

Continuous Galerkin {q-l)y GTOL=.01

Exact data ° Approximate data

Figure 4.14. — Example 4.

dG method yields stiffly A-stable schemes that are well suited for stiff
problems. We make a simple numerical comparison of the cG q = 1 scheme
with the dG q = 0 scheme (which is a variation of the backward Euler
scheme). The a posteriori error bounds for both methods are closely related
and we expect the error control behaves similarly for both methods. In
particular, the stability factors for the two schemes are exactly the same.
Thus, the theory predicts the same accumulation of error for both schemes
applied to a gênerai problem. However, the schemes have different stability
properties and we surmise that the error might accumulate more slowly for a
particular scheme depending on the stability behavior of the solution. The
following computations were made using the same local tolérance LTOL for
each scheme and we are interested in the way in which the errors made at
each step accumulate.

In figures 4.15 and 4.16, we plot the first component of the approximation
and the solution versus time for the cG and dG schemes for example 4.1
respectively. We note that the dG scheme dissipâtes the amplitude of the
periodic solution and the cG method does not do this. One can show that the
dG method must have this behavior. The error-to-bound ratios of both
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Continuous Galerkin (q=l), LTOL = 10'2

837

0 5

Solution « Approximation
Time

Figure 4.15. — Remark 4.5.

Discontinuous Galerkin (q=4))> LTOL = 10*2

— Solution ° ApproximationApproximation

Figure 4.16. — Remark 4.5.

schemes remain almost constant over time, with a little more variation in the
dG value.

In figures 4.17 and 4.18, we plot the error versus time for both schemes
applied to example 4.2. The oscillations present in the error of the cG scheme
are indicative of stiff problems and the amplitude of the oscillations increase
with increasing stiffness. The error-to-bound ratios of the schemes behaves
roughly the same over time, though there is larger amplitude in the variation
of the ratio for the cG method.

In figures 4.19 and 4.20, we plot the first component of the approximation
and the solution versus time for the cG and dG schemes applied to
example 4.3 respectively. As in example 4.1, the dG scheme introduces
dissipation. The error-to-bound ratios of the two schemes again behave
similarly. We conjecture that the instability of the solution means that the
error of both discretizations increases at the maximum rate.

Finally, in figures 4.21 and 4.22, we plot the first component of the
approximation and the solution versus time for the cG and dG schemes
applied to example 4.4 respectively. While there is not much decrease in
amplitude in the dG approximation, the approximation does « shorten » each

voL 28, n° 7, 1994



838 D. ESTEP, D. FRENCH

Continuous Galeikin (q=l)y LTOL s 10'2

Time

Figure 4.17. — Remark 4.5.

Discontinuous Galerkin (q^))y LTOL = 10*2

Time

Figure 4.18. — Remark 4.5.

Continuous Galerkin fa=7), LTOL =s .03

J0 1 2

Solution ° Approximation

3
Time

Figure 4.19. — Remark 4.5.

Discontinuous Galerkin (q^)), LTOL = .03

1 2 3
Time

Solution ° Approximation

Figure 4.20. — Remark 4.5.
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Continuous Galerkin (q-]), LTOL = .002

839

"0 5

Solution o Approximation

10 15
Time

Figure 4.21. — Remark 4.5.

Discontinuous Galerkin (q=0), LTOL = .002

Approximation

Figure 4.22. — Remark 4.5.

successive period. We conjecture that this is due to the dissipative properties
of the scheme. In figure 4.23, we plot the error-to-bound ratio for the dG
scheme. In contrast to the behavior of the cG scheme, this ratio increases as
time passes and it is clear the error of the dG method is closer to the predicted
values. We conjecture that the stability properties of the cG method inhibit
the error from growing at the maximum rate.

vol. 28, n° 7, 1994
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5. PROOFS OF A PRIORI RESULTS

Proof of theorem 3.1 : Consider

and let X e <$(q) dénote the cG approximation to y. We choose V with
V\j = 1 in (2.2) and find that Xm = y for l^m^n. When q = 1, we

conclude that there is a C > 0 such that

for 1 ̂  m ^ n. When q = 2, we take V with V | , = (t - tm _ j )/*„ in (2.2)

and integrate by parts to obtain

* y(t)dt. (5.1)

We estimate

where we use (2.8) and expand in (5.1) around tm„y2 using Taylor's
theorem.

Now, we take f(t) = f(y(t), t) and conclude that

| y - X | . ^ C ^ + 1 | y c ^ + 1)l , (5.2)

for 1 =s m ^ n.
Because of (1.1),

r . .

for ail V e & {q ~ l\ Therefore,

[ (X-tv)dt= f (y-r, V)dt,
I m ^ m

for ail V e @iq~l\ We choose V = X - Y and estimate using Young's
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inequality and (2.9) to get

\y-X\,m*Ck<m\yl<+"\lm, (5.3)

for 1 =s m =s n.
We split the error e ••= jm - <f> with tx .•= y - X and <f> .= Y - X e <g (<?).

Starting with (2.2) and using (1.1), we write

= 0 , (5.4)

for all V e 3 (q~ 1}. We choose V = ^@<^ and use the fact that <f> e B(q" 1} to
conclude that

Therefore,

Now, we estimate and use the stability of SP® to get

f | / * | 2 A + 3 L f \4>\2dt. (5.5)

2, so

We continue back to m = 0, using <£0 = 0, and get

eCU"\^\2
[0t], (5.6)

for 1 ̂  n ^N. The bound on <£ (?), * e n̂» is immédiate when # = 1.
When q = 2, we choose V = ^ ( f - tm_ x) <t> (t) in (5.4) to get

f
+ f
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We integrate by parts, use the Lipschitz assumption of/, and the stability of
0>B to find that

f \<f>\2dt^km\<f>m\2 + 2L f \t-tm=l\\e(t)\\<f>(t)\dt,

Now, we assume that km L is sufficiently small and estimate

A . (5.7)f \<f>\2dt^2km\<f>m\2 + 2Lkm f

We combine this with (5.5), taking km L even smaller, to get

and then undo the recursion,

Now, we use (2.9) together with (5.7) to get

km | * 1 1 « Ckm Un e c u ' | /* | ̂  /nJ I 1 1

or noting that Lkm ^ C, for 1 =s w ^ «,

^ ^ C O + L ï , , ^ " ) ! / * ! ^ ^ . (5.8)

To complete the estimate on the error, we use (5.2) and (5.8) to get

1*1 * ! < / > l + l / * l k

Now, for the bound on \è\, we choose V = «̂  in (5.4) to get

f \<f>\2dt^\ (f(Y(t\t)-f(y(.t),t),4>(t))\dt

so

f |0|2rfr^L2 f \e\2dt. (5.9)
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We use (2.9) on (5.9), (5.3), and the resuit for \e\ [0 t to compute

\è\t ^ C ( l C L /

1 m

Proof of theorem 32. We start with a regularity resuit for Y.

LEMMA 5.1 : Under the assumptions of theorem 32, for k sujficiently
small and 1 ^m^n,

+C(l+LfmeCL'-)max ( ̂  W + 1

m \ ^ f

(5.10)

for 0«/)
Proof:

dp

By (2.9),

Now, we combine (3.1) and (2.8) to prove the first équation in (5.10). Under
the assumptions of theorem 3.2, the conclusion follows immediately. D

For functions V(t) and W(t), we let

M(t, V, W):= f
Jo

so

f(y9t)-f(X,t)=M(t9y9Y)€.

We define on each interval,

T(t):=Y(t)+f(Y(t),t),

so e solves the équation
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on each interval. We use M(t) to dénote M(t, y, Y) in the following.
We let <&i £ Cq + 1 x Cq + l dénote the fundamental matrix solution of

[4>! (0) = / (the dxd identity) .

Variat ion of constants implies

e(tA) — 0 i (f,) ( e(0) —
\

Equation (2 2) implies that

! " <*•

Jo

for all V e ^ * " 1 ( / 1 ) . Hence,

for all V e 0>q~\ll) x &q-x{lx\ and therefore,

for all V G 0>q~l(Il) x ^>9~1(/i)> where we use the obvious matrix norm.
Using the équivalence of norms on a finite dimensional vector space and
(2.8) on each component of # f \ we know that

CP
i

where we extend the définition of 3 in the obvious way Next, note that for

f \ r - V \ 2 d t » f \ r \ 2 d t .
Ji, J/,

Choosing V = 3^_! r, we get

1/2(ƒ,„.*)
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Thus,

\ dtq i{
 I]

Generalized to the mth interval, 1 *s m =s= n,

. (5.12)

Next, we bound the various quantities in this inequality. Since

deg(7| ) = q9 ^~Y = 0 and

By assumption, the partial derivatives of ƒ of order q and less are smooth and
bounded uniformly in Jf's while by theorem3.1, Y is close to y for
k small, hence (5.10) implies that

with

, p, k, q, tu v)*

:=C max {1, L} max {1, pq)

max {1, k} (1 + Ltx e h) max

Similarly, M is bounded as

df , p , K q,tl9y)9 q = 1 .

(5.13)

Note, both of these bounds carry over to ïm with tx -> tm in ê.
Since,

d _i

on / j , <PX~1 solves

' [ O . r , ] •
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-1 _ f' -1
1 ° " / + Jo01

for 0 =s t =s tx. We estimate, using the bound on Af,

-i P
Jo

for 0 ̂  r ̂  Tj. Gronwall's inequality implies that

(5.15)

By (5.15),

Similarly,

(fi)

CLk,

Note that these arguments carry over to 7m, with ^m
1(^m- i ) = / and

computing the intégrais from tm_lto t : tm^l ^t ^ tm, hence for 1 =s m =s n,

\®ml(tm)\ ^eCLkm , (5.16)

(5.17)^ CLk„

and

dt2 On) {CL2+S{L, g, k, q, tm, y))eLL*"

Finally, we estimate |^m(^m) | just as we did j ^ " 1 ^ ) ] ,

\0m(tm)\^eCLk\

(5.18)

(5.19)

for 1 ̂  m ̂  n. We return to (5.11) and use (5.13), (5.14), and (5.16)-(5.19)
to find that

Ckx eCLkl , p , t , <?, f 1( j ) ,
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with

S{L, p, k, q, tm, y)-.= S(L, p, k, q, tm, y)(L2 + ë{L, p, k, q, tn, y)) .

By (5.12),

\e«m)\>seCU'(\e(tm_1)\ + Ck2
m"+{ £(L, p, k, q, tm,y)) .

By induction, for 1 =s n « Af,

\e(tn)\ « Ctn / L ' " m a x k]? <f(L, p , k, q, tm, y).

The result follows by making straightforward estimâtes on S. D

6. PROOF OF A POSTERIORI RESULTS

Proof of Theorem 3.4. On ïm,

taking one-sided limits at the ends of the intervals. By subtracting this from
the équation in (1.1), we get

1 - (l-p)Y,t)(y-Y)dp =
o

This motivâtes the définition

Jo (W'D(W, V):= (W, V)dt

Jo

for functions W, V, since

D(e9V) = 09 (6.2)

for all V e B {g~ l\ Associated to D is the linear form

Jo
UW9 V)+(A(t)W(t)9 V(t)))dt.

Jo
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If V is continuous,

D ESTEP, D FRENCH

D(W f"
Jo

«W(t\ - V(r))+ {W(t),A*(t)V(t)))dt

+ ((W(tn\V{tn))- , V(0))).

Since e (O) = O,

| e ( r B ) | = £>(e, z) = Z)(e, z ) - (D -D)(e9 z ) ,

where z solves (3.4). We subtract (6.2) and obtain

D(e, z) = D(e, z - 0>3 z) =

P"
Jo

We take norms and use (2.7) to get

^51(w)max k^+1

We can write this as follows :

f»

(6.4)

|D(e,z)| %t™ o (6.5)
im

by taking the second derivative of z in the case that q = 2. To estimate the
second term on the right in (6.3), we compute

(D-D)(e,z) =

= f" f' (</y(y(O, O-/,(py(O+ (1 -
Jo Jo

and estimate using (3.4.3),

We use (6.3), (6.4) and (6.6) and conclude that

\e(tn)\ ^Sx(n

. O) «(O, z(t))dPdt

(6.6)

, (6.7)
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and with (6.5),

m^n dt lm

Next, we make a local estimate. Subtracting (6.1) from the équation in (1.1)
and taking the inner product with e, we get

(è, e) + (f(y, t)-fÇr, t), e) = {(&9 - 1)/(F, O, e) .

We integrate from tm _ x to r, take norms, and use the fact that e is continuous
to conclude that

l L{t)\e\2dt,

and so,

\{0>B~-\)f{Y{t%t)\dt

s\e\

for e :=> 0 small. We assume that km is sufficiently small and use (2.7) to
conclude that

? + 2

[)• (6.9)

We place (6.7) into (6.9) and use the fact that Sq(m) is monotonically
increasing in m to get

2
\e\* * CS,(«)2max ^ f ana o

0
C max

m s= n
vm

Since the right-hand side is monotonically increasing in n, we have

cP 2

n m^n dtq Im
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In the case of the superconvergence result (6.8), we get

|2 _ r* tv (™\ i 1 \2 , £ f(Y(t), t)
dr

\e\\OlJ^C(Sq{n) + l)2max

Next, we prove the bounds on Sl(n) given in proposition 3.3. For
simplicity's sake, consider the forward problem which arises from the
change of variables x(t) ••= z(tn — t),

\x +A*(tn-t)x = 0 , tn,
(6.11)

We take the inner product of the équation in (6.11) with x and get

In the genera! case, v/e use (3.3.1) or (3.4.2) and integrate to find that

Jo
2 L(s)ds

Jo

and so,

r
Jo

[ L(r)dr f' L(s)ds
L(s)eh ds = eJo

Under (3.3.2), we find that j \x |2 « 0, so |*(0 | 2=s 1 and

\ \x(s)\ ds^ \ L{s)ds.
Jo Jo

Returning to the proof of theorem 3.4, in both cases, the a priori result
(3.1) implies that we can choose k small enough so that

and therefore, we reach (3.1) via (6.10).

Remark 6.1 : This condition on k can be viewed as determining the length
of time over which the a posteriori analysis is valid.

To obtain the nodal result, we start with (6.9), which implies that

max |em |2 + Cmax k2
m"

m ** n — 1 m ss n

+ 2 fr™ •>. (6.12)
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We put this into (6.7) and use the monotonicity of the right-hand side to get

max \em\ kq + l £ f (y(0'
CSx{n) max £ƒ<>-<,>, o

|em | .max

Now, we use (3.4.4) and (3.1) to conclude (3.11) for k sufficiently small. For
the superconvergence resuit, we put (6.12) into (6.8) and obtain

max \em k2
m

q

k2
m

q + 2

|em |-max

and finally, (3.12) for k sufficiently small. D

Proof of Proposition 3,5 : We give the proof for d = 1. The generalization
to d > 1 is straightforward. First,

, O = fy( t(y, t) =

(fy(Y9 t)-fy(y,

so

, o-y

Similarly,

Ê.
dt1 , o F 2/^

We estimate as above and use the fact that

t)-ft(y, r)

„(y, o.
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implies that

IY - y \im == C (1 + p\\ + CLtn eCU")m) k\y™\ [0 ( J ,

to prove the resuit. D
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