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GLOBAL ERROR CONTROL FOR THE CONTINUOUS
GALERKIN FINITE ELEMENT METHOD

FOR ORDINARY DIFFERENTIAL EQUATIONS (*)

by Donald ESTEP (l) and Donald FRENCH (2)

Communiqué par R TEMAM

Abstract — We analyze a continuons Galerkin fimte element method for the intégration of
initial value problems in ordinary differential équations We dérive quasi optimal a priori and a
posteriori error bounds We use these results to construct a ngorous and robust theory of global
error control We conclude by exhibiting the properties of the error control in a series of
numencal expenments

Resumé — Une methode d'éléments finis de type Galerkin continue pour l intégration des
problèmes initiaux pour les équations aux dérivées ordinaires est analysée Des estimations
d erreur quasi-optimales de type a priori et a posteriori sont démontrées Les résultats sont
employés dans la construction d'une theorie rigoureuse et robuste pour le contrôle global
d'erreur La qualité du contrôle d'erreur est exposée dans une série d'expériences numériques

1. INTRODUCTION

Our main purpose is to outline a rigorous theory of global error control for
the continuous Galerkin fimte element method for
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The continuous Galerkin (cG) method produces a continuous piecewise
polynomial approximation Y, It has been used previously for certain
évolution problems (see [10], [11], [12]) because it often has the property of
preserving an « energy » naturally associated to the differential équation. We
are interested in adaptive error control for the cG method in order to achieve
accuracy and efficiency in computations. On one hand, it is computationally
impractical and even impossible to use a uniform (small) step-size on many
problems. Examples are Systems obtained from a method of lines discreti-
zation of a partial differential équation and problems which require compu-
tations over long time intervals. On the other hand, it is generally impossible
to a priori choose step-sizes that guarantee accuracy. However, we show
that information obtained from the approximation can be used to make
computations of a specified accuracy.

The theory of adaptive error control we describe is based on a combination
of rigorous a priori and a posteriori error analyses. This is the same
approach that has been used in an ongoing project to develop a theory of
adaptive error control for approximations of partial differential équations
(see [2]-[8], [14] and références therein).

A priori error bounds measure the error by quantities that reflect the
regularity of the solution and the stability properties of the numerical
scheme. The usual dérivation for a différence scheme is based on estimation
of the truncation error by means of Taylor's theorem. In contrast, we use
Galerkin orthogonality to compare the cG approximation to other approxi-
mations in the finite element space. Hence, we obtain optimal order results
rather than the usual sub-optimal bounds derived for différence schemes. In
addition, we prove that the second order cG approximation is superconver-
gent at time nodes, i.e. has an extra order of accuracy at those points.

While a priori error bounds describe the convergence properties of an
approximation, they are not directly useful for error control because they
involve unknown information about the solution. Instead, we use a
posteriori error bounds as adaptive criteria for choosing step-sizes. An a
posteriori bound measures the error by computable quantities that depend on
the regularity of the approximation and the stability properties of the
solution. Suppose that the interval [0, T] is partitioned into N subintervals
lm of length km, and that q dénotes the order of the cG approximation. Our a
posteriori bounds have the form

Y(tn)-y(fn)\ ^S(frt)max *T ' max |Z>?/(y(r), O| , d-2)
/„

for 1 =s= n =s N9 where | . | dénotes the Euclidean norm on Rd, Dq dénotes the
qth order time derivative and S(tn) dépends on tn but not on any
km. Note that k?m

+1 max \Dq
t f{Y(t\ t)\ is computed on each interval and
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GLOBAL ERROR CONTROL FOR FINITE ELEMENT METHODS 817

measures the local regularity of the approximation. We call S(t) the stability
factor and it is a measure of the accumulation of error. It is given by a semi-
norm on the solution of the linear dual problem to (1.1) obtained by
linearizing (1.1) around the solution. We show that S (tn ) can be approximated
using the linear problem obtained by linearizing around the approximation.
Hence, the bound involves only information that can be obtained from the
approximation. If Y is computed so as to keep the quantities on the right-hand
side of (1.2) below a given tolérance, then the error is also kept below the
tolérance.

This theory of adaptive error control is completely different from the
Standard théories for différence schemes which are based on error estimâtes
that are asymptotic in the limit of small step-size, depending on the
boundedness of high order derivatives of the solution. Hence, we avoid some
difficulties associated to this approach, While such asymptotic estimâtes are
valid only when the error is small, there is no computational criteria for
determining if the asymptotic regime has been reached with the chosen step-
sizes. Thus, a small asymptotic estimate does not imply that the error is
small. In fact, the criteria of choosing steps so as to keep these asymptotic
estimâtes valid is generally harsher than Computing approximations of a
given accuracy. For example, this is essentially the root of the issue of
choosing the error-per-step or the error-per-unit-step criteria for the widely-
used strategy called local error control. In this context, we take the goal of
adaptive error control to be to use as large as steps as possible while
producing an approximation of the desired accuracy. Note that the require-
ment of extra regularity of the solution is of particular concern in applications
to nonlinear initial-boundary value problems in partial differential équations.

This approach to error analysis and adaptive error control was initiated by
Johnson in [14], which contains an a priori analysis of the discontinuous
Galerkin (dG) method for autonomous ordinary differential équations. The
dG method produces a discontinuous piecewise polynomial approximation
that is well suited for stiff, dissipative problems. Eriksson and Johnson made
complete a priori and a posteriori analyses of the dG method for linear
parabolic problems in [3] as well as outlined a theory of error control. Estep
did the same for the dG method for non-autonomous ordinary differential
équations in [8], This analysis has been extended in several directions in
recent years, see [2]-[7],

We would like to extend the theory to cover gênerai numerical methods for
a variety of équations and this paper is a step towards this goal. It is natural to
consider the cG method as an alternative to the dG method because its
stability properties make it more suitable for équations with oscillatory and
periodic solutions than the dG method (see § 2 and § 4). The analysis we
present here follows the same lines as the analysis in [8], however the
technical details are altered to account for the différences between the cG and
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818 D. ESTEP, D. FRENCH

dG methods. In particular, we deal with difficulties associated to the fact that
in the cG method, the approximation space and the test space are different.

The paper is arranged as follows. In § 2, we introducé notation and
describe the cG method. In § 3, we present the a priori and a posteriori
results. In § 4, we outline the strategy for adaptive error control based on the
a posteriori resuit as well as discuss some technical points concerning
irnplernentation. We demonstrate the adaptive method on four test problerns,
including the difficult two-body problem. In particular, we present plots of
the error-to-bound ratio as a measure of reliability and efficiency. We also
make a comparison with the dG method on these test cases. We present the
proofs of the a priori results in § 5 and of the a posteriori results in § 6.

2. THE SCHEME AND NOTATION

The finite element method is based on a variational formulation of (1.1)
that reads : find y e C ̂ (0 , T)) such that

r (y, v)dt + I (f(y(t)9t)9v(t))dt = O9

Jo Jo (2.1)
y(O) = y o ,

for ail v e C^(0 , T)% where C^([0, T]) dénote the set of functions with
continuous derivatives of order p and less on [0, T],

We construct a piecewise polynomial approximation Y to y. We partition
[0, T] into

0 := 10 < t m < t, < t3n < t2 < =ztN :=T ,

s e t t i n g km:=tm-tm_l, tm_ 1/2 - tm - k m / 2 , Im *=[tm_utm]9 a n d
A::=max km. We choose the finite element space <g{q)= ^ ( ? )([0, T]) of

m

continuous functions that are polynomials of degree q on each interval

where 0P{q\lm) dénotes the set of polynomials in R^ of degree q on
Im. Because of the continuity, a function in <£(q) has only q degrees of
freedom on each interval. Accordingly, we define the test space

#<*- i> = ^fc-DQo, T]):= [U: U\Ime&to-l\lm)9 1 ̂ m^N) .

Since these functions may be discontinuous, we let f/̂ 1 " dénote the left- and
right-hand limits of U e 2iq~l) at tm and [U]m ^ £/+ - t/~ the jump in
value.
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GLOBAL ERROR CONTROL FOR FINITE ELEMENT METHODS 8 1 9

For 1 =£ n =s N, the cG approximation 7 e <^{M) solves

t f (y(o + /ar(o,o.v(0)* = o,
7(0) = y0

for all V e S ^ " 1 ! 7 can be computed interval by interval as well ; for
1 === m =s= n, it solves

f (tV)dt+{
"m Jim

V)dt+

lim 7(0 - lim 7(0

for all V s0>^-{\lm).
When q = 1, 7 is the piecewise linear function

with coefficient Ym determined by

Ym+ f f(Y(t),t)dt = ¥„,_,.

When q = 2, 7 is the piecewise quadratic function on 7

(2.2)

(2.3)

y ^ (f f
1 m - 1/2 , o \l lm

K

with coefficients determined by

Ym +

- rm) + 7m A a -

Jl

(2.4)

Existence and uniqueness can be shown for /: sufficiently small.

Remark 2,1 : Consider f(y,t) = Ày. The q = 1 scheme (with uniform
step) is

_ 1 -A* /2
m " 1 +A*/2 M - l f
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820 D. ESTEP, D. FRENCH

which agrées with the second order trapézoïdal rule at nodes. When
q = 2, the cG approximant agrées at nodes with the fourth order Runge-
Kutta scheme

- \k/2 + A ^ / 1 2 v ,„ «

Both cG schemes are A-stable ; stable for &e(A)**Q and unstable for
^ e ( A ) < 0 . In particular, when ^ e ( A ) > 0 , y decreases in size as time
increases and the cG approximations have the same property without
restriction on the step-size, as would be needed for an explicit scheme for
example. However, note that for fixed ky the factors above tend to one in
magnitude as | A | -• oo. This contrasts both with the behavior of the solution
and the discontinuous Galerkin method. On the other hand, when
gte (A ) = 0 and y is purely oscillatory, the cG approximants are neither
increasing or decreasing in magnitude, indicating that the cG method might
be a good choice for problems with periodic and oscillatory solutions. The
discontinuous Galerkin method is not particularly suitable for such problems
because the approximants exhibit numerical damping. See § 4 for further
discussion on this issue.

We also note that the cG schemes preserves discrete versions of the
conservation properties of Lyapunov functionals which the original System
might possess (see [12]). This property can be used to analyze the stability
properties and the long time behavior of the numerical scheme (see [10] and
[11]).

The cG schemes are not equivalent to any standard Runge-Kutta schemes
when applied to truly nonlinear, non-autonomous problems.

We use the following notation. For an time interval 7, we let

|öf|,:=sup
tel

In addition,

A(t) :=fy(y(tl t\ À := JtHt\ À := | (A + A*) ,

d f

{ ( « , t ) \ u e C 0 ( [ 0 , T ] ) a n d \ u ( t ) - y ( t ) \ ^ Ô f o r O ^ t ^ T } .
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We employ several interpolants and projections of u in ^{q\ Ü satisfies

and on Im> 1 =s m =s n,

The following error bound is easy to show

\km\ü\I , q= 1, 2 ,
(2.6)

dénotes the L2 projection of w into 2){q l) ; in other words,
1] satisfies

for all V e S ( ( ? ^l In places, we abuse notation to let &'@ dénote
^®\im- B y standard results,

|M| dt**km\ù\ ,
Jim

 m

Ckm \ü\ dt^Ckl

(2.7)

For u e Cp + t (/ ), 0 =̂  p ^ <y, we let 3^ M G ̂  (^} dénote the interpolant such
that on 7m, 1 =s= m =s «,

{3 M = u at tm_x>tmJ q — 1, 2 ,

3qu = u at r m _ 1 / 2 , <? = 2 .

From standard theory (see [16]), there is a constant C = C (p) such that

>+\-riy(p+l)i ^ ^2.8)1̂

for 0 ^ r ^ p ^ q. We recall the following inverse result from Ciarlet [1],
there is a C > 0 such that for U e #c<?), 1 =s r ^ oo, 1 =s 5 === oo and
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(f , (2.9)

(with the usual interprétation of r or s — oo).
Finally, to simplify the présentation of the proofs, we use a global

Lipschitz assumption of ƒ and define the domain O := Rd. More sophisticated
assumptions can be used without significantly altering either the results or
the proofs.

3. ERROR ANALYSIS

We now present the analysis of the error that serve as the basis for error
control. We begin with an a priori analysis that reveals the convergence
properties of the cG method. The a priori bound measures the error by
quantities that depend on the regularity of the solution and the stability
properties of the scheme. The first result shows that the cG scheme
converges at the optimal order on the interval [0, T].

THEOREM 3.1 : Assume that y s C q + l([ö, T]) and f is Lipschitz continu-
ons with constant L. Then, for 1 =s n =s iV, # = 1 , 2 and k sufficiently small,

and

|é |
n

+Ltne
CU')ll2ta*K k*+l\y<*+% - O-D

Ltn eCU")112 max kl\/«+ » | , . (3.2)

The second result shows that the cG method is superconvergent at time
nodes for q = 2, if the ratio of the largest step to the smallest step is bounded.
The order of convergence at nodes (2 q) agrées with the order of convergence
of the Runge-Kutta scheme (2.5) for the linear problem in remark 2.1. But,
we note that the form of the bound means that there can be an effective loss
of order if the problem is stiff, for example. We thank J. Schaeffer [16] for
giving us the proof of this result.

THEOREM 3.2 : Assume that q = 2, that y e C3(/), that for ô sufficiently
small, the partial derivatives off of order q are continuons and bounded in
norm by L on Jf B, and that there is a constant p > 0, independent ofk and
N, such that for 1 === n *s N,

kmmax — =£= p .
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Then, for 1 =s n =s N and k sufficiently small,

\e(tn)\ ^

^ Ctn e
CUn{\ + Ltn eCU*f max k4

m • max \y(r)\s (1 + \y(r)\s) , (3.3)

r, s s*0

where C =C(L, p).
The proofs of these results are given in § 5. In both cases, the analysis uses

Galerkin orthogonality to compare the cG approximation to approximations
of the solution in *^(l?) with known interpolation errors. But» unlike
approximations of the solution computed with full global knowledge of the
solution, the error in the cG approximation accumulâtes with time. This is
the reason for the exponentially increasing stability factors. The accumulation
has to account for the worse possible rate of accumulation in the class of
problems under considération. Under these gênerai assumptions, these large
factors are the best possible.

These a priori results are not useful for error control because they involve
unknown information about the solution. Next, we present an a posteriori
resuit that bounds the error by computable quantities that reflect the
regularity of the approximation and the stability properties of the linearized
dual problem to (1.1). As to the latter, we let z dénote the solution of

0, tn>t7*0,

and define a quantity that turns out to be the stability factor for the a
posteriori bound,

5p(«):= P" \z^\dt. (3.5)
Jo

It is convenient to begin the analysis with an a priori bound on
Sr

PROPOSITION 3.3 : Assume that thers is an integratie, bounded function
such that

\A{t)\ «L(r)f (3.3.1)

forO**t**T. Then,

l'nL(t)dt
S^ny^e^ - 1 . (3.6)

If, in addition,

(A(r)w,w)^0, (3.3.2)
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for all w e Cd and t e [O, T]9 then

Jö
L{t)dt . (3.7)

Ifwe assume that the partial derivatives of f of order q and less are bounded
in norm by L(t) on Jf ^ then

L(t)dt
(3.8)

This result is proved in § 6.

Remark 3.1 : There are other possibilities for bounds on S2(n). The case
when A(t) is invertible turns out to be computationally important. Then,

/u*
(3.9)

[o, i„

Now, the a posteriori result.

THEOREM 3.4 : Assume that the qth order partial derivatives of f are
continuous on Jf 5, for some S > 0, and that there is an integrable, bounded
function L{t) > 0 such that for all u, v E 12, w>, x e Crf, and t e [0, T],

-v\, (3.4.1)
2 , (3.4.2)

=sCmin {L(t)\u-v\ |w | | x | , | u - v | \w\ \A*(t)x\ } . (3.4.3.)

Then, there is a constant C > 0 such that for k sujficiently smally

! (n ) 4- 1 ) max
m ^ n

1+ 1 ^ ƒ(!-(,), ») (3.10)

, q = 1, 2. If Y is computed so that for some C > 0,

1+ 1 - / ( T O T . O

; n, then

max \er

m*zn

lâm
+ 1

(3.4.4)

(3.11)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



for 1

max
m *£ n
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^N, q = 1, 2. Finally, for q = 2,

825

4/(y(o. o . (3.12)

This result is proved in § 6. We discuss the construction of an error control
based on theorem 3.4 in § 4. We conclude this section with a result that
shows that the a posteriori bounds are of optimal order.

PROPOSITION 3.5 : Assume that the hypotheses of theorem 3.1, 3.2, and
3.4 hold. Then, for k sufficiently small and q — 1, 2,

while for q = 2,

dt2 iC(L9T,Pjy)k

4. ADAPTIVE ERROR CONTROL

We employ adaptive error control in order to achieve the related goals of
accuracy and efficiency. In the case that a fixed scheme is used, this means
producing approximations of a desired accuracy using the largest possible
step-sizes. In this section, we show how the a posteriori error bound can be
used as the basis for an adaptive error control and then exhibit properties of
the control through a series of experiments.

There are two contributions to the global error in the approximation of an
initial value problem (ignoring round-off error). The first is the interpolation
error made in approximating a gênerai function by piecewise polynomials.
This error is determined by the behavior of certain derivatives of the solution.
The first goal of the adaptive error control is to choose a mesh that allows
interpolation of the solution with an error that is uniform in an appropriate
norm over the interval of computation. The second source of error is due to
the cumulative effects of integrating an initial value problem interval by
interval. The rate of accumulation is determined by the stability properties of
the solution, i.e. the behavior of trajectories that start near the target solution
at a given time. The second goal of the adaptive error control is to choose the
mesh size so that the accumulated error is not too large at specified times.
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Examination of the proof of theorem 3.4 makes it clear that the result
clearly delineates the two sources of error. For example, we quote (3.11)

\en\ kq
m
+1 (4.1)

The quantities inside the maximum taken on the right measure the local
approximation properties of the mesh for functions in <S^. The accounting
of the accumulation of error is made in Si(n) which is a semi-norm of the
solution of the dual problem over the interval of computation. By controlling
the expression on the eight in (4.1) at specified times t*, 1 =s w* === N, we
control the global error at those points as well.

Remark 4.1 : We use (3.11) and compute with the q = 1 scheme for the
purpose of illustration. The other bounds in theorem 3.4 and the higher order
scheme can be used in an analogous fashion.

Because the bound uses a maximum of local quantities, it does not seem
wise to let the local quantities become large at some points. Hence, we adopt
the following strategy : given LTOL > 0, for 1 =s m =s « compute Ym on
Im so that

kq + 1 £ /om o ;LTOL. (4.2)

Note that proposition 3.5 implies that (4.2) can be achieved by taking
km sufficiently small. In practice, km is determined iteratively. From a given
point tm^ït a step k%ed is predicted via

LTOLUpred

and Y%ed is computed. If (4.2) is satisfied with Ym = Yp^ed, the step is accepted
and the computation proceeds. If (4.2) is violated, the itération is repeated
with a new step is predicted via

LTOL

dtq

vred(t\ t)
i

Global error control is achieved by choosing LTOL so that

(4.3)
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for certain «*, 1 =s= n* ̂ N, where GTOL is the desired global error
tolérance. If an a priori bound on S{(n) is known, then a correct LTOL can
be chosen before the computation begins. Unfortunately, the gênerai bound
on Sl(n) given in proposition 3.3 is too large to allow computation past a
short transient. Since Sp(n) is spécifie to the solution of (1.1) that is being
approximated, an alternative is to compute Sp(n) for each problem. Of
course, this is not directly possible in gênerai precisely because this would
require the solution. Instead, consider Ç solving

j - £ + fy{Y(t\ t)* £ = 0 , tn > t =* 0 ,

\£it) d 141 1

We can prove (see [8]).

THEOREM 4.1 : Assume that f has continuous second partial derivatives
and that the assumptions of theorems 3.1 or 3.2 and theorem 3.4 hold.
Further assume that there is a constant 8 > 0 such that for all U e

f fr

max | \U -y\[0 Ty \U - y\ d

f I tP
max max —f(U(t\ t)
m^n p^q+\ [\ dtP

Then, any consistent and stable one step methodfor (4.4) wit h dn = e^l\e~ |
computed on a mesh that includes {tu ..., tN} as nodes converges to z as

We approximate Si(n) by using the values of a trapezoidal rule approxi-
mation for (4.4) in a Simpson's rule formula for

f" \fy(Y(t),t)*£\dt.
Jo

Similarly, we can approximate S2(n) by a quadrature formula for

dfo * '
dt .

Since this approximation of Sp(n) requires an approximation of y over
[0, tn], we resort to an itération to achieve global error control. We begin by
assuming that Sq(n) = 1 and LTOL = GTOL is chosen. Y is computed so as
to satisfy (4.2). Next, Sp(n*) is approximated using Y and (4.3) is checked at
the desired points tn*. If (4.3) is violated, a new local tolérance is chosen via

LTOL..= G T O L

CS^n*)
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