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A NEW FORMULATION FOR ARCH STRUCTURES.
APPLICATION TO OPTIMIZATION PROBLEMS (*)

by Véronique LODS C)

Communicated by P -G CIARLET

Abstract — To mimmize costs, which depend on the displacement o f a loaded arch, studied
by following the Budiansky-Sanders's model, we use optimizatwn algorithms The design
variable is the shape <f> of the arch The difficulty is to calculate the descent directions A
method, usedfor example by Habbal and Monano [6, 8], consists in approximating the exact
denvative of the cost Hère, the aim is to justify these calculation of the descent direction For
that, we introducé a mixed formulation, equivalent to the state équation and the coefficients of
which only depend on <j> and on its first denvative, while the coefficients of the usual state
équation depend on the third denvative <}>'" of the shape of the arch By using this mixed
formulation, we can compare these descent directions to the gradient of the approached cost

Résumé —Pour minimiser des coûts, qui dépendent régulièrement du déplacement d'une
arche chargée, étudiée sous le modèle de Budiansky-Sanders\ on utilise des algorithmes de
descente La variable de conception est la forme <f> de l'arche La difficulté ici est de calculer les
directions de descente Une méthode, utilisée par Habbal et Monano [6, 8], consiste à
approcher la différentielle exacte du coût Le but ici est de justifier cette démarche L'idée est de
comparer cette direction de descente avec le gradient du coût approché, dit gradient discret
Pour cela, on introduit une formulation mixte, équivalente à l'équation d'état, et dont les
coefficients dépendent seulement de <f> et de sa dérivée première, alors que les coefficients de
l'équation d'état sont fonction de la dérivée troisième de la forme <f> de l'arche

INTRODUCTION

We consider an elastic loaded arch, studied by following the Budiansky-
Sanders's model. The coefficients of the usual state équation depend on the
third derivative <f> '" of the shape <f> of the arch. We presently give a mixed
formulation, the coefficients of which only depend on <f> and on its first
derivative. This mixed formulation is equivalent to the state équation.
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874 v. LODS

Then, like Bernadou-Ducatel [2], we approach the aren by beams, linked
by rigid hinges. By correctly choosing the discrete mixed spaces, we can
prove the équivalence between the discrete équation of Bernadou-Ducatel
and the discrete mixed problem, which is conforming. Then, we show the
convergence of the discrete displacement, already proved by Bernadou-
Ducatel, with another method.

Now, we wish to numerically minimize costs, which regularly depend on
the displacement of the aren, the design variable being the shape of the aren.
We use descent algorithms. The difficulty is to calculate the descent
direction. The idea is to approach the exact differential of the cost, which
dépends on the displacement and on an adjoint state, by using a finite
element code. Thust, we obtain a descent direction, which is called
discretized continuous gradient. We can hence use the finite element code as
a black box, and avoid calculating the gradient of the rigidity matrix. But, the
convergence of descent algorithms has been proved only if the descent
direction is equal to the discrete gradient, which is, by définition, equal to
the gradient of the approached cost. Numerically, we can observe that the
discretized continuous gradient is not equal to the discrete gradient. S o, in
the gênerai case, if the step h of the finite element method is too large, the
optimization algorithm may give wrong results, if the descent direction is
choosen equal to the discretized continuous gradient. By using the mixed
formulation, we here show that the différence between the discretized
continuous gradient and the discrete gradient converges to zero. So, we can
here use the discretized continuous gradient in our optimization problem.
Numerical results obtained by Habbal are correct.

1. THE CONTINUOUS PROBLEM

1.1. The state équation

The shape of the arch is given by a function <f> belonging to the space :

A = {<j> e WXco(I), suchthat: <t> (0) = <£(l) = 0} ,

where I - ]0, 1 [. If / dénotes the length of the arch, we define the
midsurface of the arch by :

<o = {(jc,y, z ) e R3, xel, z = <j> (JC), y e ]0, / [}

and thus the arch £2 is given by :

O = lm + x 3 n ( m ) , m e <o, x3 e - | , | l ,
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A NEW FORMULATION FOR ARCH STRUCTURES 875

where n{m) dénotes the unit vector normal to a> and e dénotes the thickness
of the arch, which is assumed to be sufficiently small, compared to the
curvature of o>, in order to apply the usual approximations of the Budiansky-
Sanders's model. The loading of the arch is assumed to be invariant with
respect to v, so that the displacement vector belongs to the (x, z ) plane. The
problem is then two dimensional. The local basis (?(m), n(m)\ denoted
also by (t(x\ n(x)\ is given by :

and w smü(+™
where S(<f>) = \ / l + <£'2> and (/, j ) is the canonical basis of R2.

According to the Kirchhoff-Love hypothesis, the displacement vector of
the arch can be calculated from the displacement field of the points belonging
to the midsurface <o. The displacement of a point of a> is given by its pair of
tangential and normal components u{x) = (ux(x\ u2(x)) on the local basis
(t(x), n(x)). The arch being embedded, the pair u — (M1S U2) of components
belongs to the space :

V=Hl
0(I)xHl(I).

From the virtual work principle, the displacement M*, which dépends on
the shape function <f>, satisfies the elliptic state équation ([1], [4]) :

u* e V, a(<f> ; «* , v) = L(<f> ; v), for all veV, (1)

w h e r e :

• the ene rgy a of the a rch is g i v e n by :

j e(4>;v) + DK(4>;u)K(<f>\v)} S(4>)dx

with :

C — Ee and D = E — where E is the Young modulus

and the e membrane energy and the K bending energy are equal to :

ei<f>v) = v [ + v ' and "l*->°)

where the curvature 77—— of o> and the rotation of the normal vector
RW)

6 (<f> ; v ) are defined by :

1 rh " V V f

and e(<f> ; v) = r 2

vol. 28, n° 7, 1994



876 V. LODS

• the virtual work of the external load L(<f> ; . ) is a linear form on the
space V, which is here choosen equal to the self weight of the arch :

: . , - - ƒ '
Jo

L(<f>;v) = - pe(<f>'vx + v2)dx
Jo

where p dénotes the density of the material.
In the state équation appears <f>m (because of the derivative of the

curvature). We look for a variational formulation for the arch, with
coefficients that depend only on <f> and its first derivative.

1.2. The continuous mixed formulation

When the arch is approached by beams, we impose the continuity of the
displacement vector and of the rotation of the normal vector at each node.
The idea here is to choose the components (ar, p ) of the displacement vector
on the fixed basis (i, j ), and the rotation 6 of the normal vector as the new
variables. But, to find again a mixed finite element scheme equivalent to the
finite element scheme of Bernadou-Ducatel, we have to introducé too the
e membrane energy as a new unknown. Finally, the new unknown is :

wm= (a , p, 0, e) e Vm = Hl
0(I) x Hl

Q(I) x Hl
0(I) x L2(I) .

The following lemma gives the relations between the four variables
(*, P, 0, e).

LEMMA 1 : Let <j> be a function of the space Wx °° (/ ).
1) Let v = (vu v2) be an element of the space V, then we have the

equalities :
a' = 0<f>' + e and (3 ' = - 0 + <f> ' e , (2)

in the space Xm = L2(I) x L 2 (I ) , where :

al + p] = ! > ! ? ( < £ ) + V2ii(<f>), O = 0(<f>;v), e = s(<f>;v). ( 3 )

2 ) We define the space :

W{<f>)= {vm= ( a , p , 0, e) e Vm, suchthat : b(<f> ; V, vm) = 0,

for all fx e Sm) ,

where the continuous bilinear form b(<f> ; . , . ) : Xm x Vm -* IR is given by :

+ 8-<f>f e)}dx. (4)= f1

Jo
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A NEW FORMULATION FOR ARCH STRUCTURES 877

Then the mapping : G(<f>): V -* W{<t>): v = (t^, v2)-+vm = (a, /?, 0, e\
defined by the relations (3), is an isomorphism.

Proof : 1) By differentiating the equality v = vx ?(<£) + v2 n(<f>X we
directly obtain :

We deduce the relation (2) by using the equality v = ai + fij, where the
basis (/, j ) is fixed.

2) Let vm be an element of the space W{<f> ). We define v = (vl9 v2) by the
relation :

(4) = al +

It is easy to verify the equalities :

v e V, e = O{<f>;v) a n d e =

Then, vm = G(<f> )(v) and consequently, G(<^ ) obviously being an injection,
we deduce that it is an isomorphism. D

By using the isomorphism G(<£), we deduce that the state équation (1) is
equivalent to find the function um = (a, /3, e, 0) e W{<}>) such that :

m), for all t ;meW(<^) (5)

where :

, with vm = (a, p, e, $
/o

and :

;i>m) = - f peS(<f>)@dx,
Jo

and we have the relations :

To find the mixed formulation, we characterize um as the solution of the
optimization problem :

minimize - c{<f> ; t?m, i?m) - M(<^ ; vm)

voL 28, n° 7, 1994



878 V. LODS

under the constraint vm e W(</>), which is equivalent to :

& ( 0 ; M , «>«) = 0 , for all p e 2 m .

By writing the Euler's équation of the Lagrangian :

Z(<f> ; / i , vm) = I c(<f> ; i?mf vm) - M(<f> ; vm) + b(<t> ; fi, vn)

we obtain the mixed formulation :

find (wm, A ) G Vm x Xm such that :

vm\ for all t>m G Vm
(o)

! m = 0 for all /ieXm.

Let us observe that the shape function <f> and its first derivative only appears
in this formulation.

We now prove that the state équation is equivalent to the mixed problem.
As the state équation is equivalent to the équation (5), it is enough to show
the équivalence between the équation (5) and the mixed problem. For that,
we apply Brezzi's theorem [3]. We have then to verify that :

1) the continuous bilinear form c(<f> ; . , .) is elliptic on the space

2) the continuous bilinear form b{<f> ; . ; . ) satisfies the L.B.B, condition
[ 3 ] :

inf sup b{<f> ; /*, vm) => 0 .

IMI*M = i IKIUm = i

PROPOSITION 1 : Let <f> be a function of the space :

Am= {<t> G WUco(I\ such that: </> (0) = <f> (1 ) = 0} .

The properties 1—2 are satisfied. M ore over, let i* be an element of the
space 2m, there exists :

vm= {a,p, 0, e)eVm

such that :

(i) 0 is Pi on [0, 0.5] and on [0.5, 1], e is constant on [0, 1],
(ii) a' = 0<t>' + s + jAl9 P' = - 0 + <f>' s -h M2>

where R is a strictly positive rational fraction.
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A NEW FORMULATION FOR ARCH STRUCTURES 879

Proof : 1) Let um = (a, /3, e, 6) be an element of the subspace
W(<f>) of the space Vm. We have to bound below the form :

;um,um) = f
Jo

c(<f>m f
Jo

By applying to 0 to the Poincaré's inequality, we obtain the existence of a
constant F >0 , that dépends on the function <f>, such that :

P {e2

Jo
c(<f>;um, um)^F {e2 + B2+ B'2} dx, (7)

Jo

From the définition of the space W(<t>) and from Poincaré's inequality, we
deduce the existence of a constant F ', which dépends also on <£, such that :

| |a ||Hi ^F' { || 0 ||£2 + || s||£2} and | |£ ||Hl ssF' {|| 0 ||L2 + 11̂ 11,2} .(8)

Then, from inequality (7), we deduce the ellipticity of the form c{<f> ; . , . ) •
2) Let fjb be an element of the space Xm. We define vm = (a, f3, 0, e) as

follows :

f1 f1 f1

# = $ I /i, 2 ax, e = — I fx^dx -- \ 0<f>f dx ,

Jo Jo Jo

f* f*
Jo Jo

with :

ij,{x) = 4x on [0,0.5] , 4(1 - x) on [0.5 ; 1 ] .

Thus, the function tf/ satisfies :

$ dx = 1 .
Jo

= 0 and
Jo

From these définitions, we immediatly deduce (i)-(ii), and, after a brief
calculation :

vm e Vm = Hl(I) x //J(/) x Hl
ö(I) x L2(l).

Moreover, it follows from the définition of the mapping h and from the
relation (ii), that :

vol. 28, n* 7, 1994



880 V. LODS

and we can easily verify the existence of a strictly positive polynomial
function C, such that :

by applying Poincaré's inequality to the functions a and /3. Finally, we
obtain the inequality (iii), and so the L.B.B, condition is obvious. D

Remark 1 : If we choose :

V =Hl
Q(I)x {H2(I)n / / i( /)} and Vm = Hl

QQ) x Hl
0(I) x H1 (ƒ) x l?(ƒ),

the properties (1) — (2) are still verified [7], •

Finally, we have proved the following theorem.

THEOREM 1 : Let <f> e A Then the state équation (1) is equivalent to the
mixed problem (6), and we have the following relation between the solution
u^ of the state équation and the mixed solution (um, A ) :

al + pj = « i ? ( 0 ) + w2 «(«*)» e = O{<f>\u), 6 = e(#;u), (9)

where

um = (a, /3, 0, s) and u^ = {ux, u2) .

Remark 2 : • For elastic shells, Ph. Destuynder and M. Salaun [5] have
obtained a quite complex mixed formulation, which also dépends only on the
shape of the shell and on its first differential.

• Let us notice that the Lagrange multipliers A = (Al5 A2) can be
calculated from the mixed displacement um. In particular, we have the
relations :

A[=0 and A^ = epS(</>),

which are obtained from the first équation of the mixed problem, by choosing
test functions vm—(a9piO,e) such that 6 = 0 and e = 0. D

We now discretize the state équation.

2. THE FINITE ELEMENT METHOD

2.1. The usual discrete équation

We choose to approximate the displacement by using the finite element
scheme of Bernadou-Ducatel [2]. At first, let us introducé, for each step

M2 AN Modélisation mathématique et Analyse numérique
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A NEW FORMULATION FOR ARCH STRUCTURES 881

h, a regular subdivision (xt)l=Ot >m+l of the closed set 7 = [0, 1 ], and let

us dénote :

Kt — [xn xl + l], for ail i = 0, ..., m .

The principle of this scheme is to approximate the arch by beams. Thus, we
define the finite element space Àh of functions 4>h such that :

• <t>h\Ki belongs to P i(Kt), for ail i = 0, ..., m

• <jj>h is continuous on the closed set 7 = [0, 1 ]

Now, we have to define the finite element test space. The arch being
approximated by beams, linked with rigid hinges, the finite element test
space dépends on the geometry. To be précise, with each function
4>h of the space Ah, we associate the discrete space :

Vh(4>h) — \yh e y*h, vh satisfies compatibility conditions }

where the space Y\ is the space of functions vh - (vhU vh2) such that :

• ^h\\Kt belongs to P 1(Kt), for ail / = 0, ..., m,

• Vh2\Kt belongs to P3(Kt), for ail / = 0, ..., m,

• 5M(0) - vh2(l) = v'h2(0) = v'h2(l) = 0.

The compatibility conditions require the continuity of the displacement
vector and of the rotation of the normal vector, at each node :

and

for ail i = 1, ..., m,

where (th = ï(^h), nh = n(<j>h)) dénotes the local basis of the approximating

arch.
Since :

Vh(<f>h) is not included in V and Âh is not included in W3y °° (/ ) ,

these approximations are non-conforming. So, we have to introducé :

vol 28, n° 7, 1994



882 v. LODS

• a new energy, which is equal to the sum of the énergies of each beam :

« -o J * .
dx

(12)

the new external work, which is equal to :

f1

L(<f>h;vh) = - \ pe{j>'hvhl + vh2)dx. (13)

Finally, the discrete displacement satisfies the elliptic équation (2) :

üheVh(jh) ah($h;üh,vh) = L($h;vh), for all vh e Vh($h) .(14)

To simplify the notations, we here did not mention the dependence of
uh on 4>h.

2.2. The convergence of the finite element scheme

Let us recall the method used in [2]. Let <f> be a function belonging to an

open set 0 of the space A, and let <j>h be its interpolated function on the space

Ah. The finite element scheme being non conforming, how can we prove the

convergence of the discrete displacement üh ? The idea of Bernadou-Ducatel

is to define a function uh of the space V, calculated from the function

uh of the space Vh(4>h). The scheme will be convergent because of the

estimate : \\uh — u^ || -• 0, when h -• 0.

To define the function uh, Bernadou and Ducatel introducé a bijection

Fh from the space Vh(<j>h) into a subspace Vh of the space V. The subspace

Vh is the space of the functions vh = (vhu vh2) such that :

— vh\\K, e Pi(Kt\ for all i = 0, ..., m,
— »*i(0) = t>w(l) = 0,
— vhl is continuous on the set I,

and
— vh2\Kt e ^ ( ^ X for all i - 0, ..., m9

— vh2(0) = vh2(l) = v^2(0) = v>h2{\) = 0,
— vh2 is C2 on the set / .

The bijection F h is given by :
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where the function vk = (vhU vh2) is defined from the pair vh = (vhl, vh2) as

follows :

(Phi ?(<£) + ^ 2 «(<£))(**) = ( ^ I ' A + BM «*)(*,) (15)

0(<t>\vh)(xt)=- I - ^ - ) ( * , ) , (16)\ I
for ail i = 1, ..., m.

From Bernadou-Ducaters results [2], we can prove, under the assump-
tions :

• the function <j> belongs to the space W4' °° (/ ),

• the functions u^ is regular, i.e. :

u* sH2(I)x 7/3(/),

that :
| | * | | , when h -+ 0 ,

where «^ = F\(üh) and 2A is the only solution of the elliptic équation (14).

2.3. The discretized mixed formulation

The aim is again to recover the finite element scheme of Bernadou-
Ducatel, by discretizing the mixed problem. So, we don't dérive hère the
« best » finite element method of the mixed problem.

Naturally, we here still approach the aren by beams. But now, observe that
the approximation of the geometry is conforming (for the mixed formulation),
because the space Ah is included in the space VF1>G0(/).

The discrete test space is chosen to dérive again the scheme of Bernadou-

Ducatel. S o, we define :

Vmh = Vmhïx Vmhl xVmh2x Vmh3

where :

• Vmh\ i s m e space of functions ah such that :

— ahlK{ e P3(Kt% for all i = 0, ..., m

— aA(0) = a f c ( l ) = l
— ah is continuous on the set / .

• Vmhi is m e space of functions 0h such that :

i\ f o r a11 i = 0, •-., m

— 6h is continuous on the set / .

vol. 28, n° 7, 1994



884 v. LODS

• Vmh3 i s the space of functions eh such that :

— eh\Kt ^ P0(Ki), for all i = 0, ..., m,
and :

• Xmh — Xmhl x Xmhl where the space Xmhl is space of functions /t^ such
that :

— V>h\Kt
 G Pi(Ki\ f o r a11 ' = °. —> w.

Let us recall that we choose these discrete test spaces in order to dérive the
finite element scheme of Bernadou-Ducatel, but other choices can be more
interes ting.

Then these approximations are conforming because the spaces Vmh and
Xmh are respectively included in the spaces Vm and Xm. So, the discrete mixed
problem is :

find (umh, *h)eVmhx Xmh such that :

h;vmh) for all vmh G Vmh

= 0 for all fxh e Xmh,

To prove the existence of one and only one solution of this discrete mixed
problem, and the convergence of the discrete mixed solution to the mixed
solution, we apply Brezzi's theorem. From proposition 1 and from the
définition of the mapping Z>, we can easily verify the following lemma.

LEMMA 2. Let 4>h be a function of the space Ah.

1) The space :

Wh($h) = [vmh e Vmh such that :b{$h\ /*,,, vmh) = 0,

forait vheXmh} (18)

is the space of functions vmh = (ahi fi h, 0h, eh) such that :

<*h=0h$h + eh and (3 'h = - 0h + $'h eh . (19)

Consequently, the space Wh(<j>h) is included in the space W(<j>h).

2) The bilinear form c(<f>h;., . ) is uniformly elliptic on the space

3) The bilinear form b(<f>h ; . , . ) satisfies the L.B.B, condition :

inf sup

where R is a strictly positive rational fraction.
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Finally, from Brezzi's theorem and some calculation, we can now prove
the following resuit.

THEOREM 2 : Let <j> be a function of the space Am n W2* °° (/ ) and let

4>hbe its interpolated function on Ah.

• The mixed discrete problem (17) has one and only one solution

• Ifwe suppose that the mixed solution (um, A ) of the system (6) satisfies :

then :

um= (a, 0, 0, O = {H2(I)}3xHl(I\ A E {H1 (f)}2

II«-. — «—*II v + II A - A A | | = O ( h ) .

m The discrete mixed problem (17) is equivalent tofind umh G Wh(4>h) such
that :

, for all vmheWh($h). (20)

Let us notice that A belongs to the space | / / ! ( / ) } 2 , from remark 2.
Now, we can prove the équivalence between the discrete mixed problem

(17) and the finite element scheme of Bernadou-Ducatel. Thus, from
theorem 2, we shall deduce the convergence of the discrete solution
üh of the discrete équation of Bernadou-Ducatel to the solution u^.

2.4. Equivalence between the discrete mixed problem and the finite element
scheme of Bernadou-Ducatel

From theorem 2, the discrete mixed problem is equivalent to équation (20).
S o, we have only to prove the équivalence between this équation and the
discrete équation (14).

PROPOSITION 2 : Let <j>h be an element of the space Ah. We define the
mapping :

Gh:vh= (0A1, vh2) e Vh(<t>h)-^vmh = (ah, pk9 0h, eh) e Vmh

by:

= 5M t(<f>h) + vh2n(4>h), (21)

= l—*h, (22)
S(<t>h)

•h = — l — 5*i - (23)
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886 V. LODS

The mapping Gh is an isomorphism from the space Vh(<i>h) onto tne space

Proof : At the first, let us verify that :

»mh = Gk(ph)eVmh, for all vheVh(4h).

From the définition of the space Vh(4>h\
 t n e functions vhl and vh2 respec-

tively are Px and P 3 on each closed set Kr So, from the définition of
Gh, the functions ah, (3 h are P3, while 6h and eh respectively are
P2 and Po , on each closed set Kt. The boundary conditions being satisfied,
we have only to verify that the functions ah9 fih and 0h are continuous on the
set / . Or, conditions (lO)-(ll), which are satisfied for all vh of the space

Vhi<f>h\ ensure the continuity of the displacement vector and of the rotation
of the normal vector. Then we deduce, from relations (21)-(22), the
continuity of the three functions ah> f$h and 0h at each node, and then on
I.

So, the mapping Gh is well defined. It is obvious that Gh is an injection.

Thus, to prove that Gh is an isomorphism from the space Vh(<j>h) onto the

space Wh(4>h), we have just to verify the equality :

At first, we prove that the space Gh(Vh(<f>h)) is included in the space

Wh(<j>h). Let vh = (vhU vh2) be an element of the space Vh{<j>h\ and let us

dénote :

From lemma 2, to prove that vmh belongs to the space Wh(<j>h), we have only
to verify the equality :

{ } (24)

For that, we differentiate equality (21) and we thus obtain, the function
4>h being P x on each closed set Kx :

<*h~i + PU = K\ H<i>h) + Ki «(^fc) •

We deduce equality (24) by using relations (22)-(23). We have thus proved
the inclusion :
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We now verify the second inclusion :

Let vmh = (ah9 /3h, 0h, eh) be an element of the space Wh(4>h). We define
then vh = (vhU vh2) by the equality :

«* ? + PhJ = hi ' (0*) + 5M « ( 0 A ) * (25)

We have then to prove that :

eh = L - %, (26)
5(0*)

** = " ^ 7 " «il * (27)
5(0A)

to have the equality :

= V
mh

At first, formulas (26)-(27) are immediately obtained by differentiating the
equality :

and by using lemma 2, which gives the relation :

a'kï + PÜ =

Let us verify that vh belongs to the space Vh(<f>h). From the equalities :

£h = —v'h\ a n d « J + Phi = «A

we deduce that the function t?A1 is P x on each set ^ and that the function
vh2 is P 3 on each set K}. On the other hand the functions ah9 ph and
0h being continuous on the set /, we deduce, from equalities (25)-(26), the
continuity of the displacement vector and of the rotation of the normal vector
at each node. Consequently, the function vh belongs to the space
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