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FINITE ELEMENT APPROXIMATIONS OF LANDAU-GINZBURG’S EQUATION
MODEL FOR STRUCTURAL PHASE TRANSITIONS IN SHAPE MEMORY
ALLOYS (*)

by K.-H. HOFFMANN (!) and JUN ZoU (?)

Communicated by G. STRANG

Abstract. — This paper deals with finite element approximations of the Landau-Ginzburg
model for structural phase transitions in shape memory alloys. The non-linear evolutionary
system of partial differential equations is discretized in time by finite differences and in space by
very simple finite elements, that is, the linear element for the absolute temperature and the
Hermite cubic element for the displacement. Thus both the displacement and the strain are
obtained directly. Error estimates for the fully discrete scheme are derived.

Résumé. — Dans cet article on présente des approximations par éléments finis d'un modéle
de Ginzburg-Landau pour les transitions de phases dans des alliages a mémoire de forme. Le
systéme non linéaire est discritisé en temps par une méthode de différences finies et en espace
par des éléments finis trés simples, linéaires pour la température, cubiques de type Hermite pour
le déplacement. On obtient des estimations d’erreur pour le schéma discrétisé.

1. INTRODUCTION

Recently much attention has been paid to mathematical models for ther-
momechanical phase transitions in shape memory alloys. For the survey of
physical backgrounds and theoretical investigations on these models, we refer
to two detailed introductory papers [2, 7]. There have been in the literature a
great deal of theoretical results on the well-posedness and the optimal controls
of mathematical models for the description of the phenomenology of shape
memory alloys, but only a few references which deal with their numerical
simulations. [1, 12] have made many numerical experiments, but no theoreti-
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630 K.-H. HOFFMANN, JUN ZOU

cal analyses to their numerical schemes were given there. In [6] a discrete
approximation to the Landau-Ginzburg model was constructed by the Galerkin
method, and convergence was proved. The finite dimensional subspace for the
approximation to the displacement was constructed in [6] by using the
eigenvalue functions of the 4th order ordinary differential equation, and the
functions of the resulting discrete subspace were then infinitely smooth.
Therefore the techniques for getting a priori estimates in continuous cases
could be repeated for their discrete system, and finally the compactness
arguments led to the convergence of the discrete problem. Recently, the
authors were notified by Prof. Sprekels that the error estimate was obtained in
a recent work [5] for the discrete scheme proposed in [6].

The more effective and practical discretizations for these problems are
obviously finite element methods. In our present paper, we approach the
Landau-Ginzburg model by a very simple finite element, thus very practical
for the applications. With our simple element the discrete subspace possesses
only a very low smoothness. Not so many a priori estimates as for the original
continuous problems, or as in [5, 6], could be obtained in the present case.
Nevertheless, these a priori estimates are enough for us to attain error
estimates for the fully discrete finite element approximation. To our knowledge
it is the first time to obtain error estimates for the finite element approxima-
tions to such highly nonlinear shape memory alloy models.

The paper is arranged as follows. In Section 2 the Landau-Ginzburg
mathematical model is introduced and their finite element problem is con-
structed in Section 3. Section 4 is devoted to a priori estimates, the uniqueness
and existence of solutions of the discrete system. In Section 5 we derive error
estimates for the finite element approximation.

2. LANDAU-GINZBURG MODEL
In this paper we consider the following Landau-Ginzburg model arising

from modelling the dynamics of solid-state phase transitions in shape memory
alloys :

pu, —(a,(0-0)u,— a, ui + oy uf ) tyu, . =f(x1),in Of, 2.1a)
o0, —x0, ~a Ou u,=g(xt)inQ; (2.1b)
with the boundary conditions
u(0,t)=u,(0,t)=u,(1,t)=u(l,t)=0, (2.2a)
0(0,t)=01,¢)=0 (2.2b)
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APPROXIMATIONS OF LANDAU-GINZBURGS 631

and the initial conditions
u(x,0)=uy(x), u(x,0)=u(x), 2.3a)
0(x,0) =06y(x) (2.3b)

where Q,=02x(0,t), 0st<T, 2=(0,1). Throughout the paper,
we let

p(0,e)=w, (0,66 )=a(0-0,)e— a2£3+ a, &

with & =u_ denoting the shear strain. The unknown functions u and 0 in
(2.1a, b) represent the displacement and the absolute temperature, and y
denotes Helmholtz free energy which is assumed in the Landau-Ginzburg form

y/=V/(H,s,ax)=1//0(0)+E°(8,a)+325£f 2.4)

with E° and v, expressed by (the solution @ is a positive function, as we see
later)

E%(0,6) = y,(0) wy(8) + ws(8) s wo(0) =co(0-0log 0/0,),  (2.50)
_1 _ 2 _ 1 2 1 4 1 6
1//,(0)—504‘0,1//2(&)—6,w3(£)——§a10le —FMmE e (2.5b)

which are capable of reproducing the developments observed in real materials
under thermomechanical activations. Equations (2.1a, b) represent the balance
laws of linear momentum and energy, respectively. The material is assumed as
a wire of unit length, simply supported at both ends, and thermally isolated at
both ends (only for simplicity. For more general nonhomogeneous conditions,
e.g., as in [6], our results hold with little modification). In our context, the
quantities appearing in (2.1a, b) have the physical meanings : p-mass density,
Sf-volumetric load, c,-specific heat (per volume), x-heat conductivity, g-rate of
distributed energy sources. The coefficients x, «,, a,, a,, 0, 0, and y are
assumed to be positive constants. For the physical background and a derivation
of equations (2.1a, b), we refer to [8] and the references therein.

Under the appropriate regularity assumptions on the given functions f, g,
uy, u, and 6, e.g., the following ones (2.8a, b, c, d), the system (2.1)-(2.3) has
a unique classical solution (u, 8) with 0 being always positive, see [8]. For
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632 K.-H. HOFFMANN, JUN ZOU

our later finite element error estimates, we make the following assumptions on
the regularities of the solution (u, 0), which are a little stronger than the
regularity results stated in Theorem 2.1 in {8] and those derived from their
proofs :

ue H'(O, T; H(2)) n H* (0, T; HX(2)) n H¥ 0, T; L*(Q)), (2.7a)
ue L7(0,T; H(R2)), u,e L™(0,T;H(R)), (2.7b)

e L™(0, T; H(2))nH'(0,T; H(Q)) (2.7¢)

and on the given data

fige H(O,T; H'(R2)),f, g, € L} (0, T;L*(Q)), (2.8a)
u, € Hy(Q)={ue H(2);u(0)=u(0)=0=u(1)=u"(1)}, (2.8b)
uy e H(2) nHY(Q), (2.8¢)

O, H(R2), 0(x)>00nQ and g(x,1) =0o0nQ,. (2.8d)

Furthermore, we can assume, by Sobolev extension theory [9], that the
solution u defined on Q2 x [0,7T] can be extended for some constant
7, < T such that u is well-defined also on Q x [~17,, T] and

U, € L(—1,T; LY(2)), u and u, € L*(- 70, T3 L3(2)). (29

txx

Since these extensions can be constructed such that they depend only on the
initial conditions (2.3a), we can even get extensions with higher regularity on
(— 74 T] provided the initial conditions are smoother.

Throughout the paper we utilise | . Im_p and || . ||, , to denote the seminorm
and the norm of the usual Sobolev space W™?(Q). But we write
L elp=1-lpp lelu=1l.1l,, and H™(Q)=W"P(Q), if p=2;
il .1l =1.1llyif m=0. Constants C are independent of mesh size i and
time step t.

3. A FULLY DISCRETE APPROACH TO THE SYSTEM (2.1)-(2.3)

In this section we propose a fully discrete finite element scheme to Landau-
Ginzburg model (2.1)-(2.3). To avoid the non-essential technicalities, we take
0, = 0, and all constants ¢, k, @;, &,, ¢, y in (2.1)-(2.5) are normalized to
unity, i.e. our equations can be rewritten as

u, — (Ou, — ui + uf)x+ U =f(x,1),in Qy,
0,-0,—0u,u,=g(x,t),in Q.
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APPROXIMATIONS OF LANDAU-GINZBURGS 633

We shall use the difference scheme to discretize the system in time. Let
t=T/M be time step size with M a positive integer. For any
n=1,2,... M, we denote t"=nt and [" = (¢"~', 1"]. For a given sequence

{u"_, < L*( ), we define

For a continuous mapping u: [0, T] — LX), we define u"=u( ., nt),
OsnsM

In space we utilize the linear finite element approximation to the absolute
temperature 6, and the Hermite finite element to the displacement u. Suppose

for h — 0 we have been given a family of quasiuniform partitions = &, of
Q=[0,1}:

?Th:0=xg<x'1'<...<x:,= 1.
Let A =(x" xh] h= max h, with h =x"—x" B uasiuniform
h i-v il (max. i=X% T X%_- BY 4
we mean that there is a constant ¢ such that h/h, < g, for any
1<is<N.

Define the finite element spaces
0,={0e c(Q); 0| ;4 is linear, for all A;, e J,},

v, = {ve cl(Q); v| 4 is a polynomial of degree < 4, for all A; € gh}
Vi=V,NHy(2).

Here we may choose as the degrees of freedom the nodal value, the first-order
derivative at each node and the midpoint value. In the subsequent sections, we
always use u, and 0, to denote the standard interpolations of any function
ue C(Q)and 0e C(2) oru:[0,T] - C'(RQ) and 0: [0,T] —» C(2)
related to subspaces Vfl and O,, respectively, see [10, 11].

For simplicity, we let

E°(0,¢,) - E%(0, &)

£ — &,

P(0,¢),¢,) = . 3.1

vol. 29, n° 6, 1995



634 K.-H. HOFFMANN, JUN ZOU

It is easy to check that

p(0.8) =y,(0,8¢)=EX0,¢), (3.2a)
P(0,2,,6,) =5 0(e, +£,) + (e, ;) (3.2b)

with
Oty 0) == 5 (1 +22) (5, + &) + 2 (6 +8) (e +e,5,+62) . (33)

Now we give a fully discrete finite element scheme for the system (2.1)-
(2.3):
(FEP): For n=1,2,..,M, find (4, 0})e V)x O, such that

fafqudx+f AENOT N &) v dx+
Q Q
+j (u;:)nvxxdx=ff'vdx, Yoe VY, (3.4a)
Q Q2
farO',anx+J‘ (0,), m, dx—
Q Q

—f 0;’,'1 82_1/2 atz::ndx=f g "ndx, Vye ©,, (3.4b)
e I

up = (ug)y > Uy —u, ' =t(u)y, =00, (3.4¢c)
with
=), J'(x) =%f fx 1)y de, §"(x) =%J g(x.)de, (35
r r
and 9,E°(0,~', €}) denoting the finite difference

CEXO L) —EX0 e

0 -1
9.E'(0,” ¢,

= P(HZ_I, &), ez'l) .
(3.6)

n—1

n
&, — &,

4. A PRIORI ESTIMATES, EXISTENCE AND UNIQUENESS OF THE SOLUTIONS TO THE
DISCRETE SYSTEM (3.4ag, b, ¢)

Except for the uniqueness of solutions which was not given in [6], our way
of getting a priori estimates and the existence of solutions to (3.4a, b, ¢) in this
section is almost the same as the one used in [6].
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APPROXIMATIONS OF LANDAU-GINZBURGS 635

THEOREM 4.1 : Under the assumptions (2.8a, b, c, d), there exist positive
constants C, and C, independent of h and t such that if T and h fulfill the
condition

Kle<t<C,, 4.1

then for each n, 1 < n < M, the discrete problem (FEP) has a unique
solution (uy, 0;) which satisfies the a priori estimates

0,(x)=0, 0<sx<1, 0sns<M, (4.2a)
cmax  (la ul®+ [l + Nl ) < G, (4.2b)
M M
1 2 112 2
o Iy 10,1 +’§1tl0;1|1+"217”3;”0,mscz- (4.2¢)

As in [6] we prove Theorem 4.1 by induction. By the definition of 0°,
0% = 0 on Q. Suppose that solutions {(u}, &})}" _, of the problem (FEP) have
been constructed for some ke {0, 1,.., M}, and 0;(x)=0 on £,
0 < n < k. We prove the required results by the following three steps, from
which Theorem 4.1 follows immediately :

a) There exists a constant C, > 0, independent of 4, T and k such that the
estimates (4 2a, b, c) hold w1th M replaced by & ;

b) For h2i6<t, (3.4a, b, ¢) has a unique solution (u‘~+1 ()"H) for
n=k+1;

c) There exists a constant C, > 0, independent of k, 7, and & such that
0;"' 20 on @, provided that 7 < C,.

To prove a), we first notice that by the standard interpolation theory of finite
element method we have

Houpll = 1 (el < €, Jugly = [Cugdyl, < C, (4.3)

then with (4.3), part a) can be proved in the same way as in proving
Lemma 3.2 and Lemma 3.3 in [6].

Now we prove b). Rewrite (3.4a) with n=k+ 1 as

<F(uk+1) v>=fnf"v dx, VYve V2 4.4)

vol. 29, n° 6, 1995



636 K.-H. HOFFMANN, JUN ZOU

where F( ui“) Vﬁ = dual space of V?l The dual pairing of V’;‘ and
(Vo) s{.,.) Th Vg-—)(V(;)* is defined by

2uh+u2 !
(F(u),v)= —2v+uxxvxx+
2

T
0 _ 50 T
Gy 0) E_(g;’ 8")::,() dx (4.5)

k
£—¢,

with & = u,. We check by using HZ = 0 and the proved result a) and Young’s
inequality that

g 1 1 ; 1 1,k
(F(u),u=u) =~ e = 117 =5 102 1* +5 |uls =5 |us],

+%f90:<ui— (uﬁ)i)dx——}fﬂ(ui— (1)} dx

+2 = () ds

1 2 1 co kN2 1 6
> flu—whl)? + - |u|2—§J.QO:(uh)xdx+-—-12fguxdx—C
>-———- u—u . 4.6

Sl W2 - (4.6)

Therefore

(F(u) — F(uy), u—ul)

e = 14yl

— 4o, as ]lu—uﬁll -+, Yue Vg,

. . : . k : . 0
i.e. F is coercive with respect to u,. Moreover, F is continuous on V,. Thus

by standard theory, see [4], we know that (4.4) has a solution uﬁ“ And more,

from (4.4) and (4.6) we have

IIE)ruz+1 2+|uk+1 2 fﬂ(u“» dx+J. (u“l) dx<C. @&7)
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To prove uniqueness, it suffices to show the uniqueness of the solution
uf;“ to (3.4a), since obviously the solution @;*' of equation (3.4b) exists

uniquely. Let u,"' and u*' be the solutions of (3.4a) and
u=ui"" —uk*!. From (3.4a) it follows that u e VY satisfies

r_zf uvdx+J‘ uxxvxxdx=—%J 0:uxvxdx+
o) Q Q

+'[ (& &)y -0 &yyv de, Yoe V) (48
2

with Q(q,,q,) defined by (3.3). Taking v=u in (4.8) and noticing
0: = 0, we obtain that

T ull® + |u|i < fQ(Q(Eﬁ+', &) -0(er &) u dx. (4.9)

But

1
|Q<ei“,e:>—Q(s’;“,e:>|=l‘fqu.wi”—lupeZ)uxdi :

and from (4.2b, ¢) and (4.7) one gets

les*' —au )i <C, ldla.<cC,
Thus it follows from (4.9) and above that

-2 2 2 2
T ful®+ |ul; = Clludlg, .-

By Nirenberg’s inequality [8] we get

3
T2l + uf2 < CClug I3 luld+ Qull > < CClul® + [ulul?)

< Tluly+ Clul®+ Clul,llul < % [uli+ Cllul?,

so if 7 is small enough, we have u =0, i.e., (3.4a) has a unique solution
k+1
u, .

vol. 29, n® 6, 1995



638 K.-H. HOFFMANN, JUN ZOU

Now the same as in [6], we can show that there is a positive constant
C, independent of h, 7 and k such that if h’/6 <7 < C,, then

— 1
0:*'(x) = 0 on Q. That completes the proof of Theorem 4.1.

5. ERROR ESTIMATES FOR THE FULLY DISCRETE SCHEME (3.4q, b, ¢)

In this section we derive error estimates for the fully discrete finite element
approximation (3.4a, b, ¢) to (2.1)-(2.3). Our main results are stated in the
following theorem :

THEOREM 5.1 : Suppose that (u,, 8,) is the solution of (3.4a, b, c) and
(u, 0) the solution of (2.1)-(2.3). Then there is a constant independent of h
and T such that

2 2
cmax (10" = O11% + [ —wy| + ) = 8, 4,11y +

M
+ > T|0" - 0|7 < C(h*+ 7).
n=1
Let w=0,-0 and Py = U, — up, l1<sns<M. Here
0; =(0C.,nt)); and uf = (u( ., nt))y. Before proving Theorem 5.1 we
first introduce the a priori bound of the solution (u, ) of (2.1):
osup , Cllulls+ lully+ lu ll, + 101+ 161) <C. (5.1

This constant depends only on the given data (2.8a, b, ¢, d), see [8]. And also
we cite some standard finite element interpolation results, see [10, 11] :

lw=wqyll < Ch?|w|,, Vwe HY(Q), (5.2a)
[w—wy|, +h|w—wy|, < CK" " '|w|,,,Vwe H"(2),m=3,4,5, (5.2b)
|w—=w +h|w~w], < Ch’|w|,, Ywe H(Q). (5.2¢)

Furthermore, we give here a few a priori bounds and inequalities needed later.
For n=1,2, ..., M, there exists a constant C such that

160, < C, lluyll,<C, 3,00 <cC, (5.3a)
!

10w < CUIE +1E12) . NE 6. < I+ &, (5.3b)

10:1lo,. < CCL+ |61, 10, < 16,1 +|6], - (5.3¢)
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(5.3a, b, ¢) follow from (5.2aq, b, ¢), (4.2b, ¢), Nirenberg’s inequality [8] and
the following inequality :

‘ma{7§|w(x)| $f |w(x)[dx+f lw(x)|dx, Vwe HY(Q).
x€ Q Q

To start the proof of Theorem 5.1, we first multiply (2.1a) by function

a.p, € V?l, integrate it then over £ X I" by parts, and by means of conditions
(2.2a), (3.5) and the definition of p(0, ¢), we derive that

f(aru:'—afu")udx+fafu"vdx+lf Ip(o,ux)vxdxdt
e @ Tima

+lJ. j uuvndxdt=fj'"vdx
Tmla

Q2

with v =p} - pr~!

(3.6), we obtain

above. Subtracting this equation from (3.4a) and using

f 63vadx+f (p:)xxvxxdx=f (afu"—afu"n)udx+f (E)ru:‘—afu")vdx
2 I o 2

+ [lf f unuxxdxdz—J (u'r‘l)xxvxxdx]
T "o Q

H
T)

f p(0,u,) v dxdt— L)P(OZ—]’ s 6',;"‘) v, dx:|

Q

4

=: > (I),. (5.9)

i=1

Note that in (5.4) u '=u(.,-7), ug' =(u(.,—7))y if n=1, so
we have utilized the extension of u onto [— 7, 0].

By the fact that ab = a2 —b* 12, for any real a and b, we get from (5.4)

4
1 n 1 n— 1 n 1 n—
s> =5 lan, 1P +5 a5 -5 187 E< S (). (59
i=1

vol. 29, n® 6, 1995



640 K.-H. HOFFMANN, JUN ZOU

Similarly, multiplying (2.156) by function 7, € @,, integrating it then over
Q x I" and subtracting the resultant equation from (3.4b) we have

[oginacs [ cennac=[ o000 nas
2 2 2

+[lf J. Hxnxdx—f (()}’)xnxdx]
TJmlo I?

3
1
+ [J 0:_1 sz_fara‘:ndx—%j f Huxuxtndxdt] =: > (D),
2 " i=1
(5.6)

with # = &, above. Again by the fact that ab = a* 12 - b* 12, for any real
a and b, we get

3
SIGIP =187 1P +l&)t < 3 an,. (5.7)

i=1

Thus, for error estimates, it suffices to estimate the terms (), and (I7),in (5.5)
and (5.7) which will be done in a number of following lemmas.

LEMMA 5.2 : We have

IO < 2 etap? +Chf Tl 5.8)
[(1),] = %rll 8,ﬂ2||2+%12 J‘"'gfgu,,,dx dt, (5.9)
1(1)s] < laplll®+ Crh2+%r2f"fguixwdxdt. (5.10)

Proof : Recall the previous notation v = p} — p? ', then by (5.2a) and the
standard arguments it follows that

[, < ol loiu" = ul)

|| ar/)h “ f I u, - (ulr)H I 2 dt
"

NI—‘

<Lojarizeent | ju2a
S57 P r"_zlunlz t
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and

o
[(1),] = r||a,p; Il at(u:' _ aru")|| <tVt o0, <J J uf" dx dt>1/2
-2

t

"
S%rl|81p21|2+%1:2j J. >, dx dt .
e

r

To evaluate (/),, we rewrite

(N, = J;J;)( 0.00), (u—u") dxdt+ J\l’jg( d. ) (u" —ufy),  dxdt

=:R}+R5.

By Green’s formula and boundary conditions (2.2a),

IR = U [ ) ettt < 10,50 [ it

n

< 1clopl®+57 J.IHJ'Quﬁm, dx dt,
while by (5.2a) and the inverse inequality of FE theory we get
R3] < elagflalu’ = uyl, < Colh™ Mo}y (R )
< %T” a.p, I1? + Crhzlu"]§ ,

so (5.10) follows from above.
LEMMA 5.3 : We have
I el _jpm-12_ 1 n=1)2 C( ny2 2
[( )4| \4T|§h I1+2‘C”§h ” + ‘C”arp;,” +th

AR VAR R CUAN DY

+

N[

TZJ f (0,2+9_f,)dxdt+C12J. J. w’, dxdr . (5.11)
e "

2

vol. 29, n° 6, 1995
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Proof : We rewrite (I), as
(D), = ” (a,pszS(e,s)dx—flnfn(a,pbx 0.E (0, ) dx
”Q (8.0),(EX0, &) —EXO,™ ", &) dxdt
+f f (0. /(B e) — EQ(0,7" ")) dudt
o[ [ e ey -om @ ) ara
-,

f (3.00) (3EO, " &)y —a,EN0, ", &))) dx dt

4
=: > R,. (5.12)
i=1

We remark that by GEEO( .,. ) we denote the difference quotient with respect
to the second variable, like (3.6), e.g.,

EO( 0;:—1, g") _ EO( 0;:—1’ gn—l)

n n—1
{.“ —

&

atEO(OZ_l, 8") —

From (2.5a) we know Eg( 0,¢e)— ES( 0~ e)=e(0-0""), thus by
Green’s formula we have

|Ry| = U f (8.00) (EX0,e) —EXO0. " &), dxdt
1"V Q2
< ff 100 (0= 0471) +u (0= 6,7"),)| dxdt
e

< lla.p,ll  max Ilullz,.,,j(IIO—(f;“II+(0—f/,;“|1)dr. (5.13)
”

fo.7]
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Combining the triangle inequality with (5.2¢) gives

J‘ IIH—OZ_III dt < TW(f f 0,2dxdt>%+
” 2

Analogously, we

+ Crh2|9"_]|2+1||§2—1

get

1
Jjo-ata s ’W<f,,-fgoidxdf>i+ Cot 0", + 21857,

Therefore from (5.13)-(5.15) and Young’s inequality, we derive

l n— 1 n - n
IRy < 1gel& T +5Tl& I+ Cellopy)®

h

+ Cth* + % 7 J."L(O,z +02) dxdr.

To treat Ri, by (2.5a) and Taylor’s formula one can express

1
ENOT, &) —EN0 ) =fES€(0,;“,en) (¢" —¢) da
0

with En =¢+ (" —¢), then by Green’s formula we obtain

R:=
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1
=(e"-e)f(0,;"—3sﬁ+553 ) da
0

]
—J. j atp;;l:(a"—s)xj‘ (0;:_’ —3si+563)da
e 0

1
+<e"—a>f((f,i"—383+5£2>xda] dxdt.
0

643

(5.14)

(5.15)

(5.16)

5.17)

(5.18)
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Thus from (4.10b) and the a priori estimates in Theorem 4.1 it follows that
R < [ [ ot ot -, e -
+ I(O"h—l)x(u"-—u)xi +C|(u" —u),|)dxd:
< a2l fr; 10, Nl = |, + Clu = ],

+ |”_”n|1,~|0;_l|1+C|“_“n|1)dt

< HanZ“f lu—u"|,(C+2|0:7",) dt. (5.19)
”
By using |0;:_‘|1 < |fz_‘|1 + C and Young’s inequality, one deduces
2 n—1 2 1
[Ri < CeVa llaphll (1+ 18,77, )(f f umdxa’t>2
e
ié |& 12 + o J.I”J‘Quix, dxdt+|a ). (5.20)

Similar to (5.17), to evaluate the term Ri in (5.12), we first use Taylor’s
expansion to get (with (g =¢&"""+a(e"—¢&""))

Eg(al;l—l’gn) _ aeEO(HZ_I, 8") -

i
= (a"—s"_l).[ (1-a) (H"h'l -3 ei+5&i)da,
0
the same way as in the derivation of (5.18)-(5.20) shows

Rl <sLaa P+c| | & dede+lap)?. (5.21)
4 16 1 xxt “'h
e
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Now we come to the key estimate R: for (7),. Again from the definition (2.5a)
of E%(0, ¢) we can write

aeEO(g;:—l’gn)_asEO(H;;—l,EZ)_% (8 +£ -1 n—l)

— &, — &,

+(Q(8n,£n_])—Q(8;:,8n 1 ) (Q(gh, n—l)_ (eh’ n-l))
=ir+r,tr (5.22)

with Q( ., . ) defined by (3.35). Substituting (5.22) into Ri and using Green’s
formula, we obtain

R::—z’f (8.0,) (ry+ry+ry), dx. (5.23)
Q
Note that

(rl)x=%(0;:hl)(8"—8)+ (ou 1)(6'" 1 82_1)

30 =)+ 2O =, (5.24)

Using (5.2b), (5.3a) and the fact |u"—u,|, . < |u"—u,|, one comes to

ff 3P0, =) dx| < tlapill |07, |u" — ul
Q

< ol 10,7 (" = wyly + 1A4])

< Crhlla il 10,7 '] + <lla gl 1€ 1m0,
+ 2l 16,7 ] 1Pl

< tla i+ cah®|u 3003 + C| )2

+16 TP, |519.0501° + ¢ ﬂS“W,

64T|é‘_'|l+r||61ph|| + Ce|phls+ C(z |0 1Py P . (5.25)
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The same as deriving (5.25), we get

n - n-— n-— 1 n— n
TJ 3o (0, (T =g S gzelG T+ Tllagl+
Q
+ Ct|py 5+ C(|0, 2y h® . (5.26)

Furthermore, from (5.3), (4.2¢), (5.2b) and the inverse inequality
Wfflll = Ch—1||02_1|| it follows that

—1 -1
o - 0] < 10 i - o
2

< (I + 16,70 [ = il 19,0,
G L/ S /A IO R VAN KN
< Cehlla,p,l |u'lo+ zlpplalla, 040 (C+ 1871
< & UE T T+ Calla gl + th? + T|pil3) (5.27)

The same derivation as to (5.27) gives

Tf Hz—l(un—l _ uz—l)m atp:dx
2

n-1

< 6_141|5h 2+ CCella >+ h® +2|pp "3). (5.28)

Thus the sum of (5.25)-(5.28) implies

n~—1

1 2
< ﬁfléh T+

rf d.pp(r)), dx
e

n-1

+ C(tllapl* + z|phls+zlo) o+ th® + (2|€ ) RP) . (5.29)

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



APPROXIMATIONS OF LANDAU-GINZBURGS 647

To analyse (r,),, by the definition of Q( ., . ) and Taylor’s formula one gets
(¢, =€ +a(e —¢,))

1 -—
(ry), = |:(£" - &) foQ"'(e”’ a"‘l)da]

X

1
:(3"_82)XJ. qu(&'n,g"—l)da
0

+ (s”—e:)f;waq,(é,,, &) (6,),+ 0, (6,8 )T ) da,
then the a priori estimates for u, and u lead to
I[(ry),ll < C(|“n—”‘2|2+ lu"-uill) s Clu"—u'ﬁ 2
< C(|u" —upl, + |P4]) (5.30)

so (5.2b) and Schwarz’s inequality imply

< Zella+ Coh® + Crlla o) 2. (5.31)

rj a,p,(r,), dx
e

The same arguments show that

<ztd B+’ + Crllagl®. (532)

rj 0,p,(ry), dx
fe)

Therefore it follows from (5.29), (5.31) and (5.32) that

n—1

R3] < g tl& " [T+ CCella > + <l 3 + elpy 1+
+th+ (7|@ ) RY) . (5.33)

Now Lemma 5.3 is a consequence of (5.16), (5.20), (5.21) and (5.33).

In the remainder of the section we turn to the estimation of all three terms
(I1),, (II'), and (II'), in (5.6) and (5.7).
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