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A POSTERIORI ERROR ESTIMATORS
FOR NONCONFORMING FINITE ELEMENT METHODS

b y E . D A R I 0> 3 ) , R . D U R A N (2> 3 ) , C . P A D R A (}) a n d V . V A M P A (2)

Abstract. — We introducé two a posteriori error estimators for piecewise îinear nonconform-
ing finit e element approximation of second order e Hipt ie problems. We prove that these
estimators are equivalent to the energy norm of the error,

Finally, we present several numerical experiments showing the good behavior of the
estimators when they are used as local error indicators for adaptive refinement.

Résumé. -— On introduit deux « estimateurs » d'erreur a posteriori pour une approximation
par une méthode d'éléments finis non conforme d'un problème elliptique du second ordre. On
montre que ces « estimateurs » sont équivalents à la norme d'énergie de V erreur. Finalement,
on présente diverses expériences numériques montrant le bon comportement de ces estimateurs,
lorsqu'on les utilise comme indicateurs locaux d'erreurs pour un raffinement adaptatif.

1. INTRODUCTION

This paper deals with a posteriori error estimators and adaptivity for
nonconforming finite element methods.

There have been several motivations for introducing nonconforming
methods. For example, to avoid the necessity of smooth éléments in fourth
order problems or to treat constrained minimization problems such as the
Stokes équations (see [8] for a review of this kind of methods). Also, they
have been shown to be related with mixed methods (see [1], [9]). We also
refer to [2] for more recent applications in elasticity.

As a first step we consider hère the case of nonconforming piecewise
Iinear approximations of second order elliptic problems [7]. Ho wever,
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similar techniques can be applied in other situations. In partie ular, in a
forthcoming paper we obtain similar results for the Stokes équations.

In the conforming case several approaches have been introduced to define
error estimators for different problems by using the residual équation (see for
example [4], [5], [6], [12]). In order to extend these techniques to
nonconforming approximations, the main difficulty is the treatment of the
consistency terms arising in the error équation in this case. These terms
depend on the exact solution and cannot be neglected. Our technique is based
on the use of a Helmholtz décomposition together with some orthogonality
relations for the error. In this way we are able to extend to the nonconforming
case the ideas developed in [12].

We define two error estimators and prove that they are equivalent to the
energy norm of the error.

The/rest of the paper is organized as follows. In Section 2 we introducé the
model problem and recall the finite element approximation. Section 3 deals
with the error estimators and their équivalence with the error and finaily in
Section 4 we present several numerical results.

2. MODEL PROBLEM AND FINITE ELEMENT APPROXIMATION

Let ƒ] c R2 be a simply connected polygon. We consider the model
problem

- div (a Vu ) = ƒ , in J?
« = * . , on T,

9w _
a-=02, on T2

where /^ and ,r2 are disjoint sets such that Fx =£ 0 and Fx U F2 = 3/2 and
the coefficient a = a(x) is bounded by above and below by positive
constants.

We use Standard notation for Sobolev spaces, norms and seminorms and
for F c 3/2 we set

^ = {ü6 / / I ( /2 ) :ü = 0 o n J T } .

Then, the solution of problem (2.1) satisfies

ÖVM.VÜ = f fv + f g2vf VveHl
P]

Ja J n J r2

(2.2)

Assume that we have a family {7S-} of triangulations of O such that any
two triangles in 75y share at most a vertex or an edge and any T̂  is consistent
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with the boundary data, i.e., a boundary side is contained in either
T, or r 2 .

For any T5,- we introducé the nonconforming finite element space

VJ = {v eL2(f2): v\Te &>u

VTG tü/ and v is continuous at midside points }

(â?x dénotes the space of linear polynomials) and for F c= 3i? let,

yjf = {y e VJ: : v = 0 at midside points contained in T } .
In our analysis we will also use the standard conforming piecewise linear
finite element spaces,

Mj = {v eH](f2): v\Te &>u VT e TS,-}

and

Mj
r = MJ O Hl

r .

Let M2 be the midpoint of a side î. Then the nonconforming finite element
approximation to the solution of problem (3.1) is defined by Uj G VJ and,

£ f aVuj.Vv = \ fv+ f ff2ü,
GTÏ; Jr J/2 Jr2

' e vy (2.3)

and
f/i/f ^ _ (A/r \ \jÇ r

We end this section with some notation that we will need in the définition
and analysis of the error estimators.

Let El be the set of all interior edges and ET the set of edges of
T. For each interior edge f we choose an arbitrary normal direction
n and dénote the two triangles sharing this edge Tin and 70Ut where
n points outwards T-in. For a boundary side 2 we take n as the outward normal.

( nx\ I~ ni\

1 we define the tangent on î by t = I 1 and we set,

and
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Note, that these values are independent of the choice of n.
We define the jump on l for v e V7 by

- V \

Finally for <p e ƒ/' (ƒ2 ) we set,

curl <p =

3. ERROR ESTIMAÏORS

In this section we introducé two error estimators and prove that they are
equivalent to the energy norm of the error.

For the sake of simplicity we assume that,

and

a is piecewise constant,

0j is piecewise linear ,

g2 is piecewise constant,

ƒ is piecewise constant

(3.1a)

(3.1/>)

(3.1c)

(3 Ad)

and dénote with fT the value of ƒ on the element T.
Assumptions (3.1) are not very restrictive, in fact, in the genera! case we

may replace the data by appropriate interpolations and it is not difficult to see
that our theorems can be generalized assuming local regularity of the data
(we refer to [3], [12] for details).

For a side 2 define J? n and J^, by

2

0 ,

— aS

and
dt Jf

901 «
0 ,

if t e E,

if f c r 2

if fcf,

if f e E,

if (cf,

if (cf,.
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A POSTERIORI ERROR ESTIMATORS 389

The following lemma gives an error équation which is one of the key
points in our error analysis.

LEMMA 3.1 : Under the assumptions (3.1) and for v e H]
r and <peH\-^ the

error e = u — Uj satisfies,

JT
Ö = 1 curl <p ) =

= I j>+m • (3-2)

Proof : Integrating by parts in each element we have

r
£ a SI e • (Vv + a~ l curl <p ) =

which, in view of the définitions of J? n and ƒ^ „ gives 3.2. D
The second tooi in the analysis are the orthogonality relations for the error

which are given in the next lemma.

LEMMA 3.2 : The error satisfies

f
£ aVe.Vv = Q, Vi;eM^ (3.3)

Ve .cur\<p =0 , V^P e MJ^ such that ^ = 0 on T 2 . (3.4)
bt -

Proof: Since MJ
Fï c / / ^ n V7

r) we can use (2.2) and (2.3) for i; e MJ
F] and

substracting (2.3) from (2.2) we obtain (3.3).
The orthogonality property (3.4) is known (see for example [2]) and easy

to verify, in fact, intégration by parts yields,

= l f
vol. 30, n° 4, 1996
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is constant, [[«y]]^ is zero atand the right hand side vanishes because —

the midside point of l for every l e Ef and g { — u-f is zero at the midside point
of l for f c f , . D

Let us now define the local error estimator 77 T by,

t e ET

and the global one by,
7 v 1 2

T = X VT-

When doing adaptive refinement in problems involving singularities the
generated meshes are usually highly nonuniform (i.e. the éléments of
TSy may have very different sizes). However, if the refinement is done in a
proper way the family {^ } can be constructed such that the minimum angle
of any T5; is not less than half of the minimum angle of the starting
triangulation (see [10]). Therefore, it is natural to seek error estimators which
are equivalent to the error with constants depending only on the minimum
angle (and not on the éléments size). We will show that the estimator
77 is of this kind. In what follows the letter C dénotes a generic constant
depending only on the minimum angle.

Let Vje be the L2-vector defined by

THEOREM 3.1 : Under the assumptions (3.1), there exist positive constants
C 1 and C 2 depending only on the minimum angle ofGj and on the bounds of
a(x) such that,

C]V^ I I V H ^ C ^ . (3.5)

Proof : Décompose the vector a V;e as follows,

a V}e - aVw + curl tf/ (3.6)

with w e H[
r and if/eH1 such that — = 0 on F2. Note that when

a= 1 this is a Helmholtz décomposition of Vje and, in fact, (3.6) can be
obtained as in that case. Indeed, let w be the solution of

div (a VH') = div (a Vfe), in O,
w = 0 , on r,

dw _
a — = a V e . n , on F2dn
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then, div(a V,-e - a Vw) = 0 and therefore there exists tf/ G H] such that

a Vy-e - a Vw = curl tf/

and in view of the boundary condition on F2 we have —— = curl if/ . n = 0 on
dt

F2t which means that tf/ is constant on each connected component of

Now, let w! and ifj1 be continuous piecewise linear approximations of
w and tf/ respectively such that,

|| w — w11| =s C | r | I/2| w[ j ^ (3.7)

(and analogously for tf/) where f is the union of all the triangles sharing a
vertex with T. Moreover, we assume that the interpolation preserves
boundary conditions, that is,

w1 e Mj
fi .

and
tf/ - if/1 e Hl

Fi .

An interpolation satisfying all these conditions was constructed in [11].
Using the décomposition (3.6) and Lemma 3.2 we have,

f f
a | Vj€ | = I a V7e • (Vw + a~ ' curl tf/ )

= a V;e • [V(w - w1) + ar x curl (tf/ - tf/f)]
Ja

hence, from Lemma 3.1 with v = w - w1 and <p = tf/ - tf/1 v/e obtain

and using Schwartz inequality and (3.7) we get

L
(the last inequality is a conséquence of the orthogonality of a Vw and curl if/
in a weighted L2-norm), and this proves the right inequality of (3.5).

vol. 30, n° 4, 1996
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To prove the other inequality we foilow the ideas developed by Verfürth
[12] for the conforming case (see also [3]). We use the error équation (3.2)
with a particular choice of v e Hl

r and <p e Hlp2 satisfying,

v=fT\T\\ Vre-B,. (3.8)
T

},
i

v=Jt,n\t\
2, Vf (3.9)

<P=Jlt\?\2, V? (3.10)

and

lul, T + 1^1, r^CVT- (3-11)

It is not difficult to see that those v and <p exist. Indeed, <p can be taken as a
continuous piecewise quadratic polynomial vanishing at every vertex of the
triangulation and f as a continuous piecewise polynomial of degree three (in
fact, quadratic augmented with local bubbles). We refer to [12] for the
details.

Now, (3.2) together with (3.8), (3.9), (3.10) and (3.11) yields,

77 2 = Z aVe- {S/v ̂  a"x c\xv\<p)^C\\Vje\\Qr]
re rv JT

which concludes the theorem. •
A simpler equivalent error estimator can be defined by observing that the

term corresponding to the jump of the flux is dominated by that corresponding
to ƒ. Indeed, given an interior Î let v? e V-j

F] be the basis function which is

equal to one at M? and vanish at any other node. Then, from (2.3) we have,

f f
Vw;- . Vi)f + a S/Uj;. Vv? = f Vf

' J Jr,ur2
and integrating by parts we obtain

- f J, V = f
Jp f'" ^ J-r) r } u r2

thus

(the relation (3.12) was observed in [9] in a different context).

(3.12)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



A POSTERIORI ERROR ESTIMATORS 393

Analogously, when f c T2 is a side of T we can see that,

In view of all above, we define the error estimator

and v2 = Y, Vf

and we have,

THEOREM 3.2 : There exist positive constants C3 and C 4 depending only
on the minimum angle and on the bounds of a{x) such that,

Proof : Obviously VT^VT
 a n d the theorem follows from (3.12), (3.13)

and Theorem 3.1. •

4. NUMERICAL RESULTS

In this section we present the results of some numerical computations. We
generate the meshes {TSy} in an adaptive way by using 77 r as an error
indicator at the element T. Starting with a uniform triangulation Tî0,
TSy + [ is obtained from T>y by refining the éléments T e TSy such that

where Tymax = max r)T and y = 0.5 in the first example and y = 0.7 in the

others. The refinement is propagated using the method described in [10]
which guarantees that for every j the minimum angle of T^ is not less than
half the minimum angle of TS0.

As a first example consider the Dirichlet problem,

^u = 0 , in ft (4 1)
u = g , on 9/2

where 12 is the L-shaped domain (—1,1 )2 \ [0, 1 ] x [- 1, 0] (socfig. 1) and
g is the smooth function such that the solution of (4.1) in polar coordinates is,

vol. 30, n° 4, 1996
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1 r

0,1

0,01

• X

100

Figure 1.

logiV
1000

Table 1 shows the results obtained in this exampîe in four steps of the
refinement procedure. We dénote by N the number of nodes and by
$ the ratio

IVI
Table 1

j

0
1
2
3
4

N

44
87

130
200

llVHo

0.18
0.126
0.096
0.0745

V

0.329
0.232
0.193
0.157

e

1.83
1.84
2.01
2.11

The results in the table show in particular that the automatic refinement
procedure allows us to obtain the optimal order of convergence with respect
to the number of nodes for this singular solution, that is, the same order than
in the regular case. Indeed, it is known that when the solution is regular and
the meshes are refined uniformly,

(4.2)

(4.2) also holds in this case as can be seen in Figure 1.
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Figure 2 shows the meshes TS0 to T34, respectively.
In the next examples we consider again the Laplace équation but with

mixed boundary conditions. For k = 4, 6, 8 we solve

Au = 0 , in £2
u = 0 , on F x

u = sin f — j , on F2

du „
— = 0 , on 7\

where

n = {(/% 0 ) : O < r < l , O < 0 * : ^

r , = { ( r , 0 ) : O < r < l , 6 = 0 } ,

&7T
A = ((/% Ö ) : r = 1, 0 < . , 4

and

T3 = | ( r , Ö ) : 0 < r < 1, 6 = —

The solution of this problem is,

The meshes generated by the adaptive procedure are shown in figures 3, 4
and 5 for k = 4, 6 and 8 respectively.

In all these examples the same behavior of the error than in the first one
was observed (Le. : optimal order of convergence was obtained).

5. CONCLUSIONS

We have introduced a technique to construct and analyse a posteriori error
estimators for nonconforming finite element methods.

In the case of piecewise linear approximations of second order elliptic
problems we have defined two error estimators which are equivalent to the
discrete energy norm of the error. In particular, we have seen that the jumps
across the éléments of the tangential derivative of the approximate solution
Uj (which can be written in terms of the jumps of u itself) play an important
role. Instead, the jumps of the flux (which in the conforming case are
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Figure 3.
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Figure 4.
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vol. 30, n° 4, 1996



400 A POSTERIORI ERROR ESTIMATORS

essential) can be neglected since they are dominated by the right hand side of
the équation (Le. the local residual).

Our numerical computations show the good behavior of the estimator
when used as an error indicator for adaptive refinement, one of the most
important applications of a posteriori error estimâtes.

Clearly, the results can be extended to higher order nonconforming
approximations. Also, similar ideas can be applied to other problems. In
particular, in a forthcoming paper we introducé error estimators for
nonconforming approximations of the Stokes problem.
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