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MATHEMATICA!. MODELLING AND NUMERICAL ANALYSIS
MODELISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 32, n° 2, 1998, p 131 à 152)

MEMBRANE LOCKING IN THE FINITE ELEMENT
COMPUTATION OF VERY THIN ELASTIC SHELLS (*)

by D. CHOI 0), F. J. PALMA (2), E. SANCHEZ-PALENCIA (a), M. A. VILARINO (2)

Abstract — The membrane locking phenomenon anses in cases when the middle surface of the shell admits "pure bendings " satisfying
the kinematic boundary conditions It then appears that the discrete approximations by finite éléments is unsuited to descnbe such pure
bendings, which are the limit configuration of solutions as the thickness tends to zero This phenomenon is descnbed in terms of lack of
robustness (i e lack of uniformity of the finite element convergence h N 0 with respect to the thickness of the shell 2e ) We prove that any
finite element scheme consisting of in piecewise polynomial functions necessarüy exhibits locking for certain shells (and probably for almost
any shell admiting pure bendings) Numencal experiments are done for a hyperbolic paraboloid The superionty of scheme s involving high
order polynomials (Ganev-Argyns in particular) is shown It is also seen that reduced intégration have very little influence on membrane
locking

Résumé. —Le phénomène de verrouillage membranaire intervient lorsque la surface moyenne de la coque admet des «flexions pures »
satisfaisant aux conditions aux limites cinématiques Dans ce cas les approximations discrètes par éléments finis sont inappropriées pour
décrire ces flexions pures, qui sont les configurations limites des solutions lorsque V'épaisseur tend vers zéro Le phénomène est décrit en
terme de manque de robustesse (ou manque d'uniformité de la convergence des éléments finis h N 0 par rapport à l'épaisseur de la coque
2 £ ) Nous démontrons que tout schéma éléments finis qui consiste dans des fonctions polynomiales par morceaux, présente nécessairement
le phénomène de verrouillage pour certaines surfaces (et probablement pour presque toutes les surfaces admettant des flexions pures). On
a fait des exemples numériques pour le paraboloide hyperbolique, montrant la supériorité des schémas qui font intervenir des polynômes
de degré élevé (Ganev-Argyris en particulier) On voit aussi que l'intégration réduite a une très petite influence sur le verrouillage
membranaire

1. INTRODUCTION

It is known that the phenomenon of membrane locking in numerical computation of thin shells consists in an
inadequacy of the finite éléments to describe the very peculiar déformations of a shell [15], [10], [6], [9]. Actually,
the natural trend of a thin shell is to perform pure bendings, i.e. inextensional displacements of the middle surface
(which do not modify the intrinsic metrics of the middle surface), but the explicit description of the phenomenon
and the above mentioned inadequacy of the finite element approximation usually lack in the littérature.

The asymptotic study of the behavior of elastic shells as the thickness 2 s tends to zero [15], [16], [17] shows
two very different asymptotic behaviors in the cases when the medium surface with the kinematic boundary
conditions admits or no inextensional displacements. In the former case, the shell is called to be "non-inhibited"
(for "with non-inhibited pure bendings") and in the later it is said to be "inhibited" (for "with inhibited pure
bendings"). It should be noticed that the concept of "inhibited" coincides with that of "geometrieally rigid", but
we adopt the term "inhibited", as "rigidity" is a different concept in mechanics of continua.

It then appears that the membrane locking only occurs in non-inhibited shells. This elementary assertion is
nevertheless useful to introducé a little order in the comments on locking which are usually encountered in the
literature. For instance in [3], p. 238-239 are considered three examples of shells which are taken as benchmarks
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for testing the adequacy of finite element methods but only the third one (semi-sphere with free boundary) is
non-inhibited; the others are not concerned with membrane locking. Moreover, no tests are given for very thin
shells, when membrane locking is an asymptotic phenomenon for small thickness. It should also be mentioned
that arches, which are the two-dimensional counterparts of shells are always non-inhibited, and the corresponding
locking is simpler and better known [6].

It is a remarkable f act that a shell is, by définition, thin, but nevertheless, the équations of classical theory of
shells (see, for instance [13], [4]) contain two terms corresponding to the déformation énergies of membrane strain
and flexion. The corresponding coefficients are in a ratio e" as the membrane rigidity is higher than the flexion
one. Consequently we may study the asymptotic behavior of a thin shell as e \ i 0 ([15], [16], [17] already
mentioned). The classical convergence of the finite element approximation as the mesh diameter h tends to zero
[4] holds true for fixed e, but the constants appearing in the convergence estimâtes depend on e. Babuska and Suri
define the locking [1] as the non-uniformity of the convergence with respect to e. They also call "robust" an
approximation method when the convergence h \ 0 is uniform with respect to a parameter s. Locking is in fact
lack of robustness. This définition, which we adopt in this paper, seems to be quite fitted as an approximation
method in theory of shells, which are naturally thin, should convergence quite well for any value of the small
thickness.

Otherwise one must change the mesh diameter when changing the thickness. We shall see that this is the genera!
situation, and the values of h which are necessary to get a good approximation with small e are impracticable.
The paper [10] by Kamoulakos is quite interesting in this context. After giving a review of the work accomplised
mainly by L.S.D. Morley, he considers a spécifie type of quadrangle finite éléments and shows that the appropriate
h should be of order e or even e2 in certain directions! He also exhibits finite éléments computations of shell
stresses with errors going from 2 % to 46 000 %!

We also notice that the locking phenomenon seems also be present in a variety of approximation methods. See
for instance [9], [6], [11] for the approximation of arches by straight beam éléments and [1] for approximation
of shells by plane facets.

In this paper we adopt a view point very close to that of Chenais and Paunüer [6] but we consider the case
of shells instead of that of arches. Our main resuit (section 4) is that any finite element internai approximation
made of functions which are piecewise polynomials leads to locking for certain surfaces such as the hyperbolic
paraboloid and the straight heücoid. The proof relies on incompatibilities involving explicit expressions of the
équations for these surfaces. We also show in a les s rigorous way (begining of section 4) that generally speaking,
thereis incompatibility between the pure bendings and the finite dimensional space Vh of the finite element
approximation from which the gênerai character of the locking phenomenon follows.

The previous considérations are then extended (section 5) to a widely used kind of non-conforming finite
éléments, the so-called DKT (= Discrete Kirchhoff Triangle) approximation.

Section 6 is devoted to numerical experiments. We chose a non-inhibited shell (a hyperbolic paraboloid with
appropriate boundary conditions) which is not the case in a part of the usual benchmarks. Computations were done
for two finite element schemes: Ganev-Argyris (conformai, using high order polynomials) and Sander (non-
conformal, with lower oder polynomials). For each one, several different intégration schemes were considered.
Numerical results show the superiority of higher order polynomials. Indeed, fairly good computations were
obtained with an Apollo station for e > 10" 3 (Ganev-Argyris) and e > 10" 2 (Sander), where 2 e = thickness.
Otherwise, very little influence of the intégration schemes was observed, contrary to the wide-spread opinion that
reduced intégration diminishes locking effects.

2. SETTING OF THE PROBLEM. ROBUSTNESS AND LOCKING

Let us first state the shell problem in the framework of Koiter theory (see for instance [4]). Let E3 be the
Euclidean space referred to an orthonormed frame (e1; e2, e3) and let Q be a bounded open set of R2 with
boundary F. The middle surface of the shell (denoted by S) is the image in E3 of Q by the map

(2.1) (p : ( / , ƒ ) E Ï2-*<p(y)e E3
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MEMBRANE LOCKING IN THE FINITE ELEMENT COMPUTATION 133

At each point of 5 we consider the two tangent vectors

(2.2) aa = <p a = d<çfdyŒ ^ öaq> ( a = 1, 2 )

(greek indices run from 1 to 2, and latin ones from 1 to 3. Note also the different notations used for partial
differentiation). The unit normal vector to S is

(2.3) a3 = a 1 xa 2 / | a 1 xa 2 |

The map <p, and then S are supposed to be smooth; we then consider, in a neighbourhood of S the "normal
curvilinear coordinates" y1, y2, y3 where y3 is the distance to S along the normal. For the sake of simplicity we
only consider the case of constant thickness 2 s. The shell is then the set

(2.4) C={MeE3, M = <?(y\y2) +y3 a3, ( y V ) e Û , |y3| < e}

Let u(y , y2) be the displacement vector of S when the shell is submited to forces e3 f by unit surface. We only
consider linearized theory for small u. The Koiter theory is then described in terms of the linear term of the
membrane strain tensor

(2-5) >W(u) = («

and of the linear terms of the change of curvature tensor

(2-6)

In the previous expressions, aa^(resp. an) and b /resp. b «) dénote the coefficients of the first and second
fundamental forms of S before (resp. after) déformation, Le.

where, a dénotes differentiation with respect to y". Correspondingly, the symbol | a will be used for covariant
differentiation.

The contravariant basis a" is defined by

(2.9) a B V = ai

where ö dénotes the Kronecker symbol. The contra variant components of the me trie tensor are

(2.10) fl^ = a a . a^ .

They are used, as well as aap to pass from covariant to contravariant components of vectors and tensors in the
usual way. The tensors y and p are then:

(2.H) y « / u ) = \ <X|/? + w/?|J - *v u3

vol. 32, n° 2, 1998
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where

(2.13)
J À J X J-lX J V J-rV jX
bP\a = bp, a + * av bp ~ l $a bv

u -u -rx u
U3\a.p~ M 3, dp £ aft U2>, X

and F are the Christoffel symbols of S:

(2.14) /X = />a<\a^ = a<\a^.

We then define the bilinear forms of membrane and flexion energy:

(2.15) ao(u, v) = f af" y (u) y„/v) dS

af"(2.16) ax( u, v ) = j s af" / y ( u ) pafi( v ) dS

where the coefficients of a0 and al are elasticity coefficients satisfying the classical properties of symmetry and
positivity

(2.17) a^"a = a"aap = a""™1

(2-18) a^"" ̂  ^ , ^ c | | ^ | 2 V ^ symmetrie .

Moreover, the shell is supposed to be clamped by a part Fo of the boundary, simply supported by another one
Fx and free by the remainder part. The kinematic boundary conditions to be prescribed are

fu = O, du3/dv onf0

( u = 0 onT,

where v dénotes the normal to the boundary. Let V be the space of the kinematically admissible displacements,
defined by

(2.20) V={(vvv2,v3) e Hl x Hl x H2 ; v satisfy (2.19)}

The boundary conditions are supposed such that

(2.21) [ a o (v ,v )+^(v ,v ) ] 1 / 2

is a norm on V equivalent to the classical one. This is the case if Q is connected and Fo is not empty [4], [5].
The shell problem is then:

Find ue e V such that
(2.22)

Vv e
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where f G V", e e (0, e0) and the duality product is given by

(2.23) (f,v)yv= fvtdS.
Js

Clearly, by virtue of the hypothesis that (2.21) is a norm equivalent to that of V, the shell problem (2.22) has a
unique solution for each fixed value of £ G (0, £0), in the framework of the Lax-Milgram theorem.

Our aim is to study the asymptotic behavior of u£ as s tends to zero and the corresponding Galerkin
approximations.

Let Vh (with h \ 0) be a family of finite-dimensional subspaces of V such that Vh approaches V, i.e. such that

(2.24) Vv G V, üm înf̂  || v - v j = 0

or, in other words:

(Vv G V and h \ 0

there exists \h G Vh such that

v̂  G v strongly in V( h \ 0 ) .

We then consider the approximate problem associated with (2.22):

{Find u^ G Vh such that
1

-2Û0(uh, V) + fl^U^, V) = (f, V) v v Vv G Vh.

Moreover we shall admit that

( 2 " 2 7 ) | uh -» u£ strongly inV(h \ 0, fixed e ) .

where u* and uÊ are respectively the solution of (2.26) and (2.22). We note that (2.27) holds true for a certain
number of finite element approximations of the shell problem (see for instance [4], section II. 1).

DÉFINITION 2.1: We say that Vh implies a robust approximation (2.26) of the problem (2.22) if the convergence
(2.27) is uniform with respect to e, i.e. if f or given ö there exists y such that

(2.28) \\uh~ue\\v<ôforhe (0 , y) and £ G ( 0 , £ 0 )

We also say that the approximation Vh locks when it is not robust.
Remark 2.2: Property (2.28) ensures that an accurate approximation of the solution may be obtained with a

sufficiently small mesh diameter h, independently of the thickness. Another possible définition of robutness
involves uniformity of the convergence with respect to s and to f (for f belonging to the unit bail of V\ for
instance), but we shall adopt in this paper the définition 2.1. H

In practice if we have a locking approximation, we must fix y in a suited form for each value of £. In particular,
changing the values of s with a fixed mesh may spoil the quality of the approximation.

The following theorem will be the main tool for the study of locking in the next sections.

vol. 32, n° 2, 1998
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THEOREM 2.3: Under the previous gênerai hypotheses, let us consider the reiterated limits:

(2.29) lim lim u' strongly in V

(2.30) lim lim u' strongly in V

and let us suppose that one the two hypotheses a) and b) hereafter is satisfied
a) the limits (2.29), (2.30) exist and are different,
b) the limit (2.29) exists but (230) does not.

Then the approximation Vh is not robust.

Remark 2.4: Let us point out that, denoting the solutions of (2.22) and (2.26) by ue and u* respectively, the
limits

i) lim ue strongly in V
ii) lim u£

h strongly in V, for fixed h
always exist, as we shall prove later on in Theorem 3.2. In particular, from (2.27) and i) it follows that the
reiterated limit (2.29) always exist, whereas (2.30) may exist or not.H

Proof of Theorem 2.3: It is a classical corollary of the theorem on uniform convergence of continuons functions.
For the sake of completeness, let us recall theorem 66 of [20], vol. 1, p. 150: "Let E and F be two metric spaces,
A a part of E and f09fv ...,ƒ„ ... a séquence of mappings of A into F converging uniformly to ƒ. Let a be an
accumulation point of A in E. If for each n, fn(x) has a limit when for x tending to a by points in A and if F
is complete, then f(x) has a limit for x tending to a by points in A and moreover"

(2.31) Jimy(x) = nlim |.lim fh(x)
A Lx€A J

Let us apply this theorem taking E = IR, F = V (which is a complete space), x = e, A = (0, £0)
f(x) = u£, fh(x) = ue

h (with h = hn, a séquence tending to 0 as n tends to infinity, a = 0. Let us suppose that
the convergence u^ —» u£ is uniform with respect to e G (0, £0) ; then (2.31) holds true, taking the form

(2.32) lim u£ = lim [ lim u ' l

which is in contraction with a) and b). •

3. LIMIT PROCESSES AND CONSEQUENCES ON LOCKING

Let us define the closed subspace G of V formed by the pure bendings by:

(3.1) G - { v e V;a0(v,v) = 0}

= {V<E V;aQ(\, w) = 0 Vwe V}

We note that the three spaces appearing in the right side of (3.1) are the same. The equality of the first and the
third ones follows from the définition of the form a0 (2.15) and from the positivity of the coefficients (2.18). The
equality of the first and the second spaces follows from the Cauchy-Schwarz inequality for the seminorm

(3.2) | a o ( v ' w ) | ^ao(v,v)1/2ao(w,w)1/2.
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MEMBRANE LOCKING IN THE FINITE ELEMENT COMPUTATION 137

The fact that G is closed follows immediately from (3.1) using for instance the second expression in the right side.
Consequently G is itselfa Hubert space for the topology induced by that of V, and we may state the limit problem
for e ^ 0 :

Find u° E G such that

Vve G

We note that, as a0 vanishes on G, the left side of (3.3) is a form continuous and coercive on G, and consequently
u° exists and is unique in the classical framework of Lax-Milgram.

Remark 3.1: Let us consider the operators

(3.4) Ae e J2?( V, V) , i e j£?( G, G')

defined by

(3.5)

(3.6)

Vu, v e V

(Au, v)G,G = fll(u, v) Vu, v G G .

It classically follows from the Lax-Milgram theorem that Ae and Â define isomorphisms of V onto V' and of G
onto G' respectively. Moreover, V' may be decomposed as a direct sum:

(3.7) V'=G'®GP

where

GP = {ÎG V',<f>v>vv=0 VVG G}

is the polar set of G. We also note that the necessary and sufficient condition for u° ^ 0 is that the component
of f on G' does not vanish. •

In the same way we define for each h:

(3.8)

Let u£ be the solution of

We then have:

G, = G n Vh = {v e Vh ; aQ( v, v) = 0} .

{Find u? e G, such that
h h

a1(u2,v) = <f,v>vv

THEOREM 3.2: Let ue, u^, u°, u^ be the solutions of (2.22), (2.26), (3.3) and (3.9) respectively. Then,

(3.10)

(3.11)

vol. 32, n° 2, 1998
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Proof: It is classical as (3.10) and (3.11) are penalty limit processes. Let us prove for instance (3.11). Taking
v = u^ in (2.26) it follows from the coerciveness of a0 + ax :

(3.12)

G

for two non-vanishing constants c and C. We then see that the us
h remain in a bail of the finite-dimensional space

Vh. After extraction of a subsequence (in fact it is the whole séquence because we shall see later that the limit
is unique)

(3.13) u£ -» u* weakly and strongly in Vh(s \ 0, fixed h) .

It follows from (3.12) that

(3.14) ao(u%ue
h)

m^Ke.

On the other hand, for any fixed v e Vh, we have from (3.13):

(3.15) ao<X>v) - > « o ( u * ' v ) O ^ 0, fixed/*),

and, using (3.14) and an estimate analogous to (3.2) we see that the left side of (3.15) converges to zero in
modulus, and consequently <zo(u*, v) = 0. Taking v = u* we see that u* e Gh. On the other hand, taking in
(2.26) v G Gh we have:

(3.16) ax(u% v) = <f, v ) v v Vv e Gh .

and letting £ \ 0, we have, according to (3.13):

(3.17) a1(u*,v) = <f,v>vv V V E G , .

As we saw that u* G Gh, u* = nh is the only solution of (3.9) and (3.11) is proven.
The proof of (3.10) follows exactly the same steps, showing the weak convergence in V. The strong

convergence in V needs and ulterior reasoning. As we pointed out before, the proof is classical, and may be seen
for instance in [6], Theorem 1. •
The result (3.10) constitutes the fundamental property of thin shells. When the thickness tends to zero, the
solutions converge to a solution which is an inextensional displacement, i.e. a pure bending. This property is
meaningfull in the case when the shell is "non-inhïbited\ i.e. S admits non zero pure bendings, or

(3.18) G * {0} .

In the inhibited case, i.e. G = {0}, (3.10) always hold true, but evidently u° = 0. In order to have a better
description of the asymptotic behavior of ue we write ue = e2 \e and we study the limit behavior of Ve. This
asymptotic process, which has nothing to do with the membrane locking may be seen in [15] or [16], [17].

According to (3.11) an analogous behavior holds for the approximate problem in the space Vh. The membrane
locking occurs when Gh does not approach G. More precisely:

PROPOSITION 3.3: Let us admit the gênerai hypotheses of this paper, inparticular Vh approaches V, (see (2.25)).
Moreover, let us assume that the subspaces Gh — G r\Vh defined in (3.8) do not approach G, defined in (3.1)
(in other words, there exists at least a non-zero element v of G which cannot be approached in the form (2.25),
with G and Gh instead of V and Vh, respectively).
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MEMBRANE LOCKING IN THE FINITE ELEMENT COMPILATION 139

Then the approximation of problem (2.22) by Vh is not robust (locking holds at least for certain î,for instance
for f = Â\ where A dénotes the operator defined in (3.6)).

Proof: We consider problems (2.22) and (2.26) with f = Â\. We are showing that we then are in the hypotheses
of theorem 2.3. From (2.27) we see that the limit / î \ 0 o f u ^ exists and is ue. Next, the limit £ \ 0 of u£ exists
by (3.10) and is equal to u°, which is in fact v for the considered force f (see (3.3) and (3.6) if necessary). It then
follows that the reiterated limit (2.29) exists and is equal to v. On the other hand, the reiterated limit (2.30)
becomes by virtue of (3.11)

(3.19) lim u? strongly in V

but u° e Ghcz G, and the convergence in (3.19) is in fact "strongly in G". This limit may exist or not exist, but
in any case by hypothesis, it is not equal to v, and theorem 2.3 applies. •

Remark 3.4: Locking holds in particular when G =É {0} but Gh = G r\ Vh~ {Q} for any h. In that case we
have a total locking, for any f with non-zero component in G'. •

Remark 3.5: We shall see in the next sections examples where v e Gh implies v3 = 0, but G contain éléments
with non-zero third component. Clearly in that case the Gh do not approach G (see (2.25) with G and Gh instead
of V and Vh, respectively) and locking holds. •

4. ANY PIECEWISE POLYNOMIAL INTERNAL APPROXIMATION IS NECESSARILY NOT ROBUST (OR LOCKS)

In this section we are proving that any finite element internai approximation of the shell problem such that the
éléments of Vh are in each triangle of the mesh polynomial functions (i.e. practically any finite element method)
locks for certain shapes of the middle surface. Clearly we may wonder if there is no locking for other surfaces.
This is the reason why we first give some heuristic reasons showing that locking is probably a generic
phenomenon, holding for almost any surface, with a very few exceptions.

As we saw in proposition 3.3, locking appears when the spaces Gh = G n Vh do not approach G where

(4.1) Gr{ve^

In order to get an intuitive idea of the nature of this problem, let us consider to simplify and fix ideas, the case
when the b^ are constant and the Christoffel symbols vanish. The constraints appearing in (4.1) are then:

(4.2)

[ \ <<d2 Vl + dl V2) ~ bl2 V3 = 0

Let us admit that one of the coefficients bn and b22 does not vanish. This condition is generally satisfied, and
certainly it does if the surface is either elliptic or parabolic. Let bn =̂  0. The first condition (4.2) shows that

(4.3) ve Gh^v3 = ±d1vl

Let us consider the restriction of (4.3) to a triangle of the mesh. Then, as v l is a polynomial of some degree m,
v~ is necessarily a polynomial of degree m — 1. This is perfectly incoherent with the fact that the components

1 9

va (a = 1, 2) belong to H but t>3 e H : any finite element scheme classically used in shell theory (cf. [4] for
instance) uses polynomials of higher order in the discretization of v3 than in that of vv v2. In these conditions,
the convergence of the approximation is seriously compromised.

It should be noticed that the above reasoning is very close to that of [6], theorem 4, where it is shown that in
the case of a circular arch, there is a robust non-classical approximation by finite éléments where va
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(a — 1, 2) and v3 by polynomials of orders 4 and 3 respectively But we should not conclude that discretizmg
i?3 by polynomials of lower order than v a is a gênerai way for avoiding locking We are showing that any internai
approximation which is piecewise polynomial locks for certain surfaces

Our proof is mainly based on Remarks 3 4 and 3 5 For certain spécifie surfaces, we shall show that
v e Gh implies either v = 0 or i?3 = 0 The cases considered are the straight helicoid, and the hyperbolic and
elliptic paraboloids Clearly the applications to locking only concern non-inhibited surfaces, an this implies some
conditions on the fixation of the boundanes In particular, a part of them (or even the whole) must be free
Examples may be seen in [18] and [8], but we shall see later (section 6) an example of non-mhibited hyperbolic
paraboloid But the following proofs are essentially very simple and are not concerned with the boundary
conditions According to (4 1), taking v e Gh and taking the restriction to an element of the mesh, it is sufficient
to show that if each component of v is a polynomial then

(4 4) ya/?(v) = O(a , /?= 1,2) => v = 0 (ormerely v3 = 0)

Case of the hyperbolic paraboloid

It is the surface defined by (notation of sect 2)

(4 5)

We obtain easily

(4 6) a i = (l,0,/), a2=(0,

where

(4 7) a = l +

Moreover,

(4 8) bu = b22 =

V = a~ \ l + ( y 1 ) 2 , - y 1 / , / ) ,

(4 9)

(4 10)

The system (4 4) becomes

(4 11)

and consequently

(4 12) 2 am u3 = a{ d2ux + dxu2 ) - 2 / u2 - 2 / u2

which on account of (4 7) and of the fact that ut are polynomials, implies u3 = 0 As we mentioned above, this
implies locking in the context of Remark 3 5 Moreover, we may show that ux - u2 - 0 To this end, we note
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M1 + dxu2 = 2a~ m u3 -f 2 a 1 y2 ux + 2 a 1 yl u


