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Modélisation Mathématique et Analyse Numérique

MINIMAX OPTIMAL CONTROL PROBLEMS. NUMERICAL ANALYSIS OF
THE FINITE HORIZON CASE

SILVIA C. Di MARCO AND ROBERTO L.V. GONZALEZ

Abstract. In this paper we consider the numerical computation of the optimal cost function asso-
ciated to the problem that consista in finding the minimum of the maximum of a scalar functional
on a trajectory. We present an approximation method for the numerical solution which employs both
discretization on time and on spatial variables. In this way, we obtain a fully discrete problem that
has unique solution. We give an optimal estimate for the error between the approximated solution and
the optimal cost function of the original problem. Also, numerical examples are presented.

Résumé. Nous étudions ici la solution numérique d'une inéquation quasi-var iationnelle associée à la
minimisât ion du maximum d'une fonctionnelle définie sur la trajectoire d'un système dynamique gou-
verné par une équation différentielle ordinaire. Nous faisons la présentation d'une méthode d'approxi-
mation en employant des discrétisations en espace et en temps. Nous obtenons des estimations
optimales pour la vélocité de convergence des solutions approchées vers la fonction de coût optimal du
problème originel.
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1. INTRODUCTION AND DESCRIPTION OF THE PROBLEM

1.1. Description of the problem
We consider in the interval [0,T] a dynamic System which evolves according to the ordinary differential

équation

ds ^

y(t) = ^ l r .

The optimal control problem consists in minimizing the functional J

J : [ 0 , r ] x E f x ^ H> R

(t, x, a(-)) ^ J(t, x, a{-)) = ess sup {ƒ(y(5), a(s)) : s G [t, T)} . (2)

The set of admissible controls is given by A = £°°([0, T ] ; 4 ) , A c Mm
5 and we also will use the notation:

At = L°°([t,T\;A).
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24 S.O DT MARCO AND R.L.V. GONZALEZ

The value function u is defîned by

tx:[0,T]xE r H-» R
(£, x) H-» u(t} x) = inf { J(t, x, a(-)) : a(-) G At} . (3)

The continuous problem arises? for example, when we want to minimize the maximum déviation of the controlled
trajectories with respect to a given special trajectory. This differs from those problems usually considered in the
optimal control literature, where a cumulative cost is minimized. As considering a cumulative cost is ïiot always
the best method to qualify the performance of a controlled System with a unique scalar parameter, problems of
this type have received considérable interest in recent publications (see e.g. [2-10]).

Instead of being considered as an optimal control problem with a non-standard cost functional, this problem
can also be studied through other different approaches, between theni, the following two:

(a) It can be seen as an ordinary optimal control problem where the dynamic System evolves "very fast".
In effect, introducing the auxiliary state variable t/r+i, which vérifies the following differential inclusion
(see [1]),

dy.^(s)eG(f(y(s),a(S))-yr+1(s)), a.e. s €

2/r+l(t) = 0,

where G is given by

G(v) =

0 if v < 0,

[0, oo] if v = 0,

oo if v > 0,

it is easy to check that yr+i(T) = esssup {f(y(s)Ja(s)) : s e [t,T]}.

By considering the functional

JT{t,x,a(-))=yr+1(T),

we have an ordinary optimal control problem.
(b) The minimax problem can be analyzed as a disguised differential game problem.

In this game, one player tries to minimize the cost

J(t,x,a(-),T)=f(y(T),a(r)), (4)

(r dénotes a stopping time of the process), while the opponent - using Ml information of the actions of
the first player - chooses at any instant the stopping time r of the process. As a resuit of the complete
game, the pay-off (4) is given.

The objective of this work is to obtain a numerical approximation of the value function u defined by (3).
Those interprétations of the original control problem (briefly discussed above), are non-standard and con-

sequently, several numerical methods, as those presented in [11-13,19-22], cannot be directly used here. The
numerical procedure presented in detailed form in this paper, was already announced in [16]. Our work comprises
fundamentally two steps:

(i) We obtain a discrete time approximation using a finite différences scheme and we give an estimate of the
error of this approximation.
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(ii) By using linear finite éléments, we obtain a fully discrete approximation that converges to the solution of
the original problem with rate Vk. Besides, we show the optimality of the estimation y/k.

Finaily, we present some numerical applications with computational results.

1.2. Technical assumptions and properties of the value function

Assumptions

Let BUC(Wr x A) be the set of bounded and uniformly continuous functions on l r x i and let Lips(Mr) be
the set of uniformly Lipschitz continuous functions on Mr.

We assume that ƒ and g satisfy the following hypotheses:

(Ai) g : Mr x A ^ E r , g G BUC(W x A)\ g(-,a) e Lips(Mr), M a e A. The constants Mg and Lg satisfy,
respectively

\\g{x,a)\\<Mg, \ \ g ( x , a ) - g ( x , a ) \ \ <Lg\\x-x\\, V x , x G Ë f , V a G A

(A2) f :W x A^R, f G C(Rr x A)\ /(-,a) G Lips(Mr), V a e A . The constant Lf satisfies

\f{x,a)- f(x,a)\ <Lf\\x-x\l Vx,x€Mr, VaêA

(A3) The control set A is compact in W.

Properties of the value function

The following properties have been established by Barron-Ishii in [4] and [8]:

• The function u is Lipschitz continuous in its spatial variable with Lipschitz constant Lu

• The value function u satisfies the following dynamical programming principle
V t G fO, T), x G Mr

u(t, x) = inf < max < u(s, y(s)), ess sup f(y(r), a(r)) > > ,
<*** { { re[tiS] J J

u(Ty x) — min ƒ (x, a).

Remark 1.1. Similarly as to what was proved in [4], (if assumptions Ai and A2 hold), it results u €Lips([0, T]x
W). In other words, u is Lipschitz continuous in both variables.

2. A DISCRETE TIME SCHEME OF APPROXIMATION

Here we introducé an auxiliary problem that is a natural discretization of the optimal cost u defined in (3).

2.1. The discrete time problem

We divide the interval [0, T] into /x sub-intervals with common length h = T/fj,. We deflne, for every

A^ = {a(') G Anh - ot constant in [mh^ (m + l)h), m = n , . . . , /J,} ;
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for each ah(*) G A^ , the discrete time process yh

yh{m + 1) = yh(m) + hg{yh{m), ah{mh)),
(5)

yh(n) = x

and the cost functional Jh

Jh{n,x,ah{-))= max f (yh(m), ah(mh)). (6)

The discrete time cost uh is given by

uh(n,x)= minJh(n,x,ah(-)). (7)

Remark 2.1. The process yh is an Euler discretization of the continuous system (1). In (7) the minimum
exists because A% is compact in A^~n and Jh is a continuous mapping from A^ to R by virtue of hypotheses
A1-A3.

2.2. Properties of the function uh

In the following proposition we establish the dynamic programming principle verified by the discrete time
cost. It gives a recursive way to compute the function uh. The proof follows classical lines and we omit it for
the sake of brevity.

P r o p o s i t i o n 2 . 1 . For every n = 0 , . . . , / i — 1, u*1 vérifies the recursive relation

uh{n,x) — min {max {/(a?,a) ,u h (n- \ - l,x + hg(x,a))}\ , (8)
a£A

and the final condition

uh(fj,)X) — mmf(x,a). (9)

It is easy to prove - using well known techniques as those that can be seen in [18] - that the function uh is
Lipschitz continuous in its spatial variable with Lipschitz constant Lu, These results are established in the
following proposition.

Proposition 2.2. For every n = 0, . . . , /x, x and x £ Rr, it is valid that

\uh(n>x) -uh(n,x) | < Lu\\x -x\\.

2.3. Approximation of controls with step functions
To compute the discrete time cost function uh defmed in (7), we optimize the functional Jh on the set A^ ,

whose éléments are step functions. To prove the convergence of uh to uy we need to establish some suitable
relations between controls of Anh

 a n d A^ .
The relation A^ C Anh is obvious. To get results in the opposed sense, we will prove that given a(-) G Anh

there exists ah(-) e A1^ such that
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in the weak-* topology of L°°([t, T]; Rr) and

liminf Jh{n,x,ah(:)) =
/ >o

To simplify the exposition, without losing generality, we focus on the particular case where the system in (1)
starts in t = 0.

For any ̂ i , we take h\ = Tj\i\ and we divide the interval [0, T] into /ii sub-intervals ïi, where U = [£*, *i+i),
*i = îfti, and 2 — 0,. . . ,/xi — 1.
Remark 2.2. L°°([0,T]; A) can be divided into équivalence classes defined by the relation

"(•) ~ Pi-) iff a(t) = (3(t), a.e. t G [0, T].

It is clear that if a(-) differs from /?(•) in a zero measure set, so do f(y(t)7 &(t)) and ƒ (y(£), ƒ?(£))• Therefore, at
each sub-interval i^, it is possible to choose a(-) (an element of the équivalence class) such that

esssup {/(y(-), <*(•)) : * 6 /,} = sup{/(y(-)^(-)) : t G ƒ<}. (10)

From now, we consider a control a(-) G L°°([0,T]]A) that vérifies the property (10) for every JV

Définition 2.1. Given a(-) G Ai? we define A(a1i) := {a(s) : s e It] and F(a,i) := A(a,i) its closure. Clearly,
by hypothesis A3, F(a,z) is compact.

Lemma 2.1. Let r be the dimension of the state space. For every i = 0, . . . , JJL\ — 1, there exists a step function
aw : I% 1—» F(a, i) that takes at most r + 1 constant values, such that

ƒ 0fo(t»)> M s ) ) J s = ƒ 0(2>(*i W s ) ) ds , (11)
u u

maxf(y(U),aw(s)) < sup f{y{U), a(s)). (12)

Proof. Since <? is continuons and F(a,ï) is compact we have that g(y(tz)7r(ayi)) is also compact and then,
from the Convex Analysis Theory it follows that Co(g(y(ti)JT(a^i))) is closed, i.e.

Co(g(y(U),r(a,i))) =

It is clear that

1 f1

hi J

and then

Being r the dimension of the state set, from the Caratheodory Theorem (see [15], p. 42) it follows that there
r+l

exists {aki : fc = 1,. . . , r + 1}, and {Xki : fe = 1,. . . , r + 1}, with ^ ^ki = 1, ^ki > 0 such that
fe=i

-, r+l
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We consider a partition of Iîy {Iu% > k = 1 , . . . , r -h 1} such that
every t e h% •

and we define aw(t) — a,k%, for

It is clear that aw takes at most r + 1 constant values in F (a, i) and we have

ƒ g(y(U),aw(s))ds = ƒ g(y{U),a(s))ds.

To prove (12), let us note that if s G Iz, then aw(s) G F(a, i). Therefore,

< max{/(y(tt),a) : a G F(a,i)} = sup{f(y(tz),a) : a G A(a,z)}.

D
The following lemma gives an estimate for the différence between the original trajectory of the System and the
trajectory corresponding to the step control aw(-).

Lemma 2.2. Let y(-) be the response to the control a(-) and yw(')> the response to the control aw(-), then

where

\\v(t)-yw(t)\\<Mhi,

M =

Proof. We define, Vz = 0, . . . , \i — 1, E% = || y(tz) — yw{tz) ||. In conséquence, it is valid that

Et+1 < E%

To estimate the second term of (15), we write

),a(s)) - g{yw(s),aw(s))) ds

(13)

(14)

(15)

ƒ

<

)i a(s))-g(yw(s),aw{s))) ds

ƒ (g(y(s),a(s)) - g(y(tz),a(s))) ds

ƒ (9(v(U)Ms))-9(y(U),<*v,(s))) ds
u

I (g(y(U),aw{s)) - g(yw(U),aw(s))) ds
u

/ ig(yw{U),ctw{$)) - g{yw{s),®w{s))) ds (16)
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Prom (1) and (Ai), we have

Il a

\\y(s)-y(tl)\\= ƒ < Mg(s -

Then, using (Ai) and (17), we estimate the first term of (16) in the following way:

< ƒ II 9(v(s),<*(*)) - g(y(tt), a(s)) \\ ds

< Lg f \\ y(s) - y(tz) || ds < LgMg f {s - U) ds <

We can estimate in a similar way the fourth term of (16),

i ~ g(yw(s),aw(s))) ds

Prom (11), the second term of (16) is zero, t.e.

/ (g(y(ti)>a( ) , aw(s))) ds = 0,

From (Ai), the third term of (16) can be estimated as follows,

U+i

j

< / ds

U+i

f \\ y(U) ~ ds < E%Lghx .

From (15, 16, 18-21), we get

Lgh{)

(17)

(18)

(19)

(20)

(21)
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Taking int o account that Eo — 0, by induction we can prove that

i - l

Since o b t a i n ^i <

Let t € lij for some z = 0 , . . . , /ii — 1, we have

t

lly(*)-^WII<lly(*O-M*i)ll

To estimate (22), from (Ai) we have

t

! (g(y(s),a(s)) - p(2/w(s),a^(s))) ds

U

and thus, we obtain

< 2Mgh\ -f- Mghi (1 + Lghif <

< 2Mghx ,

ds (22)

D

2.4. Approximation of controls with uniform-step functions

The control aw is a step fonction which has, at most, r + 1 steps in each interval of length h\ (where r is
the dimension of the state space). We are interested in approximating the set AQ with uniform-step functions,
so we need a suitable element of AQ that approximates aw in the sense described below.

Construction of the control af^

The symbol [5] dénotes the integer part of s. For any interval I% ~ [tiy U+i), U = ih\, we know that aw takes,
at most, r + 1 different values denoted by a^-, z = 0 , . . . ,/i— 1, j = 0 , . . . ,r. Besides, Àij dénotes the length of
the sub-int er val where aw = aij .

Given v we define h = 7—r,

Ho — H 2 = 0 , . . . , / X i - 1 ,

E (23)

= h[tij/h] i = 0,. - 1, i = 0,... ,r + 1.

We define V 5 G
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Therefore, a^ = aw in 1$, except at most in r -f 1 intervals of length 77 ,̂ with 7?̂  = tij — t%j < /i. Then,
ofc = aw, in I7 except in a set which measure is smaller than

r + l
(24)

Properties of the control a^

The procedure of construction of a^ implies that

ah
w G

{a* (s) : s E It} = {aw(s) : s G

By these properties, it is valid that

= 0,.

= max

From (12) and (25), we have

< sup/(y(t l),a(s)).

(25)

(26)

Remark 2.3. In the following proofs we suppose, without losing generality, that h < 1.

The following lemma gives an estimate for the différence between the original trajectory of the system and the
response corresponding to the uniform-step control o^O •

Lemma 2.3. Let y(-) be the response to the control a(-) and y^(-) the response to the control a^(*)j then

where

K - (4 -f 3 exp(L5t)) M
/2(r

Proof. To estimate the différence between y(-) and y^(-)7
 w e write

II y(*) - y£(*) II < li y(t) - yw(t) \\ + || yw(t) - y*(t) ||. (27)

The first term of (27) was analyzed in Lemma 2.2 and a bound was given in (13), We will estimate now the
second term of (27). Let t € li, for some i = 0,. . . , /ii — 1

{g(yw(s),aw(s)) ~g(yUs)>at(s))) ds (28)

The second term of (28) is bounded by
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ds < 2Mgh1.

To estimate the first one, we define Vi =

(29)

0 - » £ ( * . ) Il, (30)

then

Et+1 < ƒ (31)

To estimate the second term of the right side of (31), we write

) , aw(s)) -g(yw(U),aw(s))) + (g(yw(tz), aw{s)) -

It is clear that the following estimâtes hold:

ds (32)

*4 + l

ƒ (33)

«*+

/

Prom (24), it results that

ds (34)

ƒ < 2Mg(r (35)

In conséquence, by substituting (32-35) into (31), we have
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Ei+i < EAl + Lgh{) + 2Mg(r + l)h -f LgMgh\ .

By induction, and taking into account (30), we obtain

x - l

E% < (2Mg(r + l)h + LgMghi) /_J(1 + Lgh\)3.

Since ^ (1 + Lgh\)3 — p-r- and (1 + Lghi)z < exp(L5t), we obtain the estimate

E% < {2Mg(r + l)h + LgMgh\) l ^ ' • (36)

The minimum of the right side of (36) is achieved at

v = V ~75x— ' ^ ^

We suppose, for the sake of simplicity, that v is an integer (the genera! case can be proved similarly with no
difficulty). Consequently, from (36) and (37), it results

The inequality (28) is bounded by

<2Mgh1+2 exp(Lff«) Mg J
2^^^ Vh . (38)

Finally, from (13), (14) and (38) we have the estimate

\\y(t)-yh
w(t)\\<KVh,

where K = (4 + 3 exp(Lgt)) Mg

V

D

2.5. Rate of convergence

In the previous section, for each policy a E AQ and its associated response y(-), we have defined an ap-
proximating control a^ E AQ and we have obtained an estimate for the différence between the cor r esp onding
trajectories. In this section, we will give an estimate of the différence between uh and u. To do that, we define,
for each n = 0,... , ̂ x, the following auxiliary function, which is the optimal cost evaluated on the uniform-step
control functions
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ue{n7x)= min J(nh7x, ah{-)). (39)
heA%

Lemma 2.4. Let ue(O,x) and uh{Q^x) be the optimal cost defined m (7) and the discrete time cost defined m
(7) respectively. Then

\ue(O,x)-uh(O,x)\ <Ch. (40)

Proof This result is easily obtamed taking into account that the error associated to Euler's intégration
method applied to the system (1) is of order h. In effect, let {I% : x = 1 , . . . ,/z — l } b e a partition of [0,T] of
length h with I% = [£z,£ï+i] and let t E I%. Let yh{-) be the function defined in (5) and yah(-) be the response to
the uniform step control ah(-). With arguments similar to those used in the proof corresponding to Lemma 2.2,
it can be obtained that

h( M9L9T

Fr om (1) it is evident that

in conséquence, there exists M (independent on the parameter h) such that

I ƒ(yh(i), ah(t)) - f(yah(t), ah(t)) \ < LfM h.

Since

Jh(0,x,ah(-))= max f(y(t,),ah(s)),
2 = 0 , ,fJ,— 1

J(0}x,ah(-)) = max \ sup f(yah(s)ya(s)) }

it easy to see that

| Jh(0, x, ah(-)) - J(0, x, <*"(.)) | < LyM h.

Then,

D
Note 2.1. To simplify the notation and the exposition, C and M dénote any generic constant whose value
dépends on the context where it appears. Such constants only depend on the functions ƒ and g of the problem
but they are independent on the parameters /i, fc, p of discretization.

Theorem 2.1. Let u(0, x) be the optimal cost of the original problem and uh(0, x) the discrete time cost defined
in (7), then

| u(0, x) - uh{0, x) j < M\/h. (41)
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Proof. Using the auxiliary définition (39) we can write:

| <u(0, x) - uh(0y x)\<\ u(0, x) - u e(0, x) | + | ue(0, x) - uh(0, x) | . (42)

Let us now estimate the first term of the right side of (42). Since AQ C AQ> we have by définition (39)

u(0,x) <ue(0,x). (43)

On the other hand, let us consider a G AQ and a^ G AQ the control defined in (23) (which is the uniform step
control fonction associated to a). Then we have

,a*) = sup

Let 5 Ç Ii,

= {f(y^(s),ah
w(s))-f(y(s),at(s)))

+ (f(y(s), a* (*)) - ƒ (y(*i), <**(*))) + /(»(**), "Ï,(*)), (44)

by (A2) and Lemma 2.3, we have

| / ( y ( ) , 5 , ( ) ) ƒ ( » ( « ) , a|i(S)) | < Cfc.

Prom (26), we obtain

sup f(y(ti)yat(s)) = max i max/(ï/(*i),a^(s)) i

< max i sup ƒ (2/(ti), a(s)) i < J(0, x, a(-)) + LfMgh. (45)
i=o,...^i-i yseh J

Consequently, from (2, 44, 45), we get

J(0,x, a£(-)) < J(0, x,a(.)) + M ^ ,

therefore

^e(0,x) < J(0,x,a&(-)) < J(0, x, a(-)) + M \ 4 . (46)

Taking the infimum over AQ in the right side of (46), we have

ue(07 x) < u(07 x) + MVh. (47)

From (43, 47), we get

| t / (0 ,x) -u(0 ,z ) | <MVh. (48)
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Finally, from (40, 48), we obtain

\u(0,x)-uh(0,x)\ <MVh.

D

R e m a r k 2 .4 . In a similar way as it was done in Theorem 2.1, V n = 0 , . . . ,/x, we can also prove tha t the
following inequality holds

u(n, x) - uh(n, x) \ <

3. FULLY DISCRETE SOLUTIONS

In the previous section we have approximated the function u with one obtained by discretizing the original
problem in its time variable. This approximation scheme is not direct ly implementable to be computed nu-
merically. To obtain a fully discrete approximation with this property, we discretize the space W, using the
methodology described in [21,22].

3.1. Eléments of the discrete problem

We identify the discretization of the spatial variables with the parameter fc, which also indicates the size of
the discretization. The symbols X° and diam(X) dénote respectively the interior and the diameter of a set X.

Approximation of the domain W

We consider a family of quasi-uniform triangulations of Mr, which is denoted by {<Sfe}fc and vérifies:

• For all fc, Sk is a denumerable collection of closed simplices {Sk} such that \JS* = Rr.
3 3

• If S* G Sk, S% e Sk, Sk
3 i- S

k, we have
- (5*)° C\{Sk)° = 0.
- Either Sk p| 5^ = 0 or Sk and Sk have in common a whole (r — m) - edge,

m = 1, . . . , r.
• max (diam(5js)) = fc,

• 3 Xi > 0 and 3 %2 > 0 independent on the discretization, such that, denoting by d3 the diameter of the
simplex Sk, it is verified

— the simplex Sk has a sphère of radius r3 in its interior and it results r3 > Xi^s ?
— for any simplex 5^, k < x2dj •

Let Vk = {x%,i G N} be the vertices of \JSj} arbitrarily arranged. Every x G W is a convex combination
3

of the vertices xl of the simplex to which x belongs. Hence, V a € Â there exists a matr ix with components
7j(a?*, a), such t h a t for each i e N:

x% + hg(xz^a) =

for a t most (r + 1) values of j ,

(49)


