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MINIMAX OPTIMAL CONTROL PROBLEMS. NUMERICAL ANALYSIS OF
THE FINITE HORIZON CASE

SiviA C. D1 MARCO AND ROBERTO L.V. GONZALEZ

Abstract. In this paper we consider the numerical computation of the optimal cost function asso-
ciated to the problem that consists in finding the minimum of the maximum of a scalar functional
on a trajectory. We present an approximation method for the numerical solution which employs both
discretization on time and on spatial variables. In this way, we obtain a fully discrete problem that
has unique solution. We give an optimal estimate for the error between the approximated solution and
the optimal cost function of the original problem. Also, numerical examples are presented.

Résumé. Nous étudions ici la solution numérique d’une inéquation quasi-variationnelle associée & la
minimisation du maximum d’une fonctionnelle définie sur la trajectoire d’un systéme dynamique gou-
verné par une équation différentielle ordinaire. Nous faisons la présentation d’une méthode d’approxi-
mation en employant des discrétisations en espace et en temps. Nous obtenons des estimations
optimales pour la vélocité de convergence des solutions approchées vers la fonction de cofit optimal du
probléme originel.
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1. INTRODUCTION AND DESCRIPTION OF THE PROBLEM

1.1. Description of the problem

We consider in the interval [0,7] a dynamic system which evolves according to the ordinary differential
equation

B (s) = g(u(s),a(s) 0<t<s<T,

s (1)
|
| y(t) =z € R".
The optimal control problem consists in minimizing the functional J
J:0,T]xR"x A — R
tz,a()) = Jz,0)) =esssup{f(y(s),a(s)) : sc [t,T)}. (2)
The set of admissible controls is given by A = L>=([0,T]; A), A C R™, and we also will use the notation:
Ay = L=(t, T); A).
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The value function u is defined by

w:[0,T] xR — R
(t,z) = wu(t,z)=inf{J( z,a)): al-) € A}. (3)

The continuous problem arises, for example, when we want to minimize the maximum deviation of the controlled
trajectories with respect to a given special trajectory. This differs from those problems usually considered in the
optimal control literature, where a cumulative cost is minimized. As considering a cumulative cost is not always
the best method to qualify the performance of a controlled system with a unique scalar parameter, problems of
this type have received considerable interest in recent publications (see e.g. [2-10]).

Instead of being considered as an optimal control problem with a non-standard cost functional, this problem
can also be studied through other different approaches, between them, the following two:

(a) It can be seen as an ordinary optimal control problem where the dynamic system evolves “very fast”.
In effect, introducing the auxiliary state variable ¥,..1, which verifies the following differential inclusion

(see [1]),
Wi () € 7 w(s), 0(6) ~ 4rsa(s)), a5 € (1),
| Yr4a(t) =0,
where G is given by
0 ifv<0,
Gw)=4¢ [0,00] ifv=0,
00 ifv>0,

it is easy to check that y,4+1(7) = esssup {f(y(s),a(s)) : s € [t,T}}.
By considering the functional

JT<t’ Zz, a()) = yTJrl(T)’

we have an ordinary optimal control problem.
(b) The minimax problem can be analyzed as a disguised differential game problem.
In this game, one player tries to minimize the cost

J(taxva(')aT) = f(y(T)»a(T))v (4)

(7 denotes a stopping time of the process), while the opponent — using full information of the actions of
the first player — chooses at any instant the stopping time 7 of the process. As a result of the complete
game, the pay—off (4) is given.
The objective of this work is to obtain a numerical approzimation of the value function u defined by (3).
Those interpretations of the original control problem (briefly discussed above), are non-standard and con-
sequently, several numerical methods, as those presented in [11-13,19-22], cannot be directly used here. The
numerical procedure presented in detailed form in this paper, was already announced in [16]. Our work comprises
fundamentally two steps:

(i) We obtain a discrete time approximation using a finite differences scheme and we give an estimate of the
error of this approximation.
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(ii) By using linear finite elements, we obtain a fully discrete approximation that converges to the solution of
the original problem with rate Vk . Besides, we show the optimality of the estimation vk .

Finally, we present some numerical applications with computational results.

1.2. Technical assumptions and properties of the value function

Assumptions

Let BUC(R" x A) be the set of bounded and uniformly continuous functions on R” x A and let Lips(R") be
the set of uniformly Lipschitz continuous functions on R".
We assume that f and g satisfy the following hypotheses:

(A1) g: R"x A — R", g € BUC(R" x A); g(-,a) € Lips(R"), V a € A. The constants M, and L, satisfy,
respectively

lg(z,a)ll < My, llg(,a) - 9(& )}l < L, |lz — 3ll, Va,8 € R", Vae 4.
(A2) f:R"x A— R, f e C(R" x A); f(-,a) € Lips(R"), Va € A. The constant Ly satisfies
|[f(z,a) — f(Z,a)| < Lf||lz — Z||, Ve, € R", Va € A.
(A3) The control set A is compact in RY.

Properties of the value function
The following properties have been established by Barron-Ishii in [4] and [8]:

e The function w is Lipschitz continuous in its spatial variable with Lipschitz constant L,,
Ly = Ly exp(LgT).
e The value function u satisfies the following dynamical programming principle
Vtel0,T), z € R"

u(t,z) = inf {max {u(s,y(s)) , ess sup f(y(7), a(T))}} ,

acA; T€(t,s]
T,z) = mi .
u(T,z) = min f(z, a)

Remark 1.1. Similarly as to what was proved in [4], (if assumptions A; and A hold), it results v €Lips({0, T']x
R"). In other words, u is Lipschitz continuous in both variables.

2. A DISCRETE TIME SCHEME OF APPROXIMATION

Here we introduce an auxiliary problem that is a natural discretization of the optimal cost v defined in (3).

2.1. The discrete time problem

We divide the interval [0,7] into p sub-intervals with common length A = T/u. We define, for every
n=0,...,u

Al = {a(-) € Aun : a constant in [mh, (m + 1)h),m =n,... ,u};
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for each a*(-) € A", the discrete time process y*

Lyt (m + 1) = Y (m) + hg(y"(m),a?(mh)), Ym=mn,...,p—1,

h (5)
L yi(n) ==
and the cost functional J"
T n,z,0" () = max  f(y"(m), o (mh)). (6)
The discrete time cost u” is given by
ub(n,z) = min J*(n,z,a("). (7

ahe AR

Remark 2.1. The process y" is an Euler discretization of the continuous system (1). In (7) the minimum
exists because A" is compact in A#~™ and J" is a continuous mapping from A" to R by virtue of hypotheses
Aj-As.

2.2. Properties of the function u®

In the following proposition we establish the dynamic programming principle verified by the discrete time
cost. It gives a recursive way to compute the function u”. The proof follows classical lines and we omit it for
the sake of brevity.

Proposition 2.1. For everyn =0,...,u — 1, u® verifies the recursive relation
u(n,7) = min {max {{(z, ), u"(n + 1,z + hy(z, )} } ®)
and the final condition
h .
u'(p,z) = gélf;lf(w’ a). 9)

It is easy to prove — using well known techniques as those that can be seen in [18] — that the function u” is
Lipschitz continuous in its spatial variable with Lipschitz constant L,. These results are established in the
following proposition.

Proposition 2.2. For everyn =0,...,u, x and T € R", it is valid that
luh(n)x) - uh(n,’a':\) ' < Lu” T = 5H

2.3. Approximation of controls with step functions

To compute the discrete time cost function u” defined in (7), we optimize the functional J* on the set A",
whose elements are step functions. To prove the convergence of u" to u, we need to establish some suitable
relations between controls of A, and AR .

The relation A2 C A, is obvious. To get results in the opposed sense, we will prove that given () € Ans
there exists a”(-) € A" such that

lim g(y"(-), & (-)) = g(y(-), (")),
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in the weak— topology of L*°([t,T};R") and

1i;ni(r)1f J¥(n,z,a"(")) = J(nh,z,a()).
U

To simplify the exposition, without losing generality, we focus on the particular case where the system in (1)
starts in ¢ = 0.

For any 1, we take hy = T'/p, and we divide the interval [0, 7] into p1 sub-intervals I; , where I; = [t;, ti11),
t,; I’ihl, andz:O, ,Lbl—l.

Remark 2.2. L*°([0,T]; A) can be divided into equivalence classes defined by the relation
a() ~ ﬂ() if f a(t) = Ig(t)’ ae. te {OvT] :

It is clear that if o(-) differs from 3(-) in a zero measure set, so do f(y(t), a(t)) and f(y(t),8(t)). Therefore, at
each sub-interval I;, it is possible to choose a(-) (an element of the equivalence class) such that

esssup {F(y(-),a()) : t € L} = sup{f(y(-), a() : t € L;}. (10)

From now, we consider a control a(-) € L>([0,T]; A) that verifies the property (10) for every I;.

Definition 2.1. Given a(-) € Ay, we define A(a, %) := {a(s) : s € I} and I'(e, ¢) := A(a, 7) its closure. Clearly,
by hypothesis Az, I'(a, i) is compact.

Lemma 2.1. Letr be the dimension of the state space. For everyi =0,...,u1 — 1, there exists a step function
oy I, = T(a, 1) that takes at most r + 1 constant values, such that

/ 9(y(t:), au(s)) ds = / o(y(ts), a(s)) ds, (11)
max f(y(ti), ow(s)) < sup fy(ts), als)) - (12)

Proof.  Since g is continuous and I'(e, %) is compact we have that g(y(t.), [(«,1%)) is also compact and then,
from the Convex Analysis Theory it follows that Co(g(y(¢;),I'(a,))) is closed, i.e.

Co(g(y(t:), T(e,4))) = Co(g(y(ti), ', 9))) -

It is clear that

g = hi / o(y(t.), o(s)) ds € Colg(y(te), T )

and then

gi € Co(g(y(t.), T(a,4))) -
Being r the dimension of the state set, from the Caratheodory Theorem (see [15], p. 42) it follows that there

r+1
exists {a; :k=1,...,r+1},and {Mi :k=1,...,r+1}, with 5 Ay =1, Mgy > 0 such that
k=1

1 r+1
9= D Ak g(y(ts), ara) -
k=1
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We consider a partition of I, {Ix, : k = 1,... ,7 + 1} such that |Iy,| = h1A, and we define o, (t) = ag,, for
every t € I, .

It is clear that a,, takes at most r + 1 constant values in I'(e, :) and we have

tit1 tit1

/g(y(tz),ozw(s))ds: /g(y(tl),a(s))ds.

t, t,
To prove (12), let us note that if s € I,, then a,,(s) € I'(o,2). Therefore,
max{f(y(tz): aw(s)):s€ L}
< max{f(y(t,),a) : a € (e, 1)} = sup{f(y(t.),a) : a € A(e,2)}.

O

The following lemma gives an estimate for the difference between the original trajectory of the system and the
trajectory corresponding to the step control ().

Lemma 2.2. Let y(-) be the response to the control a(-) and y.,(-), the response to the control a.(-), then
ly(t) —yu(t) | < M hy, (13)
where
M = (2 + exp(Lgt)) M,. (14)
Proof. We define, Vi=0,...,u—1, B, = || y(t,) — yw(t.) ||. In consequence, it is valid that

toi1 |

Fon < B+ / (9((s), a(5)) — 9(3(s), au(s))) ds (15)
To estimate the second term of (15), we write
/ (0((5), () — 9y (s), u(s))) ds
< / (9(u(s), a(s)) — a(u(t), a(s))) ds
+ / (0((t), a(s)) — g(t), aw(s))) d
ij:+1 I
+ / ((W(t), () — 9 (1), aw(s))) dsi
tota !
n / (9(0(t), 2 (5)) — 9(3u(s), au(s))) ds (16)
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From (1) and (A1), we have

s

I I
y(s) - y(t) I = \ [ stw),ae)as “ < My(s —t,).

Then, using (A1) and (17), we estimate the first term of (16) in the following way:

tot1

[ (w(s),as) — gtu(e), o)) ds

< / l9(u(s), a(s)) — g(y(t.), als)) | ds

tat1 Lot

h2
< Lo [1s6) -y ds < T, [(s-t)ds <L,
t,

123

We can estimate in a similar way the fourth term of (16),

tit1

(9(y (t); 0w (8)) = 9(Yuw(s), o (s))) ds

t,

hi

< LgMy - -

From (11), the second term of (16) is zero, 1.e.

tog1

/ (9(u(t), (5)) — 9(y(t), aw(s))) ds

t,

=0.

From (A;), the third term of (16) can be estimated as follows,

tit1

/ (9(y(t.), aw(s)) — g(yw(tz)’ aw(s))) H

t,

tat1

1 9(y(t); cw (5)) — 9(yw(t), aw(s)) || ds

IN

t7.+1

Ly [ 1y(6) = yult) | ds < BuLghs.

123

AN

From (15, 16, 18-21), we get

E,i1 < E(1+ Lghy) + LgMyh3 .

29

(17)

(18)

(19)

(20)

(21)
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Taking into account that E, = 0, by induction we can prove that

i-1
E; < LeMgh ) (14 Lghy).
=0
= o (1 +Lyhy)t -1 . ,
1+ Lohy ) = ~—— 22— btain F; < Myhy1(1 + Lyhy )"
Since ]go( + Lghy) (A5 Loh) =1 we obtain E; < Mgh,( gh1)
Let t € I;, for some ¢ =0,...,u; — 1, we have
|t
ly(®) = v @) || < lly(t:) — yolt:) || + /(g(y(S),a(S)) — 9(yu(s), aw(s))) ds |- (22)
t, ’

To estimate (22), from (A;) we have

/ (((s), (5)) — 9 (s), v (s))) ds || < 2Mhs ,

!

and thus, we obtain

1 9(t) ~ v (6) 1| < 2Mghs + Myhy (14 Lghy)* < Myha (2 + exp(Lgt)).

2.4. Approximation of controls with uniform-step functions

The control a,, is a step function which has, at most, 7 + 1 steps in each interval of length h; (where r is
the dimension of the state space). We are interested in approximating the set Ay with uniform-step functions,
so we need a suitable element of A% that approximates a,, in the sense described below.

Construction of the control ol

The symbol [s] denotes the integer part of s. For any interval I, = [t;,%;11), t; = th1, we know that a,, takes,
at most, r + 1 different values denoted by ¢y;,4=0,...,0—1,7=0,...,r. Besides, A;; denotes the length of
the sub-interval where a,, = oy; -

Given v we define h = {l—l,
vl
’tz’o:ti 1=0,...,p1 — 1,
. .
tij:ti+z)\ik J=1...,7+1, (23)
k=0
| ti; = hlti;/h] i=0,...,pa—1,7=0,...,7+1.

We define V s € [ti;,%; j+1)

ay(s) = ;-
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Therefore, a, = a,, in I;, except at most in 7 -+ 1 intervals of length 7,,, with 7;; = t;; —E]— < h. Then,

o = a,, in I; except in a set which measure is smaller than
r+1
Z'l’h’j < ('I‘ + l)h (24)
=1

Properties of the control af,

The procedure of construction of o implies that
al e Ak,
{ab(s) : se L} ={aw(s) : s€ L}, Vi=0,...,u1 — 1.

By these properties, it is valid that

max £ (y(t:); oy, (s)) = max f(y(t:), aw(s)) - (25)
From (12) and (25), we have
max f(y(t), oy, (s)) < sup f(y(t.), o(s)) - (26)

Remark 2.3. In the following proofs we suppose, without losing generality, that A < 1.

The following lemma gives an estimate for the difference between the original trajectory of the system and the
response corresponding to the uniform-step control o ().

Lemma 2.3. Let y(-) be the response to the control a(-) and y" () the response to the control of (), then

|yt —yit) || < KV,

K = (4+3 exp(Lyt)) M, \/ %’{—l—) :
g

Proof. To estimate the difference between y(-) and y%(-), we write

where

9 =y @ || < 1y = v @) | + |30 () —yu @) |- (27)

The first term of (27) was analyzed in Lemma 2.2 and a bound was given in (13). We will estimate now the
second term of (27). Let t € I;, for some 2 =10,... ,u1 — 1

lyo@® —92@) | < lywlt) —vi) ||

HE ]

I
/ (03 (5), 0 ()) — gl (5), @ (5)) ds | - (28)

t,

+

The second term of (28) is bounded by



32 S C NIMARCO ANDRLV GONZALEZ

/ l
[ (@nle) 0uls)) ~ g6 (), 0 )) ds | < 20,ma. (29)
To estimate the first one, we define Ve =0,... ,u; — 1
E, = || yw(t.) — yu(t.) || (30)
then
B <E + / (9(yu(t.), auls)) — g(yu(t), aly(5))) ds|| - (1)
To estimate the second term of the right side of (31), we write
9(yu(8), 2u(s)) — 9y (s), aly(s)) =
= (9(yw(s), aw(s)) — g(yuw(t.), aw(s))) + (g(yw(tz); aw(s)) — g(yﬁ,(tz),aw(S)))
+ (9(uh (), 0 (s)) — gyl (), 0 (5))) + (9 (ta), @ (s)) — 9(yin(s), i (s))) -
It is clear that the following estimates hold:
it 9
[ G(s)sauls) = gt uls)) ds | < Lo, 2 (32)
tit1 5
/ (9(ye (), @ () — 9(yis (), als(s))) ds | < LgMg%l, (33)
[ (00t 00 (5)) = 9w 0),0u(s)) ds|| < LEuha. (34)
From (24), it results that
[ (o), 0(s) = u(t), el (61) ds | < 20, + )b (35)

In consequence, by substituting (32-35) into (31), we have
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Evi1 < By(1+ Lghy) +2My(r + 1)h + LyMyh? .

By induction, and taking into account (30), we obtain

1—1
E, < (2My(r + 1)k + LyMh3) > (1 + Lgha ).
7=0

Since i(l + Lgh)? = .(1+—L-‘1h1);1

1
and (14 Lghy)* < exp(Lg4t), we obtain the estimate
3=0

Loha
B, < (2M(r + 1)h + L, Myh?) exp(Lqt) (36)
Lohy
The minimum of the right side of (36) is achieved at
_2(r+1)

We suppose, for the sake of simplicity, that v is an integer (the general case can be proved similarly with no
difficulty). Consequently, from (36) and (37), it results

E, <2 exp(Lgt) Mg M .
Ly
The inequality (28) is bounded by
2 1
| ye(®) —92(2) || < 2Mghi +2 exp(Lyt) M, 4D g (38)

Ly

Finally, from (13), (14) and (38) we have the estimate
ly(®) —vi® || < KVh,

2(r+1
where K = (4 + 3 exp(Lgt)) M, % .
g

2.5. Rate of convergence

In the previous section, for each policy @ € Ay and its associated response y(-), we have defined an ap-
proximating control o € A% and we have obtained an estimate for the difference between the corresponding
trajectories. In this section, we will give an estimate of the difference between u® and u. To do that, we define,
for each n =0,..., u, the following auxiliary function, which is the optimal cost evaluated on the uniform-step
control functions
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ué(n, ) = aineiﬂh J(nh,z,o"("). (39)

n

Lemma 2.4. Let u®(0,z) and u"(0,z) be the optimal cost defined wn (7) and the discrete tme cost defined in
(7) respectwvely. Then

|u®(0,z) — u™(0, x) i < Ch. (40)

Proof. This result is easily obtained taking into account that the error associated to Euler’s integration
method applied to the system (1) is of order h. In effect, let {I, : 2 = 1,...,u — 1} be a partition of [0,T] of
length h with I, = [t,,t,41] and let ¢ € I,. Let y"(-) be the function defined in (5) and y,x(+) be the response to
the uniform step control o”(-). With arguments similar to those used in the proof corresponding to Lemma 2.2,
it can be obtained that

M,L,T
19" () = yan (t2) | < =252 b+ O(h?).

From (1) it is evident that
lYan () = yan(t) || < Mgh,
in consequence, there exists M (independent on the parameter h) such that

| (" (2), @"(8)) — f(Yan (), @"(t)) | < Ly M h.

Since

JH0,z,0"()) =  max_fly(t),a"(s)).
1=0, n—1

3

h = max h|lS), XS
J(0,2,0"()) = {g}elgf(ya (s), ())},

1=0, ,p—1
it easy to see that
| 70,2, a"(-)) — J(0,2,a"(")) | < LyM h.
Then,
| u®(0,2) ~w"(0,2) | < Ch.

O

Note 2.1. To simplify the notation and the exposition, C' and M denote any generic constant whose value
depends on the context where it appears. Such constants only depend on the functions f and g of the problem
but they are independent on the parameters h, k, p of discretization.

Theorem 2.1. Let u(0,z) be the optimal cost of the original problem and u"(0,z) the discrete tyme cost defined
wm (7), then

| u(0,2) —u"(0,z)| < MVh. (41)
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Proof. Using the auxiliary definition (39) we can write:

]u(O,a:) —u™(0, z) ! < |u(0,z) —u®(0,z) | + ;'u,e((), z) —u(0, z) ‘ ) (42)

Let us now estimate the first term of the right side of (42). Since A} C Ao, we have by definition (39)
u(0,z) < u®(0,z). (43)

On the other hand, let us consider & € Ag and of, € A} the control defined in (23) (which is the uniform step
control function associated to «). Then we have

J(O,z,ap) = sup f(yn(s), e (s))-
s€(0,T)
Let s € I;,
Flya(s)an(s)) = (Fya(s),al(s)) — Fy(s), e (s)))

+(fy(s), oy () = Fy(ta), s (5))) + fly(ta), e (), (44)
by (As) and Lemma 2.3, we have

| Flya(s), () = F(y(s), ()| < CV,

| F(u(s), i (s)) — Fly(ta),ali(s)) | < Ch.

From (26), we obtain

p f(e),ab) = max {mex flo(e),ab(s) )
< gmax_ s £, 00 | < T0.2,00) 4 LiMyh. (45)
1=0,...,u1—1 sel;

Consequently, from (2, 44, 45), we get

J(0,z,0" (-) < J(0,z,a(-)) + MVh,
therefore
u®(0,z) < J(0,z,a” (1) < J(0,z,a(-)) + MVh. (46)
Taking the infimum over Ag in the right side of (46), we have
u®(0,z) < u(0,z) + MVh. (47)
From (43, 47), we get

|u¢(0,z) — u(0,z)| < MVh. (48)






