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FINITE ELEMENT ANALYSIS OF SLOSHING AND HYDROELASTIC
VIBRATIONS UNDER GRAVITY

ALFREDO BERMUDEZ! AND RODOLFO RODRIGUEZ?2

Abstract. This paper deals with a finite element method to solve fluid-structure interaction problems
More precisely 1t concerns the numerical computation of harmonic hydroelastic vibrations under gravity
It 1s based on a displacement formulation for both the flud and the solid Gravity effects are included
on the free surface of the fluid as well as on the liquid-sohd interface The pressure of the fluid 1s used as
a variable for the theoretical analysis leading to a well posed mixed linear eigenvalue problem Lowest
order triangular Raviart-Thomas elements are used for the fluid and classical piecewise linear elements
for the solhid Transmussion conditions at the fluid-solid interface are taken into account in a weak
sense ylelding a non conforming discretization The method does not present spurious or circulation

modes for nonzero frequencies Convergence 1s proved and optimal error estimates are given Finally,
numerical results are shown

Résumé. Cet article concerne une méthode d’eléments finis pour la résolution de problémes d'intérac-
tion d’un fluide avec une structure Plus precisement il s’agit de calculer les vibrations hydroélastiques
harmoniques sous gravite La methode est basée sur une formulation en déplacements 4 la fois pour le
solide et le fluide Les effets de gravité sont inclus sur la surface libre du fluide et sur 'interphase entre
le fluide et le solide La pression dans le fluide est utilisée comme variable pour ’analyse théorique
de la méthode ce qu1 conduit & un probléme mixte aux valeurs propres bien posé L’élément trian-
gulaire de Raviart-Thomas du plus bas degré est utilisé pour discrétiser le fluide , pour le solide on
utilise des éléments finis linéaires par morceaux classiques La condition de transmission cinématique
a I'imterphase est prise en compte de fagon faible ce qu1 donne une discrétisation non conforme La
méthode ne produit pas des modes parasites rotationnels pour des fréquences non nulles On démontre

auss: la convergence et des estimations d’erreur qui sont optimales Finalement, quelques résultats
numériques sont présentés
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1. INTRODUCTION

Increasing attention has recently been paid to problems involving fluid-structure interactions. For a survey of
current results see {10,17] and the references therein. In this paper, we are concerned with hydroelastic vibrations
under gravity. We consider as a model problem a 2D elastic vessel partially filled by an incompressible or nearly
incompressible fluid (typically a liquid) with an open or free boundary. Gravity effects are considered by using
the Tong model on the fluid-solid interface (see [21]) and a classical first order approximation of the kinetic
condition on the free interface of the fluid.

Under the usual assumptions leading to linear problems, the evolution of the coupled system is governed
by second order in time linear equations. Their solution can be written in terms of the corresponding free
vibration modes which are eigenfunctions of a linear eigenvalue problem (see for instance [7]). The hydroelastic
problem has been dealt with in previous papers by using different primal variables for fluid and solid: typically
displacements for the structure, and velocity [19], velocity potential [2,6] or displacement potential [7,17] for
the fluid. We have used displacement variables for both, fluid and solid; to provide a theoretical analysis, the
pressure in the fluid has also been used as a variable.

As it is well known, spurious modes appear when a displacement formulation is discretized by using classical
Lagrangian finite elements (see [5,15]). Such spurious modes are approximations of pure rotational motions
of the fluid not inducing vibrations on the structure, which are zero frequency eigenmodes of the continuous
problem. Therefore, when the discrete problem does not have zero as an eigenfrequency with a corresponding
eigenspace approximating this set of rotational motions, spurious eigenmodes arise with non zero frequencies
placed among those of the relevant ones.

In [3] a finite element method which does not present spurious modes is introduced for the case of a com-
pressible fluid. It consists of using piecewise linear elements for the solid and Raviart-Thomas elements of lowest
order for the fluid, the coupling of both being of non conforming type. Such discretization yields a sparse linear
symmetric eigenvalue problem. In [4] it is shown that this method can be adapted to deal with incompressible
fluids too.

In the present paper the previous results are extended to the case where gravity effects are taken into account:
we give similar theorems concerning convergence and error estimates, and show that spurious modes do not arise,
but using a different approach to that in the above mentioned references. Indeed; the approach in those papers
could be extended to take into account the new terms in the variational formulation and the free boundary,
however it would only allow to prove non optimal order error estimates. Instead, we present an alternative
analysis leading to optimal orders of convergence. Furthermore, it allows to consider more complex geometries.
In particular, the case of fluid domains with interior angles of 27 is now covered. Thus the method can be used
to simulate the effect of very thin baffle-plates which are included in some liquid reservoirs to avoid excessive
sloshing.

Finally, we discuss implementation issues and present a numerical experiment showing the effectiveness of
the method. We compute the sloshing and the elastic modes of an elastic vessel containing a liquid with a free
boundary and estimate in both cases the orders of convergence.

2. THE MODEL PROBLEM

We consider the problem of determining the vibration modes of a linear elastic structure containing an
inviscid fluid. Our model problem consists of a 2D polygonal vessel filled with a fluid with an open boundary
as that in Figure 1.

Let Qp and Qg be the domains occupied by the fluid and the solid, respectively, which are not supposed to
be convex or simply connected; even interior angles of 27 are allowed. Let us denote by I', the boundary of
the fluid domain and by v its unit normal vector pointing outwards Qr. This boundary is split into two parts:
the interface between the solid and the fluid I', and the open boundary of the fluid I' ;. On the other hand,
the solid boundary is the union of three parts: the interface I';, I', and I'y; the structure is supposed to be
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Qs

FIGURE 1. Fluid and solid domains.

fixed along T, (measT', > 0 is assumed for simplicity) and free of stress along I';. Finally n denotes the unit
outward normal vector along I';.

Throughout this paper we use the standard notation for Sobolev spaces, norms and seminorms. We also
denote H(div, Q) := {u € L2(Qr)? : divu € L¥(Qr)} and |[u]lfa.00 = [l 2g0p) + | divul7a g, We
denote by C a generic constant not necessarily the same at each occurrence.

We use the following notations for the physical magnitudes in the fluid:

u: the displacement vector,
p: the pressure,

pe: the density,
¢: the acoustic speed,

and in the solid:

v: the displacement vector,
pg: the density,
A and ug: the Lamé coeflicients,
e(v): the strain tensor defined by £;(v) := 1 ‘gf’» + g—;’ﬂ- , 4,7 =1,2,
7 2
o (v): the stress tensor, which we assume is related to the strains by Hooke’s law:

2
0,y (V) = A Zekk(v)&j +2u8,5(v), 4,5 =1,2.
k=1

Gravity forces produce displacements in the solid v and prestresses 0° := o(v?). We are interested in small
amplitude motions departing from this prestressed equilibrium state. The classical linearization procedure yields
the following approximate expression for the first Piola-Kirchoff stress tensor 8 (see Chapter 6 of [17] or [16]):

0=0+Vvel + aijrier(V),

where v is the displacement field with respect to the prestressed equilibrium state.

In general, the second term on the right-hand side of the expression above may be neglected when compared
with the third one. Indeed, o is of the order of (psgL. + p°), with Lg a typical length of the structure and
p° the static pressure exerted by the fluid; this pressure is in its turn of the order of p.gL,, with L. a typical
depth of the fluid domain. In real problems the Lamé coefficients are very much larger than p.gL. and p gL,
allowing to neglect Vv o, what will be done in the rest of the paper.

We notice that the term Vv e can be very important in some other situations, mostly related to slender
or thin structures where reduced dimension models are used instead of the standard linear elasticity equations.
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Let us mention, for instance, the vibrations of an inflated rubber tire. However these cases are beyond the scope
of the present paper and they will not be considered.

The classical linearization procedure yields the following eigenvalue problem for the vibration modes of the
coupled system and their corresponding frequencies w (see, for instance, [17]).

Findw>0,u:Qr - R2%, v:Qg > R%2andp: Qr — R, (u,v,p) # (0,0,0), such that:

Vp —w?pu =0, in Qp, (2.1)

pFlc2p + diva =0, in Qp, (2.2)

div [o(v)] + w?psv = 0, in Qg, (2.3)
u-v—-v-v=_0, onl,, (2.4)
o(viv+pr=p.gk-vv- vy, onl', (2.5)
pegu-v —p=0, onl,, (2.6)

o(vin=0, onT', (2.7)

v =0, onl,. (2.8)

The coupling between the fluid and the structure is taken into account by equations (2.4) and (2.5) (in the
latter k := (0, 1) denotes the unit vertical vector). The first one means that fluid and solid are in contact at the
interface. The second one relates normal stresses of the solid on the interface with the pressure into the fluid
and gravity effects. Following Tong [21], the latter are modelled by the term in the right hand side of (2.5).
The problem with a perfectly incompressible fluid can be thought of as the limit case of the previous one as
¢ goes to inﬁnity In this case (2.2) could be replaced by the simpler condition divu = 0. In order to deal with
= 0 for an incompressible fluid (i.e., ¢ = 00). Thus (2.2) also

makes sense in this case. All what follows in thls paper is valid for ¢ = oo as well as for finite values of c.

3. VARIATIONAL FORMULATION

A similar problem was considered in [4], but for a closed vessel completely filled with fluid and neglecting
the gravity effects. In this section we extend the results in that reference to cover our problem. To this goal,
we introduce the functional spaces Q := L?(Qp), H := L?(Qp)? x L?(0s)? and

X :={(u,v) € H(div, ) x Hf_(Qs)”: u-v e L¥(T;)}, (3.1)
where H%D (Qs) is the subspace of functions in H!({2s) vanishing on I';. We denote by || - || the natural norm
on X:

2 2 fvll2 1/2
[ (0, V)| :== [”uHH(div,QF) + !lu'VI!L2(I"F) + ||V||H1(ns)2] . (3.2)

Let V be defined by
Vi={uv)eX:u-v=v- v, onl};

V is a closed subspace of X and, in this space, the norm (3.2) is equivalent to

, /
[lraiv.ae) + 10 l3aeyy + IV | - (3.3)

Finally, we denote by | - | the L? norm on H or on @, as corresponds.
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It is easy to check that the following is a mixed variational formulation of the eigenvalue problem (2.1-2.8):

Find A € R, (u.v.,p) € V x Q, {u,v,p) # (0,0,0), such that:

/a(v):e(¢)+/ ngu~u¢-udI‘—|—/ ppgk-vv v vdl — p dive
Qs T

o r, Qr

:A(/QFpFu.qSJr/QSpsv.z/J), Y(gp, ) eV, (3.4)

1
/ g divu+ — / pg=0, VYgegqQ, (3.5)
Qp PeC” JOp

F

where A = w? and o (v) : () := > =12 04 (V)€ij () denotes the usual inner product in the space of second
order tensors.

From now on, we make the following assumption which is always fulfilled in real problems, as it is shown in
the remark below:

Assumption 1. There exists a positive constant o such that

/QS a(v):e(v)+/F pogk-v (v v) dl“zoz/ﬂs OVE, Vv e HE (95). (3.6)

1

Remark 3.1. The previous assumption is readily satisfied in real situations. Indeed, from Korn’s inequality
we have that

/ o(v):e(v) > 'y/ iVv|?, Vv € H%D (Qs)?,

Qs Qs

with a positive constant vy of the order of the Lamé coefficients A; and pg. On the other hand,
‘/ ngk-l/(V~l/)2dF‘ §ngC/ IVvl|?, VVGH%D(QS)Q,
1 FI | s

with a constant C' coming from the Trace Theorem and Poincaré’s inequality; this constant is of the order of a

typical length L of the solid domain. In real problems, the Lamé coefficients are very much larger than p gL
allowing (3.6) to hold.

Let us now consider the following continuous bilinear forms:

d((u,v), (6,9)) = /Q,;Fu.¢+/n v b, (W), (6 9) € H,

0(@¥6.9) = [ o)+ [ pgu-veovar

(e}

+/F pegk v v wdl +d((u,v), (B %), (), (b P) e X,

1

b((u,v),q)

_/ qdivu> (u,V)EX, QEQ,
Qr
and the subspace of V

W:={(u,v) €V : b((u,v),q)=0,VegeQ}={(u,v) e V: divu=0}.
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The following lemma shows that the bilinear forms a and b satisfy both classical Brezzi’s conditions:

Lemma 3.1. The bilinear forms a and b satisfy:

i) a is coercive on W ;
1) there exists a strictly positive constant 3 such that

inf sup ﬂ——b ((w,v).9)

€Q (uviev | (w,v)|llg|
0 (3 o00)

2.

Proof. The coerciveness of ¢ in W is an immediate consequence of Assumption 1 and the fact that the norm
|| - |l in V is equivalent to that in (3.3).

On the other hand, to prove the inf-sup condition (ii) it is enough to show that, for all ¢ € @ = L?(Qp),
there exists (u,v) € V satisfying

divu=g¢ inQp and [[(u,v){| < Clql. (3.7

This can be shown by adapting the proof of Lemma 3.1 in [4] to our case. In fact, let Q = (Q, UQ,)°; let
G € L%*(9) be the extension of g obtained by defining

1

- q in Qg. 3.8
IQSI Qr ° ( )

q:=
Therefore, G € L§(Q?) := {g € L*(?) : [,q = 0}. Since div is an isomorphism of a subspace of [H(}(Q)]2 onto
LE(2) (see [12]), then there exists w € [Hj (Q)]2 such that
diVW = q~ in Q and “W”[Hl(n)}z S C ||q”L2(Q))

~with C independent of ¢g. Let u := wjq, and v := w|qg; hence; (u, v) € V and, since u-v = 0 on I, it clearly
satisfies (3.7). o

As a consequence of this lemma (see, for instance, [8]), given (f,g) € H, there exists a unique solution
(u,v,p) € V x Q of the mixed source problem

a((u,v),(9,%)) + b((9,9),p) = d((£,8), (¢, %)), V(¢ %) €V, (3.9)
b((u,v),q) — p:c2 /QF pg =0, VgeQ (3.10)

and, moreover,
(u, V)| +Ip| < C|(f,8)l, (3.11)

with a constant C independent of the acoustic speed ¢ (even for ¢ = 00).
Let us denote by T the operator defined by

T : H -—— VCH
(f,g) — (u,v)

with (u,v,p) being the solution of (3.9-3.10); because of (3.11), T is a bounded linear operator. Since the
bilinear forms a and d are symmetric, T is self-adjoint with respect to d. Hence all of its eigenvalues are real
and it is easily checked that they are non negative.
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On the other hand, (), (u,v)) is an eigenpair of T if and only if there exists p € L2?(Qr) such that
(% —1,(u,v,p)) is a solution of (3.4-3.5). Therefore, the knowledge of the spectrum of T gives complete
information about the solutions of our original problem.

4. CHARACTERIZATION OF THE SPECTRUM AND A PRIORI ESTIMATES

Given any function u € H(div,Qr) with divu =0and u-v =0, (u,0,0) € V x Q is an eigenfunction of
problem (3.4)-(3.5) associated with the eigenvalue A = 0. Equivalently, A = 1 is an eigenvalue of T and it is
shown below that

K:={(u,0): ue H(div,Qf), divu=0inQp and u-vr=00onT.}
is the corresponding eigenspace. The following characterization (see [12]),
K = {(curl¢,0): E€ H L(Qr) and ¢ is constant on each connected component of .},

shows that this eigenspace consists of rotational motions of the fluid inducing neither vibrations in the solid nor
variations of pressure.

Theorem 4.1. X\ =1 is an eigenvalue of T with eigenspace K.

Proof. It is a simple variation of that of Theorem 3.1 in [4]. In fact, for all (u,0) € K, clearly T(u,0) = (u,0).
Conversely, let (u,v) € V such that T(u,v) = (u,v); then,

/ a(v):s('(/;)—{—/ ngu-uq_’)-udI‘—l-/ ngk-uv-u¢-udF~/ pdive =0, Y(o, ) €V,
Qs r r

o I Qp

1
—/ gdivu — 2/ pg=0, Vqe€Q.
Qr PeC” Jag

Hence, diva = —ﬁp in Qp and then, by using (¢, %) = (u,v) in the first equation,
F

/QSO'(V)H-:(VH/F ng(u‘v)2dr+/ pegk-v(v-v)2dl + 12/QFp2:o,

C
o r, Pr

Therefore, because of Assumption 1, and the fact that v vanishes on ', we have that v = 0 in Q5. Moreover,
u-v =0 onTI, and, in the compressible case, p = 0. Then, in both cases, u satisfies divu = 0 in Qp and
u-v =0o0nT,, and hence (u,v) € K. |

Because of the previous theorem, T is the identity on the infinite dimensional subspace K; therefore T is not
compact. However, as we show below, the restriction of T to the orthogonal complement of K is compact and
this can be used to characterize the spectrum of T.

The orthogonal complement of K in H is given by (see [12]):

K*u = {(Vy,v) eH: p € H (), v € L*(Qs)?}.

Since p,, is constant on Qp, K and K-u are also orthogonal with respect to the bilinear form d. Now K C V;
let G denote the orthogonal complement of K in V. It is easy to check that G := K*v = K11 NV and that
K and G are also orthogonal with respect to d. Hence we have the following lemma and, as a consequence of
it, G is an invariant subspace for T.

Lemma 4.1. It holds that T(K*n) C G.
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Proof. Since by Theorem 4.1, K is an invariant subspace for T, the lemma is an immediate consequence of the
orthogonality of K and K+u with respect to d and the self-adjointness of T with respect to this inner product.
O

On the other hand, we have the following a priori estimate for T(K*u ):

Lemma 4.2. There exist constants s € L%’ 1] and C > 0 (not depending on ¢) such that if (u,v,p) € V X Q is
the solution of problem (3.9)-(3.10) with (f,g) € K u, then u € H(Qp)?, u-v € HY2(T), p € H(Qr) and

lullgs(@e)> + la- vl ) + IplE @) < CI(E 8)l-

Proof. Let (f,g) € K+u and let (u,v,p) € V x Q be the solution of problem (3.9-3.10). By using ¢ € C$°(Qr)?
and ¥ = 0 in (3.9), it turns out that

Vp+ p.u=p.f. (4.1)
Hence p € H'(Qr) and, because of (3.11),
ol 2 (0e) < CI(E, 8)I- (4.2)

On the other hand, by using ¢ € C>(£,.)? such that supp(¢) NI, = 0 and % = 0, integrating by parts and
using (4.1), we obtain

/ngu~u¢)-udF=/ p¢-vdl.
T

(o) I\O
Hence, p,gu-v =pon 'y and so

1 )
[w- vl ) < 'p—qHPHHl(QF) <C|(f,g)l (4.3)
Now, because of Lemma 4.1, (u,v) € G and then there exists ¢ € H!(2r) such that u = V. Sinceu-v=v-v
on T, and, because of (3.10), divu = —ﬁp, then ¢ is a solution of the compatible Neumann problem:
F
1 .
Ay = —p, O,
PrC
7] 1
¥ - —D, onT'y,
gv Px9
8—f = Vv, onI').

By using the standard a priori estimate for this Neumann problem (see, for instance, [13]) we know that
@ € H'**(Qp), where s = 1 if Qp is convex, and s = 7/ (@ being the biggest reentrant corner of Q) otherwise;
moreover,

J

. 1 1
Mull e apyz = VOl s gy < C Z v vz, + p—EHPHHl/?(rO) + ﬁ”l’”m(ﬂp) <Cl(f,g)l, (44)
7=1 F F

where we have used (3.11) and (4.2) for the last inequality (I';, 1 < j < J, denote the edges of the polygonal
interface I';). Notice that the last constant C' can be chosen independently of the value of ¢, for ¢ bounded
below away from zero. Thus, (4.2), (4.3) and (4.4) allow us to conclude the lemma. O

Now we can give a complete characterization of the eigenpéirs of T and hence of the solutions of (3.4-3.5).
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Theorem 4.2. Fzcept for A = 0, the spectrum of T consists of the eigenvalue A\ = 1 and o sequence of
finite multiphcity ewgenvalues {A, : n € IN} C (0,1) converging to 0. K 1s the eigenspace of A = 1 and each
ewgenfunction (U, vy,) associated with an eigenvalue A, € (0,1} satisfies curlu, = 0.

Proof. Tt is an immediate consequence of Theorem 4.1, Lemmas 4.1 and 4.2 and the fact that, for s > 0,
H3(Qp)? x H(Qs)? is compactly embedded in H. O

In order to prove error estimates for the discretization to be introduced in the next section, further regularity
of the eigenfunctions associated with A, € (0,1) is needed. Lemma 4.2 provides such regularity for the fluid
displacements and the following Lemma for the solid ones.

Lemma 4.3. There exist constantst € (0,1] and C > 0 such that of (u,v,p) € V x Q 15 the solution of problem
(3.9)-(3.10) wnth (f,g) € Ktu, then v € H**(05)? and

[Vl s)2 < CI(E, 8)-

Proof. For any ) € HII«D (Qs)? let ¢ € H(div,Qr) be such that (¢,1) € V. Then, by using (3.9) and (4.1),
we obtain

/Qso'(v):é:(l/))—}/rlngk'l/v~1/1,b'l/dI“—{—/Qspsvw/):/Qspsg“l,b—i-/r p-vdl, \/@bEH%D(Qs)Z.

1

Hence, v is the solution (in the sense of distributions) of the following elasticity problem:

—div [o(V)] +psv = pg8, in g,
oc(viv = (~p+p.gk-vv- v, onT,
o(vin = 0, only,

v = 0, onl',.

Therefore, according to [13], we know that v € H'*%(Qg)?2, with ¢ € (0, 1] depending on the reentrant corners
of 0, on the angles between I, I', and I';, and on the Lamé coefficients Ay and pg, and

J

||V||H1+t(ﬂs)2 <C Ps||gHL2(QF)2 + ||P||H1/2(r1) + PFQZ l|v - V||H1/2(r,) < C|(f,g)l,
1=1

concluding the lemma. O
Finally, further regularity can be proved for the eigenfunctions of our problem:

Theorem 4.3. Let (u,v) be an ewgenfunction of T associated with an eigenvalue A € (0,1). Let p € Q be
such that (u,v,p) 15 the corresponding ewgenfunction of (3.4)-(3.5). Thenu € H*(Qp)?, u-v € H1/2+S(I‘O),
v E H1+t(Qs)2, pE H1+S(QF) and

;IUHHS(QF)2 + - Vi|H1/2+s(ro) + HPHHHS(QF) + HVHH1+t(Qs)2 < Cl(u,v)l,
with s and t as mn Lemmas 4.2 and 4.3, respectwely, and C not depending on c.

Proof. Since A\ # 1, because of Theorem 4.2, (u,v) € G. Now, (u,v,p) is the solution of problem (3.9
3.10) with (f,g) = %(u, v) € G C K—u. Therefore, Lemmas 4.2 and 4.3 apply. Moreover, because of (4.4),
Vp+peu = Ap.u; 50, p € H'¥(Qp) with ||p|| gr+s(q,) < C|(u,v)|. Finally, as shown in the proof of Lemma 4.2,






