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HOMOGENIZATION OF THE CRITICALITY SPECTRAL EQUATION
IN NEUTRON TRANSPORT

GRÉGOIRE ALLAIRE1 AND GUILLAUME BAL 2

Abstract. We address the homogenization of an eigenvalue problem for the neutron transport équa-
tion in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We
prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factor-
ized in the product of two terms, up to a remainder which goes strongly to zero with the period. One
term is the first eigenvector of the transport équation in the periodicity cell. The other term is the
first eigenvector of a diffusion équation in the homogenized domain. Furthermore, the corresponding
eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem.
This resuit justifies and improves the engineering procedure used in practice for nuclear reactor cores
computations.

Résumé. On considère l'homogénéisation d'un problème aux valeurs propres pour l'équation du
transport neutronique dans un milieu hétérogène périodique qui modélise l'étude de la criticité d'un
cœur de réacteur nucléaire. On démontre que le flux neutronique, correspondant à l'unique premier
vecteur propre, peut se factoriser en un produit de deux termes, à un reste près qui tend vers zéro
avec la période. Un des termes est le premier vecteur propre de l'équation du transport dans la cellule
de périodicité. L'autre terme est le premier vecteur propre d'une équation de diffusion dans un milieu
homogénéisé. De plus, la valeur propre correspondante est un correcteur du deuxième ordre pour la
valeur propre du problème de transport hétérogène. Ce résultat justifie et améliore les formules utilisées
en pratique par les ingénieurs pour le calcul des cœurs de réacteurs.

AMS Subject Classification. 35B27.

Received: February 17, 1998. Revised: July 8, 1998.

1. INTRODUCTION

The power distribution in a nuclear reactor core is usually determined by solving a transport équation for
the neutron flux. In many practical situations in reactor analysis, only a steady-state solution is required,
and the time variable is eliminated. The steady équation is of a non-standard type since the source term is
itself a fonction of the solution (neutrons are produced by fission which itself is triggered by other neutrons
in a chain reaction). This time-independent transport équation is a linear eigenvalue problem which is called
the criticality problem for the neutron transport équation. It expresses the balance between the production
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of neutrons by fission and its absorption or scattering in the reactor core and leakage at the boundary. The
unknowns are not only the neutron flux 4>(xy v)7 which is the neutron density at point x with velocity -u, but also
the positive ratio &eff (the so-called multiplication factor) which measures the balance between the production
and removal of neutrons. More precisely, (4>(x, v), &eff ) is a couple of eigenvector and eigenvalue for a transport
équation. Since only positive densities have a physical meaning, the only relevant solution turns out to be the
fîrst positive eigenvector (positive and unique up to a multiplicative constant). Therefore, <p(x,v) is the first
eigenvector and l/fceff is the smallest eigenvalue satisfying the following équation

y- V4> + Z(x,v)<f>= / f{x,v',v)(j){x,vf)àvf + -— / <j(x,vf ,v)<j>(x,vf)àvf (1)
JV &eff JV

with appropriate boundary conditions in a convex bounded open set Q C IR^ and with a compact velocity space
V C MN. The coefficients in (1) are called cross sections: £ is the total (or absorbing) cross section, ƒ is the
scattering cross section, and a is the fission cross section.

The interprétation of the multiplication factor kes is as follows (for details, see e.g. [12,15,27]): if it is equal to
1, there is a perfect balance between production and removal of neutrons and the reactor is said to be critical;
if it is larger than 1, then too many neutrons are produced and the reactor is super-critical (it can operate
only if absorbing control rods are introduced in the core); if it is smaller than 1, then not enough neutrons are
produced and the reactor is sub-critical (the fission chain reaction dies out). On the other hand the solution
4>(x,v) of (1) indicates the relative power distribution in the core. Remark that, since it is an eigenvector,
(f)(x,v) is defined up to a multiplicative constant, and therefore the total power in the core is not given by the
criticality problem (1).

Solving numerically the eigenvalue problem (1) in a whole nuclear core is still a challenge with modem com-
puters, even in two space dimensions. One striking reason is that nuclear cores, defined through the cross section
S, ƒ and a, are highly heterogeneous, asking for a very fine mesh. However, the periodic structure of many
usual cores allows for first homogenizing the transport équation, and then solving numerically the homogenized
problem. In practice the homogenized problem is a diffusion équation with slowly varying coefficient, which is
much easier to solve numerically. This homogenization problem has been widely addressed in the past forty
years in physics (see e.g. [10,12,15]) as well as in mathematics (see e.g. [11,20,21,27,29]). In the physical
and mathematical literature the methodology is always the same: the neutron flux <p(x,v), solution of (1), is
factorized as the product of two terms

<f>(x,v) = i/)(x,v)u(x),

where ip(x,v) is the solution of the so-called infinité medium transport équation, and u(x) is the solution of
an homogenized diffusion équation. The infinité medium transport équation is the same criticality spectral
équation than (1), but posed in a single periodicity cell with periodic boundary conditions. On the other hand,
the homogenized diffusion équation is also a spectral problem posed in the whole core (much simpler than (1)
since it does not involve a velocity variable). The macroscopic diffusion flux u(x) gives the rough shape of the
true flux <f>(x,v), while the microscopic transport flux ip(x}v) corresponds to the local oscillations of the true
flux. This factorization procedure is at the basis of most numerical computations of reactor cores. Of course, a
crucial problem for engineers is to know how to compute the homogenized coefficients for the diffusion équation
(there are many available formulas, see for example the so-called Benoist formula in Rem. 3.3).

In this paper we rigorously justify this factorization principle for a periodic domain. We also furnish formulas
for the homogenized diffusion coefficients and an asymptotic expansion for the criticality eigenvalue l/fceff (see
Th. 3.1). Our homogenization formulas differ from those in the physical literature, but coincide with those found
by Larsen [20,21]. There are two main différences between the works of Larsen and ours. First, Larsen studied
a time-dependent transport équation instead of the spectral problem (1) with an assumption of local criticality
on the cross-sections. Second, following his previous work with Keiler [22], he uses formai two-scale asymptotic
expansions to dérive a homogenized limit, without rigorous convergence theorem. Of course, the geometrical
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assumption of periodicity is hardly satisfied by modern reactors. However, it is up to now essentially the only
case where homogenization can be rigorously justified either physically or mathematically. The treatment of
heterogeneous cores with different types of assemblies (ie. with a slowly varying periodicity cell) is the subject
of active current research. The factorization principle is not so clear in this case (see Rem. 3.5) and boundary
layers may appear between different cells. However, under further assumptions, we expect that a suitable
generalization of our approach will succeed also for a piecewise periodic core.

We now discuss our scaling assumptions for homogenizing the spectral transport équation (1). As usual,
the unit periodicity cell is denoted by Y = (0, l)N. The reactor core is a bounded domain Q. Assuming that
Q is periodic, we dénote by e > 0 the periodicity of the heterogeneities in Q,. Since the size of the domain is
independent of e, Q, is composed of the order of e~N periodicity cells of the type eY = (0,e)N. Homogenization
is an asymptotic analysis as the small parameter e goes to 0, or equivalently as the number of cells grows up
to infmity. Since e is the size of the periodicity cell and the physical unit of cross sections is the inverse of a
length, one must carefully scale the cross sections in terms of e. The mean free path of the neutrons is physically
independent of the number of unit cells in the core; therefore it must remain of the same size as the unit cell.
Accordingly, in order to perform a consistent asymptotic analysis we have to scale all cross sections to be of the
order of l/e. Therefore, introducing X£ — l/&eff) équation (1) is replaced by the following séquence of criticality
problems

sv • V0e + Yi
e(x,v)4>e = / f£(x, v', v)<j>e(x, v/)dv/ + X£ I a£(x, v', v)(j)£(xJ v

/)dv/ in Q, x V , .
Jv Jv \z)

(j>£ = 0 on T_ = {(z, v) G dÜ x V | v • n(x) < 0},

where the cross sections are periodic functions given by

with E, ƒ and a positive Y-periodic functions of the space variable, and independent of e (see section 2 for more
detailed assumptions). The absorbing boundary condition in (2) expresses that no particles enter the core. This
statement is physically valid as a first approximation. It can be shown (at least formally) that the addition of
a dissipative reflector around the core merely modifies the neutron density by an amount of the order of e.

The paper is organized as follows. In the next section basic mathematical properties of problem (2) are
recalled, concerning the existence and regularity of its solutions when e is fixed. It also encompasses the criticality
eigenvalue problem with periodic boundary conditions. Section 3 is devoted to a detailed présentation of our
main results concerning the homogenization of (2). It includes the factorization of the neutron flux and a second
order asymptotic expansion for the associated eigenvalue. The proofs of these results are given in Sections 4
and 5. More precisely, Section 4 focuses on a priori estimâtes for a source problem associated with (2), while
Section 5 is concerned with the proof of the homogenization process, using the two-scale convergence method.
Finally, Section 6 contains some corrector results and numerical computations for assessing our homogenization
theorem. Our results have been announced in [3]. Similar homogenization theorems have been proved for the
criticality spectral problem when using a diffusion model instead of our transport équation [4,5,24]. In different
contexts, various homogenization results have been obtained for transport équations (see e.g. [1,16,17,19]).

2. EXISTENCE AND REGULARITY RESULTS FOR EIGENVALUE PROBLEMS IN TRANSPORT

The goal of this section is to establish some results concerning the existence and the regularity of eigenvalues
and eigenvectors for our model of neutron transport. Although the following theorems are mostly variations of
previously known results, to the best of our knowledge they have not appeared elsewhere. Since they are the
starting point of our analysis in the next sections, we include them in this paper for the sake of completeness.
Most of the proofs below are merely sketched and we refer to the thesis of the second author [7] for complete
details. The reader who is willing to accept such results can safely skip this section in a first pass.
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We first give the detailed assumptions on the phase space and the coefficients of the transport équation that
are used throughout this paper.

(Hl) The domain O is a convex bounded open set.

(H2) The velocity space y is a compact subset of WLN which does not contain 0. Furthermore V is assumed to
be the closure of an open set, and its JV-dimensional measure is normalized to have |V| = 1.

(H3) The cross-sections S(y,v), f(y,v\v), &{y,vf,v) are measurable positive bounded functions of their argu-
ments and there exists a positive constant C > 0 such that, for a.e. (y,v,vf)^

a(y}v\v) > C(
t ; ) - f f{y,v\v)Ao' > C

Jv

, t ; ) - / f(y,v,v')dv' > C.
Jv

(H4) Denoting by Y = (0,1)^ the unit cube, the cross-sections E(y,v), /(y,t/ ,ü), a(y1v\v) are Y-periodic
functions with respect to the space variable y.

Assumption (Hl) is somehow classical: the convexity of O ensures that the boundary condition is physically
relevant, ie . that the trajectory of an outgoing neutron does not enter again in ft. The first part of (H2) implies
that only finite non-zero velocities are considered. Physically, it means that all neutrons either interact with
the media (by absorption or scattering) or leave the domain in a finite non-zero time. The second part of (H2),
namely that it is the closure of its interior, is a mathematical convenience which allows to define distributions
and Sobolev spaces on V (see Chap. 21 in [14]). Actually all results presented here can easily be extended to
the multi-group case, ie . when V is the union of a finite number of sphères centered at the origin. Remark that
in both cases V is not reduced to a subset of a hyper-plane of RN, which ensures that a diffusion approximation
of transport makes sense.

The first part of assumption (H3) gives the natural functional framework for the coefficients (ie. they belong
to L°°(Y x F)). Indeed, nuclear reactor cores are heterogeneous domains with merely bounded discontinuous
cross sections. The second part of (H3) implies that fission occurs everywhere in the phase space and that there
is always a net absorption (ie. the différence between total absorption and scattering is positive).

Finally the periodicity assumption (H4) is crucial for the homogenization procedure. In particular our
results do not hold true any longer if the cross-sections are the product of periodic functions with macroscopic
modulations, for example T,(xy x/e^v) with a Y-periodie function E(a:,y,tj). Let us mention however that small
perturbations of order e2 of the cross sections can be allowed (for example, T,(x/e,v) + e2T,f(x1x/eJv)). This
yields a non essential generalization of the results presented here (see [7]).

Remark 2.1. Assumption (H3) is not completely satisfactory since it implies that fission occurs everywhere,
which is certainly not the case in the moderator around the fuel rods. Fortunately, one can replace the first
inequality of (3) by the following one

<7{y,v\v) + f(y,v',v)>C, for a.e. (y,v,vf),

with a > 0 and a ^ 0. This implies merely that fission plus scattering is positive everywhere. Up to some easy
technicalities, all our results hold true also with this more physical assumption.

Introducing the Hilbert space

W2(ü x V) = {u e L2(Q x V) s.t, v-VuZ L2(tt x Y)}, (4)
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a first existence resuit is the following

Theorem 2.2. The spectral problem (2) has at most a countable number of eigenvalues and of associated
eigenvectors which belong to W2{Q, x V). Furthermore, there exists a real and positive eigenvalue, of smallest
modulus, with multiplicity one, and such that its associated eigenvector be the unique (up to a multiplicative
constant) positive eigenvector of (2).

The proof of Theorem 2.2, which is in the spirit of other results in Chapter 21 of [14], can be found in [7].
It uses two main arguments. First, the solutions of (2) are shown to be the eigenvalues and eigenvectors of
a positive compact operator in L2(Q x V), which implies that there are at most a countable number of them
(possibly complex and finitely many of them). The compactness is a conséquence of assumption (H3) on the
cross-sections and of the velocity averaging lemma of [18] (or similar compactness result in [25]). Second, the
Krein Rutman theory of positive operators asserts that the spectral radius of this compact operator is a simple
eigenvalue and that the corresponding eigenvector is positive. As a conséquence of Theorem 2.2, only the first
eigenvector of (2) has a physical meaning since, being positive, it can indeed model a density of neutrons.

As we shall see in the sequel, the asymptotic behavior of the eigenvectors of (2) is partly governed by the first
eigenvector of another eigenvalue problem, similar to (2), the so-called infinité medium criticality eigenvalue
problem. It is defined by the same équation as (2) but posed in the whole space RN, which after rescaling is
reduced to an équation posed in the unit cell Y with periodicity boundary conditions. Denoting by Aoo and ip
its first eigenvalue and eigenvector, the infinité medium problem is defined in Y x V by

)ip = / f {y, v\v)ilj(y, vf)dvf + \oo I a(y,vf,v)ip(y,vf)dvf
 ( .

Jv Jv \°)
y —> ̂ >(y, v) Y — periodic.

We shall also need an adjoint problem of (5) which has the same first eigenvalue Àoo with a different first
eigenvector ip*. Introducing the adjoint cross-sections f*(y,vf

}v) — f(yivyv
/) and cr*(y,v',i;) — a(y,v,v') this

adjoint problem is defined by

{ —v • Vy^* + E(y»v)^* = ƒ f*{y,v ,v)ip*(y,v )dv + Aoo / cr*(y,t> ,v)ij)*(y,v )dv
Jv Jv

y —» ip*(y,v) Y — periodic.

( 6 )

For problems (5, 6), only the first eigenvalue and eigenvector are used in the sequel. As usual they are defined
up to a multiplicative constant, but as a corollary of Theorem 2.2 we can choose them positive (therefore they
properly model the neutron flux in an infinité periodic medium).

Theorem 2.3. There exists a common eigenvalue A^ for both problems (5, 6) which is real positive, of smallest
modulus, with multiplicity one, and such that its associated eigenvectors ip and ip* be positive éléments of
W2(YxV).

Since the smallest eigenvalue A^ is simple, we easily deduce from the classical Fredholm alternative for
compact operators the following

Proposition 2.4. Let A^ and ip be the first eigenvalue and eigenvector of (5). Let S(y,v) be a source term in
L2(Y x V). There exists a solution y{y,v) G W2(Y x V) of

v - Vytp H- H(y,v)(p ~ I f(y,v\v)(p(y1v
/)dv/-\-\ool o~(y,vf<>v)ip(y1v

/)dv' + S(y,v)
Jv Jv

y ~> <p(y, v) Y — periodic

if and only if S is orthogonal to the first eigenvector ip* of (6), i.e. S satisfies the compatibility condition

/ / S(y,v)ip*(y,v)dydv = 0.
JY JV
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Furthermore, if it exists, the solution tp is unique up to the addition of a multiple ofip.

Finally, in the next section the first eigenvectors ip and if)* are required to be bounded from above and below
by positive constants. This is the purpose of the next Proposition which is based on averaging lemmas [18] and
Sobolev inequalities.

Proposition 2.5. Let ip and ip* be the first positive eigenvectors of prohlems (5) and (6), respectively. There
existe two positive constants C' > C > 0 such that, for a.e, (y,v)7

0 < C < tp(y,v) <C' and 0 < C < ip*(y,v) < C'.

Proof. To simplify the notations, we recast both problems (5) and (6) as follows (this is possible thanks to
assumption (H3)). Let (p(x,v) be a non-zero positive solution in W2(Y x V) of

{ f
v - V(p + H(xjv)(p = / aoo(xJv

/\v)(p(xJv')dv/ in Y x V { ,

Jv v)
x —ï (p(x, v) Y — periodic,

where T, and <7oo are L°° functions which satisfy

Ex > E(x,v) > So > 0 , ai > aoo(x,v\v) > a0 > 0 a.e. in Y x V x V.

Let us define two functions g and (p by
g(x,v)= / aoo(x,vf,v)(p(x,vf)dvf, (p{x) = / (p(x,v)dv.

Jv Jv

From these définitions, we easily deduce that

ao(p(x) < g{x,v) < crxtpix). (8)

Furthermore, integrating équation (7) along its characteristics leads to

g(x - $v, v)e~T>lSds < <p(x, v) < / g(x — sv} ^)e~S o Sds. (9)

Jo
Here the functions defined onYxV have been extended to WLN x V by periodicity. If we can prove that <p(x)
and l/<p(x) belong to L°°(Y), then we deduce from (8) that g(x,v) and l/g(x,v) belong to L°°(Y x V), and
from (9) that tp(x,v) and l/(p(xiv) belong to L°°(Y x F), which is the desired result.

We divide the proof that <p(x) is bounded from below and above in two steps: first we show that (p{x) belongs
to any LP(Y) with 2 < p < +oo, and second we show that <p(x) and l/<p(x) belong to L°°(Y).

The first step relies on the following averaging lemma [18]. If tp and v • Vip belong to LP(Y x V) for
2 < p < oo, then <p(x) belongs to WS^{Y) for all 0 < 5 < l/p; WSiP{Y) is the Sobolev space of functions whose
fractional s-derivative belongs to LV{Y). By the well-known Sobolev embedding theorem, WS'P(Y) C Lq(Y)
with q = Np/{N — sp), and therefore <p(x) G Lq(Y). In other words, we have

Nn
ip and v • V(p e LP(Y x V) => ip e Lq(Y) with p < q < —- (10)

As a conséquence of inequality (8), (p € Lq(Y) implies that g E Lq(Y x V), and this is a standard result in
transport theory that, if the source term g belongs to Lq(Y x V), then the solution <p of équation (7) belongs
to Wq(Y x V) = {u e Lq(Y x V) s.t. v - Vu G Lq(Y x V)}. By assumption, we know that tp e W2(Y x V).
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Using the regularity result (10) and a bootstrap argument, we therefore deduce that (p belongs to any LP(Y)
with 2 < p < -hoo.

The second step uses assumption (H2) which implies that V is included in a corona C defined by its radii
0 < vmm < fmax < +oo

V cC = {veWLN s.t. 0 < t;min < \v\ < umax}-

Integrating (9) over V and using (8) yields

(f(x) <ai e~^oS(p(x - sv)dsdv,
Jv Jo

Since V C C the change of variables y = x — sv from polar to Cartesian coordinates leads to

where C is a positive constant which dépends on vmin and z;max but not on <p. By Hölder inequality, for any
7] > 0 there exists a positive constant C^ such that

<p{x) < c ( f

since \/\y - x\N~x belongs to LP(Y) for any 1 < p < J^J- We already know that (p belongs to LN+V(Y) for
positive 7/, therefore we deduce that <p, and consequently y?, is bounded. To show that \/(p belongs to. L°°(y),
we use a symmetrie argument. By assumption (H2) the interior of V is non-empty. In particular, there exists
a velocity ô and a parameter 8 > 0 such that the following angular sector S is included in V

KI
Integrating again (9) over V and using (8) gives

/ /
Jv Jo

f: fa° / / ^~Y;iS(f(x — sv)dsdv < <p(x).
Jv Jo

Since S CV the change of variables y = x - sv from polar to Cartesian coordinates leads to

fLCL
where Cs C '$LN is the infinité cone of origin x defined by {x + sv s.t. s G M+,z; G S}. Clearly, at a possibly
large, but finite, distance of x, this cone contains at least one periodicity cell Y. Hence there exists a positive
constant C > 0 such that

C f <p(y)dy < <p(x).
JY

By hypothesis, (p is non-zero and positive in L2(Y x V). Therefore, fY (p{y)dy > 0 which provides us with a
lower bound for ip. •


