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HOMOGENIZATION OF THE CRITICALITY SPECTRAL EQUATION
IN NEUTRON TRANSPORT

GRÉGOIRE ALLAIRE1 AND GUILLAUME BAL 2

Abstract. We address the homogenization of an eigenvalue problem for the neutron transport équa-
tion in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We
prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factor-
ized in the product of two terms, up to a remainder which goes strongly to zero with the period. One
term is the first eigenvector of the transport équation in the periodicity cell. The other term is the
first eigenvector of a diffusion équation in the homogenized domain. Furthermore, the corresponding
eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem.
This resuit justifies and improves the engineering procedure used in practice for nuclear reactor cores
computations.

Résumé. On considère l'homogénéisation d'un problème aux valeurs propres pour l'équation du
transport neutronique dans un milieu hétérogène périodique qui modélise l'étude de la criticité d'un
cœur de réacteur nucléaire. On démontre que le flux neutronique, correspondant à l'unique premier
vecteur propre, peut se factoriser en un produit de deux termes, à un reste près qui tend vers zéro
avec la période. Un des termes est le premier vecteur propre de l'équation du transport dans la cellule
de périodicité. L'autre terme est le premier vecteur propre d'une équation de diffusion dans un milieu
homogénéisé. De plus, la valeur propre correspondante est un correcteur du deuxième ordre pour la
valeur propre du problème de transport hétérogène. Ce résultat justifie et améliore les formules utilisées
en pratique par les ingénieurs pour le calcul des cœurs de réacteurs.
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1. INTRODUCTION

The power distribution in a nuclear reactor core is usually determined by solving a transport équation for
the neutron flux. In many practical situations in reactor analysis, only a steady-state solution is required,
and the time variable is eliminated. The steady équation is of a non-standard type since the source term is
itself a fonction of the solution (neutrons are produced by fission which itself is triggered by other neutrons
in a chain reaction). This time-independent transport équation is a linear eigenvalue problem which is called
the criticality problem for the neutron transport équation. It expresses the balance between the production
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of neutrons by fission and its absorption or scattering in the reactor core and leakage at the boundary. The
unknowns are not only the neutron flux 4>(xy v)7 which is the neutron density at point x with velocity -u, but also
the positive ratio &eff (the so-called multiplication factor) which measures the balance between the production
and removal of neutrons. More precisely, (4>(x, v), &eff ) is a couple of eigenvector and eigenvalue for a transport
équation. Since only positive densities have a physical meaning, the only relevant solution turns out to be the
fîrst positive eigenvector (positive and unique up to a multiplicative constant). Therefore, <p(x,v) is the first
eigenvector and l/fceff is the smallest eigenvalue satisfying the following équation

y- V4> + Z(x,v)<f>= / f{x,v',v)(j){x,vf)àvf + -— / <j(x,vf ,v)<j>(x,vf)àvf (1)
JV &eff JV

with appropriate boundary conditions in a convex bounded open set Q C IR^ and with a compact velocity space
V C MN. The coefficients in (1) are called cross sections: £ is the total (or absorbing) cross section, ƒ is the
scattering cross section, and a is the fission cross section.

The interprétation of the multiplication factor kes is as follows (for details, see e.g. [12,15,27]): if it is equal to
1, there is a perfect balance between production and removal of neutrons and the reactor is said to be critical;
if it is larger than 1, then too many neutrons are produced and the reactor is super-critical (it can operate
only if absorbing control rods are introduced in the core); if it is smaller than 1, then not enough neutrons are
produced and the reactor is sub-critical (the fission chain reaction dies out). On the other hand the solution
4>(x,v) of (1) indicates the relative power distribution in the core. Remark that, since it is an eigenvector,
(f)(x,v) is defined up to a multiplicative constant, and therefore the total power in the core is not given by the
criticality problem (1).

Solving numerically the eigenvalue problem (1) in a whole nuclear core is still a challenge with modem com-
puters, even in two space dimensions. One striking reason is that nuclear cores, defined through the cross section
S, ƒ and a, are highly heterogeneous, asking for a very fine mesh. However, the periodic structure of many
usual cores allows for first homogenizing the transport équation, and then solving numerically the homogenized
problem. In practice the homogenized problem is a diffusion équation with slowly varying coefficient, which is
much easier to solve numerically. This homogenization problem has been widely addressed in the past forty
years in physics (see e.g. [10,12,15]) as well as in mathematics (see e.g. [11,20,21,27,29]). In the physical
and mathematical literature the methodology is always the same: the neutron flux <p(x,v), solution of (1), is
factorized as the product of two terms

<f>(x,v) = i/)(x,v)u(x),

where ip(x,v) is the solution of the so-called infinité medium transport équation, and u(x) is the solution of
an homogenized diffusion équation. The infinité medium transport équation is the same criticality spectral
équation than (1), but posed in a single periodicity cell with periodic boundary conditions. On the other hand,
the homogenized diffusion équation is also a spectral problem posed in the whole core (much simpler than (1)
since it does not involve a velocity variable). The macroscopic diffusion flux u(x) gives the rough shape of the
true flux <f>(x,v), while the microscopic transport flux ip(x}v) corresponds to the local oscillations of the true
flux. This factorization procedure is at the basis of most numerical computations of reactor cores. Of course, a
crucial problem for engineers is to know how to compute the homogenized coefficients for the diffusion équation
(there are many available formulas, see for example the so-called Benoist formula in Rem. 3.3).

In this paper we rigorously justify this factorization principle for a periodic domain. We also furnish formulas
for the homogenized diffusion coefficients and an asymptotic expansion for the criticality eigenvalue l/fceff (see
Th. 3.1). Our homogenization formulas differ from those in the physical literature, but coincide with those found
by Larsen [20,21]. There are two main différences between the works of Larsen and ours. First, Larsen studied
a time-dependent transport équation instead of the spectral problem (1) with an assumption of local criticality
on the cross-sections. Second, following his previous work with Keiler [22], he uses formai two-scale asymptotic
expansions to dérive a homogenized limit, without rigorous convergence theorem. Of course, the geometrical
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assumption of periodicity is hardly satisfied by modern reactors. However, it is up to now essentially the only
case where homogenization can be rigorously justified either physically or mathematically. The treatment of
heterogeneous cores with different types of assemblies (ie. with a slowly varying periodicity cell) is the subject
of active current research. The factorization principle is not so clear in this case (see Rem. 3.5) and boundary
layers may appear between different cells. However, under further assumptions, we expect that a suitable
generalization of our approach will succeed also for a piecewise periodic core.

We now discuss our scaling assumptions for homogenizing the spectral transport équation (1). As usual,
the unit periodicity cell is denoted by Y = (0, l)N. The reactor core is a bounded domain Q. Assuming that
Q is periodic, we dénote by e > 0 the periodicity of the heterogeneities in Q,. Since the size of the domain is
independent of e, Q, is composed of the order of e~N periodicity cells of the type eY = (0,e)N. Homogenization
is an asymptotic analysis as the small parameter e goes to 0, or equivalently as the number of cells grows up
to infmity. Since e is the size of the periodicity cell and the physical unit of cross sections is the inverse of a
length, one must carefully scale the cross sections in terms of e. The mean free path of the neutrons is physically
independent of the number of unit cells in the core; therefore it must remain of the same size as the unit cell.
Accordingly, in order to perform a consistent asymptotic analysis we have to scale all cross sections to be of the
order of l/e. Therefore, introducing X£ — l/&eff) équation (1) is replaced by the following séquence of criticality
problems

sv • V0e + Yi
e(x,v)4>e = / f£(x, v', v)<j>e(x, v/)dv/ + X£ I a£(x, v', v)(j)£(xJ v

/)dv/ in Q, x V , .
Jv Jv \z)

(j>£ = 0 on T_ = {(z, v) G dÜ x V | v • n(x) < 0},

where the cross sections are periodic functions given by

with E, ƒ and a positive Y-periodic functions of the space variable, and independent of e (see section 2 for more
detailed assumptions). The absorbing boundary condition in (2) expresses that no particles enter the core. This
statement is physically valid as a first approximation. It can be shown (at least formally) that the addition of
a dissipative reflector around the core merely modifies the neutron density by an amount of the order of e.

The paper is organized as follows. In the next section basic mathematical properties of problem (2) are
recalled, concerning the existence and regularity of its solutions when e is fixed. It also encompasses the criticality
eigenvalue problem with periodic boundary conditions. Section 3 is devoted to a detailed présentation of our
main results concerning the homogenization of (2). It includes the factorization of the neutron flux and a second
order asymptotic expansion for the associated eigenvalue. The proofs of these results are given in Sections 4
and 5. More precisely, Section 4 focuses on a priori estimâtes for a source problem associated with (2), while
Section 5 is concerned with the proof of the homogenization process, using the two-scale convergence method.
Finally, Section 6 contains some corrector results and numerical computations for assessing our homogenization
theorem. Our results have been announced in [3]. Similar homogenization theorems have been proved for the
criticality spectral problem when using a diffusion model instead of our transport équation [4,5,24]. In different
contexts, various homogenization results have been obtained for transport équations (see e.g. [1,16,17,19]).

2. EXISTENCE AND REGULARITY RESULTS FOR EIGENVALUE PROBLEMS IN TRANSPORT

The goal of this section is to establish some results concerning the existence and the regularity of eigenvalues
and eigenvectors for our model of neutron transport. Although the following theorems are mostly variations of
previously known results, to the best of our knowledge they have not appeared elsewhere. Since they are the
starting point of our analysis in the next sections, we include them in this paper for the sake of completeness.
Most of the proofs below are merely sketched and we refer to the thesis of the second author [7] for complete
details. The reader who is willing to accept such results can safely skip this section in a first pass.
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We first give the detailed assumptions on the phase space and the coefficients of the transport équation that
are used throughout this paper.

(Hl) The domain O is a convex bounded open set.

(H2) The velocity space y is a compact subset of WLN which does not contain 0. Furthermore V is assumed to
be the closure of an open set, and its JV-dimensional measure is normalized to have |V| = 1.

(H3) The cross-sections S(y,v), f(y,v\v), &{y,vf,v) are measurable positive bounded functions of their argu-
ments and there exists a positive constant C > 0 such that, for a.e. (y,v,vf)^

a(y}v\v) > C(
t ; ) - f f{y,v\v)Ao' > C

Jv

, t ; ) - / f(y,v,v')dv' > C.
Jv

(H4) Denoting by Y = (0,1)^ the unit cube, the cross-sections E(y,v), /(y,t/ ,ü), a(y1v\v) are Y-periodic
functions with respect to the space variable y.

Assumption (Hl) is somehow classical: the convexity of O ensures that the boundary condition is physically
relevant, ie . that the trajectory of an outgoing neutron does not enter again in ft. The first part of (H2) implies
that only finite non-zero velocities are considered. Physically, it means that all neutrons either interact with
the media (by absorption or scattering) or leave the domain in a finite non-zero time. The second part of (H2),
namely that it is the closure of its interior, is a mathematical convenience which allows to define distributions
and Sobolev spaces on V (see Chap. 21 in [14]). Actually all results presented here can easily be extended to
the multi-group case, ie . when V is the union of a finite number of sphères centered at the origin. Remark that
in both cases V is not reduced to a subset of a hyper-plane of RN, which ensures that a diffusion approximation
of transport makes sense.

The first part of assumption (H3) gives the natural functional framework for the coefficients (ie. they belong
to L°°(Y x F)). Indeed, nuclear reactor cores are heterogeneous domains with merely bounded discontinuous
cross sections. The second part of (H3) implies that fission occurs everywhere in the phase space and that there
is always a net absorption (ie. the différence between total absorption and scattering is positive).

Finally the periodicity assumption (H4) is crucial for the homogenization procedure. In particular our
results do not hold true any longer if the cross-sections are the product of periodic functions with macroscopic
modulations, for example T,(xy x/e^v) with a Y-periodie function E(a:,y,tj). Let us mention however that small
perturbations of order e2 of the cross sections can be allowed (for example, T,(x/e,v) + e2T,f(x1x/eJv)). This
yields a non essential generalization of the results presented here (see [7]).

Remark 2.1. Assumption (H3) is not completely satisfactory since it implies that fission occurs everywhere,
which is certainly not the case in the moderator around the fuel rods. Fortunately, one can replace the first
inequality of (3) by the following one

<7{y,v\v) + f(y,v',v)>C, for a.e. (y,v,vf),

with a > 0 and a ^ 0. This implies merely that fission plus scattering is positive everywhere. Up to some easy
technicalities, all our results hold true also with this more physical assumption.

Introducing the Hilbert space

W2(ü x V) = {u e L2(Q x V) s.t, v-VuZ L2(tt x Y)}, (4)
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a first existence resuit is the following

Theorem 2.2. The spectral problem (2) has at most a countable number of eigenvalues and of associated
eigenvectors which belong to W2{Q, x V). Furthermore, there exists a real and positive eigenvalue, of smallest
modulus, with multiplicity one, and such that its associated eigenvector be the unique (up to a multiplicative
constant) positive eigenvector of (2).

The proof of Theorem 2.2, which is in the spirit of other results in Chapter 21 of [14], can be found in [7].
It uses two main arguments. First, the solutions of (2) are shown to be the eigenvalues and eigenvectors of
a positive compact operator in L2(Q x V), which implies that there are at most a countable number of them
(possibly complex and finitely many of them). The compactness is a conséquence of assumption (H3) on the
cross-sections and of the velocity averaging lemma of [18] (or similar compactness result in [25]). Second, the
Krein Rutman theory of positive operators asserts that the spectral radius of this compact operator is a simple
eigenvalue and that the corresponding eigenvector is positive. As a conséquence of Theorem 2.2, only the first
eigenvector of (2) has a physical meaning since, being positive, it can indeed model a density of neutrons.

As we shall see in the sequel, the asymptotic behavior of the eigenvectors of (2) is partly governed by the first
eigenvector of another eigenvalue problem, similar to (2), the so-called infinité medium criticality eigenvalue
problem. It is defined by the same équation as (2) but posed in the whole space RN, which after rescaling is
reduced to an équation posed in the unit cell Y with periodicity boundary conditions. Denoting by Aoo and ip
its first eigenvalue and eigenvector, the infinité medium problem is defined in Y x V by

)ip = / f {y, v\v)ilj(y, vf)dvf + \oo I a(y,vf,v)ip(y,vf)dvf
 ( .

Jv Jv \°)
y —> ̂ >(y, v) Y — periodic.

We shall also need an adjoint problem of (5) which has the same first eigenvalue Àoo with a different first
eigenvector ip*. Introducing the adjoint cross-sections f*(y,vf

}v) — f(yivyv
/) and cr*(y,v',i;) — a(y,v,v') this

adjoint problem is defined by

{ —v • Vy^* + E(y»v)^* = ƒ f*{y,v ,v)ip*(y,v )dv + Aoo / cr*(y,t> ,v)ij)*(y,v )dv
Jv Jv

y —» ip*(y,v) Y — periodic.

( 6 )

For problems (5, 6), only the first eigenvalue and eigenvector are used in the sequel. As usual they are defined
up to a multiplicative constant, but as a corollary of Theorem 2.2 we can choose them positive (therefore they
properly model the neutron flux in an infinité periodic medium).

Theorem 2.3. There exists a common eigenvalue A^ for both problems (5, 6) which is real positive, of smallest
modulus, with multiplicity one, and such that its associated eigenvectors ip and ip* be positive éléments of
W2(YxV).

Since the smallest eigenvalue A^ is simple, we easily deduce from the classical Fredholm alternative for
compact operators the following

Proposition 2.4. Let A^ and ip be the first eigenvalue and eigenvector of (5). Let S(y,v) be a source term in
L2(Y x V). There exists a solution y{y,v) G W2(Y x V) of

v - Vytp H- H(y,v)(p ~ I f(y,v\v)(p(y1v
/)dv/-\-\ool o~(y,vf<>v)ip(y1v

/)dv' + S(y,v)
Jv Jv

y ~> <p(y, v) Y — periodic

if and only if S is orthogonal to the first eigenvector ip* of (6), i.e. S satisfies the compatibility condition

/ / S(y,v)ip*(y,v)dydv = 0.
JY JV
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Furthermore, if it exists, the solution tp is unique up to the addition of a multiple ofip.

Finally, in the next section the first eigenvectors ip and if)* are required to be bounded from above and below
by positive constants. This is the purpose of the next Proposition which is based on averaging lemmas [18] and
Sobolev inequalities.

Proposition 2.5. Let ip and ip* be the first positive eigenvectors of prohlems (5) and (6), respectively. There
existe two positive constants C' > C > 0 such that, for a.e, (y,v)7

0 < C < tp(y,v) <C' and 0 < C < ip*(y,v) < C'.

Proof. To simplify the notations, we recast both problems (5) and (6) as follows (this is possible thanks to
assumption (H3)). Let (p(x,v) be a non-zero positive solution in W2(Y x V) of

{ f
v - V(p + H(xjv)(p = / aoo(xJv

/\v)(p(xJv')dv/ in Y x V { ,

Jv v)
x —ï (p(x, v) Y — periodic,

where T, and <7oo are L°° functions which satisfy

Ex > E(x,v) > So > 0 , ai > aoo(x,v\v) > a0 > 0 a.e. in Y x V x V.

Let us define two functions g and (p by
g(x,v)= / aoo(x,vf,v)(p(x,vf)dvf, (p{x) = / (p(x,v)dv.

Jv Jv

From these définitions, we easily deduce that

ao(p(x) < g{x,v) < crxtpix). (8)

Furthermore, integrating équation (7) along its characteristics leads to

g(x - $v, v)e~T>lSds < <p(x, v) < / g(x — sv} ^)e~S o Sds. (9)

Jo
Here the functions defined onYxV have been extended to WLN x V by periodicity. If we can prove that <p(x)
and l/<p(x) belong to L°°(Y), then we deduce from (8) that g(x,v) and l/g(x,v) belong to L°°(Y x V), and
from (9) that tp(x,v) and l/(p(xiv) belong to L°°(Y x F), which is the desired result.

We divide the proof that <p(x) is bounded from below and above in two steps: first we show that (p{x) belongs
to any LP(Y) with 2 < p < +oo, and second we show that <p(x) and l/<p(x) belong to L°°(Y).

The first step relies on the following averaging lemma [18]. If tp and v • Vip belong to LP(Y x V) for
2 < p < oo, then <p(x) belongs to WS^{Y) for all 0 < 5 < l/p; WSiP{Y) is the Sobolev space of functions whose
fractional s-derivative belongs to LV{Y). By the well-known Sobolev embedding theorem, WS'P(Y) C Lq(Y)
with q = Np/{N — sp), and therefore <p(x) G Lq(Y). In other words, we have

Nn
ip and v • V(p e LP(Y x V) => ip e Lq(Y) with p < q < —- (10)

As a conséquence of inequality (8), (p € Lq(Y) implies that g E Lq(Y x V), and this is a standard result in
transport theory that, if the source term g belongs to Lq(Y x V), then the solution <p of équation (7) belongs
to Wq(Y x V) = {u e Lq(Y x V) s.t. v - Vu G Lq(Y x V)}. By assumption, we know that tp e W2(Y x V).
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Using the regularity result (10) and a bootstrap argument, we therefore deduce that (p belongs to any LP(Y)
with 2 < p < -hoo.

The second step uses assumption (H2) which implies that V is included in a corona C defined by its radii
0 < vmm < fmax < +oo

V cC = {veWLN s.t. 0 < t;min < \v\ < umax}-

Integrating (9) over V and using (8) yields

(f(x) <ai e~^oS(p(x - sv)dsdv,
Jv Jo

Since V C C the change of variables y = x — sv from polar to Cartesian coordinates leads to

where C is a positive constant which dépends on vmin and z;max but not on <p. By Hölder inequality, for any
7] > 0 there exists a positive constant C^ such that

<p{x) < c ( f

since \/\y - x\N~x belongs to LP(Y) for any 1 < p < J^J- We already know that (p belongs to LN+V(Y) for
positive 7/, therefore we deduce that <p, and consequently y?, is bounded. To show that \/(p belongs to. L°°(y),
we use a symmetrie argument. By assumption (H2) the interior of V is non-empty. In particular, there exists
a velocity ô and a parameter 8 > 0 such that the following angular sector S is included in V

KI
Integrating again (9) over V and using (8) gives

/ /
Jv Jo

f: fa° / / ^~Y;iS(f(x — sv)dsdv < <p(x).
Jv Jo

Since S CV the change of variables y = x - sv from polar to Cartesian coordinates leads to

fLCL
where Cs C '$LN is the infinité cone of origin x defined by {x + sv s.t. s G M+,z; G S}. Clearly, at a possibly
large, but finite, distance of x, this cone contains at least one periodicity cell Y. Hence there exists a positive
constant C > 0 such that

C f <p(y)dy < <p(x).
JY

By hypothesis, (p is non-zero and positive in L2(Y x V). Therefore, fY (p{y)dy > 0 which provides us with a
lower bound for ip. •
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3. MAIN RESULTS

This section is devoted to the statement of our main results on the asymptotic analysis of the spectral
problem (2). We proceed in somewhat reverse order. First we state our final resuit in Theorem 3.1. The
proof relies on an equivalent formulation of the spectral problem (2), which is amenable to homogenization and
given in Proposition 3.4. It also relies on the homogenization of a source problem established in Theorem 3.6.
Although the latter topic is classical and has been addressed several times (see [11,14,20,21,29]), we perform
our analysis in a quite different way, using the theory of two-scale convergence and therefore allowing for less
regular physical data.

Let ip and ip* be the first positive eigenvectors of (5) and (6) respectively. We define a so-called drift flux by

J = / ƒ vij>(y,v)ij>*(y,v)dydv, (11)
JY Jv

which is a constant vector in M.N. We require an additional hypothesis on the coefficients of (2), namely that
the drift flux is zero

J = 0.
This assumption on (11) is a kind of symmetry condition in phase space. It can be interpreted as an energy flux,
which must be locally null, and it implies that there is no neutron drift. In most practical cases this assumption
is satisfied. For example, when V = —V (in the sensé that v G V => — v G V) and the cross sections do not
depend on the velocity variable (this is the so-called one-velocity isotropic case), J is clearly zero whatever the
spatial variations of the coefficients because

*l>*(y,v) = *l>(y,-v) a.e. (y,v) eYxV. (12)

There are other examples where equality (12) is satisfied. Of particular interest is the following case. If V = —V,
the cross-sections are symmetrie with respect to vy and the cell Y has cubic symmetry, then the drift flux is
again zero (this can be checked readily). In most existing reactors, the cross sections do depend on the velocity
variable. Nevertheless, the symmetry condition is always satisfied (at least as a first approximation); therefore
condition (11) does not shrink the field of practical applications.

However, as it has been shown by Larsen and Williams in the setting of time-dependent 1-D problems
with anisotropic scattering [23], there are cases for which J ^ 0. In such a case J indicates a drift direction,
along which neutrons propagate, and the asymptotic regime of (2) is different (we suspect that the neutrons
concentrate at the vicinity of the set of points x G d£l satisfying J • n(x) < 0, where n(x) is the outward unit
normal to <9O at point x).

Let us introducé the sY— periodic function ij)E defined by

where ip(y,v) is the positive first eigenvector of (5).

Theorem 3.1. Assume that the drift flux defined by (11) is J — 0. Let Xk be the kth eigenvalue of (2) and let
<j)k be a normalized associated eigenvector. Then

t • ^f ^ O O Je

h m -^—r = z/ft,

where AQO is the first eigenvalue of (5) and vk is the kth eigenvalue of the homogenized diffusion problem

J - V • DVuk(x) = vkauk{x) in ü

\ uk(x) =0 on dQ. .
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Furthermore, up to a subsequence,

^ 4 ^ 4 ~> uk{x) strongly in L2(Q x V),
1pe{x,V)

where uk is an eigenvector associated with the eigenvalue vk. The homogenized fission cross section is given by

ë = / / / a(y1v\v)ip*(y,v/)ip(y,v)dydvdvf
1 (14)

JY JV JV

while the homogenized diffusion tensor D = (Dij)i<ij<N in (13) is defined by

Dij = - v3iP(y,v)^(y,v)Oi(y,v)dvdy, (15)
Jy Jv

and the functions (0*)I<;<JV are the solutions of the cell problems

v . W + Q(^) = -Vi inYxV
y —> 9%(y,v) Y — periodic,

where the local scattering operator Q is defined by

Q(0) = B- f aooiy.v^v^iy^dv' - \ f cx^y.v'\v
y Jv w Jv

with the notation aoo(y^v\v) — f(y>v\v) + ^O00'(y^v/,v).

Remark 3.2. The labeling of the eigenvalues of (2) is made by increasing order of their real part (they may be
complex although, in the limit as e goes to 0, they are all real). As usual, the eigenvalues of the homogenized
diffusion problem (13) are real and labeled by increasing order. Remark also that, for flxed e, the spectral
theory asserts that (2) may have only a finite number of eigenvalues, but, as e goes to 0, this number increases
up to infinity.

In Theorem 3.1 the extraction of a subsequence for the convergence of eigenvector s is only due to the possible
multiplicity of the limit eigenvalue vk. However, in the physically meaningful case of the first eigenvalue i/1,
which is simple, we obtain that the whole séquence of normalized positive eigenvectors 4>\/^£ converges to the
positive first eigenvector u1 of the homogenized problem.

Remark 3.3. Existence and uniqueness of the solutions (#2)KÏ<JV of the cell problems (16) is a conséquence
of the zero drift-flux assumption J = 0. Indeed, upon defming x* — ip&1, it is easily seen that x% satisfies

j v • Vxl + Ex* = / ftfàv' + Aoc / trxMi;' - Ui
[ y->Xl(y>v) y-periodic,

for which Proposition 2.4 applies: J = 0 is simply its compatibility condition (or Fredholm alternative). With
this new notation, the diffusion tensor D is given by the so-called Kubo formula (see [11])

Dij = - / / Vjip*(yiv)xï(y,v)dvdy.
JY JV

Formula (15) has first been derived by Larsen [20] using formai two-scale asymptotic expansions. As already said
in the introduction there are several formulae for the diffusion coefficient of a heterogeneous periodic network
of cells in the physical literature (see e.g. [15]). Formula (15) is the only one to be correct asymptotically
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but others (like the well-known Benoist formula) are derived by using conservation or équivalence principle. For
the sake of comparison, we recall the uncorrected Benoist formula (see [10,15]) in the limit of small buckling
and for symmetrie cells (in which case D is diagonal)

Du = - / / vi^(y,v)ji(y,v)dvdy,
JY JV

and the functions (f)i<i<N a r e the solutions of

f v • Vf + Q(f ) = -Vi on Q x y
l 2/ -* .f (z/> u) F - periodic,

while the cross sections are simply averaged with the weight tp

W = / / / a{y,vf,v)ij)(y,v)dydvdvf.
JY JV JV

Remark that the différence between our formula and the Benoist one is the factor ip*.

In order to prove Theorem 3.1, we first establish that the original spectral problem (2) is equivalent to another
problem (that will be amenable to homogenization) through a factorization principle.

Proposition 3.4. Let ip^y^v) be the positive first eigenvector of (5). Then, the linear application

is continuons in L2(Q x V) and has a continuons inverse. Through this change of variables, the original spectral
problem (2) is equivalent to

where we have defined

1 ,

e
u£ =

^u£

0

1
H Qe(u£)

 = Ve
e2 :F£(u£) onilxV

on T_,

Fe(u)=^- f o*(x,v',v)i/>e(x,v')u(x,v')dv\ (19)
We JV

with the notation a^Q(x^vfv) = f£(xjv\v) + Xooa
€(x,v/,v).

Proof By Proposition 2.5, we know that ip(y}v) is bounded from below and from above by two positive con-
stants. Therefore, if <pE G L2{Vt x F), we can define u£(x>v) = <j>£/ip£ which also belongs to L2(iï x V).
Reciprocally, if ue G L2(ft x F), then 4>£(xyv) = u£ipe belongs to L2(Vt x V). Using the infinité medium équa-
tion (5) satisfied by ip, the équivalence between (2) and (17) is just a matter of simple algebra that we leave to
the reader. D
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Remark 3.5. The idea of the factorization in Proposition 3.4 is familiar in nuclear physics. Basically it amounts
to remarking that both functions ipe and (j>£ satisfy équation (2) on ft x V. The only différence between these
two solution is their boundary condition. Thus it is expected that both functions behave similarly away from
the boundary of ü. Indeed, this holds true in the sense that ue is shown to vary smoothly with respect to the
variable x away from the boundary, and to be almost independent of the fast variable x/s and the velocity
variable v.

At first sight, problem (17) does not seem to be much simpler than (2), but it turns out that optimal a
priori estimâtes can be obtained with (17) rather than (2). We also emphasize that the équivalence between
(2) and (17) is a conséquence of the strict periodicity assumption (H4) and does not hold true any longer if the
cross sections are not periodic functions.

The scattering operator Q£ defined by (18) is the same as the local scattering operator Q defined in Theo-
rem 3.1 after the change of variables y = x/e. lts effect is to relax the angular flux to its velocity average (see
the energy estimâtes in Sect. 4). It is a linear continuous operator in any LP(Q x V), for 1 < p < oo, which
satisfies the following properties

Ker Q£ = lu G Lp(tl xV); u(x,v) = / u(x, v)dv 1 ,

Qe{<p(x)u(x,v)) = tp(x) Q£(u(x,v)) and Q£(u) = Q£(u~ ƒ u(xJv)dv) .

The spectral analysis of équation (17) is obtained from the spectral properties of an operator Se defined as
follows.

\ Y ^ (20)
q(x,v) i—> ue(x,v), v }

where u£ is the solution of the following source problem associated with (17)

f -v-Vu£ + -^Q£(u£) = F£(q) o n f î x y ^

\ u£ = 0 onT_.

The well-posedness of (21) in L2(Çt x V) can easily be obtained from standard transport théories by using the a
priori estimâtes of Section 4 (which imply that the scattering kernel Q£ has well-suited properties). Alternatively
we can use the reverse change of variables of Proposition 3.4 and prove that (f)£ = ip£^e is the solution of a source
problem analogue to (2) where we replace X£ JV<J6(XJV

/
iv)(j>£(x^v/)dv/ by ip£F£(q). Then, classical results (see

e.g. Chap. 21 in [14]) yield the existence and uniqueness of 0e, and therefore u£i in W2(£l x V).
The eigenvalues of the operator S£ are exactly the inverses of those of problem (17) with the same associated

eigenvectors. From the analysis of the convergence of the séquence of operators Se we shall obtain the asymptotic
behavior of its spectrum. The following result, which is proved in Section 5, gives the homogenized limit operator.

Theorem 3.6. Assume that the drift flux defined by (11) satisfies J = 0. Then the séquence of solutions
ue(x,v) of (21) converges strongly in L2(ü x V) to the unique solution u(x) G HQ(TL) of the following diffusion
problem

ƒ ~V - DVu(x) = F(q)(x) in
u(x) = 0 on

where D = (Aj)i<i,j<iV is the positive definite constant matrix defined by (15), and F(q) G L2(£l) is given by

F(q)(x) = 1 1 f a(y,v\v)^(y1v
/)i;{y,v)q(x,v)dvdydv/. (23)

JY JV JV
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When the drift flux is non zero (J ^ 0), the séquence u£{x,v) converges strongly to 0 in L2(Q x V).

Remark 3.7. The homogenization of the source problem (21) fits into the framework of previous works in
homogenization of transport équations [11,14,20,21,29]. Let us emphasize however that Theorem 3.6 is new
for two reasons. First, our proof uses the notion of two-scale convergence instead of two-scale asymptotic
expansions: this allows to remove all smoothness assumptions on the coefficients that are simply asked to be
measurable and bounded (this is the natural setting for heterogeneous media). Second, the special structure of
the scattering kernel Q£ allows us to homogenize (21) without adding extra absorption as is the case usually.
Indeed, we establish in Section 4 that the séquence of solutions of (21) is bounded using a coercivity property
of Q£ combined with a Poincaré-type inequality. Of course, Theorem 3.6 is easily generalized if we add an extra
absorption term aue in (21), with a > 0, which yields an additional term au in (22).

Assuming for the moment that Theorerri 3.6 holds true, we are in a position to complete the

Proof of Theorem 3A. Let us define the homogenized limit operator S by

5

q(x,v) *-> u(x),
where u is the solution of (22-23). Clearly S is a compact operator. We deduce from the homogenization
Theorem 3.6 that the séquence S£ converges to S pointwise in the strong topology of L2(Çl x y) , Le.

\/q G L2(n x V) S£q -> Sq strongly in L2(Q x V).

Furthermore, as a conséquence of Corollary 4.2, given in Section 4, the séquence 5e converges compactly to
S in the sensé that for any bounded séquence q£ in L2(ft x V), the séquence S£qe is relatively compact in
L2(£l x V). Finally, Theorem 3.8 below allows to conclude the proof of Theorem 3.1. Remark in passing that
the convergence of S£ to S cannot be uniform in gênerai because, if q£ converges weakly to q in L2{ft x V),
there is usually no reason for F£(q£) to converge, to F(q). D

We now recall a classical resuit in operator theory that can be found, for example, in [6] or in [13] (see Th. 5.5,
Prop. 5.6, Th. 5.10, Th. 5.20, and Prop. 5.28 in [13]).

Theorem 3.8. Let X be a Banach space and £{X) be the set of bounded linear operators in X. Let {Tn}nç.^
be a séquence of operators in C{X) converging compactly to T in the sensé that:

• for ail x G X, Tnx -» Tx as n —> oo;

• for any bounded séquence {xn}nS^ with \\xn\\ < 1, the séquence {(T — Tn)xn}ne^ is relatively compact
inX.

Let cr{T) and c{Tn) be the spectra of T and Tn, respectively. Let A be an isolated eigenvalue of T of finite
multiplicity and let Y be a closed Jordan curve in the complex plane around À and isolating À such that the
domain A enclosed by T contain no other point of the spectrum a(T) than À. Then, o~(Tn) n A contains a
number of eigenvalues equal to the multiplicity of À provided n is large enough.

Moreover} if Xn is a séquence of eigenvalues of Tn converging to À; and un is a séquence of normalized
associated eigenvectors, then, up to a subsequence, un converges to a limit u in X which is an eigenvector ofT
associated with À.

4. A PRIORI ESTIMATES

The first step in the proof of Theorem 3.6 is to dérive an a priori energy estimate for the source problem (21).
From this we shall dérive two main results: first the solution of (21) is bounded in W2(Q x V) independently
of e, and second the rate of convergence of the angular flux to its mean and of the boundary trace of the flux
to 0 is characterized. More precisely, the following a priori estimâtes hold true.
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Lemma 4.1. Let ue be the unique solution of (21). There exists a positive constant C, which does not depend
on e and q, such that

- 7 = | )|V-n|) + -\\ue ~ / Ue\\L2{QxV) < C\\q\\L2(QxV)> (24)
£ Jv

where L2(F+, \v • n\) is the trace space of functions u satisfying Jr (v • n) |u|2dF < oo with F+ = {(x,v) G

dft x V \ v - n(x) > 0} and ÓT = dvda (da being the surface measure on )

Proof We multiply équation (21) by u£ip£ip* and integrate to obtain

h+h= I / Fe{q)ip£ij;*£uedxdv.
Jn Jv

The first term is

I± = — I t v - Vu£(u£ïp£ip*)dxdv = — I \u£\
2ip£i{j*v • ndvda

£ JnJv £ Jr+

— / / v * Vu£(u£tp£ip*)dxdv — - I I \ue\2v * V(ipeip*)dxdv.
£ JQJV £ Jn Jv

Multiplying the infinité medium équation (5) by ip* and subtracting the adjoint équation (6) multiplied by ip
yields

v-V(il>i>*) = V* / ftp(y,v/)aoo(y,v\v)dv/ -ip / if>*(y, v/)o-^0(y,v\v)dv/

Jv Jv
where cF%o{y^v\v) = aoo(yiviv

f). Denoting by a^(xyv',v) = a^x^v,vf), we deduce that

- / / \u£\
2v • V(^^*)dxdt; = 4 / / M* (të f iïeolo -I's f 1>;°%) dxdv.

£ Jn Jv £ Jn Jv V Jv Jv J

This yields the following expression for the first intégral I\

h = hSv |Ue|2^t; •ndvda ~èïjX'|Ue|2 ( ^ / ^CT°° ~^'Iv>e*<7°°)dxdv'
The second term is given by

h = ~ f f Q£(ue){Ue1>e1>î)àxdv = \ f f \u£\
2r£ ( f oto

£ Jn Jv e Jn Jv \Jv
- ~ö UeiPe [ / vL

£ JnJv \Jv

Summing /i and h we have

h + h = TT- ƒ \u£\
2ip£ip£v - ndvda

*£ Jr+

J h
or equivalently

h +h = — ƒ \u£\
2ip£ip*v-ndvda

le Jr+
+ Y2 f f f ^loW,v)re(v)Mvf)K(v)~U£(v

f)
*£ Jn Jv Jv
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Prom Proposition 2.5, we know that ^a^ips is bounded from below by a positive constant. On the other hand
we easily check that

/ / / \ue(v)—us(v')\2dxdvdvf = / / u£ — / ueàvf

Ja Jv Jv Jn Jv Jv

Therefore, we deduce the a priori estimate (recall that v • n > 0 on r+)

-\\Ue\\h(r+,\vn\) + ^\\ue ~ j Uedv\\h(ÇlxV) < C\\Ue \\L^(QX

On the other hand, équation (21) implies that

\\v • Vu £ | | L 2 ( a x y ) < C \e\\q\\L2çixV) + -\\Qs(u£)\\L2(nxV) • (26)

From the properties of the scattering kernel Q£, we deduce that

\\Qe(ue)\\L2(QxV) = \\Qe(u£ - / U£dv)\\L2{QxV) <C\\U£~ / U£dv\\L2(nxVy (27)

7v Jv

Finally the Poincaré inequality in Lemma 4.3 gives

\\v>e\\mnxv) < C [\\ue\\L2(r+Av.n]) + ||v • Vu£\\L2{QxV)] . (28)

A combination of inequalities (25, 26, 27, 28) yields the desired resuit. D

Corollary 4.2. Let q£ be a bounded séquence in L2(Q> x V). Let u£ be the solution of (17) with the source term
q£ instead of q. Then the séquence u£ is relatively compact in L2(Q x V),

Proof. Remark that the energy estimate (24) holds true also for the source term q£. Therefore, u£ and v • Vu£

are bounded in L2(Q x V). By virtue of the averaging lemma [18], we deduce that j y u£dv is relatively compact.
But (24) implies that u£ — Jv uedv goes to 0 strongly in L2(f2 x V) which proves the relative compactness. D

We now state a trace embedding resuit which is the analogue in transport theory of the Poincaré inequality
for elliptic operators. Recall that, by assumptions (Hl, H2), fi is a bounded and convex open set in M.N, and
that 1/ is a compact set in WLN such that 0 ^ V. Let us define the following maximum travel time of a partiële
(in the absence of collisions)

T(X, V) = inf {* > 0, x - vt g V}7 (x, v) e T+ ( ,
T{X, V) = inf{* > 0, x + vt& V}, (x, v) G T_. K }

Remark that, since Cl is bounded, T(X,V) is bounded independently of (x,v) G dfl x V. Let us also introducé
the following measure on dft x V

d£ = \v • n\r{x^v)dvda1

where da is the surface measure on dû.

Lemma 4.3. Any function u(x7v) G W2(Q x V) has traces on F + and F_ which belong to I/2(r+,d^) and
respectively, Furthermore, there exists a constant C? independent of u, such that

v) + \\u\\L2{r+M) < C (\\v • Vu\\L2iQxV) + ||u|U2(r-,d«) • (30)
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Proof. The first part of the lemma is simply the usual trace theorem in transport theory (see e,g. [14]). Thus
it remains to prove inequality (30). For any smooth function u(x,v) G il x V, we have

u(x, v) = ƒ v - Vu(x — SV) v)ds 4- u(xy t>),
Jo

where d(x> v) is the distance between x G O and dü in the direction —v and x the point in dH uniquely defined by

x = x — d(x, v)v. (31)

Since fl is a bounded domain we deduce from the Cauchy-Schwartz inequality
/ rd(x,v) \

\u(x,v)\2<Ci ƒ (v- S7u)2{x-sv,v)ds+\u{x,v)\2 j . (32)

Denoting by x(x) the characteristic function of Q (equal to 1 if x G O and 0 otherwise), and integrating with
respect to x the first term in the right-hand side of (32) leads to

ç pd(x,v) p /»diam(fi)
II \v • Vu\2(x — sv, v)dsdx = ƒ / x ( x — 5v)|v • Vti|2(x — sv, ̂ )dsdx
Jn Jo Jn Jo

Jo ^ Jn+sv ' ( 3 3 )

= / / \v- Vu\2(y,v)dyds
Jo J(n+sv)nn

< diam(Q) / \v • Vu\2(y,v)dy.
Jn

We now integrate with respect to x the second term in the right-hand side of (32). For a given velocity v we
introducé an orthonormal basis (#i , . . . ,xn) = (xf,xn) such that xn is parallel to v. The boundary point x,
defined by (31), is thus a function of xf only. Then

I 7/1 'T* t) 1 n 'T* f 1/ l^T* O) ) I I I "\/ f T | H T 1 H ^ ƒ o* f 7̂ " oj ] \ f (~w 7) iH T*

where Q' is the projection of ft on M^"1. Since il is convex, there is a diffeomorphism between Î1' and that
part of the boundary defined by T~ = {x G 90, n(x) • t; < 0}. Changing the variable xf in x G F~ yields
da:' = \v - n\do~ and

/* r

I \u(x,v)\2dx = f \v - n|r(x, Ü)|U(X, f)|2dcr. (34)

Integrating over F inequalities (33, 34) gives an upper bound for the norm of u in L2{Q, x V). The same method
can be applied to obtain an upper bound of the £2(F+ , d£)-norm of it in terms of the L2(Q, x F)-norm of u and
?j * Vu, which yields the desired result. •

5. CONVERGENCE PROOF

This section is devoted to the proof of Theorem 3.6. We use the two-scale convergence method [2,26]. Let us
remark that the more classical method of asymptotic expansions can also be used to prove this theorem [7,8].
However this is at the price of more assumptions on the smoothness of the physical data.
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Let us introducé some notations that we shall use in the dérivation of the two-scale convergence properties. We
dénote by C^(Y) the space of infinitely different iable functions in MN that are periodic of period Y, and L^.{Y)
(respectively, H#(Y)) the completion of C#(Y) for the norm of L2(Y) (respectively, iï"1(Y)). Generalizing the
usual définition of two-scale convergence to functions that depend on two variables x and v, we introducé the
following

Définition 5.1. A séquence of functions uE in L2(O x V) is said to two-scale converge to a limit u°(x, y>v) in
L2(Q x Y x V) if, for any function ^(x.y.v) in V[Sî x V; C^iY)}, we have

lim I / uE{x^v)il) (ce,x/e,v) àx&v = / / I u°(xJyJv)ilj(xJy1v)dxdy dv. (35)
e~^° Ja Jv Jn JY JV

This définition makes sensé because of the following compactness theorem (the proof of which is a straightforward
adaptation of Lem. 1.3 and Th. 1.2 in [2]).

Theorem 5.2. From each bounded séquence u£ in L2(Q x V) we can extract a subsequence, and there exists a
limit u°(x,y,v) in L2(Q xY xV) such that this subsequence two-scale converges to u°.

We now prove a resuit which is the analogue of Proposition 1.14 in [2] for transport theory.

Proposition 5.3. Let ue be a séquence in L2(ft x V) such that there exists a constant C, independent of e,
satisfying

I N l U \\ V | | <C, u£ = 0 on r_,
\\ue - / Uedv\\L2fQxV) < Ce.

Jv

Then, there exists u°(x) in HQ(Q) and ux{x^y,v) in L2(Q x V\H^(Y)) such that, up to the extraction of
subsequences, ue(x, v) converges strongly to u°(x) in L2(Q x V), v • Vue(x, v) two-scale converges to v • Vxu° +
v - VyU1, and e~x (ue — Jv u£dv) two-scale converges to (u1 — Jy uxdv).

Proof. Since u£ is bounded in L2(O x V), Theorem 5.2 implies the existence of u°(x, y, v) € L2(Û x F x F ) such
that, up to a subsequence, uE two-scale converges to tt°. Since ||we - Jv,u£dv\\ < Ce we deduce that

u°(x,y,v) = / u°(xJy,v)dv.
Jv

On the other hand, v • Vu£ being bounded in L2(Vt x V), for any smooth Y-periodic function %(;(x, y, v) we have

lim s ƒ ƒ v - Vue
/ip(x1x/eyv)dxdv = lim— / / uev • Vyip(xix/e^v)dxdv = 0,£-*° Jn Jv £->° Jn Jv

which implies in the limit as e goes to zero that

/ / / u°(x,y)v • Vy^(x,yiv)dxdydv = 0.
Jn JY JV

Consequently we have v - Vyu°(x,y) = 0. Since V contains at least a basis of RN (this is clearly true for a
velocity space of unit measure and for an union of sphères), we easily deduce that

uo(xjy) = u°(x). (36)

To prove the strong convergence of we, we use the compactness resuit of the averaging lemma in [18] which
states that, u£ and v • Vu£ being bounded in X2(O x Y), fvu£(xyv)dv is relatively compact in L2(Ô). By
assumption ||ue — Jv u£(x1v)dv\\L2^QxV^ < Ce which implies that ue converges strongly to u° in L2(ft x V).
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Next, we focus on the two scale convergence of v * Vu€. Since it is a bounded séquence in L2(Çl x y ) , by
virtue of Theorem 5.2 there exists £(z, y, v) G L2(Q x Y x V) such that, up to a subsequence, v - Vue two-scale
converges to £. Denoting by L#(fi x Y x V) the space of F-periodic functions in L2(Q x Y x y) , let us define
its subspace

H = {ip G L | ( Q x y x y) s.t. v • v^v = 0} •

Clearly H is a closed subspace of L#(fi xYxV) and, by Fourier analysis, its orthogonal is easily seen to be

H^ = {<t>e L%(ü x Y x V) s.t. 3xp e L%(Sl xY xV), <j> = v > Vytp}-

For a smooth function <p G i ï , having compact support in £2, we have

ƒ / v -Vu£(j)(x,-,v)dxdv — — l j u£v 'Vx<j)(x,—,v)dxdv.
JnJv £ JnJv £

Passing to the two-scale limit and integrating by parts we get

ƒ ƒ ƒ [Ç(x,y1v)-V'Vxu°(x)]<j>(x,y,v)dxdydv = 0. (37)
Jn JY JV

By density (37) holds true for any <p G H. Choosing 0 = </>(x, v) implies that v • Vxti° = JY Çdy and therefore
v - \7xu°(x) belongs to L2(Q x V), which in turn implies u° G Hl(Q). Eventually, (37) is equivalent to
[£(x,y,v) — v • Vxu°(x)] G H±. Thus there exists a (non-unique) function Û1(x,y, v) G £ # ( ^ x F x y) such
that

fi(x,y,v) = v - S7xu°(x) + v • Vyu
l(x1y,v).

Finally we show that u° vanishes on the boundary 90. Consider a smooth function <£(x,v). Since u£ = 0 on
F_ an intégrations by parts yields

/ / v • Vu£(j>dxdv = — II u€v - V(j)dx dv + / ue(S)V)<fi(s,v)v • ndvda.
Jn Jv Jn Jv Jv+

Since ||we||L
2(r+>-n|) < Cyfë, passing to the limit leads to

ƒ / / (v ' Vxzio-fu- Vyv})<pdxdydv = - u°v - Vx<pdxdyd
Jn JY JV Jn JY JV

By periodicity Jy v • Vyû1dy = 0, and therefore integrating by parts gives

(x1v)u°(x)v • ndvda = 0,

v.

/
Jr+

for any smooth function <fi(x,v), which implies u°(x) = 0 on dfl.
Next, we study the two-scale convergence of w€ = e~1(u€ — Jvue). Since, by assumption, it is a bounded

séquence in L2(£l x V), there exists a function w(x^yJv) G L2(Q x y x y) such that, up to a subsequence, w£

two-scale converges to w(x,y,v). Let us introducé the space

y) s.t. / v • Vy<t>{x, y, v)dv = 0}-
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It is a closed subspace of L^(ft x Y x V) and, by Fourier analysis, one can check that its orthogonal is

G± = {4> e l%(tt x Y x V) s.t. 30(x, y) G L%{ü xY)</> = v Vy6}-

Let (j){x^y^v) be a smooth function in G with compact support in ft. Then

e I I w£v - V (<j>{x,x/e,v)) dxdf = — e / / (fi(x,x/e,v)v • Vifedojdz;,

or equivalently

/ / we(v • Vy(j) + ev - Vx(j>)dxdv = — I I <$>v - Vu£dxdv + / <f>v-V[ u£dv)dxdv
Jn Jv Jn Jv Jn Jv \Jv J

= — / (f)v • Vu£dx dv — / / ( / w £ d î ; l i t ' * V X 0 + -v * Vyçî) ) d # dv
Jn Jv Jn Jv \Jv / V e J

= — I (fiv • Vu£dxdv — / / ( / u£dv ) v - \7x<f)dxdv.
Jn Jv Jn Jv \Jv J

Passing to the two-scale limit yields

/ / ƒ wv • Vy(pdxdydv = — / / / <j>(v -Vxu° -\-v •Vyu
1)dxdydv — ƒ / / u°v -Vx(j>dxdydv.

Jn JY JV Jn JY JV Jn JY JV

Integrating by parts, we deduce that, for any </>GG,

/ / / {-v -Vyw + v -Vyü^dxdydv = 0.
Jn JY JV

Therefore v - Vy(tt1 — w) belongs to Gx and there exists a function 9(x, y) e L#(Q x y) such that v •\/y(w -
ül — 9) — 0. In other words we have just proved that

w{x,y,v) = v}(x,y,v) + 0(xyy) +r}(x,y,v) with 77 G £^(fl xYxV), v • V̂ ?) = 0.

Recall that the function ul, deduced from (37), is not unique. Consequently, introducing ul = ul + 77, the
séquence v * Vwe still two-scale converges to v • VxvP + v • Vyti1, and furthermore we have

w(x>y,v) = w1^,?/,^) +ö(x,2/).

By définition Jv we(x, v)dv = 0, so that fv w(x7 y, v)dv — 0. This implies that

which concludes the proof. D

We turn to the homogenization of problem (21). Prom now on, u£ dénotes the unique solution of (21) and
vP^u1 are the associated two-scale limits given by Proposition 5.3 (up to a subsequence). Recall that ip and ip*
are the solutions of the infinité medium problems (5) and (6) respectively.
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Proposition 5.4. If the drift flux J = JY $v vipip* dvdy is non-zero, then u°(x) = 0 and the entire séquence u£

converges strongly to 0 in L2(ü x V). If J = 0, then u1 and u° satisfy

N dvP

where ÖJ is the unique solution of (16) up to an additive constant.

Proof Let </>(x,y,v) be a smooth K-periodic function. Multiplying (21) by s</>(x,x/e,v) yields

/ / V' Vu^dxdv+e'1 / / Q£(u£)<j)dxdv = / / e(f)F£{q).
Ja Jv Ja Jv Ja Jv

Recalling that e~'1Q£(u£) = Q£(we) (see Rem. 3.5), and introducing the adjoint scattering kernel Q*, we obtain

e~x f f Q£(u£)(f)dxdv = f f weQ*(<f>)dxdv.
Jn Jv JQ JV

We easily check that Q*((j>(x,x/e,v)) two-scale converges to Q*(</>), and furthermore that

\

which is precisely the condition for passing to the two-scale limit in a product of two weakly converging séquences
(see Th. 1.8 in [2])

lim f f weQl{<f))dxdv= f f f (ul - f uldv'") Q*(<j>)dxdydv.£^° Ja Jv Ja JY Jv \ Jv J

As a conséquence we obtain

/ / / (v' Vxu° + v- VyU1)<j)dxdydv+ f / Q (u1 - \ u'dv1 ) <f> dxdydv = 0,
Ja JY JV Ja JY Jv \ Jv J

which implies that u1 is a solution of

Since u° does not depend on y and v, we have u1 = Y2f=i f̂ ~̂ J where each 6j(y, v) is a solution of

f v - V6j + Q(6j) = -Vi in Y x V
{ y —> 0i (y, v) Y — periodic. ^

The existence theory for (38) can be addressed directly, but it is simpler to remark that the product xj =
is a solution of

= / fxjàv' + Aoo /
Jv Jv

v x x / fx oo /
Jv Jv

y ~^ X3{V) v) Y — periodic

for which Proposition 2.4 applies. It states that there exists a solution xJ if a n d only if the j-th component of the
drift-flux is Jj = 0, and it is unique up to the addition of a multiple of ip. Therefore, either Jj — fY Jv Vjipip* — 0
and there exists a unique solution 6j (up to an additive constant) of (38), or Jj / 0 and there is no solution except
0 if the right-hand side is 0, which implies that du°/dxj = 0, i.e. u° = 0 due to the boundary condition. •
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Before deriving the main convergence resuit of this paper, we prove that the postulated homogenized diffusion
matrix is actually positive definite. This is the aim of the following lemma.

Lemma 5.5. The diffusion tensor D = (£>ij)i<i,j<jv? defined by

Dij = ~ / / Vji){y,v)ilj*(y,v)6%{y,v)àvày,
JY JV

is positive definite.

Proof. Let £ G MN and 9ç = Xli=i £>$%• Multiplying the cell équation satisfied by 6^ by Oçipip*, a computation
similar to that of Lemma 4.1 yields

= / [ (v-Vyez

= «/ ƒ ^rivMv'm^-etiv'
* JY Jvf Jv

This implies that D^ • £ > 0 for ail £ G RN. Assume now that DÇ • £ = 0. It implies that 9$ does not depend
on v, and thus Q{0ç) — 0. This yields

v • Vy0ç = v - £ in Y x V.

Since V contains N independent directions and 0% does not depend on v, we conclude that Vy0£ = — Ç which is
not possible for a y-periodic function except if £ = 0. This proves that there exists a positive constant C such
that £>£'£> q£ | 2 - D

Remark 5.6. The homogenized diffusion matrix D defined in Lemma 5.5 is not necessarily symmetrie. However
only its symmetrie part plays a rôle in the homogenized équation (22) since it can easily be checked that adding
to it a constant skew-symmetric matrix does not change the solution of the diffusion équation.

After these preliminaries we are in a position to prove Theorem 3.6. For the reader's convenience, we recall
it hère.

Theorem 5.7. If J = 0; then the entire séquence ue converges to u°(x) in L2(Çl x V), which is the unique
solution in HQ(Ù) of

-V • DVu(x) =F(q)(x) inti
0 on d

f -V • D
\ u{x) =

where the diffusion tensor D is defined as in Lemma 5.5, and F(q) G L2(fl) is given by

F(q)(x) = a(y1v\v)^(y,v/)fijj(y,v)q(x,v)dvdv/dy.
JY JV JV

Proof. Let us first define, for 1 < i < TV, the adjoint équation of the cell problem (38)

-v • Vy(1>1>*6ï) + Q*{W*0i) = ViW* inYxV
y -> 9* (y, v)Y- periodic, { }
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which admits a unique solution, up to an additive constant, since Jy Jv Vitptp*dydv = 0. Let </>(x) be a smooth
function with compact support in fi. We define

and

ff\ i /"y* fit i • /T\f ^T* ï l cfT\ I or* o* / i^ 'ïï ïG/ \ •*/ t/ J — C//1 «A> / ~1— o Ci' l ti/ * fX» / o * (J } •

Remark that the test function 0£ has the same structure as the two-scale limit of u£ but adjoint (this is an
usual rule of thumb for constructing test functions in homogenization). Multiplying équation (21) by (j)eip£ip*
and integrating by parts yields

1 f f e * ! f f * £ * f f
e Jn Jv £ £2 JnJv € e Jn Jv

The first term in (40) becomes

Ki= [ f
JnJv

Jn Jv

-~UeV • V (<t>1pe1p*) -U£V'V

Ue(j>V' V(^e^e) - -U£1p£1p*V-Vx(f) U£V - Vy{(^^^(x.x/e) (41)

since ij) and i\)* depend only on y, while 4> dépends only on x. On the other hand, the second term in (40)
becomes

= \ f f Ue#E(iMÉ) + " / ! UeQ*e(1>c1>:<t>1)
^ Jn Jv e Jn Jv

(42)

because, for T = Q£ or Q*} T((j)(x)u(x,v)) = </>(x)T(u(xiv)) (see Rem. 3.5 on the properties of the scattering
kernel Q£). Recalling that ip£ipe satisfies the adjoint équation

we deduce that, when adding K\ and K2, the first terms in the right-hand sides of (41) and (42) cancel out.
Furthermore, in view of the définition of (f)1 and of équation (39) satisfied by 0*, we have

-v

Therefore, when adding K\ and i^ï the second and third terms in the right-hand side of (41) cancel out with
the second term in the right-hand side of (42). Eventually, we get

r
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Since ue{x. v) converges strongly to u°(x) in L2(0 x V) we can pass to the limit as e goes to 0

- E / u°(x)-^~(x) (f f Wv&iyrfdydv) dx = f F(q)dx.
{~1 Jn oxiOXj \jY JV ) j Q

Multiplying (39) by 0J and integrating by parts, we easily obtain that

f f v^&àyàv = - f f Vji)^et{y,v)dydv = -D^.
JY JV JY JV

This yields, for any smooth function <j>{x)^

(x)dx= f <f>(x)F(q)(x)da
Jn

which is nothing but the homogenized équation. Since it admits a unique solution u° in i?g(fi), ail converging
subsequences of ue have the same limit, which proves that the entire séquence ue converges to vP. D

6. CORRECTORS AND NUMERICAL RESULT

Iri the previous sections, we gave the asymptotic limit of the spectral problem under very mild smoothness
hypothesis for both the cross sections and the solutions. Basically we have only assumed that the criticality
problem was well posed for any e and that the solution of the infinité medium problem was bounded. With more
smoothness available, one can expect some stronger convergence properties, namely so-called corrector results.
This is a classical matter in homogenization theory for diffusion équations (see e.g. [28]) where correctors for
the eigenvalues and eigenvectors can be obtained under additional assumptions. The question of correctors is
more delicate in transport theory because it is intimately linked with the émergence of boundary layers. We
shall not dwell on such problems here and we refer to [7,8] for more details (a few comments on this issue are
given in our discussion on the numerical application of homogenization at the end of this section). However,
staying in the framework of the two-scale convergence method, we can obtain a partial corrector resuit for the
eigenvectors. It gives a rate of convergence of the neutron flux at the boundary as well as a corrector for the
déviation of the neutron flux from its velocity average. Unfortunately, it does not imply any corrector for
the eigenvalues.

Theorem 6.1- Assume that the drift flux satisfies J = 0. Let ue be the unique solution of (21). Let u° be the
unique solution of the homogenized équation (22), and define u1 by

N

ul(x,y,v) =

where 9^ is the unique solution of the œil problem (16). Assume that u°(x) is smooth (say continuous in Ci).
Then

lim

and

im - / |u£|2|?;

l im- | | lue- j u£dv) -ew£\\L2{QxV) = 0,

with we(x, v) — {v}{x, x/e, v) - j y u
x(x, x/e, v)dv).
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Remark 6.2. Theorem 6.1 applies for the solutions of the source problem (21). However, since the eigenvectors
of the spectral problem (17) converge strongly in L2(Q x V) (up to a subsequence), it is easily seen that Theorem
6.1 holds true also for these eigenvectors.

Proof. In the course of the proof of Lemma 4.1 we obtained the following energy equality

f f uefâFe{q)àxdv =^ f IttelVe^vndvdo- + - ^ f f f ^(v^iv',v)^£{vf)\u£{v)
Jn Jv 2e Jr+ le Jn Jv Jv

-u£(v
f)\2dvdv'dx.

Since u£{x^v) converges strongly to u°(x) in L2(ü x V) we have

lim f f u£ij)lF£(q)dxdv = f u°F(q)dx = f DVvP - Vu°dx.£^° Jn Jv Jn Jn

On the other hand, taking £ = Vu0 in Lemma 5.5 and using the définition of u1 yields

f DVvP • Vu°dx = - f f f f aoo^iv^iv^^-^iv'^dxdydvdv'. •
Jn 2 Jn JY Jv Jy,

By the lower semi-continuity of two-scale convergence applied to e~l{ue(v) —ue{vf)), which two-scale converges
to (v}{v) - v}{vf)), we obtain that

l i m i n f ^ f f f olc^vtyeiv'^Uelv) - ue(v')\2
£-^° ^ J n J v J v >- f f f f

2 Jn JY JV Jv

Therefore, the energy balance implies that

and

v Jy,

i m - / \ue\
2v-nil)il)*dr = 0

us{v)-ue{v
f)\2= f f f f (To

JQ JY Jv Jv

Equation (43) is nothing but the strong two-scale convergence of e~1(we(^) — u£(v')) to (u1^) — u1(f/)) (see
Th. 1.8 in [2]). Since u1^) is independent of vf and v}(v!) of v, it implies the strong two-scale convergence of
£~1(we — Jv ue) to u1 — Jy u1. Since u° is smooth, u}{x, x/e, v) is a well-defined function in L2(Q x V), and as
a resuit of Th. 1.8 in [2] we obtain the desired convergence. •

A complete numericai analysis of the homogenization procedure in a realistic setting goes beyond the scope of
this paper; we refer to [9] for such a présentation. Nevertheless we would like to discuss briefly some numericai
examples that illustrate interesting features of the asymptotic behavior of the eigen-elements of (2). We consider
here the two-dimensional approximation of an idealized nuclear reactor, which is a periodic square composed
of n x n periodicity cells. Such cells, called assemblies, are themselves made of many fuel pins and control
rods immersed in water. More precisely, each cell is a MOX assembly (MOX stands for a mixture of uranium
and plutonium oxides) which is a very heterogeneous type of assembly (we shall not described them here, and
we refer to [9] for more details). Two quantities have been of interest so far: the first eigenvalue Â  and the
corresponding positive eigenvector <j>£ of (2). Following the usual engineering notation, we define /ceff =
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TABLE 1. Référence and reconstructed &eff for a MOX assembly.

Number of assemblies
5 x 5

10 x 10
20 x 20

oo

Référence &eff
1.28495
1.29525
1.29791
1.29883

Reconstructed fceff
1.28416
1.29513
1.29790

error (10"5)
79
12
1

'Reconstructed Flux'
'Référence Flux'

FIGURE 1. Référence flux and reconstructed flux in a core composed of 5 x 5 assemblies.

Table 1 gives the exact multiplication factor &eff for different values of the number n of assemblies, and their
associated diffusion approximation given by (ÀQQ + e2i/1)~~1. The error between these values, as seen in the last
column of Table 1, has been given in the usual p.c.m. unit for nuclear reactors computations (1 p.c.m. is equal
to 10~5). As a conséquence of our analysis, the rate of convergence to the diffusion approximation of the exact
eigenvalue is expected to be at least of order 2. A numerical estimate is given by

v =

In f
~ 9 71

which is fairly well comparable to the theoretical value of 3 (obtained in [8] for symmetrie cells), all the more since
the number of assemblies is small in order not to heavily depend on the accuracy of the numerical computations
(of the order of 10~5 for the eigenvalue).

In Figure 1 are plotted one-dimensional cross sections of the velocity-average of the exact first eigenvector
Jv 4>e(xy v)dv and of its diffusion approximation given by

a
where ul is the first eigenvector of the homogenized diffusion équation (13). Let us emphasize that the shape of
the reconstructed flux is extremely close to that of the exact transport solution (of course, since eigenvectors are
defined up to a multiplicative constant, their normalization has been performed so that the différence between
both flux is identical at the boundary of the cross section and at the point of maximal value).
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0.004 |

0.003

745

FIGURE 2. Periodic corrector for a flux normalized to 1 in a core composed of 5 x 5 assemblies.

However, whatever the choice of normalization, the error at the boundary of the domain remains of the order
of 5% of the maximal value. This error can not be corrected by adding a periodic corrector term of order e, but
rather is due to a boundary layer effect. This is demonstrated by Figure 2 where the periodic corrector term,
given by

N

is plotted. Since its contribution is of the order of 0.004 of the flux, whereas the error is of the order of 0.05, this
periodic corrector term is of no help, all the more since it vanishes at the boundary (using symmetry arguments,
one can prove that at the boundary dü either du1 /dxj vanishes owing to the Dirichlet boundary conditions, or
6j is skew-symmetric in the sense that Jv 6i(x/e,v)dv = 0).

The error between the exact and reconstructed flux is of order e. It is due to a boundary layer effect that we
now explain. In the homogenization process, the absorbing boundary condition for the neutron flux is replaced
by a boundary Dirichlet condition for the diffusion équation (vanishing flux on dQ). This amounts to saying
that no neutrons either enter or exit the core asymptotically. However, for a fixed positive e, this is not the
case for the transport équation (2). Indeed, the absorbing boundary conditions in (2) implies that the incoming
flux vanishes, while the outgoing flux is an unknown, and has no reason to cancel out. This phenomenon is the
so-called leakage at the boundary of the core. Theorem 6.1 indicates that this leakage is of order smaller than
e1/2, but a finer analysis shows that it is of order e [8]. In practice, for most of the usual reactors (with about
150 assemblies), the neutron density at the boundary of the core (z.e. between the core and the reflector) is
about 5% to 10% of the maximal density. Therefore quantitative numerical simulations have to account for this
effect.

The highly heterogeneous structure of the transport density with respect to the velocity v at the boundary of
the core (no neutrons enter, whereas some exit) makes it very difncult to approximate by diffusion (in essence
independent of the velocity). Surprisingly enough, this difïiculty can be overcame in a very satisfactory way. In
order to study this leakage, a boundary layer analysis is performed which allows to understand the anisotropic
behavior of the neutron density at the boundary of the core. Such techniques have already been applied in the
case of homogeneous media (or slowly varying media) [11,29]. In our situation, the neutron mean free path is
of the same order than the medium heterogeneities. Therefore, the reactor can not be assumed to be locally
homogeneous and a genuine multidimensional boundary layer analysis has to be done (see [8] in the simplified
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setting of the even parity transport formulation). This boundary layer can be replaced by a modification of the
Dirichlet boundary condition which becomes a Robin boundary condition for the homogenized diffusion limit
(featuring a so-called extrapolation length of order e, characteristic of the boundary layer). Introducing this
refmement in the homogenized model gives extremely satisfactory numerical results for the reconstructed flux,
as well as for the leading eigenvalue (for details, see [9]).

The authors wish to thank B. Perthame for helpful discussions concerning the regularity theory of transport équations
and X. Warin for his contribution to the numerical analysis presented here.
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