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SOME SPECIAL SOLUTIONS OF SELF SIMILAR TYPE IN MHD,
OBTAINED BY A SEPARATION METHOD OF VARIABLES

MICHEL CESSENAT! AND PHILIPPE GENTA!

Abstract. We use a method based on a separation of variables for solving a first order partial differ-
ential equations system, using a very simple modelling of MHD. The method consists in introducing
three unknown variables ¢1, ¢2, ¢3 in addition to the time variable ¢ and then in searching a solution
which is separated with respect to ¢1 and ¢ only. This is allowed by a very simple relation, called a
“metric separation equation”, which governs the type of solutions with respect to time. The families
of solutions for the system of equations thus obtained, correspond to a radial evolution of the fluid.
Solving the MHD equations is then reduced to find the transverse component Hyx of the magnetic
field on the unit sphere ¥ by solving a non linear partial equation on . Thus, we generalize ideas of
Courant-Friedrichs (7] and of Sedov [11], on dimensional analysis and self-similar solutions.

Résumé. On développe une méthode de séparation de variables pour un systéme d’équations aux
dérivées partielles du premier ordre qui intervient en magnétohydrodynamique dans une modélisation
simplifiée. Cette méthode consiste a faire intervenir en plus du temps, de nouvelles variables a priori
inconnues ¢1, ¢2, ¢3, et a chercher & imposer & la solution du systéme une séparation des variables
vis-a-vis du temps et de ¢1 seulement. Ceci est rendu possible & ’aide d’une équation trés simple, dite
équation de séparation métrique, qui gouverne le type des solutions. On dégage alors des familles de
solutions asymptotiques admissibles pour le systéme d’équations, et qui correspondent & une évolution
radiale du fluide. La résolution du systéme d’équations de la MHD est alors ramenée & déterminer la
composante transverse Hx du champ magnétique sur la sphére unité X, par la résolution d’une équation
aux dérivées partielles non linéaire sur ¥. On généralise ainsi des idées de Courant et Friedrichs [7], et
de Sedov [11], reliées aux questions d’analyse dimensionnelle et d’autosimilitude.
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1. MODELLING IN MAGNETOHYDRODYNAMICS

We study the coupled evolution of a compressible fluid and electromagnetic field using a macroscopic mod-
elling and the following assumptions: ‘

(a) The fluid is a perfect gas, homogeneous and not viscous. The fluid is described by its specific mass p,
its velocity v and its pressure p. The fluid equations are obtained by the conservative laws of density,
momentum and energy. The fluid is also a perfect medium with respect to electromagnetic properties,
isotropic and homogeneous.

Keywords and phrases. Magnetohydrodynamic (MHD), separation of variables, selfsimilar solutions, dimensional analysis.
1 CEA/DAM, Centre d’Etudes de Bruyeres-le-Chétel, B.P. 12, 91680 Bruyeéres-le-Chatel, France. .
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(b) The equations of evolution of the electromagnetic field are the Maxwell equations with constitutive
equations.

1.1. Electromagnetic modelling

1.1.1. Electromagnetic modelling for a medium at rest

The electromagnetic field is described by the magnetic field H, the electric field E, the magnetic and electric
inductions B and D, which satisfy the Maxwell equations (in the International System 1.S. of units)®:

0B oD
) L irtE=0, &2 _rotH =—j
(1) 5 T 0, 5 ot J (1)
(i) divB =0, divD = p,,

where j is the current density and p. the electric charge density.

In a perfect, isotropic, homogeneous steady medium without time-memory, the following constitutive laws
are used:

D=¢E, B=uH, j=o0E, (2)
€, 4, o being the permittivity, the permeability and the conductivity of the medium.

1.1.2. FElectromagnetic modelling for a moving medium

If the evolution of the medium is given by a transformation u in R* xR, u : (z,t) € R3xR — u(z,t) € R® xR,
we have to transform the electromagnetic field, Maxwell equations and constitutive relations by u. We denote
by a prime the transforms of E, H, B, D, j, p.. When u is a Lorentz transformation, it is well known (see [5,9])
that Maxwell equations are invariant, and constitutive relations are changed into (for a Lorentz transformation
with a constant velocity v of the S’ frame with respect to the reference frame S)

) D'+cl2uxH'=g(E'+va') (i) B'—Clzvfo:u(H'—vfo)
o - (3)
(iii) j’—p’cv:a,ﬁ(E'+va'—E2UU>, with 8= (1— (v2/c?) ™.

In the case of Galilean transformation (z,t) — (x + vt,t), the constitutive relations are:

B' = u(H' —v x D'},
D' =¢e(E' +vx B), (4)
j = plv=0c(E +vx B).

Finally, the simplified constitutive relations are:
D=¢E, B=uH, j=o0c(E+vxB)+pm, (5)

with € = €9, 1 = po, (€0, po the permittivity and the permeability of the free space).
Then p.v and j are neglected and these formulas are assumed to be still locally true when v is not a constant.

1In the whole paper, we use the French notation rot for curl.
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1.1.3. Lorentz force density and energy balance law

941

(a) The action of the electromagnetic field on the fluid is assumed to be given by the Lorentz force density:

Fr = p.E+j x B,

(6)

thus, if the time derivative of the electric induction (or “displacement current”) D is neglected in the Maxwell

equations, we have:

Fy, = eo(div E)E + po(rot H) >< H
eo(div EYE — o grad — + wo(H - V)H,

with (H - V)H; = 3, H; §2%

(b) The usual energy balance law with Joule effect is written in the “conservative form”

. Owm
]E———ét——de

1
with S = E x H and wy, = (soE2+,u0H2):§(D~E+B-H).

N | =

1.1.4. Summary of the electromagnetic equations

Finally, under the previous assumptions, the Maxwell equations with the constitutive laws are:

B
(i) 6—+rotE:0, —rot H = —j,

ot
(ily divB =0, divD = p,
with
(iii) B = poH, D = &E, j~o(E+vx B).

Thus the electric field F is obtained through H by:
1
E =~ —rot H— ppv X H.
o

The equation for H is:

OH 1
E - EAH—I‘OY,(’U X H) =~ 0.

(7)

(9)

(11)

If we assume, at last, that the fluid conductivity is high so that its corresponding term in the previous equation

may be neglected, we obtain “with infinite conduction”:

aa—il—rot(v x H) =0,

E=—-vXxB=—pyvx H.

(12)
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1.2. “Hydrodynamics” and fluid modelling

The fluid evolution in the space M = R3 is given as a function ¢ of o € R® and time ¢, with regularity
properties for every ¢t in the time interval (to,¢;); the map a € R3 — ¢(a,t) € R3 must be invertible, continuous
and differentiable with its inverse, according to a particle interpretation of the fluid evolution: a = (a;),
¢ = 1,2,3, are the Lagrangian coordinates of a fluid particle at time ¢ = 0 and z = (z;) = z,,:(t) = ¢i(a, 1),
i =1,2,3 are the Eulerian coordinates of the fluid particle at time ¢.

The field of velocity is obtained from ¢ by:

v(z(t),t) = %(ﬁ(a, t) e v(d(a,t),t) = a(itqb(a, t). (13)

If f is a regular (C*) function on R x Ry, its particle derivative (or material time derivative) df/dt is the time
derivative of F(t) = f(za(t), )

Oz; Of Bf

5 Ba =v- gradf+a—]c at (z(t),t). (14)

The fluid equations (obtained from conservative laws) are?:

. dp
(1) s + pdive = 0,

d
(i) EQtl = Fy +diva, (15)

(iii) —(i +U—2 =j-E+div(d-v) —di
P e 2 =] iv(é ivg,

where & denote the stress tensor, e the internal energy and ¢ the heat flux.
We assume that:

(i) the stress tensor ¢ is reduced to the pressure term & = —pI (I is the identity matrix),
(ii) the heat flux g is null,
(iii) the internal energy e satisfies the law of perfect gas (with v the adiabatic constant):

- _- P
e= ’ (16)

The equation (15iii) on internal energy is simplified to:

de
P +pdive = 0. (17)
Thus with (15i), then with (16), we have:
de 1 dp dp . ,
@ P =0, and T +ypdivy =0, 7

corresponding to the adiabatic law of evolution pp~ = constant.

2See for example (8].
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1.3. Global system of equations

We simplify and summarize the coupled system of magnetohydrodynamics, as follows. We search for a vector
function U of z and ¢:

U(z,t) = [p(z,t), v(z,t), H(z,t), p(z,t)] (18)
with 8 components U;,j =1,...,8,
Ur=p, Uirj=v;, 5=1,2,3, Us;=Hj, =123, Us=p, (18)

satisfying the following equations:

5 P4 div(pv) =0,
Ov
P 5 +(v-V)v ) +gradp = Fr, = po(rot H) x H,
o (19)
r —rot(v x H) =0, with divH =0,
2]
5127 + (v-V)p+ypdive =0,
or
.
i‘: + pdivy =0,
P~ 4 gradp = po(rot H) x H,
dt 19/
dH (19)
Ty + H(divv) — (H - V)v =0, with divH =0,
dp +ypdivy = 0.
VU =
L at P
We can write these relations using matrix notations:
ou d
E'FAU 0, or d—[t]-i-AU—O (20)

Then, with ! = 1,...,8 and with components U, (m = 1,...,8) of U, if A{m and A{m are the components of
A and A, we have:

0 d
Ul + Z Z Alm a = 7 or Ul + Z Z Alm 6.’L‘ (21)
7j=1,2,3m=1 7=1,2,3m=1

where

0 pdiv 0 0

p
1 1
AU _ 0 0 ;)',LL()O/ -V v (22)
b 0 0 H
p

(=}

2

3
=
<
o
o
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and where

pdiv = (pg‘z—l,pa%z, ps%) , V ="div=grad, and a,b the 3 x 3 matrix operators (23)
aij = H;0; — (H -V)bi;, by = Hid; — (H - V)dy;.

Using block matrix notations, the matrix operator A is A =Y A*d;,k = 1,2,3, with

0 pI* 0 0
1 k 1 k

0 b* 0 0

0 pI* 0 0

where I* is an 1 x 3 matrix, J* is a 3 x 1 matrix, and a¥, b* are 3 x 3 matrices given by:

(I*) ;= Okar  (J¥),, =0ka» @=1,2,3, thus J*= 7%,
and (ak)ij = (Hjéik - Hk(sij) , (bk)ij = (chsjk - Hkéij) , i,j = 1, 2, 3, thus bk = tak. (25)

The system of equations (19) is commonly used in MHD, see for example [1-4,10].

2. DIMENSIONAL ANALYSIS
2.1. Dimensional equations

At first, we note all these statements are usual in fluid mechanics (Vaschy-Buckingham theorem). We refer

also to [11] and to the Russian School (e.g. [3,4], for many studies on Z-pinch).

e 2y 2]y AU AA A

The state of a physical system at a point (z,t) (z € R3) is given by physical quantities, which basically
depend on the chosen units and scale. In the physical systems here considered, relative to mechanics, the basic
units are:

length (L), time (T), mass (M) and electrical charge (Q).
The physical quantities v, H, p are taken in the international system (I.S.)
ol =L3M, [p]=LTY [H=L'T7'Q, [p|=L"'T3M.
Changing the fundamental units modifies the measured quantities:

(lo,to,m0, q0) = (1, t1,m1,q1) = (A7 o, A7 Mo, Az P o, A ' q0)

Lol =ML T—oT =XT, M-M=>xM Q-—Q =\Q,

o =230, v =M e, H =TI IH, 0 =271 .
More generally, a physical quantity A with dimensional equation: [A] = L"*T*> M¥3Q"+, with v; € Z, is changed
into A’ = AP* A2 A3\ A. Thus the dimension of A is v = v4 = (v1, v, v3,v4) € Z%.

The formula of A’ gives a representation A of the ]Ri group, product of homothetic transformations, in the
R, space '

A= (A1, 02,03, M) €ERy =RE — A = W = AP AP, 26
+ by 1 A2 A3 N\
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In a Cartesian frame ((z;) € R?), the unit change of variables is given by the transformation:
o =Nz (ie zi=X\z; j=1,2,3), t'=Xt, v(@’)=v(z)=(1,0,0,0), and v(t)=(0,1,0,0). (27)

The transform of the function (z,t) — A(z,t) € R associated with the physical quantity A is given by A’(z',t') =
A(z,t), with multi-index notations.

For A = (A1, A2), let hy denote the map (z,t) — A(z,t) = (A1z, A2t) and A’ the map (z/,t') = A'(z',t') ; we
obtain:
A ohy=A5A, or A'=A{Ach}" (28)
We have a new representation of the group Ri in a functional space, as:
A = T(4) = A Ao R, | (29)
with
KL%, = LX,, where X-X = (A1}, Aoy, AgAg, Aa))) - (30)
This corresponds to the diagram:

(z,t) eR*xR —= A — Az,t)eR
h,\l Li’\l A;l
@ ) ERIxR — A — A,f)eR.

2.2. Self similar éolutions

For A, we choose the components (U;), j =1,...,8, of U = (p, v, H, p) solution of the previous equations of
magnetohydrodynamics.

Now we seek solutions of these equations which are invariant under the global change of units. Then we
obtain that the solutions (if they exist) have a special “asymptotic behaviour” (with respect to z and t).
The solution is written as U;(z, t, uo), j = 1,...,8, with uo the single dimensional constant ([uo] = LMQ™2).
Changing all units, the solution becomes: '
Uj(2',t's wo) = AjUj(x,t; o),  with Aj =AY, v =dimUj,
Uf (Az, Aot; MAsA o) = AUs(z, tp0), 5=1,...,8. (31)

(a) At first, we prove that there cannot exist a solution that would be invariant under this group of transfor-
mations.

IfU;=Uj;j=1,...,8, we write z = ra,7 = |z, = z/r € §? (« is dimensionless), and
U; (}\17‘, a, Aat; Aq )\3)\22/1,0) = A;U;(r, o, t; po). (32)
Then, taking M7 = 1, Aot = 1, M AaA; 2o = 1, and ¢7 = v + (u?; /2), we. obtain
U;(r, o, t; o) = )\ggj (r"{+"i/2t"guauz/2) U;(1,0,1;1). (33)

Finally, A3 can be arbitrary and U; = 0 for j # 2, 3,4, because there is only one dimensional constant pg in the
equations.
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(b) Now we seek solutions invariant under a subgroup R*j’r, that is freezing a unit, for example the electrical
charge; we have:

Uj ()\17‘, Q, >\2t; }\1)\3#0) = AjUj ('f’, Q, t; po). (34)

Let A\ir =1, At =1, A1 Azpo = 1. We obtain, with ¢;(a) = U;(1, o, 1;1) a function of a only,

_ i i

Uj(r, e t; o) = (A) 7 U(1, @, 151) = 7175587 e o (@), (35)
We have a natural separation of variables: in general, such a separation with respect to the “natural” variables
(z,t) or (1, a, t) is not possible. The idea is now to impose the separation with respect to new unknown variables,

as Courant and Friedrichs [7] do it for two variables with two new parameters.
These ideas are similar to ideas of Sedov [11] on II-theorem and self-similarity.

2.3. Generalized dimensional analysis

Now let ﬁj (B1, B2, Y1, %2) be a solution of the MHD equations, with unknown variables (1, B2, %1, ¥2. The
quantities B; and (3 have dimensions and are positive, ¥; and s are dimensionless, so that:

U'; (\Br, X2, 91, %2) = )\fj A7 U; (Br, Bay1,%2), VA1, A2 € RT, (36)

with real constants 6; and x; only depending on the dimensions v ([7]) = #; of U;. Assuming that (Uj) is
invariant under this change of units, we have:

~ 9. .~ K
T; (B1, Bas w1, w2) = By’ B3 Uy (1,1, %1, 40) = By B3 x5 (%1, %) (37)
by taking /\1,61 = 1, /\2,32 =1.
Let us specify the dimensions v (81),v (B2) of B1, B2 with respect to the units L, T, M and with respect to
coefficients 6; and k;. Let v (3;) = v* = (vi,v4,14), i = 1,2. Then we have:

O =03 =04, 05=06=20;, and Ky = K3z = kg, K5 = Ke = K1. (38)

Notice that H(uo/p)'/? and v(p/p)*/? are dimensionless and [H] = [p]*/2, thus:

_ 1 91 98 _ _ 1 K1 K8 _
95—598, ?-1—02—?—0, and 1‘65—558, ?-Fliz—?——o (39)
Let
<1 . S 1 o
91 = —91, 02 = 92, 03 = “08 with 92 = 03 - 01
2 2
1 1 (40)
F&1=§K)1, Ro = Ko, FL3:§K.8 with Ko = K3 — Ry
and also
=03, 0o=0, thus: f=0-0
{ ~3 0 ~1 us ~2 0, (41)
K=K3, Kg=~K1 thus: Ko = K — Kg.
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Then the dimensional equations for p and p are:

v(p) = (=3,0,1) = 201 (v}, v3,v3) + 2R (v1,04,03) , (42)
vip) =(-1,-2,1) = 205 (V}, 1/21,1/?}) + 2R3 (Vf, V%,Zlg) .
It is a system of 6 equations and 6 unknowns V;- (i=1,2;j=1,...,3), with §; and &; as data. This system
has a unique solution if
A = G1k3 — O3k1 = Ook — Okg # 0, (43)
and this solution is:
1
v (ﬂl) = (Iﬂ:o 3k, 2Kg, kK — Iﬁ:o), v (ﬁz) = ﬂ(—eo + 360, —26y, —0 + 90). (44)

3. DIFFERENTIAL GEOMETRY ANALYSIS

3.1. The method

The basic idea is to seek a solution U, of the MHD equations, that is invariant with respect to unit changes
of quantities denoted by B;,8: and that would be a product of factors with respect to new unknown variables

T, ¢1)¢2)¢3 as:
ﬁm (T7 ¢11¢27¢3) = ﬂlm(T)Blnm (¢1)Wm(¢2’¢3)7 m = 1:" ~58; (45)

Vg, (C’m) = O, V3, (ljfm) = K, are the two dimensions of Uy,.

We also have to find the change of variables from the usual coordinates of time and space to (7, ¢).

In Eulerian coordinates, z and t are not independent variables, thus we have to introduce a new time variable,
denoted by t’, and to obtain the transformation © : (¢, z) — (7, ¢) through its Jacobian matrix J.

We will choose 7 = ¢’ (the change of notation is only a question of writing partial derivatives) and then
we choose ¢ and ¢3 independent of ¢'. The main point is that the velocity of the fluid particle is part of the
unknowns (U,,), and thus, must satisfy the separation of variables, as is the formula (45):

Bi(r, ¢) = By ()BT ($1)Wri(¢2,63), i =1,2,3. (45")
Now the change of coordinates will be obtained through the differential forms:
do; =vidr+ Y ai;dg;, =1,2,3, dt' =dr, (46)
§=1,2,3

with factors a;; to be defined later. In the whole space R; x R2, we define the operator:

Z aax =, | (47)

also written (zlz) in the basis 0/0z;, 0/0t’. We calculate d¢;/dt’ when i = 1,2, 3:

Sd\ 8¢z 3¢z KA o 09 8¢
<d¢“dt’>—< - B + 5y 9 Z P +5t7>_ oz, t oy =V (48)
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Moreover, we assume that:

Obr _ 093
o~ ot

= 0. (49)

We have the basic formulas of transformation

1(8) ) -E oo ()i (-2

8 _ v _ 3¢1 3 . -
H(Evas) =7(0) -5 3 )

The velocity of the fluid particle must be of the form, with separate variables:

v = gl—Now, i.e., v; = g,lNowi, i=1,2,3, with a—,lwi = Wit+1, @1 constant, (51)
Ky Ky Ky
with
No(r,¢1) = B1 ()% Bu(¢1)™, with 9} =8, =0—6p, K =k =k — Ko, (52)
Let
- B r ) -
r=2 =2 =2, win gLALA #0. (53)
1 1
Then
ON( ON 1
0 =g, No, =0 — k= N,. (54)
or ¢ T

Gaij __

or ﬁf;zaj_l72)31

Relations (46) must correspond to closed differential forms, thus the Schwarz conditions
must be satisfied, thus factors a;; in (46) are so that

/ I
T
@i = L0v; = L —y; = GNow;, i=1,2,3,
(051 a T
r Ow;
aij = —Nowij, =123, j=2,3, w= ouw | (55)
K1 Bd’j
Then (46) can be written as:
dz; = 2 Nwd'r+GNwd¢+ FN é)“”dqs +8wzd¢ i=1,2,3
= Kq oWy, oWy 1 0 a¢ 2 ¢ 3 — L, 4 (56)
dt’ = dr.
Obviously, the differential forms dz; are closed forms if and only if:
or

This is called the Metric Separation Equation (MSE). Thus we have the transformation formulas (7, ¢) = (', z)

Ti = ,%/F(T)No(ﬂ ¢1)wi(¢2,43), i=1,2,3 and t'=r. (58)
1
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3.2. Path of the fluid particle

Now the path of the fluid particle which is at a point a € R® at initial time ¢ = 0, is given by the function:
teR = X,(t) = (t,za(t)) € Rx R® with z,(0) = a.
Now, at point X,(t), we have t =t' = 7,2, (t) = z:(7, ¢), : = 1,2,3. Thus
1 .
Taqi(t) = E—,I‘(t)No(T, ¢1)wi(d2,¢3), =1,2,3. (59)
4 i
Therefore

2a4(0) = & = — T(O)No(0, 61 )wi(2, 83) = - CB* ()il 2, 83)
1

1 (60)
with C' = (I‘ﬂfl) o constant.
Let M(¢) = I‘(:‘,),Bf’1 (t) /I‘(O)ﬂfl1 (0). From (60), the evolution is given by
Za,i(t) = M(t)a; ie z.(t) = M(t)a, (61)
and the velocity of the fluid particle is:
d 1 0’ Qg
a,i(t) = =xqi(t) = = [ I"No + T2 Np ) w; = — No(t, (P2,
Va,i(t) 3z % (t) P ( ot IR o) w o o(t, 1)wi(d2, #3) (62)
= vi(¢7 T)'
Note that it is also the partial derivative of the position with respect to 7:
d Ox ,
'Ua(t) - &ma(t) - ’U(QZS, T) - E((ﬁ,'r) (62 )
Then (62) implies
v= —lg, e v(za(t),t) = dza(t) _ 2L, (t) (63)
R VO N dt N
Thus the flow of the fluid particle is radial. Note that the field of velocity is curl free:
rotv = % rotz = 0. (64)
From these results and the relation
01 o 1 a T .
= —-——G = — —— —
ot K} Ky T’ (65)

we can prove (using the Euler equation of homogeneous functions) that By is

Bl (¢1) = C-"1 (13;0!11,.) 1/"1 ) or B],_cll (¢1) - éﬂl_alra él) é consta,nt, éfl = ér (66)
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and we get that ¢ (z4(t),t) only depends on a = (a1, az, as):

B (61(2(0),£)) = OB7 (¢)ralt) = CB7>* ()M 0)al = OB (0) 37 Kol
B (61w, 1)) = O @lel A (1(000)) = B8 (mea))). 6D

Notice also, [from (59)], that the directions of  and w are identical, and more precisely, using (59, 60, 66), that
there exists a constant Cp (independent of (7, ¢))

1 - 0o
Co = =GB (0)I(0), (68)
1
such that
z; 1 z - w
T = i th = T T3 = ) =171
2] Cow us |w| o and 7] W(p2, ¢3) Tl (69)

Therefore (¢2, ¢3) may be chosen as spherical coordinates.
3.3. Some general results

To solve the system of equations given by a particular mddelling of MHD, we need the value of 81, 81 through
the MSE. We need also differential operators such as the partial derivatives 8/8t, 8/8z;, 8?/8%x;, grad, div,
rot, v. grad, A. So we write down here the most useful formulas and we calculate also some interesting matrices

deduced from J.
3.3.1. Solutions of the “metric separation equation” (MSE)
Through the MSE, we will get 8:(7). We recall [see (57)]

ST AT /)

ar . b1
ki 1, with an- (70)
‘We have two cases.
(i) az — 6 # 0: Then we can define A, = (g — 6;)”" and:
4+ 7\ M
ﬂl('r) = Cl ( 0) with ,B()(O) = Cl > 0. (71)

The evolution operator of the fluid particle is:

M(t) = (%;ﬂ)al/(al_ei) . (72)
(i) oz — 6} = 0:
Bi(7) = Crexp(r/m) with Cy = B;(0) > 0, (73)
and then
M(t) = exp(8}t/m1)- (74)

Now, we have §; from f; [see (65, 66)].
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3.3.2. Formulation of the MHD equations using the variables (¢, T)
Let © be the change of coordinates (z,t') — (¢, 7) = (¢1, ¢2, ¢3, 7). We define:

Ulg,7)=U (07 (¢,7)), Xalt)=0O(Xa(t)), (75)

thus U (X,(t)) = (7(6 (Xa,(t))) =U (Xa(t)) Then we can prove that

d d _ouU
dt U(Xa(t)) = ( "'(t)) x,,(t) ar ’ (76)
Za(t)
The MHD equations of Section 1.3 are transformed into
Ul+2;z Im ad) jl :E(Xa(t))y (77)
= Xao(t)
with
6(1)]
L (Xa(®) ZA (Xa) 522 (Xa() = (7 (Aim) (78)
and thus, using (45, 53) with N,,, = ﬁf”‘ ,Bf‘"‘, the MHD equations are
Wp =
-01N,WI+Z =km N Bl Wi + Y > Bl N, mgg = Fh I=1...8 (79)
J

j=2,3 m
3.3.3. Jacobian matriz and scale factors

Transformation in R*

The Jacobian matrix J of the change of variables © : (z,t') — (¢, 7) is given by the dyadic expression, with
¢o =1, 10 =1

8¢ 0
J= z%@dqs,_za‘f’ 75 ® (80)

19z;

(j(A))i: . -Z%Aj, with J = (J,J) = (gi,) : (81)

The transform of the vector A=3._, 3 4; 2 is J(A) =3, (J (A)) 35, with:

Then the inverse of the Jacobian matrix J is given by:

3
_ ox;
J 1=§:amj®da:3 § a¢’z—®d¢, (82)
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Let B denote a tangent vector field in the ¢ variables:

3 3
0 0 0
B= B; = By—— B,— -
2. %5g = Par T ; o%; (83)
The transform A of B by the change of coordinates © ! is
3
1o} Oz; O Ox;
A=) Aj—=J'B= B—J—, thus A, =y —2LB,. 84
jgo ? Oz, J,‘LEZO 9¢i Oz; Z 0%i (54
To change the components (B;) to (4;), with (4) = J~1(B), use J ! given by:
J
o o o o r o 0 0
Or  0¢1 O¢2 O¢s N GNews TN Owy ERYY Owy
8:61 8.’,171 811 (9131 Kll o o "g{l 06¢2 ’ill 08¢3
-, = =2 =t =1
Jo=|0r 0¢1 0O¢s 93 = ﬁ;l_ Nows GNows _17 0212 ir Ny 222 Ows
K} K1 02 O3
8:[23 a ) 1 8’!1)3 1 611)3
i) — N, GN, —I'N, —I‘N
03 P 35

Transformation in R3

Let B = Zz L Biza 54; and A be given by A = Z:;.:l Aj%j (thus with By = 0, Ag = 0) with

/GIVO’IU1 FNO ?;;; F Og,;‘;;
A B, by 1 ows | (B
Ay | =J5' [ B2 | = | GNowa  — FNoa _,FNOB_‘ By |- (85)
As Bs Kl ¢2 K1 b3 Bs
Ows 1 N ows
GN()’LU3 ,{'—,11_‘1\703f¢)2 K_’l 055;

Let B denote the vector with components:

.1 -1
By =GNoBy, By=—TNoBy, Bs=—TNoBs. (86)
1 1

Let J; be this transformation from B to A:

w 8w1 0w1
, — =2
~ O0p2 0¢3 -

Ay 1?1 Owa Ows 51

Ay | =1 Biz = | w2 5@ ‘5(;5—3 BiZ : (87)
A

’ Ba ows  Ows |

w3y & — =

O¢2  O¢s






