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AN UPWINDING MIXED FINITE ELEMENT METHOD FOR A MEAN FIELD
MODEL OF SUPERCONDUCTING VORTICES* **
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Abstract. In this paper, we construct a combined upwinding and mixed finite element method for the
numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of
our method is that it works for any unstructured regular triangulation. A simple convergence analysis
is given without resorting to the discrete maximum principle. Numerical examples are also presented.
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1. INTRODUCTION

Recently, the mathematical analysis and the numerical studies of the mean field models have received much
attention [3-5,8,11,13,14,17,19, 20, 22|. Vortex simulations based on the mean field models provide possible
alternatives to the popular yet limited simulations based on the Ginzburg-Landau models [6,9,10]. In the two
dimensional setting, the mean field model that we are interested in can be described, after proper scaling, as
follows:

wt— V- (wVu)=0 inQp, (1.1)
—-Au+u=w inQr. (1.2)

Here, w and u represent the vortex density and the average magnetic field, respectively. The superconducting
sample is assumed to occupy a convex polygonal domain 2 C R? with boundary I'. Qr = Q x (0,7T).

In [17,22], the existence and uniqueness of solutions and the regularity estimates are obtained for solutions
with compact support. In [8,14], some hybrid finite element/finite volume/finite difference approximations have
also been proposed and analyzed. So far, the only complete convergence theory available in the literature for the
two dimensional mean field model is that presented in [8]. However, to apply the finite volume based integration
schemes as in [8,14], the triangular grids need to satisfy the local equiangular assumption in order to preserve
the discrete maximum principle.

Keywords and phrases. Mean field model, superconductivity, vortices, mixed finite element, unstructured grid, convergence
analysis.
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In this paper, we present a method that can be applied to general unstructured triangular grids. To approx-
imate the hyperbolic equation for the vortex density (1.1), our basic idea is to use the upwinding finite element
method developed in [18] for solving the neutron transport equation

B-Vw+ow=f in{,

where 3 is a constant vector in R? and ¢ is a given function such that ¢ > oo > 0 for some constant oy. For
a given triangular grid, the discretization involves the normal component of 3 on the triangular edges. If the
standard conforming piecewise linear finite elements on the triangular grids are used to solve (1.2) as in [8,14]
and the upwinding scheme in [18] is extended to solve (1.1), then we encounter the difficulty that the normal
components of Vuy, across any inter-element boundaries are in general discontinuous. Due to this observation,
we propose in this paper to consider mixed finite element method to approximate (1.2). In particular, the
mixed Raviart-Thomas finite element approximation is used to solve the magnetic field equation (1.2). A
simple convergence analysis of the numerical solutions to the weak solution of the two dimensional mean field
model (1.1-1.2) can be completed for any regular quasi-uniform triangulation of 2 without use of the discrete
maximum principle.

The paper is organized as follows. In Section 2, the weak formulation of the model is provided. A numerical
method using upwinding mixed finite element approximations is presented in Section 3. The main theorem is
stated in Section 4. A number of technical estimates on the discrete solutions are given in Section 5. The proof
of the main theorem is given in Section 6. Discussion of the full-discrete approximations is made in Section 7.
Some preliminary numerical experiments are presented in Section 8. Further remarks and comments are given
in Section 9.

2. WEAK FORMULATION

Let (-,-) and (-,-)p denote the standard L? inner products on €2 and on any two dimensional domain D
respectively. Let H} () and H=1(2) denote the standard Sobolev space and the dual space of functions of the
variable x € Q. We also introduce the subspace of L2(2)2:

H(div;Q) = { q € L}(Q)?: divq € L*(Q) }.

For any Banach space B, its norm is denoted by || - || 5.
For the system (1.1-1.2), we consider the initial condition

w|t=0 =Wy Z 0 in Q, (21)
and the boundary condition
u=Hgy >0 ondQr, (2.2)

where 0Qp = {(x,¢) : x € 9N ,t € (0,T)} and Hexs is an external applied magnetic field. For convenience, let
us introduce p = —Vu.

For simplicity, we consider only the case where the solution w has a compact support throughout the time
interval (0,7 of interests. We also assume that He,; is a constant in time and space. The results of this
paper can be easily extended to general non-constant functions Hey;. Finally, we assume wy is nonnegative and
wo € L*(N). Note that for a given T' and any given initial vortex density that is L> bounded with a compact
support, if the domain {2 is suitably large, then the vortex density will have compact support in (0, 7).
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The weak form is given by: find (w,u,p) with w € H'(0,7;H~1(Q2)) N L2(Q7), u € L%(0,7;L%()) and
p € L2(0,T;H(div;)) such that

T
(w0, 6(0)) = [ @, i+p-Y9)dt =0, Yoe CR(@x[0,7)), (2.3)
/OT [(divp, 0) + (u—w, (p)] dt =0, V¢ eL%0,T;L3(Q)), (2.4)
/T [(p, q) — (v — Hext , divq)] dt =0, Vqe&L%0,T;H(div;Q)). (2.5)
0

3. FINITE ELEMENT APPROXIMATIONS

Let ¥p denote a regular, quasi-uniform triangulation of €2, with A being the typical mesh parameter [1]. Let
{K} denote the triangles and {v} denote the edges. Let Ej, be the collection of all inter-element edges (that is,
excluding those on the boundary I).

Let P, C H(div; ) denote the lowest order Raviart-Thomas element space and Q, C L%(f2) be the space of
piecewise constants with respect to X,. We now approximate v and w by elements of @)}, and approximate p
by elements of Pj,.

For each edge «y of a triangle K, we define the outward normal vector by n. It is easily seen that the element
Pr of Py is uniquely determined by

{Pr(%x4) - n(x4) | x4 is the midpoint of some edge y of £,, n L~ }.
Given pp, we divide the boundary 0K of each element K € ¥, into two parts

OK_=U{vyCOK: pp(xy)-n<0} inflow,
0Ky =U{vyCOK: pnr(xy) - n>0} outflow.

Next, for a fixed pp, we define the upwind value of any n, € Qp on 9K as

_ [ n (interior trace of )  on OKy
h = ny, (exterior trace of np)  on OK_

and assume 7, =0 on 0K_ NT. For any v € Ej, we define the jump of n, € Qp across v by

(] = — .
The numerical method we consider in this paper is based on an upwinding finite element scheme for (2.3) and
the mixed finite element approximation using the Raviart-Thomas element for (1.1), (1.2) and p = —Vu as

follows.
For {wh,un, Pr} in Qn x Qp X Py, for each t € (0,T], we have for each ¢ € (0,7] that

d -
(——wh,'nh> +/ (pr -n)opmpdy=0 Vnr€Qnr, VKE€EZ,, (3.1)
dt Kk Jok

(divph , Uh) + (uh — Wh , vh) =0 Vo, € Qn, (3.2)

(Pr,an ) — (up — Hext, divgn) =0 Vqu € Py . (3.3)
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The initial condition is given by:
(wh,0,vn) = (wo,vn) , V vn € Qn . (3.4)

The existence of a unique solution to the discrete problem (3.1)-(3.4) follows from the standard ODE theory
by using the uniform in time a priori estimate in Corollary 5.6 to be proved later. Here we omit the details.

4. THE CONVERGENCE THEOREM

For brevity, we first focus on the semi-discrete approximation. Fully discrete approximations are considered
later. We now state the main theorem:

Theorem 4.1. (Convergence Theorem for the finite element approximation). Let T > 0, Hexy > 0 and wo €
L*®°(Q),wo > 0 a.e. wn Q be gwen. Then, as h — 0, there exists a subsequence {hi} such that

up, — u strongly mm L*(0,T;L%(Q)) and weakly* mn L=(Qr), (4.1)
Why — w weakly m HY0,T;H(Q)) and weakly* mn L®(Qr), (4.2)
Pr. — P strongly . L*(0,T;L%(Q)), (4.3)
divpp, — divp weaklym L2(0,T;L%(Q)), (4.4)
where (u,w) 1 a weak solution of (2.3-2.5) and p = —Vu.

The proof of Theorem 4.1 involves standard steps as similar to that in [8] and it is presented in detail later
in Section 6. The main ingredients are the estimates for the Raviart-Thomas elements without resorting to the
discrete maximum principle.

Clearly, Theorem 4.1 also implies that if the weak solution for (2.3-2.4) is unique, then the weak limit in
the above theorem is independent of the choice of the subsequence. This in turn implies that, in this case, the
whole sequence {(up,wp)} is convergent to the unique weak solution of (2.3-2.4). For more discussion on the
existence and uniqueness of the weak solutions, we refer to [17,22).

5. ESTIMATES FOR THE NUMERICAL SOLUTION
We start with the maximum norm estimates.
Lemma 5.1. Gwen Hext > 0 and non-negatwe wo € L*°(Q), let
M(t) = llwn(@)llLe ),  L(t) = max(||uallLe(@x0,4), lwollLe(y)-

Then for a.e. t € (0,T),

wh(t) >0, (5.1)
M(t) < L(t) . (5.2)

Proof. The proof of (5.1) is similar to the argument given in [8] by the fact that wp,(0) > 0. We first notice that
(3.1) can be rewritten in the vector form as

%@'(t} + D(t)&(t) — Bt)3(t) =0

where D(t) has a diagonal matrix form containing nonnegative entries, B(t) has zeros on the diagonal and
nonnegative off-diagonal entries. Since the entries of D(t) is continuous in time, we may take a large enough
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constant A > 0 such that the entries of D(¢) is bounded by A for all ¢ € [0,7]. Then, by taking integration
factor, we get

%(e*tw) — (\ = D(t) + B(t)eMa,
where I is the identity matrix. Now if
(min(0,wk))kes,, we deduce easily that
Wh (0) > 0.

To show (5.2), we first remark that since wp(t), un(t) are the solutions of the ODEs (3.1)-(3.4), they satisfy
wp € C(0,T;Qp) and up, € C(0,T;Qp), M(t), L(t) are continuous functions in time. For any £ > 0, since
M(0) < L(0) + €, we know that M(¢t) < L(t) + ¢ at least for small ¢ which may depend on €. Now we prove
M(t) < L(t) + ¢ for all time.

& = (wix)kex,, multiplying the above equality by e with 7 =
77 = 0, which implies wy(¢) > 0 for any ¢ € [0,7] by the fact that

By (3.2),
/ Pr-npdy = / ph'n(u?h—wh)d7+/ Ph -1 wp dy
oK 8K K

= / Pr -0 (wy, —wp)dy+ (divps,wh)k
OK_

= / Pr -1 (w, —wp)dy + (Wh — Un,Wh) K -
oK _

Let

wn(t) |ree= M(t) = max {wn(t) Ix}

then, we have
| prenr —andrzo. (5.3)
BK*

Thus, by (3.1), we have

Elﬂ-I—(wh—'uh)wh,SO on K* .
dt
Suppose that M (t) < L(t)+& was not true for all t > 0. Let t* be the smallest time such that M (t*) = L(t*)+¢
and M(t) < L(t) + € for all 0 < t < ¢t*. Thus M(¢t*) > L(¢t*) and, consequently, wp (t*) > up(t*) on K*, so

dTu;h(t*)<0 on K*

which implies that M (¢*) < M (¢') for some t' < t. But M(t*) = L(t*) + € and M(¢') < L(t') + € < L(t*) + ¢,
we get L(t*) < L(t*), a contradiction! Therefore, M (t) < L(t) + ¢ for any time ¢t > 0 and any ¢ > 0. By letting
€ — 0, we obtain the desired estimate (5.2) for any ¢ > 0. O

Unlike the scheme in (8], the Raviart-Thomas finite element approximations do not enjoy a discrete maximum
principle in general. To obtain the energy bound on wy, we first consider
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Lemma 5.2. Let M(t) = ||wallri(q), then Mi(t) s non-increasing wn time. Thus, My(t) < Mi1(0).

Proof. Taking 0, = 1in (3.1), and noticing the cancellation of terms on the inter-element edges and using (5.1),
we get

d
—lwrllii@ = — E/ (pn - m) wpdy
dt Kexy oK
- -3 [ eewmueiar- 3 [ e
Kexy, K+ Kex, K _

= —Z/ (pr - n) wy dy

Kex, K, NT
0.

IN

This proves the lemma. O

Before we proceed to the derivation of energy estimates, let us recall some technical results concerning the
Raviart-Thomas element.

Lemma 5.3. [2,21] For any gwen f € L%(Q), let ¢ € H}(Q) be the solution of
—Dptp=f,
and (pn,0r) € Qn x Py, be the approzymate solution of (p, —V) using the mzed finite element formulation:

(divOr, vn) + (e, va) = (f,vn) Vvn€Qn, (54)
(Or,an ) = (pn, divan) =0 Vagr € Py . (5.5)

Then, for h small, there exists a constant ¢ > 0 such that

le — erllLz) + 10r — (=V©)llL2(@) < chllfllLz o) - (5.6)
and, consequently, by the triangle inequality

[16rllLz(e) + lenlliz) < chll fllLz) + el flla-1@) - (67)
We refer to [2,21] for detailed proof of the above lemma. Note that throughout the paper, we use ¢ > 0 to

denote any generic constant that is independent of the discretization parameters such as the spatial mesh size
h as well as 7, the time step size used in the fully discrete approximation.

Lemma 5.4. There exists a constant ¢ > 0 independent of h such that, for a.e. t € (0,T),
lunllLe(@y < cllwrllLa@y + ¢
Proof. Define uj, to be the solution of the problem

—Aujp +up = wp, inQ, (5.8)
u;, = Hext onl (5.9)

Then from the error estimate in Lemma 5.3, we know that

[lur — upllLz() < chllwn — HextllL2(o)-
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By using the elliptic regularity theory on convex polygons [15] to (5.8-5.9) we know that
lubllaz(n) < cllwallLz) + - (5.10)
Now denote by Ip, : L2(2) — Qp the L? projection operator, then the following error estimate is well-known [1]
e = InellLq) < chllplm) Ve € H(Q).

Then by using the above two estimates and the inverse inequality [1] we get

lun = Tnupllieo) < cH Mun — Tnuj iz
< cH M un — upllva) + cH 7 up — Tnujlliz o)
< dllwn = HextllLz(a) + cllupllur )
< clwalLa@) + c-
This proves the desired bound of up, by Sobolev embedding theorem and (5.10). O

Lemma 5.5. There exists a constant ¢ > 0 independent of h, such that

s o lay + 3 / / ipn - n [wa]dy < c. (5.11)

Kem, J0 JOK-

Proof. Let us take np, = wy, in (3.1), then

1d
EE"wh”Lz(Q)+ Z/ Pr - N Wpwp dy = 0.
Kexy,

On the boundary 0K, we have

- - 1 1
/ phonwhwhd'y:/ ph‘n<whwh——w,2l> d'y+—/ ph~nw,zldfy.
oK oK 2 2 Jox

Noticing that

Z/ nwhwhd'y——Z/ ph.nw;w;d'y+/+ph.nwﬁd’y,

KET) Kex, YOK- rf
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we get,

- 1
Z / Pr-D (whwh — éwfl) dvy
9K

Kex,,
1 1
=3 Z / Pr-nwiwhdy+ Z ph-n(wEWI——i(wI)?) dy
Kezy K+ KeXy OK-
1 _ _ 1
=-3 }: / pr -0 ((wy)? — 2wy wif + (Wih)?) d’Y+§/ |pr - n|w}, dy
oK _ Ty
KeXy h
1 / 2 1 2
=—c Pr -1 [wp]*dy + —/ |Pr - 0w} dy
2 K%; oK 2 Jry '
1 / 2 1 2
==Y Iph - 1| [wa]® dy + —/ [Ph - njwj, dy
2 Kexy, oK - 2 F;t'

On the other hand, since wy, > 0 by Lemma 5.1, we have

' 2 : 2
E Pr -0 wi dy E / divpp wy, dx
/aK h K "

Kesy, KeXy

(wh = un, wh)

—(un,wh)
~M;(0)[|whlLes @y llunllLe )

2
—¢ foax, | wn(s) IL2¢) — ©

vV IV IV

where in the last two inequalities we have used Lemmas 5.1, 5.2 and 5.4. Thus

1d 2 1 2 2
3 g lwnllize) + 5 > /ax Ipr - ml [wh]*dy < Colgggtnwh(s) L2y +c-
KeXy, -
Using Gronwall inequality, we get the desired estimate. O

From Lemmas 5.1, 5.4 and 5.5 we obtain easily the following uniform bound of up and wy,.

Corollary 5.6. There exists a constant ¢ > 0 such that

llunllL=(y + llwnliL=@) < c,

uniformly with respect to h.
Next, let us state a simple estimate on pp,.

Lemma 5.7. There exists a constant ¢ > 0 such that for a.e. t € (0,T),
||diVPh||%,2(Q) + “Ph”iz(n) <c.

Proof. Though there are a number of different proofs, we simply verify it by taking vy, = un — Hext in (3.2) and
qr = pr in (3.3) and applying the earlier maximum norm estimates First, we have

"ph“%ﬁ(ﬂ) + “uh - Hext“i2(9) = (LUh - Hext:"-"h - Hext)

1
< Euuh(t) - Hext“%,?(g) +c



A MEAN FIELD MODEL OF SUPERCONDUCTING VORTICES 695

for some generic constant ¢ > 0, independent of h. Then, by taking vy, = divpy, in (3.2), we get

ldivealf) = (wh—un,divpn)

A

< (lwnllLeey + lluelivz@)div prllee) < clldivpalliz(@) -
for some generic constant ¢ > 0, independent of h. This proves the lemma. Oa

Following from Lemma 5.7 and Lemma 5.3, we can get some uniform bound on the time derivatives of the
discrete solutions.

Lemma 5.8. There exists a constant ¢ > 0 such that
llwntl|Loeo,7,0-1()) < €, (5.12)
lwhellLeoo, 7,20 < ch ™, (5.13)
unsformly with respect to h.

Proof. Let ¢ € C3*(f2), and ¢y, be its L? projection in Q. With the notation hx = diam(K) for any K € Xp,
we consider

[(wht , ¥)| = [(wht , wn)l

= Z/ Ph -0 Wrpp dy
oK

Kexy

= 2 [ eeneieiare ¥

Kex, Y 0K+ Kexy,

/ Ph - 0wy, @ dy
0K _

INA

> Ph-nwi [pn] dy
Kexy, 0K

1
SC<Z hK/ Iph'n|2d7) (
Kexy, 0K+

for some constant ¢ > 0 which depends only on the uniform estimate for wy. Using a local inverse estimate

1
2

> n

Kexy, 6K+

I[‘Ph”zd’)’>

IPrllLzak) < Ch[_(l/zuthLz(K) ,

we have

> hK/ Ipr - n|?dy < cllprlifz(ay »

Kezy, 0K+

for some constant ¢ > 0. By the approximation properties of the L? projection, we get

[ ton =P ar < chuclloln e -
oK

Thus
[(wrt » @) < cllellm (@)
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for some generic constant ¢ > 0. This gives the bound (5.12) in the lemma. The bound (5.13) can be proved
similarly by noticing that

1
2

(Z h / I[sohllzd’v) < ch Y on ey < ch Yl @l @)-
Kex, OK+

This completes the proof. O
Now, the equations (3.2-3.3) implies that

(divpht , vr) + (Ut —whe, ) =0, Yon € Qp, (5.14)

(Prt,qn ) — (uns , divgr) =0 Vau € Py . (5.15)
Thus, we see that (un¢, pat) is the finite element approximation of the solution (¢}, —V7}) of the equation
—Ap;, + @) =wpe  in Q

with homogeneous Dirichlet boundary condition.
By applying Lemma 5.3 and Lemma 5.8, we get

Corollary 5.9. There exists a generic constant ¢ > 0, such that

lpnellLz(a) + luntlz@) <c
unsformly unth respect to h.

Combining the above estimates, we get

Corollary 5.10. For gwen T > 0, Hext > 0 and guen wy € L°(Q) such that wyp > 0 a.e. wn §, there exists
some constant ¢ > 0 such that

luntlluee o,7,12(0)) + llunllie(r <, (5.16)
lwrtllLee (0,7, 15-1()) + llwnllLe(r) < ¢, (5.17)
IPhtllLeo,7,12()) + IPRIlLe 0,7, H(awv,2)) < €5 (5.18)

unzformly unth respect to h.

6. PROOF OF THE MAIN CONVERGENCE THEOREM

Based on the uniform bound on the discrete solutions, we first extract weakly or weakly* convergent sequences.

Lemma 6.1. LetT > 0, Hext > 0 and wp € L™(Q) such that wg > 0 a.e. wn Q be gwen. Then, any subsequence
of {wh,un, Pr} has a subsequence {wh,,Un,,Ph,} such that as hy — 0,

up, — u strongly m  L2(0,T;L3(Q)) and weakly* m L=°(Qr), (6.1)
Wh, — w weaklym HY0,T;H Q) and weakly* 1 L>®(Qr), (6.2)
Ph, — D stronglywm L*(0,T;L3(Q)), (6.3)
divpn, — divp weakly i L2(0,T;L%*(Q)), (6.4)

for some limit {w,u,p} n the appropriate spaces.
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Proof. The existence of the weak or weak* limit {w,u,p} and the weak or weak* convergent subsequence
{Wh,, Uhy, Ph, } follows from the uniform estimates in Corollary 5.10. We only need to prove the strong con-
vergence in (6.1) and (6.3). Consider the auxiliary problem (5.8-5.9), we get {u} } is uniformly bounded in
HY(0,T;HY(Q)) N L2(0,T; H%(Q)), after possibly extracting another subsequence, we may use the compact
embedding results [23] to get {uj}, } converges weakly in H'(0, T; H*(R2)) N L?(0,T; H*(2)) to some limit » and
the convergence is strong in L2(0, 7, H'(Q)), which in turn implies that {=Vu;, } converges strongly in L2(0,T;
L?(Q2)) to p = —Vu. Then, using the error estimate for the problem (5.8-5.9), we get the strong convergence of
up, to u in L2(0,T;L%(Q)) and pp, to p in L2(0, T;L3(Q)). O

As a consequence, we can get easily from the equations (3.2-3.3) that the weak limit satisfies the weak form
(2.4)-(2.5).
Proposition 6.2. The hmit {u,p,w} satisfies Equations (2.4)-(2.5).

Let us now check the equation (2.3).
Proposition 6.3. The limit {u,p,w} satisfies Equation (2.3).

Proof. For simplicity, we avoid the use of the subscripts for the sequence {hy}. First, for ¢ € CF (2 x [0,T)),
as h — 0, we have

T T
/(wht,mdt - —/ (@, B) At + (who s H(-0))
0 0

T
= = [ i )dt+ (e, 90,0)) . (6.5)
0
Meanwhile, let ¢, be the piecewise constant L? projection of ¢ in Qp,

(wht s ¢) = (whta ¢h)

= - Z/ Ph -0 Wrdp dy
oK

KeZp
N Z/ Pr -0 (wh — @p)pndy — Z/ Ph N wrp dy .
KeZp KeXp

We also have

Z/ Ph - nwh¢hd'y— Z / lephwh¢th— Z / dlvphwh¢dT

KeXp KeZp Ke3,
=- > / Prwn Ve dx + Z/ Ph 1w dy
KeZy KeXy
and
Z/ Pr-nwppdy = Z/ Pr -1 [wp]gdy .
KeZy KeXy
Moreover,
> [ penn-aady= 3 [ puonfoon ar
KeZy KeXxy
We thus get
(whe » ) = (Prom, VE) — 3 / ph -1 [wal($ — ¢n) dv. (6.6)

KeZp
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On the other hand, by Lemma 5.5 and the finite element interpolation estimate
[l — dnllLeo(x) < chilldllwreo(x) < chi,

we have

> LK_ [P -1 [wa] (¢ — n)l dy

Kex),

= < > /aK_ Ipr - 1| [wh]zd’)’) (

Ke3y,

SC< > h§</ Iph-nldv>
KeZy oK.

Schl/Z/ |pr|dx — 0
Q

1

> /3 y |ph-n|(¢—¢h)2dfy)

KeXp

L
2

uniformly in h and ¢ € (0,7). So, by the weak* convergence of wp and the strong convergence of py, we get
from (6.6) that

/OT(w,,t, d))dt—)/OT/pr-Vd)dxdt. (6.7)

Combining the equations (6.5) and (6.7), we get that (u,w) satisfies (2.3). a

By Propositions 6.2 and 6.3, we have completed the proof of the main theorem. Note again that if the weak
solution to (2.3-2.4) is unique, then the whole sequence converges.

7. FULLY DISCRETE SCHEME

In this section we discuss briefly the further discretization in time of the semi-discrete scheme (3.1-3.4) of
section 3 and thus obtain a scheme which can be directly implemented on computers. For n > 1, let 7, be
the time step size and denote by t™ = 37 | 7%. Let W® = wj o € Q be given according to (3.4). For n > 1
and given W"~! € Q), which is known as the approximation of w at the (n — 1)th time step, we first further
discretize (3.2-3.3) in time according to the following prescription

(divP™,vp) + (U™, 0n) = (W™ ' 0n) Vo € Qn, (7.1)

(P™,qp) — (U™ — Hext,divgp) =0 Vaqi € P (7.2)
It is clear that (7.1-7.2) admits a unique solution (U",P™) € Qp X P which we take as the approximation
of (u,p) at the nth time step. With P"™ € P}, being known, we can divide the boundary 8K of each element
K € ¥, into two parts

0K =U{yCOK: P"(x,) - n<0} inflow,
0K}l =U{yCOK: P"(xy)-n>0} outflow,

and introduce the upwind value of any 7, € Q on 0K as

. _ | mif (interior trace of ;)  on OKT
M = n;, (exterior trace of )  on OK”
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and assume 7, = 0 on K" NI. Now we define the fully discrete approximation of (1.1) as follows

(Wn _ Wn—l

Tn

,’f)h) + P"-n Wnnh dy=0 Y, € Qn, K € %, (7.3)
K oK

The existence and uniqueness of W™ is considered in the following proposition.

Proposition 7.1. Denote A™ = |[|[U"||p (). Then under the conditions that W™~ >0 a.e. mn Q and T,A™ <
1, Equation (7.3) has a umique solutron W™ € Qy, satisfyrng W™ >0 a.e. wn Q.

Proof. We observe first that (7.3) can be rewritten in the vector form as
AV = e, (7.4)

where A is a matrix with positive diagonal and non-positive off-diagonal entries. For any K € Xj such that
OK™ N T' = 0, the corresponding diagonal entry of A is

T
:1+_" P
K] Jorcr

n

OKK ‘ndy

and the sum of the off-diagonal entries is

.
E ALK = —I%l P". l’ld’y.
L#K,LES, | KT

Since apx <0 for any L € ¥y, L # K, we have

> o]

Il

- Z aLk (7.5)

L#K,LET, L#K,LESH
T,
= —— P" -ndy
IK| Joxn
Tn " T n
= ——= P" -ndy+ — P" -ndy
1K Jorcr KT Joser
Tn . Tn
= —— [ divP"dx+ — P" -ndy
K| Jx K| Jorn
= 17, (U"=-W"hH 4+ In P" -ndy
KT Jores
-
< AT = P" -ndy
" K| Joxry

< QaKK,

where we have used (7.1) and the assumptions W"~! > 0 a.e. in  and 7,,A™ < 1.

If K™ N T # B, we still have (7.5) since now the sum of the absolute values of the off-diagonal entries is no
greater than

— P" - ndy
K™
due to the definition W™~ =0 on K* N I.

This proves that A is an M-matrix. By the well-known property of M-matrices, we know that (7.3) has a
unique solution W™ € Qj,. Since W™~! > 0, we deduce from (7.4) that W™ > 0. a
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Now we can use the method in 5 to derive uniform stability estimates for the full-discrete solutions (W™, U™, P™)
and thus prove the convergence of the scheme (7.1-7.3). Here we omit the details.

Finally, we remark that in practical computations the condition 7,A™ < 1 is not very restrictive since we
have [|[W™||Le(qy < c for some constant ¢ independent of h and the time steps 74,k < n — 1.

8. NUMERICAL EXPERIMENTS

To test the mixed finite element approximation scheme presented in this paper, we implemented the algorithm
(7.1-7.3) on a square domain Q = [0, L]2. A simple triangulation is obtained by dividing each cell of a uniform
cartisian grid of grid size h along the x = y diagonal. The step size is taken to be min{ch, 1/(2||u|l)} for some
properly chosen constant o (say o = 0.5 or o = 2). As our main purpose is to demonstrate that the numerical
schemes presented in this paper indeed work, we only present a few simple cases. Results of more extensive
simulations and their physical relevance with the motion of the superconducting vortices as well as numerical
studies of the convergence rate of the numerical algorithms are to be reported elsewhere.

For any pair of two neighboring triangles that occupy the same square in the cartisian grid, we calculate the
averaged values of the vortex densities wp, and the averaged values of the magnetic field uy in the two triangles.
Then, we use MATLAB to draw the surface plots of these averaged quantities.

FIGURE 1. The steady state vortex densities (top) and the magnetic fields (bottom): A =1/8,1/16,1/32.

Case 1. We first let L = 1, we take the initial vortex density as

wo(z,y) = { é ii:e?izheeril|(m y) — (L/2,L/2)|lc < L/6} ) (8.1)

The applied field He,, = 1 is taken to be a constant field on the boundary.

As t gets larger, the vortex density is approaching to a steady state. In Figure 1, the steady state vortex
densities and the magnetic fields are shown for mesh with grid sizes h = 1/8,h = 1/16 and h = 1/32. The
convergence of the numerical solutions as h — 0 is evident from the pictures.



A MEAN FIELD MODEL OF SUPERCONDUCTING VORTICES 701

ue.‘f‘?
SN

5
KA

"N@
&g:m
S

NS0
VR
SN

FIGURE 2. The steady state vortex densities (left) and the magnetic fields (right): A = 1/10,1/20,1/40.

Case 2. Next, we let L = 2, and take the initial vortex density as

o) ={ 08 0 ens) = /Ll S 1/6) 52)

We take a non-uniform applied field
Hexi(z,y) = 1.25 — 0.52(L — )/ L?
for any point (z,y) € 9.
As t gets larger, the vortex density is approaching to a steady state. In the Figure 2, we present the steady
states computed on grids with A = 1/10,h = 1/20 and h = 1/40 respectively. Note that the region with nonzero

vorticity becomes more elliptical due to the annisotropic applied field.
Case 3. Finally, we let L = 1, and take the initial vortex density as

WO(xiy):l, V(.’L‘,’y)EQ
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The appled field 1s taken to be a non-uniform field given on the boundary by
Hext(7,y) = 3 — 10(z(L — ) +y(L ~ y))/L*

for any point (z,y) € 3Q Note that the mtial condition does not have a compact support However, with the
assumption that the vortex density is zero at all the in-flow boundary, the implementation of the algorithm 1s
the same as 1n the compactly supported case

The steady state vortex densities calculated on grids with A = 1/10,h = 1/20 and h = 1/40 respectively are
given 1n Figure 3

FIGURE 3 The steady state vortex densities (left) and the magnetic fields (right) h =1/10,1/20,1/40

As mmplied by the zero in-flow boundary condition, while no vorticity 1s allowed to be nucleated at the
boundary, vorticity may exit the domain through the out-flow boundary
To indicate how the total vorticity

V(") = / W™ dx
Q
decreases as time increases due to the exit of vorticity, we present a plot of values of —log (V(t™)) with respect
to the time changes in Figure 4

The out-flow boundary, as determined by values of P® n on the boundary, are centered near the mid-points
of the four sides of the square which can be observed from the plots given 1n the Figure 5
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FIGURE 4. The plots of —log (W) in time (solid line) vesus the its steady state value (dotted line).
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FIGURE 5. The steady state values of the normal derivatives P™ - n on the four sides of the square.

Case 4. Finally, we conduct a simulation for the annihilation of signed vortices. Although the model we have
studied in this paper is only for the case of nonnegative vorticity, its generalization has been given in [3] to allow
vorticity with sign changes. In this case the velocity field is given by —Vusgn (w) where sgn is the standard
sign function. We have implemented the non-conforming finite element scheme with this extension. At the
time step t,, the extra term sgn (w) is taken to be sgn (W™~1!). This leaves a linear system for W™ once U™ is
computed.

In the experiment, we let L = 10, and take the initial vortex density as

wo(z,y) = sin(2wz/L) sin(2ry/L), V(z,y) €N.

The applied field is taken to be zero on all parts of the boundary.
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In Figure 6, we present the time evolution of the vorticity w and the magnetic field © computed using a grid
size h = L/40.
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FIGURE 6. The time evolution of the vorticity w (left) and the magnetic field u

(right).
As t increases, we calculate the total vorticity

V(Er) = /Q W" dx
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and find that it remains as zero for all times. However, the magnitude of the vorticity

M(@t") = [W"|oo
starts to decrease due to the annihilation phenomena (see the simulation based on the Ginzburg-Landau models

given in [12]). These results are shown in Figure 7 The solution eventually reaches the steady state for which
both the vorticity and the magnetic field are zeros uniformly.

1 T T T T T T T T T

0.5 1

0 100 200 300 400 500 600 700 800 900

time
1 T T T T T T T T T
0.8Ff 1
0.6} .
=
0.4 .
0.2 b
O 1 . L 4 & n
0 100 200 300 400 500 600 700 800 900
time

FIGURE 7. The conservation of V' (t) and the decay of the M (¢) in time.

We have repeated the above experiment on grids with grid size h = L/80 and h = L/160 and the convergence
of the numerical solutions have been observed although our convergence theory does not apply to this case.

Remark 8.1. (Remark on the numerical experiments) The above numerical experiments indicate that the
implementation of the numerical schemes presented in this paper is very successful. One may also observe
the interesting phenomena concerning the finite time exit of vorticity on the boundary and the annihilation of
signed vorticity. More simulations on the solutions of the mean field model for superconducting vortices and
their comparisons with the conventional Ginzburg-Landau simulations will be carried out in the future.

9. CONCLUSION

In this paper, a convergence analysis is given for both semi-discrete and fully-discrete upwinding mixed finite
element approximations of a mean field model in a simple situation. The theory can be successfully applied
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to cases where an unstructured triangular grid is required to solve the model in irregular domains (domains
other than rectangles). Results of some preliminary numerical tests seem very encouraging. We also remark
that the upwinding scheme proposed in this paper to solve the vortex density equation (1.1) is of first order
since the vortex density is approximated by piecewise constant element. However, by combining with the high-
order Runge-Kutta local projection discontinuous Galerkin method proposed for conservation laws on general
triangulation [7], one might construct high order schemes for (1.1) by solving the elliptic equation (1.2) with
high order mixed finite elements such as Raviart-Thomas element RT}, or Brezzi-Douglas-Marini element BDMy,
which have been extensively studied in [2].

An advantage of using the mean field model in simulating vortex dynamics in superconductors, compared to
using the Ginzburg-Landau models, is the ability to consider large scale vortex interactions without resolving
the fine structures of individual vortices. Here, we have also only considered a simplified model for which the
pinning effect and the vortex nucleation are neglected. In the more general case, the velocity of the vorticity
transport also depends on the pinning forces and the critical current. The mathematical understanding of the
more general models is very limited so far, moreover, there are still gaps in a rigorous justification of the formal
derivations of the mean field model from the asymptotic limits of the Ginzburg-Landau equations. Thus, we
expect to conduct more numerical simulations that would provide some comparison with the Ginzburg-Landau
simulations as well as possible numerical justification of the mean field models in the future.
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