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ON THE CONVERGENCE OF SCF ALGORITHMS
FOR THE HARTREE-FOCK EQUATIONS

ERIC CANCÈS1 AND CLAUDE LE BRIS 1

Abstract. The present work is a mathematical analysis of two algorithms, namely the Roothaan
and the level-shifting algorithms, commonly used in practice to solve the Hartree-Fock équations. The
level-shifting algorithm is proved to be well-posed and to converge provided the shift parameter is large
enough. On the contrary, cases when the Roothaan algorithm is not we 11 defined or fails in converging
are exhibited. These mathematical results are confronted to numerical expérimenta performed by
chemists.
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1. INTRODUCTION

The Hârtree-Fock model [7,15] is a standard tooi for Computing an approximation of the electronic ground
state of a molecular System within the Born-Oppenheimer (or clamped nuclei) setting. The solution to the
Hartree-Fock problem can be obtained either by directly minimizing the Hartree-Fock energy functional [5,8,
14,23] or by solving the associated Euler-Lagrange équations, the so-called Hartree-Fock équations [6,17,20,21].
In any case, an itérative procedure has to be resorted to. Such an itérative procedure is often referred to as a
self-consistent field (SCF) algorithm.

SCF algorithms for solving the Hartree-Fock équations are in gênerai much more efficient than direct energy
minimization techniques in term of computational effort. However, these algorithms do not a priori ensure the
decrease of the energy and they may lead to convergence problems [22]. For instance, the famous Roothaan
algorithm (see [20] and below) is known to sometimes give rise to stable oscillations between two states, none of
them being a solution to the Hartree-Fock problem. This situation may occur even for simple chemical Systems
(see Ex. 9 below).

There are many articles dealing with SCF convergence issues in the chemical literature. The behavior of
the Roothaan algorithm is notably investigated in [3,9] and in [24,25]. In [3,9] convergence difïicuities are
demonstrated for elementary two-dimensional models; in [24,25], a stability condition of the Roothaan algorithm
in the neighbourhood of a minimum of the Hartree-Fock energy is given for the so-called closed-shell Systems.
More sophisticated SCF algorithms for solving the Hartree-Fock équations have also been proposed to improve
the convergence using various techniques like for instance relaxation (or damping [6,26]) or level-shifting [21].
Relaxation cures some convergence problems but many other remain. Numerical tests confirm that the level-
shifting algorithm converges towards a solution to the Hartree-Fock équations for large enough shift parameters,
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although there is no guarantee that the so-obtained stationary point of the Hartree-Fock energy functional is
actually a minimum (even local); a perturbation argument is provided in [21] to prove this convergence in the
neighborhood of a stationary point. Let us also mention the Direct Inversion in the Itération Space (DUS)
algorithm [17], which is widely used in quantum chemistry calculations at the present time. Numerical tests
show that this algorithm is very efficient in most cases, but that it sometimes f ails. To our knowledge, the
DUS algorithm has not yet been studied from a theoretical point of view. Let us point out that all the
convergence studies reported above concern the Hartree-Fock problem within the local combination of atomic
orbitals (LCAO) approximation, Le. within a Galerkin approximation rendering it flnite dimensional. It follows
that compactness properties, almost trivial in a finite dimensional setting, allow each author to oversimplify the
proofs of convergence of the algorithms. In addition, it is to be remarked that all the studies mentioned so far
rather provide recipes to cure the possible difficulties, and describe extensive programs of numerical experiment.
The algorithms are rarely studied from a rigorous standpoint and when they are, it seems to us that there is
room for improvements in the results. This is the reason why we have tried to contribute to such a study in
the present work. Actually, we are only aware of one rigorous mathematical study dealing with algorithms
for solving équations of quantum chemistry. This is the work by Auchmuty and Wenyao Jia [1] proving the
convergence of a non-standard algorithm (unfortunately not used in practice as far as we know) for solving the
Hartree équations. We strongly encourage the reader to point out to us any other référence of this kind.

Our purpose in this article will be to prove convergence results (a) on some of the algorithms that are actually
in use in the community of computational chemistry, (b) that deal with the infinité dimensional case, thereby
ensuring properties that are independent from the spécifie parameters fixed in the implementation, (c) that
improve the existing results of the chemical literature, when applied to the finite dimensional setting. As will
be seen, the results we shall obtain are likely to be improved in many respects. We hope our work will stimulate
further research.

In the present paper, we focus on two algorithms that are indeed used in practice, namely the Roothaan
and the level-shifting algorithms, considered as procedures for solving the original Hartree-Fock équations in
infinité dimension. However, except Propositions 5 and 6 which are spécifie to the infinité dimension, all the
results below, and notably Theorems 7 and 11 can be applied to the Hartree-Fock équations within the LCAO
approximation (see also Rem. 8). In Section 3, we propose a new formulation of the Roothaan algorithm which
is useful for the mathematical study (it provides us with a Lyapunov functional) and which in addition makes
clear the risk of stable oscillations between two states. Examples of pathological situations are exhibited. In
Section 4, we establish the convergence of the level-shifting algorithm, provided the level-shift is chosen high
enough. Contrary to the local resuit proved in [21] by a perturbation argument, our result is global: we need
not assume that the initial guess is close to a stationary point of the Hartree-Fock energy functional. As it is
difficult to check that such an assumption is fulfilled, we therefore believe that our result improves that of [21]
from the standpoint of applications. Although they are somewhat related to convergence issues, we leave apart
in the present study questions of stability and symmetry breaking [4,16] as well as the problem of the choice of
the initial guess. We hope to address these interest ing questions in a future work.

Now, before turning to convergence studies, we briefly recall in Section 2 the main features of the Hartree-Fock
model and of the associated SCF algorithms.

2. S C F ALGORITHMS FOR THE HARTREE-FOCK EQUATIONS

In the sequel, only spinless models are considered but most of the mathematical results detailed below can
be extended mutatis mutandis to other models taking spin into account like the General Hartree-Fock (GHF),
the Unrestricted Hartree-Fock (UHF), or the Restricted Hartree-Fock (RHF) models [22]. The spinless setting
is thus chosen only for the sake of clarity. The rare situations when the spin plays an active rôle will be pointed
out.

In Section 2.1, the Hartree-Fock model is presented, with a special attention to the density operator for-
mulation (see the reason why in Rem. 4 below). Some standard SCF algorithms for solving the Hartree-Fock
équations are described in Section 2.2.
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2.1. Basics on the Hartree-Fock model

Computing the electronic ground state of a molecular System containing TV électrons within the Born-
Oppenheimer approximation consists in searching the fundamental eigenstate of the JV-body Hamiltonian

N N

Vi — X5

in the space of admissible wave functions

N

The external potential V corresponds to the Coulomb potential generated by the nuclei; it is given by

M

for a molecular System consisting of M nuclei, the fcth nucleus carrying a charge Zk and being located at
The variational formulation of the problem to solve reads

, ƒ |̂ |2 = l V (1)

This problem is linear but, except for 1 or 2-electron molecular Systems, it cannot be directly tackled with
the standard tools of numerical analysis like finite-difference of finite-element methods because of the size of
the space 7i. The Hartree-Fock model is a variational approximation of the original problem (1). It consists
in restraining the minimization set to the set of the so-called Slater déterminants, namely to the set of the
functions ij) which can be written as

, i
•• ,XN) =

where ^ := {<l>i}1<i<N belongs to the set of molecular orbital configurations

W := | $ = {<l>i}i<i<N . & e H^R3),

Hère and henceforth, the upper-script * dénotes the complex conjugate. One obtains in this way the well-known
Hartree-Fock minimization problem under its standard form

m{{EHF($), $ € W } , (2)

where the Hartree-Fock energy functional reads

with D(p,p') := JR3xH3 p^Ût | da:dy. The mathematical properties of this minimization problem have been
studied by Lieb and Simon [12] and by Lions [13]. The existence of a Hartree-Fock electronic ground state is
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proved for positive ions (Z := J2kLi zk > N) and neutral Systems (Z = N). We are not aware of any gênerai
existence resuit for négative ions (the available existence proofs only work for N < Z + 1). On the other hand,
there is a non-existence results for négative ions such that N > 2Z -f M [11] (this inequality holds for instance
for the ion H2=). As far as we know, uniqueness (of the density p := ^2i=1 \<pi\2 at least) is an open problem
probably of outstanding difficulty. In addition, the local structure of the Hartree-Fock energy functional in the
neighborhoods of the stationary points is not known. These are serious limitations for convergence studies.

Let us remark that, if U G U(N) is a unitary N x N matrix, then for ail $ € W, [/$ G W, and both <3> and
UQ> generate the same Slater determinant. This implies in particular that a minimizer of problem (2) is defined
up to a unitary matrix. The Hartree-Fock problem (2) can be rewritten in a more intrinsic way which enables
one to get rid of this gauge invariance, by means of density operators. Let us recall that the density operator
T> associated with a iV-particle wave function ip is the operator on L2(M3) defined by the Schwartz kernel

y) = N i>(x,x2i--- ,xN)il>(y,X2,--- ->xN)* àx2 ••• dxN,
J^3(N

for any (xyy) G M3 xM3. The Schwarz kernel rp is the so-called density matrix (also called 1-particle density
matrix or reduced density matrix in the lit er at ure) associated with V. The corresponding electronic density is
denoted by PT>(X) := rx>(x,x). The operator V is self-adjoint and trace-class (for an introduction to the theory
of trace-class operators see for instance pp. 207-210 of [18]). It satisfies the following properties:

Tr (V) =]V, and 0 < V < 1.

The condition Tr (V) = N is equivalent to JR3 px> = N and the non-negativity of V ensures that p-p > 0. Slater
déterminants are characterized by density operators which are actually orthogonal projectors of rank TV. More
precisely, it is easy to see that there is a one-to-one correspondence between the set of finite energy Slater type
density operators

? = {2 )e£ 1 , Ran(£>) c tf^R3), V2=V = V\ Tr {V) = N}

(C1 dénotes the vector space of trace class operators on L2(M3)) and the set of molecular orbital configurations
defined up to a unitary matrix. Indeed, on the one hand, the Hartree-Fock configuration $ — {<fo} is associated
with

N

which is such that VJJ<$> = T><$> for any U G U(N) and for which

N N

i—l i = l

and on the other hand, a Slater type density operator V is associated with any \I> = U§ where U G U(N) and
^ = {$i} G W is such that {4>i}i<i<N is an orthonormal basis of Ran(P).

Let us now turn to the Hartree-Fock energy functional. Denoting by V<$> the density operator associated with
the Hartree-Fock configuration $ = {<pi\y one has

with

£HF{V) := Tr (hV) + i Tr (QÇD) • V)
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where

h:=-A + V

and where for ail <j> G Hl(Rs) and ail x G R3

:= [pv * p ) (x) </>(*(Ç(V) • 4>){x) := [pv * p ) (x) </>(*) - jfa ^ ^ 0(y) dy.

The functional 5, describing what chemists are used to calling the bielectronic component of the energy, satisfies
the following properties:

• for any V G V, Q(V) is non négative since V<£ G L2(R3),

2JwJR3

<£> = {4>i} being such that V<$> = V;
for any V e V and P ' G V,

Tr(Ç(V)-Vf) = Tr

= D(p7>,pT>>)- f f ^^f^f^^dxdy

= — / / \ J —: : dx dy,

where $ = {<pi} £ W, $' = {^} G W are such that P$ = 2?, X>$/ = P ' . In particular,

One also defines the Fock operator associated with the density operator T> by

so tha t for ail <f> G ̂ X ( R 3 ) and ail x G R3 ,

d>)(x) = -A0(x) + V(x)4>{x) + [pv * p ) (x)^(^) - ^ . ^ % ^ <Ky) dy.

Let us mention here that the essential spectrum of the operator ^(7)) is [0, +oo) for any D G V since the potential
energy operator V + ö(^) is A-compact. This result will be implicitly used below on several occasions.

Let us now state the minimization problem

M{eHF(V), VeV}. (3)

Lemmata 1 and 2 below provide char acterizat ions of the stationary points of problems (2) and (3) respectively,
and Lemma 3 states the connections between these two minimization problems.

Lemma 1. The following statements are equivalent:
1. ^ is a stationary point of EHF on W.
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2. There exists a hermitian matrix [\ij] such that for any 1 < i < N

N

3 = 1

3. There exists U G U(N) such that \I> = U$ satisfies

T{V) • fa = -en/a (5)

for any 1 < i < N with a € R and V = V® = V^.
4. ^(D^) and T)<$> commute:

= 0. (6)

Equations (4) (or equivalently (5)) are the so-called Hartree-Fock équations.

Lemma 2. A necessary and sufficient condition for T> being a stationary point of EHF on V is

Vöe£\ (Ran(5) C H1^3), V6 + 5V = 6 = 5*,

Tr 5 - 0) => (Tr (^(1^)5) - 0). (7)

Lemma 3. The functionals EHF and £HF defined on W and V respectively have the same stationary values.
Moreover, if & is a stationary point of EHF on W, then T>§ is a stationary point of £HF on V, and ifV is a
stationary point of £HF on V, then any $ G YV spanning Ran(£>) is a stationary point for EHF.

Remark 4. The duality between the molecular orbital and the density operator formulations has been early
formulated (see in particular [14]) and extensively used by quantum chemists. In the present paper we have
chosen to set up the algorithms and to state the convergence resuit s within the density operator formalism
because the expressions are simpler in this setting (at least to our point of view) and also because the convergence
criteria implemented in quantum cheraistry codes actually consider variations of the density operator between
two successive itérations (and not variations of the molecular orbitals). However, the translation in the language
of molecular orbitals is indicated throughout the text for three reasons: firstly, it is meaningful from a physical
viewpoint in particular as f ar as the gap between occupied and unoccupied molecular orbitals is concerned,
secondly, the molecular orbital formalism is widely used in the proofs, and thirdly we believe that it will make
the article easier to read for the chemists and mathematicians who are more familiar with molecular orbitals
than with density operators. D

Proof of Lemma 1. The Euler-Lagrange équations associated with the Hartree-Fock minimization problem (2)
are the Hartree-Fock équations under the form (4). Therefore, statement 1 and 2 are equivalent. Besides,
statements 2 and 3 are clearly equivalent since for any $ G VV and any U € U(N)i U<j> G W and V§ = T>u$-
Now, we prove that statements 2 and 4 are equivalent too. Let $ be a critical point of EHF on W; $ satisfies
the Hartree-Fock équations (4), the matrix [\ij] being hermitian. A straightforward calculation shows that
!F(T)&) and T><$> commute. Now, let us consider $ G W such that the density operator !F{T><$>) and £>$> commute.
For any 1 < i < TV, the équation

( ( ) ( ) ) • <fc = 0

can be rewritten as

N

3 = 1
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As T(T>$) is self-adjoint, the matrix [(<f>j, Ffâ^) - fa)] is hermitian and <E> satisfies the Hartree-Fock équations (4)

Proof of Lemma 2. Condition (7) simply expresses that at a critical point P o n P , the first order variation of
the Hartree-Fock energy functional £HF is zero on

T-DV~{6eC1
y Ran(<5) c Jï^R3) , V5 + SV = Ö = Ö*7 Tr Ö = 0}

which is the tangent subspace to ? at D. D

Proof of Lemma 3. Let us consider a critical point <È of the functional EHF associated with the stationary
value A. Let ö G C1 satisfying Ran(£) c i î^R 3 ) , V&Ö + ÖV& = 5 = 5*, and Tr ö = 0. Exploiting the fact that
T>§ and !F(J)$) commute, we obtain

<$) = Tr

= 2Tr

= 2Tr

Thus Tr {F(T><&)6) = 0. Therefore from Lemma 2, V$> is a critical point of £HF of energy À. On the other hand,
let us consider a critical point V G V of £HF associated with the stationary value À. Let îp G Ker(£>) n H1 (M3)
and <p G Ran(P). The operator ö = (fa •) ip-\- (?ƒ>, •)</> is of rank at most equal to 2 and satisfies Ran(5) C H1 (M3),
T><£>0 -h 8T><& = (5 = 5*, and Tr 5 = 0. Then Tr (!F(J))8) = 0, which writes (ipyJ

r(T>) • <p) = 0 . Consequently,
for any <f> G Ran(X>), ^ ( P ) • <j> G Ran(P), which means that any molecular orbital configuration <3> spanning V
satisfies the Hartree-Fock équations (4). Ü

2.2. On the algorithms

Let us now focus on the algorithms for solving the Hartree-Fock problem. In practice, this problem is in
gênerai approximated by a Galerkin method: the fa are spanned over a finite basis of atomic orbitals. This is
the linear combination of atomic orbitals (LCAO) approximation (see [7], p. 17). For computational reasons
that we do not detail here, the atomic orbitals xp a r e most often contracted Gaussian functions, namely finite
sums of polynomials times Gaussian functions (see again [7], for instance). We recall from the introduction
that, even if the SCF algorithms are always solved in finite dimension, they are considered in this paper as
algorithms for solving the original problem in infinité dimension. Except Propositions 5 and 6 which are spécifie
to the infinité dimension, all the results below can be applied to the Hartree-Fock problem within the LCAO
approximation.

The algorithms under examination can be written in terms of density operators. In order to study their
convergence, V is equipped by two distances do and d\ respectively inherited from the norms:

\\A\\Q = (Tr (A*A))1/2 , and ||A||i = (Tr (A*(-A + l)A))1/2 .

The norm || • ||o and || • ||i are the norms associated with Hubert-Schmidt operators on L2(R3) and iî1(IR3)
respectively. We have in particular for any $ e W , and 3>' eW,

N

Contrary to direct minimization algorithms, which directly tackle one of the minimization problems (2) or (3),
self-consistent field methods for solving the Hartree-Fock équations consist in solving the nonlinear problem (6)
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(or any equivalent problem, see Lemmata 1, 2 and 3) with an itérative fixed point procedure of the genera! form

(SCF) (P 1 ? ^

Step 1 consists in building a pseudo-Fock operator Tn from the density operators (Vk)o<k<n computed in the
previous itérations and step 2 consists in defining a new density operator X>n+i from Tn.

The Rootkaan algorithm (also called simple SCF or pure SCF or customary itérative procedure in the litera-
ture) is natural when considering the Hartree-Fock équations under the form (5). It is deflned by Tn =
and by the so-called aufbau principle which consists in taking for T>n+i a minimizer of

(issues concerning the existence and uniqueness of the solution to this minimization problem are examined
below). In terms of molecular orbitals, the aufbau principle consists in taking £>n+i — V$n+1, where $n+i is any
Hartree-Fock configuration obtained by choosing any set of orthonormal molecular orbitals 0"+1 corresponding
to the N smallest eigenvalues (including multiplicity) — e™+1 of JFn, that is to say in populating the molecular
orbitals by starting with those of lowest énergies. The Roothaan algorithm can be summarized in this way:

Vn —, ïn = F(Vn)
 aV^U Vn+1.

The level-shifting algorithm gêner alizés the Roothaan algorithm. It is defined by

where b is a real non-négative parameter, and by the aufbau principle. The Roothaan algorithm is recovered by
taking b = 0. If T> is a critical point of the Hartree-Fock functional satisfying the aufbau principle, the spectrum
of T(V) - bV is

{-ei - 6, - € 2 - 6, • • • , -eN ~ b, -ejv+i, -ejv+2, • • • } U [0, +oo[.

This means that the occupied energy levels have been shifted of magnitude —b under the action of the operator
—bV. The level-shifting algorithm can be summarized by

Let us now focus a little longer on the aufbau principle. This way of populating the molecular orbitals is
justified by the mathematical result stating that, at the Hartree-Fock minimum, the molecular orbitals are
indeed populated according to the aufbau principle applied to the Fock operator [13]: the Lagrange multipliers
appearing in (5) are the N lowest eigenvalues of the Fock operator. However, two types of difficulties may a
priori appear when resorting to the aufbau procedure within an algorithm:

1. Existence problems: the problem

infJTr (TnV), VEV] (8)

may admit no minimizer. This occurs when the pseudo-Fock operator Tn has less that N eigenvalues
(including multiplicity) smaller than or equal to the lower bound of the continuous spectrum;

2. Uniqueness problems: the minimization problem (8) may have more than one solution. This occurs when
the iVth and the (N + l)th smallest eigenvalues of Tn are equal, or in chemical language when there is no
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gap between the highest occupied molecular orbital (HOMO) </>̂ +1 and the lowest unoccupied molecular
orbital (LUMO) ^ r

Let us point out that of course existence problems never corne across in finite dimension (i.e. within the LCAO
approximation)j but that they may be present in infinité dimension as shown below in Proposition 6. On
the other hand, uniqueness problem may even occur in finite dimension. They are in gênerai related to the
symmetries of the system. In the cases when the System does not exhibit any symmetry, numerical experiment
shows that the eigenvalues of Tn are generically non-dégénérât e for any n, whereas it may not be the case when
the System does exhibit symmetries (consider for instance the spherical symmetry of the Hamiltonian in the
atomic case M = 1).

We will say in the sequel that a SCF algorithm with initial guess P o is well posed if it générâtes a séquence
(Dn)nGN defined in a unique way. In particular, when the construction of the updated density operator uses
the aufbau principle, well-posedness implies that problem (8) has a unique solution for any n GN.

We will also say that a SCF algorithm of the form

(A) Vn —>• Tn — •

with initial guess T>Q is uniformly well posed if it is well posed and if in addition the following properties are
fulfilled:

1. There exists e > 0 such that for any n G N, fn has at least AT eigenvalues below {m.ïcrc(ïFn) — e), ac(-)
denoting the continuons spectrum;

2. There exists 7 > 0 such that for any n G N,

N

cr(-) denoting the spectrum, —e™+1 < — e£+1 < • < ~e7v+1 t n e N smallest eigenvalues of .Fn, and
(<j>7i+1)i<i<N an orthonormal set of associated eigenvectors.

In Theorem 11, the level-shifting algorithm (LSb) with initial guess VQ is proved to satisfy the well-posedness
property provided b is larger than some b0 depending on VQ. Consequently (see Th. 11 again), this algorithm
enjoys good convergence properties. On the other hand, well-posedness remains so far an assumption for the
Roothaan algorithm necessary to obtain the (poor) convergence results we shall establish in the forthcoming
section (Th. 7). Indeed we unfortunately are not able to prove well-posedness for the Roothaan algorithm except
for the special case (trivial form the standpoint of applications) when the initial guess T>0 is a minimizer of the
Hartree-Fock functional SHF and when the molecular System is either a positive ion or a neutral System: T>0 is
then a fixed point of the algorithm and the uniform well-posedness is guaranteed because at any minimum V of
the Hartree-Fock energy SHF for a non-negatively charged molecular System, the Fock operator T{V) satisfies
the following two properties:

1. !F{T>) has at least N négative eigenvalues including multiplicity — e± < —62 < ••• < — ejv < 0 (see [13],
pp. 39-40);

2. There exists a positive gap between — ejv and the part of the spectrum above this eigenvalue (see [2]). Let
us point out however that in models including spin, this assertion remains true for the GHF model (called
"Unrestricted" in [2]) but is not proved for the UHF nor for the RHF models.

The above two properties of course motivate the définitions of well-posedness we have introduced.
To conclude this section, let us mention another SCF algorithm widely used in Hartree-Fock calculations,

the so-called Direct Inversion in the Itération Space (DUS) algorithm for which the pseudo-Fock operator !Fn is
build using not only the latest computed density operator Un> but all the density operators computed previously.


