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BOUNDARY LAYER ANALYSIS AND QUASI-NEUTRAL LIMITS
IN THE DRIFT-DIFFUSION EQUATIONS ∗

Yue-Jun Peng
1

Abstract. We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations.
We first show that this limit is unique and determined by a system of two decoupled equations with
given initial and boundary conditions. Then we establish the boundary layer equations and prove the
existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence

(with respect to the domain) of the sequence of solutions and an optimal convergence rate O(ε
1
2 ) to

the quasi-neutral limit in L2.

Résumé. On étudie les couches limites et les limites de quasi-neutralité aux systèmes de dérivée-
diffusion. On montre d’abord que cette limite est unique et déterminée par un système découplé
avec données initiales et aux limites. On établit ensuite les équations des couches limites et montre
l’existence et l’unicité de solutions avec l’atténuation exponentielle. Ceci implique un résultat de
convergence globale (par rapport au domaine) de la suite de solutions et un taux de convergence

optimale O(ε
1
2 ) dans la limite de quasi-neutralité dans L2.

Mathematics Subject Classification. 35B25, 35B40, 35K57.

Received: May 9, 2000. Revised: December 6, 2000.

1. Introduction

The drift-diffusion equations are fundamental models for the mathematical description and numerical sim-
ulation of plasmas physics and semiconductor devices. These equations consist of the continuity equations for
particle densities and a Poisson equation for electrostatic potential. Since they are elliptic-parabolic type, we
consider them in an open and bounded domain with initial conditions and mixed Dirichlet-Neumann boundary
conditions. The existence of solutions to these equations has been proved under natural assumptions. In some
situation, the uniqueness of solutions is also obtained, see [7, 10]. On the other hand, in numerical simulations
the Euler-Poisson equations are often replaced by the drift-diffusion equations to simplify computations. This
approximation is valid as the relaxation time is small. The mathematical justification of this zero-relaxation-time
limit has been rigorously performed in [11,13].

In [12, 14], we are interested in some asymptotic limits in the drift-diffusion equations. More precisely, the
zero-electron-mass limit and the quasi-neutral limit are studied. The first limit is proved under a compatibility
condition on the Dirichlet boundary data which excludes the boundary layer phenomena. However, the second
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limit is obtained even in the presence of the boundary layers. Both proofs rely on the use of the so-called
entropy functional which yields appropriate uniform estimates to apply compensated compactness arguments.
In this paper, we give an analysis of these boundary layers in the quasi-neutral limit.

We consider an ensemble of particles consisting of electrons with density nεe and of a single species of positively
charged ions with density nεi . Denote by φε the electrostatic potential. These variables satisfy the scaled drift-
diffusion equations (DD-EI):

∂tn
ε
i − div(∇pi(nεi ) + µin

ε
i∇φε) = 0, (1.1)

∂tn
ε
e − div(∇pe(nεe)− µenεe∇φε) = 0, (1.2)

−ε2∆φε = nεi − nεe , (1.3)

in ΩT = (0, T )×Ω, where T > 0 and Ω ⊂ Rd (d ≥ 1) is an open and bounded domain. Here, pi and pe denote the
pressure functions of the electrons and ions, respectively. The physical parameters are the (constant) mobilities
µi > 0, µe > 0 and the (scaled) Debye length ε > 0. We suppose that the boundary ∂Ω of the domain consists
of two disjoint sets ΓD and ΓN with measd−1(ΓD) > 0, and we denote by

ΣD = (0, T )× ΓD, ΣN = (0, T )× ΓN .

The system (DD-EI) is complemented by initial conditions and mixed Dirichlet-Neumann boundary conditions
for α = i, e:

nεα(0) = nI,α in Ω, (1.4)

nεα = nD,α, φε = φD on ΣD, (1.5)

∇pα(nεα) · ν = ∇φε · ν = 0 on ΣN . (1.6)

Here the function ν is the normal unit vector of ∂Ω which is assumed to exist almost everywhere. We say that
the boundary conditions are compatible on ΣD if

nD,i = nD,e on ΣD. (1.7)

The quasi-neutral limit ε→ 0 is called also zero-Debye-length limit. For the drift-diffusion equations (1.1)-(1.6)
this limit is justified in [14] under assumption that the electron and ion densities are equal at initial time,
i.e. nI,i = nI,e, which avoids the formation of initial layer. However, the local compactness of the sequence
(nεi , n

ε
e, φ

ε)ε>0 is obtained without the compatibility condition (1.7). Since the sequences (nεα)ε>0 converge to
the same function for α = i and α = e, we have in general boundary layers in the limiting process. We mention
that this problem has also been studied by Gasser et al. [8, 9] where assumption pi = pe and homogeneous
Neumann boundary conditions are imposed to simplify the analysis, since no boundary layers are expected.

The quasi-neutral limit in macroscopic models for plasmas has been investigated by Brézis et al. in [3] and
by Cordier et al. in [4]. In the first mentioned paper the limit ε → 0 is considered for the nonlinear Poisson
equation (the ion density being fixed). In the second article the authors study the quasi-neutral limit for the
traveling wave solutions of the hydrodynamic equations for plasmas. This limit is rigorously proved by Cordier
and Grenier in [5] for locally smooth solutions of the one dimensional compressible Euler-Poisson equations and
by Brenier for the weak solutions of the Vlasov-Poisson equations [2]. Asymptotic expansions in powers of ε to
the stationary drift-diffusion equations for semiconductors are derived by Markowich et al. [16, 17].

This paper is organized as follows. In the next section, we first recall the main results obtained in [14]. Then
we show the uniqueness of the quasi-neutral limit, which is determined by a initial-boundary value problem
to a system of two decoupled equations. Indeed, the locally strong convergence of the sequence (nεi , n

ε
e)ε>0

in L2
loc(ΩT ) and the locally weak convergence of the sequence (φε)ε>0 in L2(0, T ;H1

loc(Ω)) shown in [14] allow
to pass to the limit in the system (DD-EI), and the Dirichlet boundary conditions are obtained from the
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L2(0, T ;H1(Ω)) estimates for quasi-Fermi potentials. Thus, numerical simulation can be performed for the
limiting problem. Section 3 is devoted to the boundary layer analysis of this limit in one space dimension. With
the same scaling x → x/ε near x = 0 used in [3, 6], we establish the boundary layer equations and prove the
existence and uniqueness of solutions with exponential decay to 0 as ε → 0. We stress that this result is still
true in several space dimensions if the boundary layers occur only near a hyperplane of dimension d− 1 of the
form {xi = a ∈ R, 1 ≤ i ≤ d} (see Rem. 4.1.). For more general boundary, we refer to [6, 16] for the related
analysis in the case of smooth solutions to stationary equations. Finally, in section 4 we prove the convergence
rate O(ε

1
2 ) of the quasi-neutral limit nεi − nεe −→ 0 in L2(ΩT ). Since it is valid for the whole domain ΩT ,

we deduce a globally strong convergence of the sequence (nεi , n
ε
e)ε>0 in L2(ΩT ). Moreover, we show that this

convergence rate is optimal by an example of stationary drift-diffusion equations in one space dimension.
It turns out that we are not able to prove the strong convergence of the sequence (φε)ε>0 due to the lack of

a priori estimate for (∂tφε)ε>0. However, it is possible to obtain a convergence rate in L2(ΩT ) for the quantity
nεα − n in one space dimension, where n denotes the limit of nεα for α = i, e. For this purpose, some special
techniques are needed. This problem will be discussed in forthcoming publications.

For the sake of completeness, in the last section we give without proof a similar characterization of the
quasi-neutral limit and the boundary layer analysis for the nonlinear drift-diffusion equations derived from the
zero-electron-mass limit [12] in the drift-diffusion equations (DD-EI), where the electron density is replaced by
the Boltzmann-Maxwell type relation. In this situation, we show that both two sequences (nεi )ε>0 and (φε)ε>0

converge strongly in L2(ΩT ).

2. Preliminaries

In this section, we first recall the main results established in [14] and then show that the quasi-neutral limit to
(1.1)-(1.6) can be uniquely determined and a global convergence result (with respect to the domain) is available.
The limit is governed by a system of two decoupled equations with given initial and boundary conditions which
have not been shown in [14]. To this end, we need the same hypotheses used in [14]. For α = i, e:
(H1) nI,e = nI,i in Ω;
(H2) nI,α ∈ L∞(Ω), nD,α ∈ C0(ΣD) ∩H1(ΣD), φD ∈ H1(0, T ;H1(ΓD)) ∩ L∞(ΣD);
(H3) there exist two constants n, n > 0 such that

n ≤ nI,α ≤ n in Ω and n ≤ nD,α ≤ n on ΣD;

(H4) pα ∈ C2([0,+∞)) is strictly increasing on (0,+∞);
(H5) the function s −→ sH(s) is strictly convex on (0,+∞), where

h′α(s) = p′α(s)/s, s > 0, hα(1) = 0, H =
1
µi
hi +

1
µe
he . (2.1)

Under the assumptions (H2)-(H4) it has been proved in [10] that there exists a solution (nεi , n
ε
e, φ

ε) to the
problem (1.1)-(1.6) satisfying equations (1.1)-(1.3) in the sense of the usual variational formulation, the initial
condition (1.4) in the sense of V ∗, and

nεi , n
ε
e ∈ H1(0, T ;V ∗) ∩ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)), φε ∈ L∞(0, T ;H1(Ω)),

where V ∗ is the dual space of

V = {u ∈ H1(Ω);u = 0 on ΓD}.

If in addition, the given boundary data are smooth and ΓN = ∅, the solution is unique.
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To study the quasi-neutral limit to the problem (1.1)-(1.6), let us introduce the quasi-Fermi potentials:

F εi = hi(nεi ) + µiφ
ε, F εe = he(nεe)− µeφε, (2.2)

which will play an important role in the proofs. The results obtained in [14] may be summarized as follows.

Lemma 2.1. Assume (H1)-(H4). Then for α = i, e, we have:
(i) for almost all (t, x) ∈ ΩT , n ≤ nεα(t, x) ≤ n;
(ii) the sequence (F εα)ε>0 is bounded in L2(0, T ;H1(Ω));
(iii) the sequence (nεα)ε>0 is bounded in H1(0, T ;H−1(Ω));
(iv) the sequence (εφε)ε>0 is bounded in L∞(0, T ;H1(Ω));
(v) the following convergence holds for a subsequence (not relabeled) of (nεα, φ

ε)ε>0:

nεα −→ n in L2
loc(ΩT ) strongly, φε−⇀ φ in L2(0, T ;H1

loc(Ω)) weakly; (2.3)

(vi) for any open and bounded domain ω such that ω ⊂ Ω, we have

||nεi − nεe ||L2(ωT )≤ A0ε, ||∇φε ||L2(ωT )≤ A0ε, (2.4)

where ωT = (0, T ) × ω and A0 > 0 is a constant depending on ω and independent of ε. If in addition, the
compatibility conditions (1.7) is satisfied, then the estimate (2.4) holds in the whole domain ΩT .

The assertion (i) is obtained from the maximum principle, and (ii) follows from the entropy type estimates
which, together with the equations (1.1)-(1.2), implies (iii). The convergence (v) is a consequence of Aubin’s
Lemma [1,15] and the local estimates for the sequence (nεi , n

ε
e, φ

ε)ε>0. Finally, the local convergence rate (2.4)
is derived from a truncating argument. Note that in general this estimate cannot hold in the whole domain
ΩT due to the boundary layers. A global and optimal convergence rate weaker than (2.4) will be established
in section 4 in one space dimension. The initial compatibility condition (H1) is needed only in showing the
bounds of (F εα)ε>0 in L2(0, T ;H1(Ω)). The quasi-neutral limit is an open problem if (H1) is not satisfied. We
refer to [8, 9] for an initial layer analysis of the problem where new scalings are introduced.

From (ii) it is easy to see that (φε)ε>0 is bounded in L2(ΩT ). Therefore, φ ∈ L2(ΩT ) and from (i) n ∈ L∞(ΩT )
with n ≤ n ≤ n in ΩT . Hence, there is a unique solution χ ∈ L∞(0, T ;H1(Ω)) to the following problem:

−div(n∇χ) = 0 in ΩT , (2.5)

χ = χD on ΣD, ∇χ · ν = 0 on ΣN , (2.6)

where

χD = hi(nD,i)− he(nD,e) + (µi + µe)φD. (2.7)

The main result of this section can be stated as follows. It shows that the quasi-neutral limit is unique and
characterized by a initial boundary value problem to a decoupled system.

Theorem 2.1. Let the hypotheses (H1)-(H4) hold. Then the whole sequence (nεi , n
ε
e, φ

ε)ε>0 converges to (n, n, φ)
in the sense of (2.3). Moreover,

n ∈ H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L∞(ΩT ), φ ∈ L2(0, T ;H1(Ω)), (2.8)
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and the pair (n, φ) is the unique solution of the following problem:

∂tn−∆p(n) = 0 in ΩT , (2.9)

φ =
1

µi + µe
(χ+ he(n)− hi(n)) in ΩT , (2.10)

n(0) = nI,i in Ω, (2.11)

n = nD on ΣD, ∇n · ν = 0 on ΣN , (2.12)

where

p(n) =
µe

µi + µe
pi(n) +

µi
µi + µe

pe(n), (2.13)

and nD is uniquely determined by the relation

H(nD) =
1
µi
hi(nD,i) +

1
µe
he(nD,e). (2.14)

Proof. The inclusion n ∈ H1(0, T ;H−1(Ω)) follows from (iii) of Lemma 2.1. Therefore, (2.11) is satisfied in the
sense of H−1(Ω). To prove n ∈ L2(0, T ;H1(Ω)), we use the relation

1
µi
F εi +

1
µe
F εe =

1
µi
hi(nεi ) +

1
µe
he(nεe).

By (2.3), we have (up to a subsequence),

1
µi
hi(nεi ) +

1
µe
he(nεe) −→

1
µi
hi(n) +

1
µe
he(n) = H(n) in L2

loc(ΩT ) strongly.

Therefore, we obtain from (ii) of Lemma 2.1 thatH(n) ∈ L2(0, T ;H1(Ω)). Since hi and he are strictly increasing,
so is H. By the L∞(ΩT ) bound for n, we have n ∈ L2(0, T ;H1(Ω)). This proves the first relation in (2.8).

Next, the local convergence (2.3) allows to pass to the limit in the system (DD-EI) in the sense of distributions
to obtain

∂tn− div(∇pi(n) + µin∇φ) = 0,

∂tn− div(∇pe(n)− µen∇φ) = 0.

Adding and subtracting these two equations leads to (2.9) and

−div[(µi + µe)n∇φ+∇pi(n)−∇pe(n)] = 0,

which can be rewritten as:

−div[n∇((µi + µe)φ+ hi(n)− he(n))] = 0.

Again from the limit (2.3) and the L2(0, T ;H1(Ω)) bound for (F εi )ε>0, we deduce that

F εi = hi(nεi ) + µiφ
ε −⇀ hi(n) + µiφ in L2(0, T ;H1(Ω)) weakly.

Therefore,

(hi(nεi ) + µiφ
ε)|ΣD −⇀ (hi(n) + µiφ)|ΣD in L2(0, T ;H1/2(ΓD)) weakly.
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In view of the boundary conditions (1.5), we have

hi(n) + µiφ = hi(nD,i) + µiφD on ΣD. (2.15)

In a same way, we have also

he(n)− µeφ = he(nD,e)− µeφD on ΣD. (2.16)

These two relations imply the Dirichlet boundary condition in (2.7) and (2.12). From the uniqueness of solutions
to (2.5)-(2.7), we obtain (2.10) which yields φ ∈ L2(0, T ;H1(Ω)).

The uniqueness of solutions to the nonlinear heat equation (2.9) follows from the monotonicity of the function
p, which yields the uniqueness of solutions to the problem (2.9)-(2.14). Finally, this uniqueness of solutions
implies the convergence of the whole sequence (nεi , n

ε
e, φ

ε)ε>0. This finishes the proof. �

Theorem 2.1 gives a precise characterization of the limit ε→ 0 to the problem (1.1)-(1.6). Note that since the
boundary layers exist, the sequence (nεi , n

ε
e, φ

ε)ε>0 cannot be bounded in L2(0, T ;H1(Ω)). Therefore, (2.8) is a
regularity property of this limit. The following result concerns the globally strong convergence of the sequence
(nεi , n

ε
e)ε>0, where the assumption (2.17) below will be proved in section 4 in one space dimension.

Proposition 2.1. Assume (H1)-(H5) hold and

nεi − nεe −→ 0 in L2(ΩT ) strongly. (2.17)

Then for α = i, e,

nεα −→ n in L2(ΩT ) strongly . (2.17)

Proof. From (2.17) and the L∞(ΩT ) bounds for (nεα)ε>0, we obtain for α = i, e

hα(nεi )− hα(nεe) −→ 0 in L2(ΩT ). (2.18)

Since (nεα)ε>0 is bounded in L∞(ΩT ), (F εα)ε>0 is bounded in L2(0, T ;H1(Ω)) and

∂tn
ε
α − div(nεα∇F εα) = 0,

by the div-curl lemma of compensated compactness [20] applied to the sequences (nεα, nεα∇F εα)t and (F εα, 0)t,
we have in the sense of distributions

lim
ε→0

nεαF
ε
α = lim

ε→0
nεα lim

ε→0
F εα, α = i, e,

or equivalently,

lim
ε→0

nεi (hi(n
ε
i ) + µiφ

ε) = lim
ε→0

nεi lim
ε→0

(hi(nεi ) + µiφ
ε) in D′(ΩT )

and

lim
ε→0

nεe(he(n
ε
e)− µeφε) = lim

ε→0
nεe lim

ε→0
(he(nεe)− µeφε) in D′(ΩT ).

It follows from (2.17)-(2.18) that

lim
ε→0

nεeH(nεe) = lim
ε→0

nεe lim
ε→0

H(nεe) in D′(ΩT ).
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Since H is strictly increasing, from the monotonicity argument and the L∞(ΩT ) bound for (nεe)ε>0, we have
the identification [15]

lim
ε→0

H(nεe) = H(n) in L∞(ΩT ) weakly-∗,

which yields

lim
ε→0

nεeH(nεe) = nH(n) in L∞(ΩT ) weakly-∗.

Finally, we conclude the strong convergence of (nεe)ε>0 in L2(ΩT ) from the strict convexity of the function
s→ sH(s), see [21]. The strong convergence of (nεi )ε>0 in L2(ΩT ) follows immediately. �

3. Boundary layer analysis

In this section, we give a boundary layer analysis of the drift-diffusion equations in the above quasi-neutral
limit. To avoid tedious computations, we only consider the problem in one space dimension. From now on, we
denote by

Ω = (0, 1), ΩT = (0, T )× (0, 1), Γ0 = {x = 0}, Γ1 = {x = 1}.

We suppose that only Dirichlet boundary conditions are prescribed. Therefore, the boundary layers may occur
near Γ0 and Γ1. The situation is evidently simpler if a Neumann boundary condition is prescribed on Γ0 or Γ1.

In a neighborhood of Γ0 and for α = i, e, the solution (nεα, φ
ε) of (1.1)-(1.6) may be approximated by (n(t, 0)+

uα(t, y), φ(t, 0) +ϕ(t, y)), where y = x/ε is the fast variable. We expect that (ui(t, y), ue(t, y), ϕ(t, y)) describes
the boundary layer near Γ0 in the quasi-neutral limit. Due to (2.8) and Sobolev’s imbedding H1(0, 1) ↪→
C([0, 1]), the quantities n(t, 0) and φ(t, 0) are well defined. Moreover, it is easy to see that n(., 0) and φ(., 0)
are continuous functions on [0, T ]. Indeed, by (2.15)-(2.16), n(t, 0) and φ(t, 0) can be expressed as

H(n(t, 0)) =
1
µi
hi(nD,i(t, 0)) +

1
µe
he(nD,e(t, 0)),

φ(t, 0) =
1
µi

[hi(nD,i(t, 0))− hi(n(t, 0)) + µiφD(t, 0)],

and we obtain the continuity of n(t, 0) and φ(t, 0) from the assumptions (H2) and (H4).
Now we establish boundary layer equations for (ui(t, y), ue(t, y), ϕ(t, y)). Putting the approximate solution

(n(t, 0) + ui(t, y), n(t, 0) + ue(t, y), φ(t, 0) + ϕ(t, y)) into the drift-diffusion equations (DD-EI) and taking into
account the ε−2 term in (1.1)-(1.2) and the ε0 term in (1.3), we obtain:

∂y[(n(t, 0) + ui(t, y))∂y(hi(n(t, 0) + ui(t, y)) + µiϕ(t, y))] = 0, (3.1)

∂y[(n(t, 0) + ue(t, y))∂y(he(n(t, 0) + ue(t, y))− µeϕ(t, y))] = 0, (3.2)

−∂yyϕ(t, y) = ui(t, y)− ue(t, y), (3.3)

for (t, y) ∈ BT := (0, T )× (0,+∞). The boundary conditions of these variables are given by, for α = i, e,

uα(t, 0) = nD,α(t, 0)− n(t, 0), lim
y→+∞

uα(t, y) = 0 in [0, T ], (3.4)

ϕ(t, 0) = φD(t, 0)− φ(t, 0) := ϕbl(t), lim
y→+∞

ϕ(t, y) = 0 in [0, T ]. (3.5)
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Now we simplify the above equations. Integrating (3.1)-(3.2) and using the boundary conditions (3.4)-(3.5), we
obtain

hi(n(t, 0) + ui(t, y)) + µiϕ(t, y) = hi(nD,i(t, 0)) + µiϕbl(t) := ai(t),

he(n(t, 0) + ue(t, y))− µeϕ(t, y) = he(nD,e(t, 0))− µeϕbl(t) := ae(t).

From the definition of ϕbl and (2.15)-(2.16), we have also

aα(t) = hα(n(t, 0)), α = i, e. (3.6)

Let fα be the inverse function of hα (α = i, e). It is obvious that fα ∈ C1. Then we obtain from the above
equations:

ui(t, y) = fi(ai(t)− µiϕ(t, y)) − fi(ai(t)) in BT , (3.7)

ue(t, y) = fe(ae(t) + µeϕ(t, y)) − fe(ae(t)) in BT , (3.8)

and then from (3.3)

∂yyϕ(t, y) = fe(ae(t) + µeϕ(t, y)) − fi(ai(t)− µiϕ(t, y)) in BT . (3.9)

Similarly, in a neighborhood of Γ1 and for α = i, e, the solution (nεα, φ
ε) may be approximated by (n(t, 1) +

vα(t, z), φ(t, 1)+ψ(t, z)), where z = (1−x)/ε. The variables (vi(t, z), ve(t, z), ψ(t, z)) satisfy the boundary layer
equations:

vi(t, z) = fi(bi(t)− µiψ(t, z))− fi(bi(t)) in BT , (3.10)

ve(t, z) = fe(be(t) + µeψ(t, z))− fe(be(t)) in BT , (3.11)

∂zzψ(t, z) = fe(be(t) + µeψ(t, z))− fi(bi(t)− µiψ(t, z)) in BT , (3.12)

with boundary conditions:

vα(t, 1) = nD,α(t, 1)− n(t, 1), lim
z→+∞

vα(t, z) = 0 in [0, T ], (3.13)

ψ(t, 1) = φD(t, 1)− φ(t, 1) := ψbl(t), lim
z→+∞

ψ(t, z) = 0 in [0, T ], (3.14)

where

bα(t) = hα(n(t, 1)), α = i, e. (3.15)

Notice that the boundary conditions (3.4)-(3.5) and (3.13)-(3.14) are meaningful due to (H2) and (2.8). Obvi-
ously, for α = i, e, aα, bα, ϕbl and ψbl are given continuous functions on [0, T ].

The following result shows the existence and uniqueness of the boundary layers (ui, ue, ϕ) and (vi, ve, ψ) with
exponential decay to 0 as y → +∞ and z → +∞, respectively.

Theorem 3.1. Assume (H1)-(H4) hold. Then for all t ∈ [0, T ], the boundary layer equations (3.7)-(3.9) and
(3.5) ((3.10)-(3.12) and (3.14) respectively) admit a unique solution (ui, ue, ϕ) ((vi, ve, ψ) respectively), which
is continuous in t, of class C3 and monotone in y (z respectively), such that for α = i, e:

|uα(t, y) |, |ϕ(t, y) | ≤ Cϕ |ϕbl(t) | exp(−δϕy), (t, y) ∈ [0, T ]× (0,+∞),

|vα(t, z) |, |ψ(t, z) | ≤ Cψ |ψbl(t) | exp(−δψz), (t, z) ∈ [0, T ]× (0,+∞).
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Moreover,

|∂yuα(t, y) |, |∂yϕ(t, y) | ≤ Cϕ |ϕbl(t) | exp(−δϕy), (t, y) ∈ [0, T ]× (0,+∞),

|∂zvα(t, z) |, |∂zψ(t, z) | ≤ Cψ |ψbl(t) | exp(−δψz), (t, z) ∈ [0, T ]× (0,+∞),

where Cϕ > 0 and δϕ > 0 (Cψ > 0 and δψ > 0 respectively) are two constants depending only on T and ϕbl (ψbl
respectively).

Proof. Let us define the function f by:

f(t, ϕ) = fe(ae(t) + µeϕ)− fi(ai(t)− µiϕ), (t, ϕ) ∈ [0, T ]× R. (3.16)

It is clear that f is continuous in t and of class C1 in ϕ. Since pi and pe are strictly increasing, so are fi and
fe. We obtain for any (t, ϕ) ∈ [0, T ]× R,

∂f(t, ϕ)
∂ϕ

= µef
′
e(ae(t) + µeϕ) + µif

′
i(ai(t)− µiϕ) > 0,

and there is a constant f0 > 0 depending only on T and ϕbl, such that

∂f(t, ϕ)
∂ϕ

≥ f0, for all (t, ϕ) ∈ [0, T ]× [− |ϕbl(t) |, |ϕbl(t) |].

From

f(t, 0) = fe(ae(t)) − fi(ai(t)) = n(t, 0)− n(t, 0) = 0,

we deduce that

f(t, ϕ) > 0 for ϕ > 0, f(t, ϕ) < 0 for ϕ < 0.

For t ∈ [0, T ] such that ϕbl(t) > 0, the following problem

∂yyϕ(t, y) = f(t, ϕ), ϕ(t, 0) = ϕbl(t), lim
y→+∞

ϕ(t, y) = 0

admits a unique solution ϕ(t, y) which satisfies (see [6], Lemma 2.1):

y =
∫ ϕbl(t)

ϕ

ds√
2F (t, s)

,

where

F (t, s) =
∫ s

0

f(t, y)dy.

Obviously, this solution is monotone decreasing in y. Therefore,

0 ≤ ϕ(t, y) ≤ ϕbl(t), ∀ y ∈ (0,+∞).

From

F (t, 0) = 0,
∂F (t, 0)
∂s

= f(t, 0) = 0,
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we obtain for some ξ ∈ [0, s],

F (t, s) =
∂f(t, ξ)
∂s

s2/2 ≥ f0s
2/2, ∀ s ∈ [0, ϕbl(t)].

Hence,

0 ≤ y ≤
∫ ϕbl(t)

ϕ

ds√
f0s

=
1√
f0

log
(
ϕbl(t)
ϕ

)
,

and then

0 ≤ ϕ ≤ ϕbl(t) exp(−
√
f0y).

The estimate for ∂yϕ follows from the relations:

−∂yϕ =
√

2F (t, ϕ), F (t, 0) = 0.

For t ∈ [0, T ] such that ϕbl(t) < 0, we may replace ϕ by ϕ = −ϕ, which satisfies

∂yyϕ(t, y) = f(t, ϕ) := −f(t,−ϕ),

ϕ(t, 0) = −ϕbl(t) > 0, lim
y→+∞

ϕ(t, y) = 0.

Since

f(t, 0) = 0,
∂f(t, ϕ)
∂ϕ

=
∂f(t, ϕ)
∂ϕ

> 0, ∀ (t, ϕ) ∈ [0, T ]× R,

the above result can be applied to ϕ. In this case, ϕ(t, y) is monotone increasing in y and we have

ϕbl(t) exp(−
√
f0y) ≤ ϕ(t, y) ≤ 0, ∀ y ∈ (0,+∞).

The case where ϕbl(t) = 0 is trivial. It leads to ϕ(t, y) = 0. The same results for ui and ue follow from
(3.7)-(3.8). Finally, the regularity of solutions is derived from the equations (3.9), (3.12) and fα ∈ C1. The
proof for (vi, ve, ψ) is similar. �

4. Convergence rate of ||nεi − nεe ||L2(ΩT )

The results of the boundary layer analysis allow to establish a global convergence rate for nεi−nεe with respect
to the domain Ω. This implies a strong convergence of the sequence (nεi , n

ε
e)ε>0 in the whole domain ΩT , which

have not been provided in [14]. To see this, let’s denote by

Rε(t, x) = nεi (t, x) − uεi (t, x)− vεi (t, x)− [nεe(t, x)− uεe(t, x) − vεe(t, x)],

where

uεα(t, x) = uα(t, y) = uα(t,
x

ε
), vεα(t, x) = vα(t, z) = vα(t,

1− x
ε

), α = i, e.
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The main idea is to use Rε instead of nεi − nεe in the corresponding estimate. Indeed, from Theorem 3.1, it is
easy to see that there exists a constant C1 > 0 depending only on T , ϕbl and ψbl such that

||uεα(t, .) ||L2(Ω)≤ C1ε
1
2 , ||vεα(t, .) ||L2(Ω)≤ C1ε

1
2 , α = i, e, (4.1)

and from (3.4) and (3.13), we have

|Rε(t, 0)| = |(ve − vi)(t, 1/ε) | ≤ 2Cψ exp(−δψ/ε), (4.2)

|Rε(t, 1)| = |(ue − ui)(t, 1/ε) | ≤ 2Cϕ exp(−δϕ/ε). (4.3)

The key result to prove the global convergence rate of nεi −nεe in L2(ΩT ) is the following lemma. See Appendix
for its proof.

Lemma 4.1. Under the assumptions (H1)-(H4), there is a constant A1 > 0 independent of ε such that

||Rε ||L2(ΩT )≤ A1ε
1
2 , ||ε 1

2 ∂xφ
ε ||L2(ΩT )≤ A1. (4.4)

From the definition of Rε, Proposition 2.1 and (4.1), we deduce the following global convergence rate for
nεi − nεe and the globally strong convergence of the sequence (nεi , n

ε
e)ε>0 in L2(ΩT ).

Theorem 4.1. Under the assumptions of (H1)-(H5), there is a constant A2 > 0 independent of ε such that

||nεi − nεe ||L2(ΩT )≤ A2ε
1
2 . (4.5)

Moreover, for α = i, e, we have

nεi −→ n, nεe −→ n in L2(ΩT ) strongly.

In order to show that the estimate (4.5) is optimal, let us consider the following stationary model of the
drift-diffusion equations in one space dimension.

Example. Take µi = µe = 1 and pi(s) = pe(s) = s2/2, and define qi = 1 and qe = −1, then the stationary
drift-diffusion equations are written as:

− d
dx

[
nεα

d
dx

(nεα + qαφ
ε)
]

= 0, α = i, e,

−ε2 d2φε

dx2
= nεi − nεe,

in Ω = (0, 1), subject to the boundary conditions

nεα(0) = n0
α, φε(0) = φ0, α = i, e,

nεα(1) = n1
α, φε(1) = φ1, α = i, e.

We suppose that n0
α > 0 and n1

α > 0 for α = i, e. Then it is easy to check that the solution of the above problem
satisfies the following relations:

nεi + φε = βεi

∫ x

0

dy
nεi (y)

+ n0
i + φ0, nεe − φε = βεe

∫ x

0

dy
nεe(y)

+ n0
e − φ0,
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where the constants βεi and βεe are determined by

βεi

∫ 1

0

dy
nεi (y)

+ n0
i + φ0 = n1

i + φ1, βεe

∫ 1

0

dy
nεe(y)

+ n0
e − φ0 = n1

e − φ1.

Now we suppose furthermore that

n0
i + φ0 = n1

i + φ1, n0
e − φ0 = n1

e − φ1.

Hence,

βεi = βεe = 0.

Let us denote by

d = n0
i − n0

e + 2φ0 = n1
i − n1

e + 2φ1,

then we obtain from the Poisson equation

−ε2 d2φε

dx2
= d− 2φε,

whose solution is given explicitly by

φε = Aε1 exp(
√

2x/ε) +Aε2 exp(−
√

2x/ε) + d/2,

where

Aε1 =
(2φ1 − d)− (2φ0 − d) exp(−

√
2/ε)

2[exp(
√

2/ε)− exp(−
√

2/ε)]
, Aε2 =

(2φ0 − d) exp(
√

2/ε)− (2φ1 − d)
2[exp(

√
2/ε)− exp(−

√
2/ε)]

.

Thus,

||nεi − nεe ||L2(Ω) = ||2φε − d ||L2(Ω) = (|2φ1 − d | + |2φ0 − d |)O(ε
1
2 ).

It is clear that 2φ1 = 2φ0 = d if and only if the compatibility condition (1.7) holds, i.e. n0
i = n0

e and n1
i = n1

e.
This shows that the convergence rate (4.5) is optimal.

In this example, since the limit (n, φ) of (nεα, φε) is given by

φ = d/2, n = n0
i + φ0 − φ,

we have also:

||nεα − n ||L2(Ω) = ||φε − φ ||L2(Ω) = (|2φ1 − d | + |2φ0 − d |)O(ε
1
2 ), α = i, e.

We end this section by the following remark.

Remark 4.1. The results presented in Sections 3-4 are still true in several space dimensions if the boundary
layer phenomenon occurs only near a hyperplane of dimension d − 1 of the form Γa = {xi = a ∈ R, 1 ≤
i ≤ d}. To see this assertion, suppose that the domain Ω is located on the right of Γa. Then for α = i, e,
we way approach (nεα, φ

ε) by (n(t, x′, a) + uα(t, x′, y), φ(t, x′, a) + ϕ(t, x′, y)) in a neighborhood of Γa, where
x′ = (x1, ...xi−1, xi+1, ..., xd) and y = (xi − a)/ε. Following the discussion in Section 3, we obtain the same
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boundary layer equations for (uα(t, x′, y), ϕ(t, x′, y)) and the existence and uniqueness of solutions. Moreover,
for x ∈ Ω and (t, y) ∈ [0, T ]× (0,+∞), the following estimates hold:

|uα(t, x′, y) |, |ϕ(t, x′, y) | ≤ Cϕ |ϕbl(t, x′) | exp(−δϕy),

|∂yuα(t, x′, y) |, |∂yϕ(t, x′, y) | ≤ Cϕ |ϕbl(t, x′) | exp(−δϕy),

and

|∂xjuα(t, x′, y) |, |∂xjϕ(t, x′, y) | ≤ Cϕ |ϕbl(t, x′) | exp(−δϕy), j 6= i,

where ϕbl(t, x′) = φD(t, x′)− φ(t, x′, a). The constants Cϕ > 0 and δϕ > 0 depend only on T and ϕbl. Indeed,
the last estimate above follows again from the boundary layer equations:

∂yyϕ = f(t, ϕ), y ∈ (0,+∞),

ϕ(t, x′, 0) = ϕbl(t, x′), lim
y→+∞

ϕ(t, x′, y) = 0,

where f is defined in (3.16). Indeed, using the above equations we obtain explicitly

∂xjϕ =

√
F (t, ϕ)√
F (t, ϕbl)

∂xjϕbl,

with

F (t, ϕ) =
∫ ϕ

0

f(t, s)ds.

The remainder of the proof is similar to that of Section 4. We obtain Lemma 4.1 and Theorem 4.1 under
assumption of some regularity conditions on ϕbl.

5. Boundary layer analysis in the nonlinear drift-diffusion equations

The nonlinear drift-diffusion equations are the system of equations (1.1) and (1.3) in which the electron
density is replaced by:

nεe = fe(µeφε),

which is a generalization of the Boltzmann-Maxwell relation [3, 18, 19] nεe = exp (φε) obtained by the choice
pe(s) = µes. The nonlinear drift-diffusion equations are valid when the kinetic energy of the electrons is much
smaller than their thermal energy. The justification of this asymptotic limit to the drift-diffusion equations can
be found in [12]. In this situation, the ion density and the electrostatic potential solve the problem (DD-I):

∂tn
ε − div(∇pi(nε) + µin

ε∇φε) = 0 in ΩT , (5.1)

−ε2∆φε = nε − fe(µeφε) in ΩT , (5.2)

subject to the initial and boundary conditions
nε(0) = nI in Ω, (5.3)

nε = nD, φε = φD on ΣD, (5.4)

∇pi(nε) · ν = ∇φε · ν = 0 on ΣN , (5.5)

where we have used a simple notation nε = nεi .
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By a straightforward computation, it is easy to see that the limit (n, φ) of (nε, φε) as ε → 0 satisfies the
following equations:

∂tn−
µi + µe
µiµe

∆p(n) = 0 in ΩT , (5.6)

φ = he(n)/µe in ΩT , (5.7)

where p is defined in (2.13). This quasi-neutral limit has also been proved in [14]. Due to the nonlinear Poisson
equation (5.2), we have a L∞(ΩT ) estimate for the sequence (φε)ε>0, which yields a globally strong convergence
of the sequences (nε, φε)ε>0 in L2(ΩT ) without the compatibility condition on the data given on ΣD:

φD = he(nD)/µe.

Thus the boundary layers may exist too. The goal of this section is to give (without proof) a similar analysis
of this boundary layer. We first state the result of the characterization of the limit.

Theorem 5.1. Let the hypotheses (H2)-(H3) for α = i, (H4) for α = i, e and (H5) hold. Furthermore,
fe(0) > 0 and fe(∞) = +∞. Then the whole sequence (nε, φε)ε>0 of solutions to (5.1)-(5.5) converges to (n, φ)
in the following sense:

nε −→ n in L2(ΩT ) strongly,

φε −→ φ in L2(ΩT ) strongly and in L2(0, T ;H1
loc(Ω)) weakly.

The limit (n, φ) satisfies (2.8) and φ ∈ L∞(ΩT ), and is the unique solution of the equations (5.6)-(5.7) with
initial and boundary conditions:

n(0) = nI in Ω, (5.8)

n = nD on ΣD, (5.9)

∇n · ν = ∇φ · ν = 0 on ΣN , (5.10)

where the Dirichlet data nD is given by the relation:

H(nD) =
1
µi
hi(nD) + φD.

Moreover, we have the optimal estimates:

||nε − fe(µeφε) ||L2(ΩT )= O(ε
1
2 ), ||∇φε ||L2(ΩT )= O(ε−

1
2 ). (5.11)

Estimates (5.11) give the same convergence rates than (4.4) and (4.5) for equations (DD-EI). They are
optimal due to a similar example given in Section 4. Now we describe the boundary layers of the above limit in
one space dimension. To this end, we use all the notations introduced in Sections 3-4. Let (nε, φε) and (n, φ)
be solutions of the problems (5.1)-(5.5) and (5.6)-(5.10) respectively. Let (n(t, 0) + u(t, y), φ(t, 0) + ϕ(t, y))
and (n(t, 1) + v(t, z), φ(t, 1) + ψ(t, z)) be approximations of (nε, φε) in a neighborhood of Γ0 = {x = 0} and
Γ1 = {x = 1} respectively, where y = x/ε and z = (1− x)/ε. Then, similar to the analysis given in Section 3,
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we obtain the boundary layer equations for (u, ϕ) and (v, ψ):

∂yyϕ(t, y) = fe(ae(t) + µeϕ(t, y)) − fi(µiφ(t, 0)− µiϕ(t, y)) in BT , (5.12)
ϕ(t, 0) = ϕbl(t), lim

y→+∞
ϕ(t, y) = 0 in [0, T ], (5.13)

u(t, y) = fi(ai(t)− µiϕ(t, y)) − fi(ai(t)) in BT , (5.14)
∂zzψ(t, z) = fe(be(t) + µeψ(t, z))− fi(µiφ(t, 1)− µiψ(t, z)) in BT , (5.15)

ψ(t, 1) = ψbl(t), lim
z→+∞

ψ(t, z) = 0 in [0, T ], (5.16)

v(t, z) = fi(bi(t)− µiψ(t, z))− fi(bi(t)) in BT , (5.17)

where φbl, ψbl, ai and bi, are defined in (3.5), (3.14), (3.6) and (3.15) respectively, which are continuous functions
on [0, T ]. Since

fi(ai(t)) = fe(µeφ(t, 0)) = n(t, 0), fi(bi(t)) = fe(µeφ(t, 1)) = n(t, 1),

by a similar argument to the proof of Theorem 3.1, we obtain the existence and uniqueness of the boundary
layers with exponential decay to 0.

Theorem 5.2. Under the assumptions and the notations of Theorem 5.1, the boundary layer equations (5.12)-
(5.14) (respectively (5.15)-(5.17)) admit a unique solution (u, ϕ) (respectively (v, ψ)), which is continuous in t,
of class C3 and monotone in y (respectively z), such that for (t, y) ∈ [0, T ]× (0,+∞)

|u(t, y) |, |ϕ(t, y) |, |∂yu(t, y) |, |∂yϕ(t, y) | ≤ Cϕ |ϕbl(t) | exp(−δϕy),

and for (t, z) ∈ [0, T ]× (0,+∞)

|v(t, z) |, |ψ(t, z) |, |∂zv(t, z) |, |∂zψ(t, z) | ≤ Cψ |ψbl(t) | exp(−δψz).

Appendix. Proof of Lemma 4.1

To show (4.4), we use the Poisson equation

−ε2∂xxφ
ε = nεi − nεe,

φε = φD on Σ0 ∪ Σ1,

where

Σ0 = (0, T )× {x = 0}, Σ1 = (0, T )× {x = 1}.

Since the sequence (nεα)ε>0 is bounded in L∞(ΩT ) for α = i, e, we deduce easily that (ε2∂xφ
ε |ΓD )ε>0 is bounded

in L∞(0, T ).
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In the sequel, we denote by Ci (i ∈ IN∗) various positive constants independent of ε. Let ΓD = Γ0 ∪ Γ1.
Using again the Poisson equation, the definition of Rε and (4.1)-(4.3), we have

||Rε ||2L2(ΩT ) =
∫

ΩT

(Rε)2 dxdt

=
∫

ΩT

(nεi − nεe + uεe + vεe − uεi − vεi )Rε dxdt

= −ε2

∫
ΩT

∂xxφ
εRε dxdt+

∫
ΩT

(uεe + vεe − uεi − vεi )Rε dxdt

≤ ε2

∫
ΩT

∂xφ
ε∂xR

ε dxdt− ε2

∫ T

0

∂xφ
ε(t)Rε(t) |ΓD dt

+ ||uεe + vεe − uεi − vεi ||L2(ΩT )||Rε ||L2(ΩT )

≤ ε2

∫
ΩT

∂xφ
ε∂x(nεi − nεe) dxdt+ ε2

∫
ΩT

∂xφ
ε∂x(uεe + vεe − uεi − vεi ) dxdt

+ 4C1ε
1
2 ||Rε ||L2(ΩT ) +C2 exp(−δ/ε),

where δ = min(δϕ, δψ). Hence, by Young’s inequality and the following basic inequality for small ε:

exp(−δ/ε) ≤ C2ε,

we obtain

||Rε ||2L2(ΩT )≤ 2ε2

∫
ΩT

∂xφ
ε∂x(nεi − nεe) dxdt+ 2ε2

∫
ΩT

∂xφ
ε∂x(uεe + vεe − uεi − vεi ) dxdt+ C3ε. (∗)

The first term on the right hand side of (∗) can be estimated as in [14]. Indeed, from (2.2) we may write

nεi = fi(F εi − µiφε), nεe = fe(F εe + µeφ
ε).

Therefore, from the lower and upper bounds for (nεα)ε>0 and the L2(0, T ;H1(Ω)) bounds for (F εα)ε>0, we have

ε2

∫
ΩT

∂xφ
ε∂x(nεi − nεe) dxdt = ε2

∫
ΩT

[f ′i(F
ε
i − µiφε)∂xφε∂xF εi − f ′e(F εe + µeφ

ε)∂xφε∂xF εe ] dxdt

− ε2

∫
ΩT

[µif ′i(F
ε
i − µiφε) + µef

′
e(F

ε
e + µeφ

ε)](∂xφε)2 dxdt

≤ ε2

2

∫
ΩT

[f ′i(hi(n
ε
i ))(∂xF

ε
i )2/µi + f ′e(he(n

ε
e))(∂xF

ε
e )2/µe] dxdt

− ε2

2

∫
ΩT

[µif ′i(hi(n
ε
i )) + µef

′
e(he(n

ε
e))](∂xφ

ε)2 dxdt

≤ C4ε
2 − C4ε

2 ||∂xφε||2L2(ΩT ) .

Here we have used the relations:

f ′α(hα(nεα)) =
1

h′α(nεα)
=

nεα
p′α(nεα)

≥ C4/µα, α = i, e.
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For the second term on the right hand side of (∗), using again Young’s inequality and Theorem 3.1, we have

ε2 |∂xφε∂x(uεe + vεe − uεi − vεi ) | ≤
C4ε

2

2
(∂xφε)2 + C5ε

2[∂x(uεe + vεe − uεi − vεi )]2

≤ C4ε
2

2
(∂xφε)2 + 2C5ε

2[∂x(uεe − uεi )]2 + 2C5ε
2[∂x(vεe − vεi )]2

=
C4ε

2

2
(∂xφε)2 + 2C5[∂y(ue − ui)]2 + 2C5[∂z(ve − vi)]2

≤ C4ε
2

2
(∂xφε)2 + 2C5C

2
0 [exp(−2δϕy) + exp(−2δψz)],

which yields

ε2

∫
ΩT

∂xφ
ε∂x(uεe + vεe − uεi − vεi ) dxdt ≤ C4ε

2

2
||∂xφε||2L2(ΩT ) +C6ε.

Hence

||Rε ||2L2(ΩT ) +
C4ε

2

2
||∂xφε||2L2(ΩT )≤ C7ε,

and thus (4.4) is proved. �
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