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ON THE CONVERGENCE OF A LINEAR TWO-STEP FINITE ELEMENT
METHOD FOR THE NONLINEAR SCHRODINGER EQUATION *

GEORGIOS E. ZOURARIS!

Abstract. We discretize the nonlinear Schrédinger equation, with Dirichlet boundary conditions, by
a linearly implicit two-step finite element method which conserves the L? norm. We prove optimal
order a priori error estimates in the L? and H' norms, under mild mesh conditions for two and three
space dimensions.
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1. INTRODUCTION

1.1. The i.b.v. problem

Letd = 1,2 or 3, and 2 C R? be a bounded domain with smooth boundary 9§2. For t* > 0, we set I, := [0, t*]
and consider the following initial and boundary value problem for the nonlinear Schrédinger equation:

wy = iAw +if(w|?)w in Q x I,
w=0 on 08 x I, (1.1)
w(z,0) = w’ () for z € Q,

where w° : Q—C and f € C3([0,+00);R) are given functions. The nonlinear Schrédinger equation, often,
appears as a model in mathematical physics (see [1,7,8,16,22,26]); for more information on the theory and
applications we refer to [5,6,10,14,15,17,19,21,25] and the references therein. In the sequel, we will assume
that problem (1.1) admits a unique solution which is sufficiently smooth for our purposes.

1.2. Notation and preliminaries

For integer s € Ny, we denote by H*(€2) the Sobolev space consisting of complex-valued functions which,
along with their distributional derivatives of order up to s, are in L?(Q2), and by || - ||s the corresponding norm.
The inner product on L?(2) = H°(Q) is denoted by (-,-) and the associated norm by || - ||. H}(Q) consists of
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the functions of H!(f2) that vanish at 9 in the sense of trace. In addition, for m € N and for u, v € (L%(Q))™
we use (u,v) := S0 (uj,v;) and ||ul| := {(u,u)}*/2. Finally, we set H := H(Q) N C(Q), and denote by |- |,

j=1
the standard norm on LP(Q) for p > 2 (i.e. |- |2 =1 -]).
We mention the Poincaré—Friedrichs inequality
[oll < ColIVoll, Vv € Hy (), (1.2)
and the Sobolev—type inequalities
[0]o < Crool|VOl|2|J0]|2, Yo € H3(Q), d=1, (1.3)
and
s=2 2 1
[vls < Cos ||Vo] s |Jvl|s, Vse€[2,+00), Yve Hy(), d=2. (1.4)

For an integer 7 > 2, let {Sp}xe(0,1) be a family of finite dimensional subspaces of H satisfying

lensf‘ {llv=xll+nlv=xl1}< CR*|v|ls, Yoe€H(Q)NH)Q), s=2,...,r, Yhe(0,1).
XE2h

For h € (0,1), we define the discrete Laplacian Ay, : S,—S} by
(Anp, x) = =(Ve, VX), Vo, x € Sh,
an elliptic projection operator Ry, : H*(Q)—Sj by
(VRyv,Vx) = (Vo,Vy), Yo e H(Q), Vx €Sy,

and finally P, will be the L?-projection operator onto Sy. The elliptic projection Ry has the following approx-
imation property (cf., e.g., [23])

| Rhv —v|| + h||Rpv — |1 < Cr B¥||vls, Yo € HS(Q)NHIQ), s=2,...,7, Yhe(0,1), (1.5)
and obviously satisfies
IVRyo|| < ||Vo|l, Yve HYQ), Vhe(0,1). (1.6)
We will say that f has the property (D), if there exists ¢ > 1 such that
| (@®)z| < Cp (1 +2°7Y), Vo >0. (1.7)

1.3. The numerical method

Let h € (0,1), NeN, k:= %, t":=nkforn=0,...,N, and t'/2 := tO—l—g. Let, also, W? € Sj, be a given

approximation of w®. First, we construct an approximation Wé/ 2 e 8, of w(-,t'/?) by

w2 —wp (WP aewp oo (W2 4 W0
W =iAy — +iP, | f(IWL]9) — || (1.8a)
Then, for m =1,..., N, we define an approximation W/ € S}, to w(-, ™) recursively by

wl—wo wl +w? . wl +w?
MW i (MY i, [ oy () (1.3)
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and

n __ n—2 n n—2 n n—2
Wi W i, (7% b >+1Ph [f(|wg—1|2) (L s )] n=2. N (18

Remark 1.1. By dropping (1.8a) and setting W,i/ 2 = WP in (1.8b), an alternative method is obtained. For
this method, our analysis also applies, but W} is a suboptimal order approximation of w(-,¢') in the H ! norm.
This is the reason that the “fractional” step (1.8a) has been introduced.

Remark 1.2. Let h € (0,1). For given ¢ € S, and A > 0, we define Ty (A, ¢;-) : Sp,— S by
Ti(A\ 93 X) = x — IkAARx — IARPL(f([*)x) for x € Sp.

To ensure that the method (1.8) is well-defined (i.e, the existence and uniqueness of Wi/ * and {wp 527:1),

it is enough to show that T} (A, ¢;-) is invertible. Let ¢ € S}, be such that Ty (A, ¢;1¢) = 0. Then, we have
Re(Th(\ @5 ¢), ) = 0, or Re[ll?ﬁl\2 +INE[ VY[ = iNK(f(J0l?), [¥[%)| = [[9[|* = 0, which yields ¢ = 0. Hence,

we conclude that Th(A, ;) is one—to—one. Since Tj (A, ¢;-) is linear and the space Sy has finite dimension, the
fact that it is one-to-one yields its invertibility.

Remark 1.3. Taking the L? inner product of (1.8a) with W;/Q + WP, of (1.8b) with W} + W) and of (1.8¢)
with W + W2 and then real parts, we conclude that ||W;/2H = |W2| and |W{|| = |W2| for £=0,...,N.
Thus the method (1.8) is L? conservative.

1.4. Main results and relations to previous work

The time discretization in (1.8¢c) in conjuction with a finite difference method for the space discretization is
proposed in [9] for the numerical approximation of a nonlinear Schrédinger equation in one space dimension and
with periodic boundary conditions. An optimal order error bound of O(k? 4+ h?) in a discrete L? norm is, also,
given, only in the case of a cubic Schrodinger equation, where f(z) = Az and A € R. This convergence result is
based on the fact that the method conserves a discrete Hamiltonian which for d = 1 yields boundedness of the
numerical approximations in the discrete L>° norm by a constant which is independent of the partition of the
time and space intervals (¢f. (5) in [9] and Rem. 2.22 in Sect. 2.5). In the case of a general nonlinearity this
conservation property fails and thus a different technique is needed to prove convergence.

The paper at hand is devoted to the convergence analysis of the method (1.8). We prove an optimal order
error bound of O(k% + h") in the L? norm and of O(k? 4+ h"~1) in the H' norm, whithout conditions when
d =1, and under the following mild mesh conditions

VIIn(R)[ A" < Cyq and /[In(h)[ (k3 + h") < Cap when d =2, (1.9)

or
B ' < Csav/h and k2 +h" < Csy/h  when d=3; (1.10)

here Cg 4, Cop, C3,4 and Cs are constants which depend only on the solution and the data, and h is the
minimum of the diameter of the elements of the partition of 2 over which the finite element space is constructed
(see Th. 2.14, Th. 2.15 and Rem. 2.16). Also, if d = 2 and f satisfies (D), then we prove an optimal order error
bound O(k% 4+ h") in the L? norm and a suboptimal one of O(k% + h"~! + k~2h") in the H' norm, provided
that

k2 +h" < C Vk, (1.11)
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where C is a constant which depends only on the solution and the data (see Th. 2.21).

Usually, the analysis of numerical methods for the nonlinear Schrédinger equation is based on inverse in-
equalities between norms on the finite element spaces for quasiuniform or local quasiuniform partitions of 2
(see, e.g., [2,3,11-13,18,20,24]). Here, when d = 1, or d = 2 and f has a polynomial growth satisfying (D),
we obtain, for the method (1.8), optimal order of convergence in the L? norm, avoiding inverse inequalities or
assumptions on the finite element spaces (as e.g. the H!'-boundedness assumption of the L2-projection P, used
n [12]) besides those of Section 1.2. However, for general f and d = 2 or 3, we need an inverse inequality
between the L> and the H' norm, and therefore h appears in (1.9) and (1.10).

To arrive at the mesh conditions (1.9), (1.10) or (1.11), we prove convergence estimates in the L? and H?
norm, for the approximations generated by a modified scheme which is a nonlinear perturbation of (1.8) at the
linearized term (see (A) and (Y) in Sect. 2.3). Then the mesh conditions, exhibited above, are introduced to
ensure that the modified approximations are bounded in the L or in the H' norm, by a constant independent
of the discretization parameters. Having this boundness property the modified scheme coincides with (1.8)
and hence the convergence estimates for it hold also for (1.8). The analysis here has been inspired from the
works [12] and [24], but there the methods under consideration, the techniques used and the results obtained
are different.

The analysis and the results of the paper extend, easily, to the method obtained substituting (1.8c) by

W — W2
2k

Wi+ W2

= ity (ZG ) Wy g

which is a nonconservative implicit-explicit method and, as (1.8), yields only one linear system of algebraic
equations at every time level, but the matrix remains unchanged.

An overview of the paper is as follows. Section 2 is divided in five parts. In Section 2.1, we prove some
function inequalities often used in the convergence analysis, and in Section 2.2 present a consistency result
for the time discretization. Section 2.3 contains the definition of the modified schemes and Section 2.4 the
convergence theorems for a general function f. Finally, in Section 2.5 we investigate the special case where
d = 2 and f satisfies the property (D).

2. CONVERGENCE ANALYSIS

2.1. Function inequalities
We present here some function inequalities that we will often use later.

Lemma 2.1. For uj,us € C(Q) and g € C*([0,+00); R), we have

lg(ual*) = g(luz*)]| < _Sup )Ig’(x)l (oo + uzfoo) [lur — uzll (2.1)
x ul,u2

with I(uy,ue) = [0, max{ |u1 |, |uz|go}} .

Lemma 2.2. For uj, us, wi, we € C(Q) and g € C*(R;R), we have

lg(u1) — g(u2) — g(w1) + g(wa)|| < sup 9" ()| [w1 — waloo (lur —will + [Jug — wal)
|z|€l1(u1,uz,w1,w2)
+  osup g (@)] l(ur — u2) — (wr — w2, (2.2)

|z|elz(uy,u2)

with Iy (u, ug, wi, ws) := [0, max{[u1]oo + |2]oe, [W1]oe + [waloo}] and Ip(uy, uz) == [0, Ju1|oo + |uz]oo].
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Proof. (2.2) follows directly from the following expansion

g(ur) — g(uz) — g(wr) + g(wz) = (w1 — wz)/o (g (1= T)ug + Tu1) — g'(1 — T)wz + 7wr)|dr

—|—[(u1 —ug) — (wy — wg)} /0 g (1 = 7)ug + Tuy)dr.

O
Lemma 2.3. For ui, ug, wy, wy € C(Q), we have
[ua|® = Juzl® = w1 + [wal?|| < 2lwi — wasollug — ws|
+B(u1, ug, wy, wa)||(ur — wi) = (uz — wo)]], (2.3)
with B(u1, ug, w1, w2) = max{|u1]e + [wi|eo, [U2]oo + [waloo}-
Proof. We obtain (2.3) observing that
(Jur]? = [wr]?) = (Juz|? = fw2[?) = Re{ [(u1 —w1) = (uz — wa)] (ur +wy)
+(U2 — w2)[(u1 —wy) — ( U2 — W2 )]
+2(ug — wo)( w1 — wa )} u

Lemma 2.4. Let F : C2——C be defined by F(z,w) := f(|2|)w where f(z) := f(2?) forz € R. Ifd =2 and f
satisfies (1.7), then, for uy, ua, wi, we € C(Q) with u1 — wy, ug — we € HY(Q), we have

1P (1, u2) = Fwn,wa)|| < C (s = wn + uz = wel]) [1 Z|wj|@+||v j—w)l9)]. @)

Proof. Let uy, ug, wy, wy € C(Q) with u; — w1, ug —wy € HF (). Observing that
|F(21,22) — F(w1,w2)] < C(|21 — wi| + |22 — wal) {1 + (|lw1| + wa| + |21 — w1 + |22 7w2|)9}

for z1, 29, w1, wa € C, and using (1.4), we obtain

P, ) = Flwn,wn)] < C[ [ [1 (ol + )] (s = ] + 2 = wa)) o
+ /Q(|U1 — wi |+ fug — w2|)29+2dx] i
< C{(l + w1 |22 + w2 |22) ([Jur — wi]* + [luz — w2 |?)
ey w29 o = w00)[22 -+ otz — w29 oz — ) 2]

which yields (2.4). n
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2.2. Consistency

We continue by presenting a consistency result concerning the time discretization.
For n =0,..., N, we define o™ € L?(Q) by

gf _ j,* . .
w n w’n 1 * ok 1 o
= _A(w +win) + §f(|wzn

- 2 @:L _]:L n 2
e 5 Y(w' + wn) 4+ o™, (2.5)

where w'/? = w(-,t'/?), w™ = w(-,t™) for m = 0,...,N, Ao := 1/2, A\; := 1, A\, := 2 for m = 2,..., N,
0 =1/2, 65, =mform=1,...,N,i§:=0,4 :=1/2, i, :=m—1form=2,...,N, and j} :=0, j7 :=0,

Jmi=m —2for m=2,...,N. Then, using Taylor expansions, we arrive at
max ||o"|| + k||o°|| < Ck?* and max [o" — o™ 2| < Ck3. (2.6)
1<n<N 4<n<N

2.3. Modified Schemes

Modifying properly the linearized term in the numerical method (1.8), we construct two modified schemes,
(A) and (Y), which we will use later in the convergence analysis. A modified scheme is connected to a real
parameter 0 > 0 and a given norm of H, and it is not a numerical method. When the approximations that the
scheme furnishes are bounded in that norm by ¢, then they coincide with those that (1.8) produces provided, of
course, that the initial approximation is the same. Even that the original method (1.8) is linear, the modified
scheme will be nonlinear. Hence, we cannot ensure the existence of the modified approximations following the
argument of Remark 1.2. For this reason, we shall employ the following Brouwer-type fixed-point lemma, for a
proof of which we refer to [3].

Lemma 2.5. Let (X,(+,-),) be a finite-dimensional inner product space and || - ||, the associated norm. Let
p: X—X be continuous and assume that there exists o > 0 such that for every z € X with ||z||, = « there
holds Re(u(z), z),, > 0. Then, there exists a z* € X such that p(z*) =0 and ||z*||, < a.

e Modified Scheme (A): Let 6 > sup,c; |w(:,t)|o and gs be an increasing C*(R;R) function, with bounded
derivatives up to second order, satisfying

| = it x| <4 8, 20] if oz eld,29)
gs(x) :== { 225, if  |z| > 26 and gs(z) € { -25.—6] if we[-20 0] for z € R.

||

Then, we define a function v5 : C—C by 7s(z) = gs(Rez) + igs(Imz).
For h € (0,1) and m =0,1/2,1,..., N, let Ag?h € Sy, be specified inductively by

A3, = Ry (2.7a)

and

F(rs(AL)

o* g o* g
d,h d,h . d,h d,h .
—— = =iA, | — iP

Mok " ( 2 ) T

Agn + Al
2)76( §,h 5 5,h>] (27b)

form=0,...,N.

Remark 2.6. It is easily seen that vs(w(-, 7)) = w(-,7) and 'y(;(w("ﬁ);w("m)) = w("ﬁ);w("m) for 7, 71,72 € L,
where w is the solution of (1.1). Thus, the consistency argument for the method (1.8) (¢f. Sect. 2.2) holds also
for (2.7).
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Remark 2.7. Assuming that |A? h|oo < § and |A
- AZT, AJ’" A ™ AJ’"

f(|AjSTh|2) and ’Y&( s,h;F an) _ 6h+ sih

m=20,...,N.

o < 0 for m = 0,...,N, we obtain f(|’76( )

2) =
for m = 0,...,N. Hence, if W = Rpw°, then Aé“;L = Whm for

We ensure the existence of a Af;;;i € S;, which solves the nonlinear system in (2.7b), by an argument based
on Lemma 2.5. In particular, let m € {0,..., N}, h € (0,1), (X, (,-)5) = (Sh, (+,+)) and IIJ%, : X—& be an
operator given by

i i
sn(x) =x— AJ’” *EAmkAhX*E)\mkPh[ (s (A '") H)vs(x )];

IT§*, is continuous, since 75 is continuous and S, has finite dimension. Then, we obtain

Re(I13%, (), X) > Il (I = 1435 = AmkBs), ¥x € S,

where B; := /26|Q|!/? SUP,eqo,867] |f ()] and [ is the area of Q2. Therefore, we have Re(II§", (x), x) > 0 for
every x € Sp with ||x|| =1+ ||A§T,;L

+ AmkBs. Applying Lemma 2.5 with y = 15", we conclude that there

exists a xgy, € S, such that TI§% (x§%,) = 0. Thus Af;?',; = 2x§ — Afs;ﬁ is a solution of (2.7b).

In Remark 2.7, we explained that when the approximations produced by (A) are bounded in the L norm by
§ and W) = Rhwo then they are the numerical approximations of the method (1.8). Next, we present another
modlﬁed scheme that has this property for any norm v on H, instead of the L*° one.

e Modified Scheme (Y): Let v be a norm on H, § > sup,c; v(w(-,t)) be a given constant, and & : R—R be
a continuous function defined by

1, it 2 <26
&(x):=4q —5+3, if 2€[20,30] for zeR.
0, if z>30

Then, for ¢ € I, we define a map g, 5(t;-) : H—H by
Gustiw) =w &w(w —w(-t)) + wi,t) (1 —-E&v(w—w(,t)))) for weH,

where w is, always, the solution of problem (1.1).
For h € (0,1) and m = 0,1/2,1,..., N, we specify functions Y3, € Sh, inductively by

Tg’,h = Rpu® (2.8a)
and

P .
Gus [t T8) + gus (B T3
2

F(1gu.s (#5057 2

) (2.8b)

Tefn o Tj:n T m TJm
M)\ k = Ay, (‘ 2 + 1Py,

form=0,...,N.

Remark 2.8. Since g, s(t;w(-,t)) = w(-,t) for ¢t € I, the consistency argument for (2.8) is the same with that
for (1.8) (cf. Sect. 2.2).

Remark 2.9. Assuming that I/(Tg’h) < 0 and Z/(TE:”) <dform=0,...,N, we have I/(Tgh w(-,t)) < 26
and I/(ng';L w(-,t)) < 2§ for m=0,...,N and t € I,. Thus, we obtain g,,g(t T ) = T mform=0,...,N
and t € I,.. In that case, if W) = Rpw", then a simple induction argument yields T&”fz = Wh’” form=0,...,N.
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Lemma 2.10. Let v be a norm on 'H and 6 > sup;cr, v(w(-,t)). Then, fort e I, and w € H, we have
V(gv,s(t;w)) < 46. (2.9)

Proof. Let t € I, and w € H. If v(w — w(-,t)) > 39 then v(g,,5(t;w)) = v(w(-,t)) < J. We assume, now, that
v(w—w(+,t)) < 30. Then we have v(w) < 44, and

v(w) &(vw —w(-1))) +v(w(,t) (1 —&v(w —w(,t))))
30&w(w—w(,t))+46
4 6. O

v(gu,s(t;w))

IN A CIA

Lemma 2.11. Let v be a norm on H and 6 > sup,c;. v(w(-,t)). Fort € I, the operator g, ;(t;-) : H—H is
continuous on (H,v).

Proof. For t € I, and w1, wy € H, we have
V(gus(tiwr) — gus(tiwa)) < v(wr — wa)+ [p(w(-, 1) + v(w2)] |&((wr — w(- 1)) — &w(ws — w(- 1))
which, together with the continuity of &s, yields the continuity of g, 5(¢;-) on (H,v). O

As for (A), we discuss, now, the existence of a solution for the nonlinear system in (2.8b) following a similar
argument. Let m € {0,..., N}, h € (0,1), (X,(-,-)») = (Sh, (-,-)) and @7, : X¥—X given by

7500 5= X = T35 = 5AmkARX = TAmkPu | £ (1905 T53) 1) [0 2x = TE3) + 9us @3 153)]

which is continuous, since g, s(t‘=;-) is continuous (¢f. Lem. 2.11) and S, has finite dimension. Also, in S},
the norms v and | - | are equivalent, and hence there exists an h—-dependent constant Cj, o, such that
[Xloo < Chooow V() for x € Si. Using (2.9), we arrive at the following general estimates

|G0,6(T; w)| oo < él,hﬁ =40Ch, 00,0, VT E L, YweH,
and

£ (1906 (r1;00) %) [gu6(r2;w2) + gu6(m3;w3)] || < Bans :=2B1nsv/19]  sup  |f],
[0,(B1,n,6)?]

for 71,72, 7m3 € I, and wi,ws,ws € H. Thus, we obtain

Re(®5700), ) = Xl (Ixll = 7550 = 225 Bans), Vx € Sh.

Therefore, we have Re(®j",(x), x) > 0 for every x € Sj, with |[x|[ =1+ HTf;h + )‘qkég,hﬁ, and by Lemma 2.5,

with p = @, we conclude the existence of a xj, € S such that ®3, (x§3,) = 0. Finally, Tf;':';l =2x3, — ng’;l

is a solution of (2.8b).
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2.4. L?- and H'-convergence

Next we will prove the following optimal order error estimates for the method (1.8):

.M < 2 r m __ ,.m < 2 r—1
OénaicNHWh w™|| <C,(k“+h") and Ognrléz%(NHV(Wh wm)|| <C,(k*+h"77) (2.10)

for h € (0,ho) and N > Ny. Here hy € (0,1), Ny € N and C, is a constant independent of h and N.

The basic step in the convergence analysis is the estimation of the differences 9y A 5 h = Ay / 2 Rpw'/? and
U} 55 = A5y — Rpw™, n=0,..., N, where due to (2.7a), we have 19A,57h =0.
Proposition 2.12. Let d = 1,2 or 3, and § > sup;c;, |w(-,t)|oc. Then, there exists N5 € N such that

193 ]l < Cas(k? +kh") and (max [[9%5,] < Cag(k* + A7), Vhe(0,1), VN >N (2.11)

The constant Ca s is independent of h and N, but depends on 9, the solution or its derivatives, and the data.

Proof. Let h € (0,1). For m =0,..., N, we define ox'sn € Sh by

.- i .- i
D"sn = O . (79/@5,}1 + 35
ZASR T TASR o (ASh  TASR

Aok ) o e (2.12)
m

Combining (2.12), (2.5), Remark 2.6, and (1.8), we obtain

oRsn = —Pu(o™ +wi) iP5, m=0,..., N, (2.13)
with
é — apdn @ i
m wIm m wIm
TYL . Rh( ) — ( ) 2'14
Mok Aok (2.14)
and

i A L+A1ﬂ1 ;
R = FATE) 25 (REEE Y — p(jut

2 g (gt 219

Taking real parts of the L? inner product of (2.12) with 19 m 4 19]’” and using (2.13), for m = 0,..., N, we have

WAMHQ WAM”Q = —/\mk{Re(U + Wy 19Aah+79A5h)+Im(WA 5ﬂ9Aah+79A5h)] (2.16)

By (1.5) and the Taylor formula, we conclude that

max_|lwi|| < Ch". (2.17)
0<m<N

Let m € {0,..., N}. To estimate wy's in the L? norm, we split it as follows:

m — m m
Wp s = WA 51 T WAS2
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with

)= f(

A AT ) Al AT P
)]s (SRR and iy o= f(fw ) s (SRR ) <o (g .

Wisn = [F(s(AG3)

Using (2.1), the mean value theorem and (1.5), we obtain
lwRsall < COA+0) sup [f(@)] I1s(Ags) — vs(w™)
z€[0,852]

< G5 swp g5(@)] (W + 00541,
j#/€0,25]

and

sup |g5(@)] (B + 19575l + 19575 1)
|z|€[0,26]

Thus, we get the following estimate
lwg2sll < Cs(h™ + 957 ) + 19575 1l + 119575 41)- (2.18)
From (2.16), (2.17), (2.6) and (2.18), it follows that
10X all + 19X 5.1l < Cob(19X/3 41l + 193,5.411) + Cs(k* + kh") (2.199)
and

(1= Cok) (TR sl + 197501 < (U Cob) (U975 4+ 10753 1) + Cak(k? + A7), m=2,...,N.  (2.19b)

Finally, assuming that Csk < % and applying a discrete Gronwall argument on (2.19a-b), we arrive at (2.11). O

Proposition 2.13. Let d = 1,2 or 3, and 6 > sup;cy, |w(-,t)|os. Then there exists an integer Ns > Ns such
that

IV9Y2 1l < Cas(k? +kERT) and (max VIRl < Cag(k® +17), VheE(0,1), VN> Ns.  (2.20)
<m<

The constant Ca 5 is independent of h and N, but depends on §, the solution or its derivatives, and the data.

Proof. Let h € (0,1) and N > N5 (cf. Prop. 2.12). For m = 0,..., N, we define 0’5 ;, w
(2.12), (2.14) and (2.15), respectively.
Taking the L2-inner product of (2.12) by 19?(”5 P 195\’”5 5 and then imaginary parts, we obtain

w and wi's as in
1/2 1/2
||V19A/,5,h||2 = 2Im(09\,5,h’19A/,6,h)7 VO 5.l1* = 2Im(0} 5.5, T 5.); (2.21)
and

IV mahHQ‘FHVﬁTé}zHQ—HVﬁAéhHQ"’HVﬂTéi”Q*‘QIm(%MﬁAM 1925?1)7 m=2,...,N. (2.22)
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Hence, summing with respect to m in (2.22), it follows that

IVOR 5nll* + IVORGHIZ < IVOXsull® + VIR 5l

n

2

+ max [0k ull?+ (o I0R s — V52 ) s n=2, N (2:23)
- = m=2

Next, we will estimate the quantities at the right-hand side of (2.23).
e Estimation of |[lo}’s,[|: From (2.18) and (2.11), we obtain

m < k2 hr
plnax Wil < Ca(k® +17)

which, together with (2.13), (2.6) and (2.17), implies

loR sll < Colk+h7) and  max [okis, |l < Cs(k + 7). (2.24)

e Estimation of |w™ — w™~2||: Using (1.5), we have

hT‘
HerJL _ erJL—QH < Cﬁme _ 2wm—2 T wm_4Hr
hr 2k pt™ T4
< C—= / / wy(T)drdt|| , m=4,...,N,
2k 0 tm—4+t T
which yields
max lwm —wm=2|| < Ckh". (2.25)
e Estimation of |[J3;, — 19735%”: For simplicity, we set 2’5 ), := %5, — ﬁxlgi for m = 2,...,N. Then,
(2.12) yields
R
T — §Ah(zxﬁ,h+zm;i>+6lr\%,h’ m=4,...,N, (2.26)
where
Sisn = —Pu(0™ — 0™ 7%) = Py(wi —wiy7?) + 1P (wis — w5 )

Taking the L? inner product of (2.26) by z3’s ;, + z;\”gi and then real parts we conclude that
2R snll + 128540 < 25 nll + 1R300 + 2k 0% 5 4]l for m=4,...,N. (2.27)

By (2.6) and (2.25), we get

10X s.nll < llwi's — wf{ff” +CE(k>+h"), m=4,...,N. (2.28)

Let m € {4,..., N}. To estimate the difference WA's fwj'\"f in the L? norm, we introduce the following splitting
4

wils — Wiyt =Y T (2.29)
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where

AT AT

T e= (BT ) (A (A3 = Fs(AF5 D) = Fw™ ) + ()],
T [ ) = fun ) [ () - (2,
T = freA)P) s (BRGETY o (R o (wmam o oy (wr et
T = = (AP = f(wm ).
Proceeding as in the proof of Proposition 2.12, we use (2.1), the mean value theorem and (1.5), to obtain

1737 < Csk(h” + [[9R 5.l + 19354 1) and [T < Csk(h™ + [0 531)- (2.30a)

Combining (2.2), (2.3), the mean value theorem and (1.5), it follows that
1" < € sup [f(z) [k sup g5 (@) (" + [19R s nll + 107551 + 19X 5511)
z€[0,862] |z|€[6,26]

+ s |gs(@)] (W7 + 12l + 1255200 . (2.300)
|z|€[0,26]

IN

17| 05[k sup |f"(@)] (14+0) sup |gs(@)| (A" + [0%5 4] + 19X 551)

|z|€[0,1662] |z|€[0,26]

+sup | f(@)] ([l (A5 D = s (A7) — ™+ Iwm_?’IQH}’ (2.30¢)
|z|€[0,1662]

and
[ lvs (AF DI = Ivs (AT )P = Jw™ 1P + ™3|

<Clk_sup lgh(@] (" + 10R51) + & s(A5) = 9(AT) = 2w )+ 2w 2)]

§Ca[ (hr+llﬂA5hll)+k‘ P lg" @) (A" + 193550 + 193 5.1
x|€|o,

+ sup |g'@)] (kb + 550 (2.30d)
|z|€[0,26]
Hence, (2.29), together with (2.30a-d) and (2.11), implies
ks = wis*Il < Cok(lzRs nll + 1R 540+ I12K54 1) + Cok(k* + 7). (2.31)
Now, by (2.27), (2.28) and (2.31) we obtain
(1= Cok) (2R all 112551 < (1 + Cob) (1550 + 1225210 + Csk2(K2 + ), m=4,...,N,  (2.32a)

and by (2.19a-b) we conclude that

19 5.1 + 193 5,01l + 1193 5.1
Csk(k* + 1h"). (2.32b)

123 5,01 + 1123 5.1

IAIA
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Assuming that Csk < %, and then applying a discrete Gronwall argument on (2.32a-b), we get

m _9m72 | < 2 Y. )
jmax |95, = 93531 < Cok(k + A7) (2:33)

Finally, using (2.21), (2.11) and (2.24), we have
IV0Y3 Il < CsVE(k+h7) and |[V9h 5,0l < Cs(k? + h7), (2.34)

and (2.20) follows from (2.23), (2.34), (2.33) and (2.24). O

We use, now, the estimates of Propositions 2.12 and 2.13 to obtain convergence results for the method (1.8).

Theorem 2.14. Let d =1 and §, = sup |w(-,t)|oo + sup [[w(, )|l + 2. If WP = Rpw® for h € (0,h), and
tel. tel.

Clooc CRE"™2 <1 and Ciooy/Cas, Cas, (k% +h") <1, YN >N, Vhe (0,h), (2.35)

for some N > max{t*,]%o} (cf. (2.20)) and h € (0,1), then (2.10) holds. Here, C1,00, Cr, Ca,5, and Cas, are
the constants in (1.3), (1.5), (2.11) and (2.20), respectively.

Proof. Let h € (0,h), N > N and 5 :== Ryw’ — w’ for £ =0,1/2,1,...,N. Using (1.3), (1.5), (2.11), (2.20)
and (2.35), we have

|Ag;,h — W < |79T,50,h|oo + "o
< Croo(19%5, 12 IVOR s all2 + ™ 1290 12)
< Cioo[(Cas, Cas,) (kE + %) + Cp 74w,
< 1+sup|w(,t)|,, m=0,1/2,1,...,N.
tel.
Thus, we get |Ago»h|°° < 4, and 0<mn?§N|Agih|°° < d,. By Remark 2.7 we conclude that Af;:“:;h = 5:" for
m =0,...,N. Then, combining (2.11), (2.20) and (1.5), the estimates in (2.10) directly follow. O

Theorem 2.15. Let d =2 or 3, and 6, = sup |w(+,t)|ec + sup ||w(:,t)||» + 3. Also, assume that

tel. tel
Xlo < Coo ¥(h) [IVxIl, VX € Sn, VA€ (0,R), (2.36)
Coo CRU(R) WL < 1, Vh € (0,h), (2.37)
and
inf {[w(-,t) = X|oo + Coo ¥(h) [V(w(-t) = X)|} <1, Yhe (0,h), Vtel, (2.38)

XESh
for some h € (0,1). If W0 = Ryu® for h € (0,h.), and
Cas, Coo W(h) (k? +h") <1, YN >N, Vhe (0,h.), (2.39)

for some N > max{t*,]%o} (¢f. (2.20)) and h, € (0,h), then (2.10) holds. Here, Cr and Ca,s, are the constants
in (1.5) and (2.20), respectively.
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Proof. Let h € (O,E*), N > N and 7' = Rpw’ — w’ for £ = 0,1/2,1,...,N. Using (2.36), for m =
0,1/2,1,..., N, we obtain

AR = "o S X = 0o + Coct ()| V(™ = x|

+Coc W) (VIR 5, wll + V™), VX € Sh. (2.40)

*

e’l”,
From (2.40), (2.38), (2.20), (2.39), (1.5) and (2.37), we conclude that |Ag’07h|OO < 4, and 0<mn?§N|A507h

Then, Remark 2.7 implies that Agi'ih = W}f:” form =0,..., N, and we get (2.10) by (2.11), (2.20) and (1.5). O

00 < 0,

0*

Remark 2.16. Assuming that the finite element spaces S, consist of continuous piecewise polynomial functions
on a regular (nondegenerate) partition of €, the inverse inequality (2.36) holds with ¢(h) = /[In(h)| when
d =2, and ¢¥(h) = h™'/? when d = 3 (¢f. Chap. 5 in [23], Chap. 4.5 in [4]). Here, h is the minimum of the
diameter of the elements (e.g. triangles) of the partition of 2 corresponding to Sp,. Also, (2.38) is established
by (2.37) and the approximation properties of the interpolant in the L and H! norms (¢f. Chap. 4.4 in [4]).

Remark 2.17. Under the assumptions of Theorem 2.14 or Theorem 2.15, we use (2.33) and (1.5) to obtain

m m—2
H Wi -=wy

max || =—— — wy (-, t™ )| = O(k* + h") which is an L? approximation estimate for the time derivative

2<m<N
of the solution.

Remark 2.18. Taking the L? product of (2.12) by ﬁf\:?é,h_‘_ﬁf\;?é,h and then imaginary parts we obtain HV#}X;hHQ
1/2 _

< C|‘010\,5,h|‘|w/\/,5,h||a Hv’ﬂ}\,é,hHQ < C|‘011\,5,h”|‘1911\,5,h|| and [|V( Xl,zi,h + 7973,5,%)”2 < O(HUXL,é,hH + %H Xl,zi,h -

ﬂTEiH)Hﬁm&thz?XLg%H form =2,..., N. Using (2.11), (2.24) and (2.33), we obtain (2.34) and ,max IV(OR 5

+ 19735%)” < C5(k* + h™). Thus, under the assumptions of Theorem 2.14 or Theorem 2.15, we arrive at an

. . . W wr 2 — _ S
optimal order “average” H' estimate, i.e., max ||V(’+f’ —w™ )| = O(k? + h"~'), which is similar

2<m<N
to the one obtained in [24] for the nonlinear Crank-Nicolson method. The H! estimate in (2.10) is stronger and
based on a different stability argument.

2.5. A special case

Assuming that d = 2 and the function f has the property (D), we are going to prove the following estimates

max [[Wi" —w™| < C,(K* + ") and  max [[V(W" —w™)| <C, (k% + W~ 4 k" 2h") (2.41)

0<m<N

for h € (0,hp) and N > Ny, where hg € (0,1), Ny € N, and C,, is a constant independent of h and N.

The goal, here, is to get optimal order L? convergence of the method (1.8) avoiding the use of extra assump-
tions on the finite element spaces to control L> norms (c¢f. (2.36), (2.37) and (2.38) in Theorem 2.15). To
do this we will work with the modified scheme (Y) taking v = ||V - || and estimate, in L? and H! norms, the

differences ﬁ%f/?;h = T(ls/hQ — Rpw'/? and % 55 = Y5, — Rpw™, n=0,..., N, where, due to (2.8a), we have

Proposition 2.19. Let v = ||V - || and 0 > sup,¢;, [|[Vw(-,t)|. If d = 2 and f satisfies (D), then there exists
Ms € N such that

1Y 54l < Cps (K + k™) and  max ||0% 4]l < Cps (K +17), Vhe(0,1), YN =M  (242)

The constant Cp s is independent of h and N, but depends on ¢, the solution or its derivatives, and the data.
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Proof. Let h € (0,1). We proceed as in the proof of Proposition 2.12, to obtain

15 4l < Ch(k + b + W 5]1), (9% ull < CR(E +h" + [k 5])) (2.43a)

and
195 5.0l = 197530 < Ch(k?* + h" + |lwi 5) for m=2,...,N, (2.43b)

with
W¥s: [F(gl,g(t Y5 ’") G5 (thm LT ’") + g5t ‘;';Tg:';l)) F(w m b 4 wJM)]. (2.44)

Let m € {0,...,N}. By (2.4) and Lemma 2.10, it follows that

m

) IIT —w'n +£5(HV( —w'n)

il

) 1755, — wi

[w¥' 5

< Gol&(IV(Tg; —w')

+s (IV (055, = wm)Il) 1055, —
which, together with (1.5), yields
P - "
lwit sl < Cs (B + 19575l + 1055 1l + 19575 4 11)- (2.45)

Substituting (2.45) in (2.43a-b), we get

A

150+ 0% 50l < C5 (K2 + kR7),
(1= Csk) (105l + 1055500 < (1 +Csk) (195550 + 1955310 + Cs k(K + A7), m=2,...,N.

Finally, taking Csk < %, (2.42) follows by a discrete Gronwall argument. O

Proposition 2.20. Let v = ||V - || and 0 > sup,¢;, [|[Vw(-,t)|. If d = 2 and f satisfies (D), then there exists
an integer Ms > Ms such that

IV9Y5 I < Cos (k% +kER") and  max [[VO¥ ] <Cps k™2 (k2 +h"), Vhe (0,1), VN > Ms. (2.46)
The constant Cp,s is independent of h and N, but depends on &, the solution or its derivatives, and the data.

Proof. Let h € (0,1) and N > Mjs (cf. Prop. 2.19). For m = 0,..., N, we define w5 as in (2.44). Now,
proceeding along the lines of the proof of Proposition 2.13 (¢f. (2.21) and (2.22)), we conclude that

1/2 2
V547 < Clh+ B+ [ 5Dl 1995 5l < OO + B + [ slD 0% 5] (247a)
and
e (VO 5" < (905 5l + CKH (K 447+ max (o sl) | max (9% 5] (247D)

Also, from (2.45) and (2.42), we obtain

2 T
oLnax lwy sl < Cs(k~ + A"). (2.48)

Substituting (2.48) and (2.42) in (2.47a-b), (2.46) follows. O
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Closing the section, we will use Propositions 2.19 and 2.20 to obtain the estimates in (2.41). For that result
we do not need any inverse inequality between norms on the finite element spaces.

Theorem 2.21. Let d = 2, v = |V - || and 0, = sup;c;, |[|[Vw(:,t)|| + 3, and assume that f satisfies (D). If
WY = Rpw® for h € (0,h), and

Cps, (K*+h") <Vk, YN >N, Vhe(0,h) (2.49)

for some N > max{t*,ﬁgo} (¢f. (2.46)) and h € (0,1), then (2.41) holds. Here, Cp,s, is the constant in (2.46).
~ ~ _ o
Proof. For h € (0,h) and N > N, (2.49), (1.6) and (2.46) imply ||VT§0,h|| < 6, and Ogmn:‘L:L%(NHVT(SZihH < 6,

Hence, by Remark 2.9 we have Tgiih = W::” for m = 0,..., N, and (2.41) follows from (2.42), (2.46) and
(1.5). O

Remark 2.22. Let d = 2. In the case of the cubic Schrédinger equation, i.e. f(x ) =Xz and A € R, it is easily
seen that H (W, W) = ~(Wg, WP) for m =0,...,N, and HW,/>, W0 = HW}, W\/?) = HW?, W),
where H(vy,vy) i= M 2(|v1]?, [v2|?) for vy, va € HY(Q) (cf. also [9]). Then, choosing W) = Rjw®
and using the Gagliardo- Nlrenberg inequality |v]f < C_ ||’UH2||Vv||2 Vv € HE (), we see that there exists a
constant § > 0, mdependent of h and N, such that ||VW mH <6 form =0,...,N, when (i) A <0, or (i)
A >0 with [[0° < (52 N) . In these cases, for § > & + supser, [|[Vw(-,t)|| and v = ||V - ||, the method (1.8) is

written in the form (2.8), and (2.41) is obtained from (1.5) and the estimates of Propositions 2.19 and 2.20. In
this way, (2.49) is avoided.
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