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MULTICOMPONENT FLOW IN A POROUS MEDIUM.
ADSORPTION AND SORET EFFECT PHENOMENA: LOCAL STUDY
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Abstract. Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A
system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent
mixtures. Some existence and uniqueness results are given under suitable conditions on state functions.
Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite
volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization
technique to the studied equations in order to obtain an efficient modelling of Soret effect and adsorption
in a porous medium at a macroscopic scale.

Résumé. On étudie un système d’équations paraboliques non linéaires modélisant l’évolution des
fractions massiques d’un fluide multiconstituant dans un écoulement convectif forcé sous l’influence d’un
gradient thermique. Des résultats d’existence et d’unicité sont donnés sous des hypothèses relatives
aux fonctions d’état des équations. On propose ensuite une méthode numérique de type “éléments
finis mixtes” aboutissant à un schéma “volumes finis” dont on effectue l’analyse et la présentation des
premiers résultats. Nous appliquons enfin une technique d’homogénéisation aux équations étudiées
dans le but d’obtenir une modélisation macroscopique fidèle des phénomènes d’adsorption et d’effet
Soret en milieu poreux.
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Introduction

We present the mathematical study of a model describing the coupling between adsorption and second order
terms such as molecular diffusion and thermodiffusion occurring in a multicomponent fluid inside a capillary
column. The results of this study have a very wide application field which extends from the modelization of a
chromatographic column to an oil layer. In the example of a chromatographic column, when sorption effects
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are only considered, the system is then described by first order hyperbolic equations (cf. particularly [17]), but
in practice, it is necessary to take into account diffusive transport and dispersive phenomena. In the case of
an oil layer, thermodiffusion and adsorption effects which are often neglected in production, are essential when
one has to describe the initial distribution of hydrocarbons at the field scale (cf . [20]). The mass conservation
equation for the kth specie, in the absence of chemical reaction, is then given by,

∂t (Nk + ϕk(N)) + div( ~Jk) = 0, (1 ≤ k ≤ n) (0.1)

where ~Jk is the mass flux associated with the weight fraction Nk of component k and ϕk (.) is a function of the
vectorial variable, called “adsorption isotherm”, describing the quantity of matter present in the porous matrix
of the column. This function allows then to reduce the unknowns number since we are only interested in the
species present in the mobile phase, the fluid. The aspect of adsorption that we favor here is the thermodynamic
equilibrium, i.e. a state where component segregation between the two phases (the stationary and the mobile
one) is established and does not depend on the initial conditions. The expression of the functions family
(ϕk)k is obtained using statistical thermodynamic and does not take into account any kinetic factor (the delay
term ϕk does not depend directly on time). Separation results thus from the coupling between forced motion
and retention, i.e. between thermodynamic and hydrodynamic phenomena. The total matter flux, sum of the
diffusive (Fick’s law), convective and thermodiffusive fluxes is finally given by

~Jk = −
n∑

j=1

Dkj
~∇Nj +NkU −Dk

θNk(
n∑

j=1

Nj −Nk)~∇θ.

One can recognize in this formulation the diffusive term (which includes the expressions of the “cross”-diffusion
terms) to which we add two first order terms (in comparison with the unknowns), the forced convective term
(along a known velocity field U) and the thermodiffusive one or “Soret effect” term (which is mainly character-
ized by the positive coefficients

(
Si

t

)
and the term “~∇θ”, representative of the internal thermal gradient). The

goal is to prove that the considered problem is a well posed one (in the Hadamard ’s sense): given a “regular
velocity” profile, we consider the following equations:




U · ~∇θ − κ∆θ = 0

∂t

[
Ni + ki(N1, ..., Nn)

]
+ U · ~∇Ni −

n∑
j=1

Dij∆Nj − div(Si
tNi(

n∑
j=1

Nj −Ni)~∇θ) = 0

(1 ≤ i ≤ n), in a roll Q = ]0, T [× Ω, Ω ⊂ R
3

(0.2)

associated to initial and boundary conditions in accordance with experiments, where Ω is a bounded connex
open part of R

3, with a Lipschitz border Γ, divided according to the rule

Γ = ∂Ω = Γe ∪ Γl ∪ Γs ∪ ∂Γl, L2 − meas (Γe ∪ Γs) > 0,

where Γe (resp. Γs) denotes the inlet (resp. the outlet) section of the fluid, and Γl the watertight and adiabatic
wall of the considered domain. We add to these equations some boundary conditions of non homogeneous
Dirichlet and homogeneous Neumann conditions and an initial condition, for the complete formulation of the
problem on the parabolic border. In order to enlight the mathematical structure of the model and to keep
control of the analysis in the case of possible correction of state laws, we consider a more general formulation.
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We introduce the following system of partial derivative equations with the boundary conditions

(Ei)




∂tNi +
n∑

j=1

∂ki(N)
∂xj

∂tNj −
n∑

j=1

Dij∆Nj + ~∇(µ(Ni)).U + div(σi(N)~∇θ) = 0

on ]0, T [× Ω, under the following boundary conditions:

Ni(0, .) = N0
i , Ni = Nbord

i on Γe ∪ Γs,
∂Ni

∂n
= 0 onΓl, U.

→
n= 0 and

∂θ

∂n
= 0 on Γl

U and ~∇θ being given steady and regular vector fields, such as:
→
∇ θ ∈ (L∞(Ω))3, ∆θ ∈ L2(Ω), div(U) = 0, 1 ≤ i ≤ n,

(0.3)

where µ denotes a Lipschitz function from R to R such as µ(0) = 0 and (σi) denotes a functions family from R
n

to R such as σi(N1, ..., Ni−1, 0, Ni+1, ..., Nn) = 0, extended in such a way that σi(N) = 0 on {N ∈ R
n, Ni ≤ 0} .

We propose here the following framework:
First, we prove the existence of a solution of the problem, by establishing a priori estimate from a linearized

problem. Then we use a fixed point method (Schauder Tychonov), usually used for the treatment of quasi-linear
parabolic conservative laws in porous media (cf. Gagneux and Madaune-Tort [14]).

Secondly, we prove that this solution verifies physical criterions in particular cases, that are useful for the
experiments such as a space dimension equal to 1 (case of the capillary tube).

Then we set up a uniqueness and a continuity dependence result for some ad hoc topologies of the solution
against the initial state and some parameters of the convective transport by considering an auxiliary prob-
lem, following the transposition method introduced by Antontsev and Domansk̈ı [4] (cf. on this point too
Gagneux [13] or Holmgren [25], pp. 66–68).

Having proved the well-posedness of this problem, we present the numerical analysis of a computation scheme
in it’s mixed formulation.

A last part is dedicated to the application of homogenization techniques to the upscaling of equations de-
scribing thermodiffusion and effects in porous media. Two extreme situations are studied: the irreversible and
full reversible cases.

We introduce in a classic way the functional Hilbert space

V =
{
v ∈ H1(Ω), trace(v) = 0 on Γe ∪ Γs

}
.

The steady dynamical and thermal profiles are supposed to be given a priori, with the regularity given above. We
consider an incompressible laminar flow (we know that thermal diffusion and viscosity are altered by turbulence).

Remarks.
In the following part, bold letters will denote vectorial lengths.
The considered problem gives a non homogeneous Dirichlet condition on (Γe ∪ Γs) which is treated with the
help of the introduction of a variational vectorial inequation (cf. [7] , p. 143, [12] or [18]) relative to the closed
convex part K of

(
H1(Ω)

)n, defined by

K =
n∏

i=1

Ki, where Ki =
{
v ∈ H1(Ω), v|Γe∪Γs

= N b
i

}
and V = Ki −Ki.

One has to take care that each of Ki is nonempty, which is supposed here, i.e. precisely, each function N b
i is

sufficiently regular (Nbord
i ∈ H

1
2 (Γe ∪ Γs) , defined as the space of the restrictions to (Γe ∪ Γs) of the functions

in H
1
2 (Γ) (cf. on this point, [8], Vol. 4, Chap. VII, §2)).
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In order to write scalar equations under a vectorial form, we introduce the following notations: N =


 N1

...
Nn




the weight fractions vector, and V =


 V1

...
Vn


 the “test” functions vector, taken a priori in (V)n . We introduce

the following matrixes:

K̃(x1, ..., xn) =


 K11(x) ... K1n(x)

... ... ...
Kn1(x) ... Knn(x)


, where Kij(x) = δij +

∂ki

∂xj
(x), for (1 ≤ i, j ≤ n) and for

x ∈ (R+)n, then for x ∈ R
n, after ad hoc extension (where δij denotes the Kronecker’s symbol). The diffusive

tensor is defined by D = [Dij ]1≤i,j≤n , Dij ∈ R. We will give assumptions easy to verify in practice that will be
sufficient for the mathematical analysis of the model.

By multiplying each equation (Ei) by the correspondent component Vi in V and by integrating on Ω, we
obtain, with the help of Green’s formula, the vectorial variational problem, in order to define a strong solution:
Find N ∈ (L∞(0, T ;H1 (Ω)) ∩H1(Q))n, N (t, .) ∈ K a.e. in t , such as, a.e. t ∈ ]0, T [ , ∀V ∈ (L2(0, T ;V))n,

(P)

{
(K̃(N)∂tN,V) + d(N,V) + U(N,V) + σ(N, θ,V) = 0

N(0, .) = N0

where we will have first defined d, U, σ et (., .) in the following way, by using the sum convention on the repeated
suffix:

d(N,V) = Dij

∫
Ω

~∇Nj · ~∇Vi dx , U(N,V) = −
∫
Ω

µ(Ni)U · ~∇Vi dx

σ(N, θ,V) = −
∫
Ω

σi(N)~∇θ · ~∇Vi dx , (K̃(N)∂tN,V) =
∫
Ω

Kij(N)∂tNjVi dx.

We are induced to study the existence of a strong solution of a coupled system of nonlinear parabolic evolutive
equations, with transport and nonlinear thermal convection terms and with mixed boundary conditions. One
has to prove that this formulation is a well posed one, in the Hadamard sense.

Assumption 1. The matrix K̃(x) and the diffusive tensor have a dominant diagonal, i.e. they verify the
“pseudo-ellipticity” conditions, independent of x:

(H)




∃α > 0, ∀x ∈ R
n, ∀ζ ∈ R

n, (K̃(x)ζ, ζ) ≥ α ‖ζ‖ 2,

∃d > 0, ∀x ∈ R
n, ∀ζ ∈ R

n, (D(x)ζ, ζ) ≥ d ‖ζ‖ 2.

Assumption 2. We consider moreover that the diffusive tensor is a symmetrical one i.e.

∀(i, j) ∈ {1, .., n}2
Dij = Dji.

This last assumption, which is in agreement with physical experiments, is commonly adopted in the literature
(Bia and Combarnous [6]; Duvaut and Lions [12]).

First, for technical arguments, we treat the problem for the following regularity conditions:

µ ∈ C1(R) ∩W 1,+∞(R), µ(0) = 0, σi ∈ C1(Rn) ∩W 1,+∞(Rn).



SORET EFFECT IN A MULTICOMPONENT FLOW 485

Then, considering a density argument, we will be able to free ourselves from the differentiability assumption,
and to keep the only Lipschitz feature of the state function (which is closer to the reality).

1. An existence result

In a first time and for more writing conveniences, we define the following functions family:

µk
i ≡ ∂σi

∂xk
·

Considering a vector f = (f1, ..., fn)> taken in
(
H1(Q)

)n and the problem (Plin(f)) (with the Einstein’s con-
vention)




Find N ∈ (L∞(0, T ;H1 (Ω)))n, such as
∂N

∂t
∈ (

L2(Q)
)n
,

solution of the paralinearized Cauchy’s problem in Q = ]0, T [× Ω

∂tNi +
∂ki(f)
∂xj

∂tNj −Dij∆Nj + µ′(fi)U · ~∇Ni + σi(f)∆θ +
(
µk

i (f)
∂Nk

∂xj

)
∂θ

∂xj
= 0

Ni(0, .) = N0
i ,

associated to boundary conditions :

Ni = Nbord
i on Γe ∪ Γs,

∂Ni

∂n
= 0 onΓl, U· →

n= 0 and
∂θ

∂n
= 0 on Γl (1 ≤ i ≤ n)

(1.1)

which owns a unique solution, with the help of the Lions theorem, applied to vectorial equations ([18] Chap. 3; [19]))
and under the previous assumptions, it is clear that the solution N belongs to (L∞(0, T ;H1 (Ω)) ∩H1(Q))n.

1.1. A priori estimates in an appropriated functional frame

Proposition 1.1. The analysis of the paralinearized problem (Plin(f)) allows to establish the following a priori
estimates:

∃C1 > 0, such that, ∀f ∈ (
H1(Q)

)n
, ‖N‖(L∞(0,T ;H1(Ω)))n ≤ C1 (1.2)

∃C2 > 0, such that, ∀f ∈ (
H1(Q)

)n
, ‖∂tN‖L2(0,T ;L2(Ω)n) ≤ C2 (1.3)

these constants depending only on N0, d, α, on the various Lipschitz constants of the state functions and on
‖U‖(L∞(Q))n , T,

∣∣∣~∇θ∣∣∣
(L∞(Q))n

, |∆θ|L2(Q) .

Proof. By multiplying each equation by ∂tNi (that can be justified by replacing ∂tNi by a differential quotient)
and by summing on i, we obtain the inequality, after having integrated successively on Ω and on [0, τ ] where
τ ∈ [0, T ]:

∫ ∫
Ω×[0,T ]

Kij (f) ∂tNj∂tNi dxdt−
∫ ∫

Ω×[0,T ]

Dij∆Nj∂tNi dxdt ≤∫ ∫
Ω×[0,T ]

∣∣∣µ′r(fi)~∇Ni.U∂tNi

∣∣∣ dxdt+
∫ ∫

Ω×[0,T ]

∣∣σi(f)∂tNi∆θ
∣∣ dxdt

+
∫ ∫

Ω×[0,T ]

∣∣∣∣µk
i (f)

∂Nk

∂xj
∂tNi

∂θ

∂xj

∣∣∣∣dxdt.
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We denote by ‖N‖2
n =

∑
i


∫

Ω

∣∣∣~∇Ni

∣∣∣2 dx


, and observing that the expression

[
‖N‖2

n +
∑

i

(∫
Γe∪Γs

(trace (Ni))
2 dσ

)] 1
2

defines on H1 (Ω)n an equivalent norm to the usual one; it comes

∫ τ

0

(K̃(x)∂tN, ∂tN)dt ≥ α

∫ τ

0

|∂tN|2n dt,

and, by considering that the diffusive tensor is symmetrical and permanent, we can write∫ ∫
Ω×[0,T ]

Dij
~∇Nj · ~∇(∂tNi)dxdt ≥ d

2
‖N(τ)‖2

n −
∑
i,j

Dij

2
‖N(0)‖2

n . (1.4)

Moreover, thanks to the Young’s inequality, and for a positive constant ε, we have,∫
Ω

∣∣∣µ′(fi)~∇Ni.U∂tNi

∣∣∣dx ≤ C(ε) ‖N‖2
n +

ε

3
|∂tN|2n

∫
Ω

∣∣σi(f)∂tNi∆θ
∣∣ dx ≤ C′(ε) |∆θ|2L2(Ω) +

ε

3
|∂tN|2n

∫
Ω

∣∣∣∣µk
i (f)

∂Nk

∂xj
∂tNi

∂θ

∂xj

∣∣∣∣dx ≤ C”(ε) ‖N‖2
n +

ε

3
|∂tN|2n

where C”(ε) depends on
∣∣µi

k

∣∣
L∞(Ω)

,
∣∣∣~∇θ∣∣∣

L∞(Q)
, and C(ε) depends on

∥∥∥~∇µ∥∥∥
(L∞(Ω))n

, ‖U‖
(L∞(Ω))n

.

Thus we obtain the inequality, for all τ in [0, T ],

α

∫ τ

0

|∂tN|2n dt+
d

2
‖N(τ)‖2

n ≤ C1(N0, θ) + ε

∫ τ

0

|∂tN|2n dt+ C(ε)
∫ τ

0

‖N(s)‖2
n ds (1.5)

where C(ε) = C
(
ε,

∣∣µi
k

∣∣
L∞(Ω)

,
∣∣∣~∇θ∣∣∣

L∞(Q)
,
∥∥∥~∇µ∥∥∥

(L∞(Ω))n
, ‖U‖

(L∞(Ω))n

)
.

Then we choose ε small enough and obtain the following inequality:

∀τ ∈ [0, T ] , ‖N(τ)‖2
n ≤ C1(N0, θ) + C(ε0)

∫ τ

0

‖N(s)‖2
n ds.

According to the Gronwall’s lemma and the remark on the norms equivalence, the element N of K remains
in a fixed bounded part of

(
L∞(0, T ; H1 (Ω))

)n and a fortiori, there exists a constant C̃1 such that, for all
p ∈ ]1,+∞]

‖N‖(Lp(0,T ;H1(Ω)))n ≤ C̃1.

Then we use again inequality (1.5) in order to obtain (1.3).
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1.2. A fixed point method

The previous estimates prove that the functions set N = N(f1, f2, ..., fn) remains in a fixed bounded part of
X = (L∞(0, T ; H1 (Ω)) ∩H1(Q))n, independently of f , when f covers (H1(Q))n.

Notations and strategy

In order to use a fixed point method, we search a Banach space with separable dual space (in order to use
Th. III.25′, pp. 50 of [7]). Moreover, in order to have compacity result for the weak topology, we introduce the
reflexive space for p0 fixed in [2,+∞[ Xp0 =

{
Lp0(0, T ; H1 (Ω)) ∩H1(Q)

}n and

K =
{
V ∈ X

p0
, ‖V‖Xp0

≤ C, where C =
√
C̃2

1 + C2
2 , V(0, .) = N0, V(t, .) ∈ K a.e. in t

}
, the bounded part

relative to the previous lemma.

From the consideration of the application =p0
:

∣∣∣∣∣∣ Xp0
→ Xp0

f → N
and from the previous calculus, one can easily

prove that the set K is stable by the application =p0 . Moreover, K is a convex closed bounded nonempty set of
Xp0 and thus weakly compact of Xp0 .

Proposition 1.2. The application =
p0

admits a fixed point which is solution of the problem (0.3).

Proof. We consider the application =p0 when Xp0 is endowed with a weak topology σ(Xp0 , (Xp0)′), that gives
a structure of topological locally convex separated vectorial space. In order to use a “fixed point method”, one
hast just to prove that =p0 is a weakly-weakly sequentially continuous from K to K. So we consider a sequence
(fq)q∈N of elements from Xp0 that weakly converges in Xp0 to f .

The functions Nq and ∂tNq remaining respectively in some bounded fixed parts of
(
Lp0(0, T ; H1 (Ω))

)n and
of (L2(Q))n, we can extract some weakly convergent subsequences of suffix qk. Thus

∃N ∈ Xp0 , tel que Nqk
Xp0⇀ N etN ∈ K.

It remains to prove that

N = =p0(f).

Now, for all qk ∈ N, the linear associated problems (Plin(fqk
)) are written under their variationnal formulations

by Nqk ∈ K and∀V ∈ Vn, a.e. in t,


∫
Ω

Kij(fqk
)∂tN

qk

j Vi dx+
∫
Ω

Dij
~∇N qk

j · ~∇Vi dx+
∫
Ω

µ′((fqk
)i)Vi

~∇N qk

i · Udx

+
∫
Ω

σi(fqk
)Vi∆θ dx+

∫
Ω

(
µl

i(fqk
)
∂N qk

l

∂xj

)
Vi
∂θ

∂xj
dx = 0.

With the help of the compacity of the embedding from H1(Q) to L2(Q) (Rellich-Kondrachoff’s theorem)

fqk

L4−a.e. in Q−−−−−−−−→ f

and, as K̃ is a matrix of regular functions, we have:

Kij(fqk
)Vi

L4−a.e. in Q−−−−−−−−→ Kij(f)Vi.
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Using Lebesgue’s dominated convergence theorem, and considering in L2 (Q) the product of strong and weak
convergences, we obtain: ∫

Ω

Kij(fqk
)∂tN

nk
j Vi dx k→∞−→

∫
Ω

Kij(f)∂tNjVi dx.

We use the same argument for the other integrals with the essential fact here that the state

functions
(
µ′,

∂σi

∂xk
, etc.

)
are bounded and continuous. The trace application in t = 0 being strongly con-

tinuous from Xp0 to L2(Ω) and linear, it is weakly-weakly continuous and thus

N(0, .) = N0.

We obtain, passing to the limit, for all V in Vn and almost everywhere on ]0, T [: N ∈ K and




∫
Ω

Kij(f)∂tNjVi dx+
∫
Ω

Dij
~∇Nj · ~∇Vi dx+

∫
Ω

µ′(fi)Vi
~∇Ni ·Udx

+
∫
Ω

σi(f)Vi∆θ dx+
∫
Ω

(
µl

i(f)
∂Nl

∂xj

)
Vi
∂θ

∂xj
dx = 0

N(0, .) = N0(.)

It follows that, according to the uniqueness property,

N = =p0(f)

The cluster point =p0(f) being independent of the extracted subsequence (because of the uniqueness of the
solution of the linearized parabolic problem (Plin(f)), we deduce that the entire sequence (Nq)q∈N converges
weakly in Xp0 to N = =p0(f). Then, the application =p0 is weakly-weakly sequentially continuous from K in K,
which is weakly compact. According to the Schauder - Tychonov lemma, =p0 admits a fixed point noted by N.
Hence, because for all i ∈ {1, ..., n}




σi(N)∆θ +
(
µk

i (N)
∂Nk

∂xj

)
∂θ

∂xj
= div

(
σi(N)~∇θ

)
,

µ′(Ni)U · ~∇Ni = div(µ(Ni)U), car div(U) = 0

which is a justification a posteriori of the formulation of the paralinearized problem, we can state:
∃ N ∈ (Lp0(0, T ; H1 (Ω)) ∩H1(Q))n, N (t) ∈ K a.e. in t, such that, a.a. t ∈ [0, T ] , ∀V ∈ (L2(0, T ;V))n,

(P)




(K̃(N)∂tN,V) + d(N,V) + U(N,V) + σ(N, θ,V) = 0

N(0, .) = N0.

Then, for p0 taken in [2,+∞[ ,

=p0(Xp0) ⊂ X ⊂ Xp0

and thus, a fortiori, all the fixed points of the application =p0 , and in this case, N remains in (L∞(0, T ; H1 (Ω)))n.
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The result of the Proposition 1.2 holds in the following regularity frame:

µ ∈ W 1,+∞(R), σi ∈ W 1,+∞(Rn).

Indeed, we know that, using mollifiers, each function in W 1,+∞(R) can be approached by sequence of elements
in C∞(R) ∩W 1,+∞(R). The result of the proposition 1.2 remaining true for this type of functions, one can
approach µ (resp.

(
σi

)
) by a sequence of elements in C1(Rn) ∩ W 1,+∞(Rn)) that have the same Lipschitz

module. We conclude, passing to the limit, and observing that, according to the proposition 1.1, the a priori
estimates remain true, as they can be bounded independently of the considered state functions by this way of
regularization.

2. Physical admissibility of the solution

Assumption 3. We suppose in this section that the following assumption is satisfied:

(H)




∀(i, j), ∀ (x1, ..., xi−1, 0, xi+1, ..., xn) ∈ (R+)n ,
∂ki

∂xj
(x1, ..., xi−1, 0, xi+1, ..., xn) = 0,

∀(i, j), Dij = Dijδij (diagonal diffusive tensor).

Proposition 2.1. Under the previous assumption (H), the solution of the problem (P ) verifies the property of
physical admissibility:

∀τ ∈ [0, T ] , ∀i ∈ {1, ..., n} , Ni(τ, .) ≥ 0, £3 − a.e. inΩ.

The proof is based on the fact that the space is stable by null truncature at the origin and allows the choice of
the test function V = −N−.

Remark 2.1. For some less elaborated models where the sum
n∑

j=1

Nj is taken a priori as constant, equal to N0

(in order to fix ideas), the same method leads to the property

∀τ ≥ 0, ∀i ∈ {1, ..., n} , Ni (τ, .) ≤ N0 a.e. in Ω.

Generally, each method developed herein holds when the Soret coefficients Si
t are “Soret laws” (as functions of

some weight fractions), as soon as there is a separated Lipschitz dependence on each variableNi.

In the mono-dimensional case (capillary column), the Ascoli Lemma allows to set a more precise result; this
is done in

Proposition 2.2 (Unidirectional moves, capillary tube case). When Ω is a bounded part of R, i.e. Ω = ]0, L[
and Γe = {0}, Γs = {L} , Γl = ∅, we prove that
∀i ∈ {1, ..., n}, Ni ∈ C0([0, T ]× [0, L]) = C0(Q̄). Consequently,

∃M ≥ 0, ∀i ∈ {1, ..., n} , ∀(t, x) ∈ Q̄, 0 ≤ Ni(t, x) ≤M.

Thus, the solutions are physically admissible by this property, deduced from the model.

3. Uniqueness and stability of the solution

In this part, we prove the uniqueness of the solution using a duality technique, i.e. by looking for test-functions
that allow to conclude. This technique, recently used by Diaz for Boussinesq-like problems (cf. [10] and [11]),
reduces the uniqueness question to the study of the existence of a solution to the dual problem. We detail this
transposition method here.
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Proposition 3.1. In order to prove uniqueness of the solution of the problem (P ), one has to prove the existence
of a solution of a dual linear problem (P ′) .

Proof. Considering one by one each term of the equation, we denote by N =


 N1

...
Nn


 et N̂ =


 N̂1

...

N̂n


 two

possible solutions of (P ). We subtract the two equations verified by each solution to obtain:




(
K̃i(N)∂tNj − K̃i(N̂)∂tN̂j , ζ

)
+

(
di(N, ζ) − di(N̂, ζ)

)
+

(
Ui(N, ζ) − Ui(N̂, ζ)

)
+

(
σi(N, θ, ζ) − σi(N̂, θ, ζ)

)
= 0

(3.1)

where ζ is a test function of
(
L2(0, T ;V)

)n to be precised, and applications d, U, σ are taken without being
summed on i. Let’s examine one to one each term of this equation, after having integrated them on [0, T ]:

Inti1 =
∫ T

0

(
K̃i(N)∂tNj − K̃i(N̂)∂tN̂j, ζ

)
dt

Green= −
∫
Q

[
κi(N1, .., Nn) − κi(N̂1, .., N̂n)

]
∂tζi dxdt

for each function ζ verifying ζi (T ) = 0 and because
[
κi(N1, .., Nn) − κi(N̂1, .., N̂n)

]
(0) = κi(N0)−κi(N0) = 0.

Thus,

Inti1 = −
∫
Q

[ ∑
j∈{1..n}

(
κi(N̂1, .., N̂j−1, Nj, .., Nn) − κi(N̂1, .., N̂j , Nj+1, .., Nn)

) ]
∂tζi dxdt.

Writing

κi(N̂1, .., N̂j−1, Nj , .., Nn) − κi(N̂1, .., N̂j, Nj+1, .., Nn) = (Nj − N̂j)κi
j(t, x)

we define on the £4-measurable sets Ej =
{

(t, x) ∈ Q such that Nj 6= N̂j

}
and Q \ Ej

κi
j(t, x) =




κi(N̂1, .., N̂j−1, Nj , .., Nn) − κi(N̂1, .., N̂j , Nj+1, .., Nn)
(Nj − N̂j)

on Ej

∂κi∗

∂xj

(
N̂1, .., N̂j , Nj+1, .., Nn

)
on Q \ Ej

(3.2)

and
∂κi∗

∂xj
is a bounded borelian representative (in it’s Lebesgue class) of the derivative (in the classic sense),

defined almost everywhere, of the Lipschtiz function xj → κi(..., xj , ...) (Rademacher’s theorem). Thus, we
obtain the following expression for Inti1:

Inti1 = −
∫
Q

[ ∑
j∈{1..n}

(Nj − N̂j)κi
j(t, x)

]
∂tζi dxdt.
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Then, by summing the equations relative to each component, i.e. by summing on i ∈ {1..n} , we obtain:

Int1 = −
∫
Q

∑
j∈{1..n}

(
(Nj − N̂j)

[ ∑
i∈{1..n}

κi
j(t, x)∂tζi

])
dxdt.

We use the same technique for the third and the fourth terms of the equation (3.1), having first defined the
functions

µ∗(t, x) =




µ(Ni) − µ(N̂i)
Ni − N̂i

on Ej

µ′∗(Ni) on Q \ Ej

and

Si
j(t, x) =




σi(N̂1, .., N̂j−1, Nj, .., Nn) − σi(N̂1, .., N̂j , Nj+1, .., Nn)
Nj − N̂j

on Ej

∂σi∗

∂xj

(
N̂1, .., N̂j, Nj+1, .., Nn

)
on Q \ Ej

µ′∗ and
∂σi∗

∂xj
being, according to the same principle, some bounded borelian representatives of the derivatives

of µ and of σi. Let’s have a look to the second term of the equation (3.1):

Inti2 =
∑

j∈{1..n}
Dij

∫
Ω

~∇
(
Nj − N̂j

)
· ~∇ζi dx

= −
∑

j∈{1..n}
Dij

∫
Ω

(
Nj − N̂j

)
∆ζi dx+

∑
j∈{1..n}

Dij

∫
∂Ω

(
Nj − N̂j

) ∂ζi
∂n

dσ

= −
∑

j∈{1..n}
Dij

∫
Ω

(
Nj − N̂j

)
∆ζi dx

as soon as
∂ζi
∂n

∣∣∣∣
Γl

= 0, because Nj − N̂j

∣∣∣
Γe∪Γs

= 0 by definition of the problem (P ). Then, we obtain, after

having summed on i ∈ {1..n} and integrated on [0, T ],

Int2 = −
∫
Q

∑
j∈{1..n}

(Nj − N̂j)
[ ∑

i∈{1..n}
Dij∆ζi

]
dxdt.

We obtain the following equation:

(†)




∫
Q

( ∑
j∈{1..n}

(
Nj − N̂j

) [
−

∑
i∈{1..n}

κi
j(t, x)∂tζi −

∑
i∈{1..n}

Dij∆ζi

+µ∗(t, x)U · ~∇ζi +
∑

i∈{1..n}
Si

j(t, x)~∇θ · ~∇ζi
])

dxdt = 0
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Let us consider in the following backward problem of unknown ζ = (ζi)i :

(P ′)




−
∑

i∈{1..n}
κi

j(t, x)∂tζi −
∑

i∈{1..n}
Dij∆ζi + µ∗(t, x)U · ~∇ζi +

∑
i∈{1..n}

Si
j(t, x)~∇θ · ~∇ζi = Nj − N̂j inQ

ζj (T ) = 0 in Ω

ζj = 0 on Γe ∪ Γs,
∂ζj
∂n

= 0 on Γl, (1 ≤ j ≤ n).

The functions κi
j, µ

∗, Si
j are in L∞(Q) as soon as the state functions are Lipschitz ones against each variable,

assumption that we will consider to be true. One can easily prove with the help of a priori estimates and the
Lions theorem Lions ([7], p. 218) applied to vectorial equations that the problem (P ′) admits a unique solution.
The dependence of the solution during time on the initial state or on some parameters linked to the convective
transfer is studied in the following proposition:

Proposition 3.2. The problem (P ) has a unique solution. Furthermore, the (nonlinear) application which
associates N in

[
L∞(0, T ; H1(Ω)) ∩H1(Q)

]n to N0 in H1(Ω)n is a local Lipschitz one from L2(Ω)n to L2(Q)n.

In the same way, the (nonlinear) application that associates N to {Si
t}1≤i≤n

[
resp. ~∇θ

]
is a local Lipschitz one

from R
n to L2(Q)n

[
resp. fromL∞(Ω)n to L2(Q)n

]
.

Proof. Taking precisely for test function ζ the solution of the associated backward system (P ′) and introducing
the equation verified by ζ in the expression (†), we obtain immediately, according to the solutions regularity,

∀t ∈ [0, T ] , N(t, .) = N̂(t, .) £3 − a.e. in Ω.

In order to prove the stability of the solution of the problem (P ), let us consider N (resp. N̂) the solution
relative to N0 (resp. N̂0). Then, using again the previous method and for the same choice of ζ, we get

∥∥∥N− N̂
∥∥∥2

(L2(Q))n
=

n∑
i=1

(
N0

i − ki(N0) − N̂0
i + ki(N̂0), ζi(0)

)
L2(Ω)

. (∗)

As, a.e. in t and a.e. in Ω, and for i ∈ {1, ..., n}
∣∣∣N0

i − N̂0
i −

(
ki(N0) − ki(N̂0)

)∣∣∣ ≤ ∣∣∣N0
i − N̂0

i

∣∣∣ +
( n∑

j=1

∣∣∣N0
j − N̂0

j

∣∣∣ ∥∥∥∥ ∂ki

∂xj

∥∥∥∥
L∞(Rn)

)
(∗∗)

and, with the help of general results on the linear parabolic equations on the continuous dependence of the
solutions on the data (cf. Dautray and Lions [8], Vol. 8, Chap. XVIII, §.3 and 4), (here ζ is a solution relatively
to an initial vanishing data and a sink term equal to N − N̂), there exists a constant C∗, depending a priori
on Ω, T, U, θ, and on the state functions, such that:

|ζ(0)|L2(Ω)n ≤ |ζ|C0([0,T ];L2(Ω)n) ≤ C∗
∥∥∥N− N̂

∥∥∥2

(L2(Q))n
. (∗ ∗ ∗)

Thus, according to (∗) , (∗∗) , and (∗ ∗ ∗) and due to the Cauchy-Schwarz inequality, there exists a constant
C (which depends mainly on the Lipschitz constant C∗ and on the Lipschitz modules of the partial functions
xj −→ ki(..., xj , ...)), such as ∥∥∥N− N̂

∥∥∥
(L2(Q))n

≤ C
∣∣∣N0 − N̂0

∣∣∣
L2(Ω)n

.

The other properties are obtained with the same transposition method.
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4. A numerical scheme

In the following part, nc will denote the number of unknowns (i.e. the number of components in the fluid)
in order to avoid any confusion between this one and the time discretization suffix.

We present here a numerical scheme based on a mixed formulation [22, 23] of the problem for which we give
numerical analysis.

First, we describe briefly the adopted mesh and present the different spaces and notations used in the analysis.
Then we prove the results on the approximation error made in the stationary problem. Finally we study the
evolutive problem for which we demonstrate existence and uniqueness of a solution and present convergence
and consistence results for the numerical scheme.

The main difficulty in this numerical study remains in the verification of three Inf-Sup conditions associated
with the used mixed formulation. The choice of the discretization spaces likely to verify these conditions must
be done with caution. Moreover, we treat a system and no more a scalar equation. We will see that under ad
hoc assumptions on diffusive and adsorption tensors (which are close to the reality), it is possible to prove the
method’s convergence. Finally, we link the proposed discretization with the finite volumes method.

Remark 4.1. Here is detailed the numerical analysis of a scheme in the case of low Peclet numbers (situation
where the diffusive phenomena dominate the convection, which is true for viscous fluids submitted to natural
convection in deposits).

In a first time, we are interested in the following problem:

−div
(
˜̃D (∇N)>

)
+ ˜̃KN = f (N)∆θ

which is rewritten, ∀i ∈ {1..nc},

−
∑

1≤l≤nc

Dil∆Nl +
∑

1≤j≤nc

KijNj = fi (N, x) .

We define then ˜̃p = ˜̃D
(

˜gradN
)>

. An equivalent problem is given by, ∀i ∈ {1..nc},

−div (pi) +
∑

1≤j≤nc

KijNj = fi (N, x)

4.1. Notations

We modelize the medium by a planar rectangular column, and construct a regular rectangular mesh.
Let us introduce the following spaces:

W1 = (H(div,Ω))nc , W2 = (
(
L2(Ω)

)2
)nc , M1 = (H1

0(Ω))nc , M2 = L2(Ω)

endowed with their usual norms, to which we associate the discrete spaces

W1h ⊂W1, W2h ⊂W2, M1h ⊂M1, M2h ⊂M2.

Then, we define the spaces
• P0(K) the space of constant functions on K
• P1,0(K) the space of linear functions (against the first space variable) on K
• P0,1(K) the space of linear functions (against the second space variable) on K
• Q1(K) the space of linear functions (against each space variable) on K.
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Mesh Q

Main mesh U

Dual mesh P

Vector e
K

2h

h

h

Figure 1. Visualization of the different meshes.

We will denote by (Ph)h (resp. (Uh)h) the family of triangulations associated with W1h (resp. M1h). Then,
we construct the meshes Q1h (resp. Q2h) by joining the middles of the horizontal (resp. vertical) faces of Ph.
Then, we denote by K a mesh of Ph, K∗ an element of Uh and K] an element of Qh = Q1h ∪ Q2h. These
different meshes are illustrated in Figure 1.

Then, we can give the exact definition of the approximation spaces

M1h = {uh ∈ (H1
0(Ω))nc ; ∀K∗ ∈ Uh, u

h
i |K∗ ∈ Q1(K∗)}

M2h = {uh ∈ L2(Ω); ∀K ∈ Ph, u
h|K ∈ P0(K)}.

W1h = {ph ∈ W1, ∀K ∈ Ph, p
h
i |K ∈ P1,0(K) × P0,1(K)}

W2h = Vect{eK] , K] ∈ Qh}nc .

It is possible to define the following applications:

∀q̃ ∈ (L2(Ω)2)nc , pi ∈ H(div,Ω)nc , v ∈ L2(Ω),N ∈ (H1
0 (Ω))nc ,

• mi(p̃, q̃) =
∫

Ω

p̃iq̃i dx • di(v,N) = −
∑

1≤j≤nc

Kij

∫
Ω

Njv dx

• bi(v, p̃) =
∫

Ω

vdiv(p̃i)dx • ai(N, q̃) = −
∑

1≤j≤nc

Dij

∫
Ω

∇̃Nj · q̃i dx

• li(v) = −
∫

Ω

fiv dx

with f = (fi)i∈{1..nc} being a function of L2(Ω)nc .
We associate to this problem the following mixed primal dual formulation:

∀i ∈ {1..nc} , find (p̃i, Ni) ∈ H (div,Ω) × H1
0 (Ω) solution of

{ ∀q̃ ∈ (L2(Ω)2)nc , mi(p̃, q̃) + ai(N, q̃) = 0

∀v ∈ L2(Ω), bi(v, p̃) + di(v,N) = li(v)

We introduce the operators R and R∗ to which we give the expression on W1h and M1h

∀p̃h ∈ W1h, R(p̃h) ∈ W2h and R(p̃h) =
∑

K]∈Qh

(
p̃h · eK]

) |Γ
K]
eK]

where ΓK] is the edge of an element K of Ph included in K] of Qh,

∀uh ∈M1h, R
∗(uh) ∈W2h and R∗(uh) =

∑
K]∈Qh

(
∇̃uh · eK]

)
|σ

K]
eK]
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where σK] is the edge of an element K∗ of Uh included in K] of Qh. Then, we introduce the numerical
approximation spaces, defined for all i ∈ {1..nc}

mi
h(p̃, q̃) =

∫
Ω

R(p̃i)q̃i dx and di
h(v,N) =

∑
1≤j≤nc

Kij

∫
Ω

Π0,h (Nj) v dx.

and the spaces W 0
1h and W 0

2h defined by

W 0
1h = {p̃h ∈W1h, ∀vh ∈M2h, b

i(vh, p̃h) = 0}
W 0

2h = {q̃h ∈W2h, ∀p̃h ∈ W 0
1h, m

i
h(p̃h, q̃h) = 0}.

Consequently, we consider the following discrete problem

(Ph)




Find
(
p̃h,Nh

) ∈W1h ×M1h such that

∀i ∈ {1..nc} ,
{ ∀q̃h

i ∈W2h,m
i
h(p̃h, q̃h) + ai(Nh, q̃h) = 0

∀vh ∈M2h, b
i(vh, p̃h) + di

h(vh,Nh) = li(vh).

We give here two lemmas based on elementary calculus.

Lemma 4.1.

∀i ∈ {1..nc}, ∀Nh
i ∈M1h, ‖Nh

i − Π0,h

(
Nh

i

) ‖0,Ω ≤ Cih‖Nh
i ‖1,Ω.

Lemma 4.2.

∀i ∈ {1..nc}, ∀Nh
i ∈M1h, ‖Nh

i ‖0,Ω ≤ C∗
i ‖Π0,h

(
Nh

i

) ‖0,Ω.

4.2. Results on the approximation error

Let us consider the following non-homogeneous permanent problem:

(P g
h )




(
p̃h,Nh

) ∈W1h ×M1h

∀i ∈ {1..nc} ,
{ ∀q̃h ∈ W2h,m

i
h(p̃h, q̃h) + ai(Nh, q̃h) = Li(q̃h)

∀vh ∈M2h, b
i(vh, p̃h) = li(vh).

where Li is defined by: q̃h ∈W2h 7−→ Li(q̃h) =
∫

Ω

g̃ · q̃h dx, g̃ being an element of L2(Ω)nc .

As the Nicoläıdes theory shows [21], generalizing the Babuska-Brezzi theory, the study of such a system is
based on the modification of three Inf-Sup conditions, given by

inf
p̃h∈W 0

1h

sup
q̃h∈W2h

mi
h(p̃h, q̃h)

‖p̃h‖ · ‖q̃h‖ ≥ αi
1 > 0 (4.1)

inf
Nh∈M1h

sup
q̃h∈W 0

2h

ai(Nh, q̃h)
‖Nh‖ · ‖q̃h‖ ≥ αi

2 > 0 (4.2)

inf
vh∈M2h

sup
p̃h∈W1h

bi(vh, p̃h)
‖p̃h‖ · ‖vh‖ ≥ αi

3 > 0. (4.3)
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The discretization spaces given previously are constructed in such a way that these three conditions are proved.
For more details on the verification of these Inf-Sup conditions, one can refer to works of Thomas and Trujillo [26].
Then we prove the following result:

Lemma 4.3. The solution (p̃h,Nh) of the problem (P g
h ) verifies:

∃C > 0, independent of h, such that

‖p̃h‖H(div,Ω)nc + |Nh|(1,Ω)nc ≤ C{‖f‖0,Ω + ‖g‖0,Ω}·

Proof. The demonstration of this lemma is based on the consideration of particular test-functions q̃h = R∗(Nh)
and vh = Π0,h(Nh

i ) in the formulation of the problem (P g
h ). Then, we have

mi
h(p̃, R∗(Nh)) + ai(Nh, R∗(Nh)) + bi(Π0,hN

h
i , p̃) = Li(R∗(Nh)) + li(Π0,hN

h
i ).

The discrete Green’s formula assures that

mi
h(p̃, R∗(Nh)) = −bi(Π0,hN

h
i , p̃).

Thus, summing on i ∈ {1..nc}, we obtain

∑
i∈{1..nc}

ai(Nh, R∗(Nh)) =
∑

i∈{1..nc}

(
Li(R∗(Nh)) + li(Π0,hN

h
i )

)
.

A Cauchy-Schwarz and Poincaré inequalities and the condition (4.1) allow to conclude that there exists a
constant C > 0 such that

∀i ∈ {1..nc}, |Nh
i |1,Ω ≤ C{‖f‖0,Ω + ‖g‖0,Ω}.

We prove in a same way that taking for test-function q̃h = R(p̃h) in the first equation of (P g
h ), we obtain

mi
h(p̃h, R(p̃h)) + ai(Nh, R(p̃h)) = 0;

with the previous result, we deduce that

∀i ∈ {1..nc}, ‖ph
i ‖0,Ω ≤ C{‖f‖0,Ω + ‖g‖0,Ω}.

And, finally, taking for test-function vh = div(ph
i ) in the second equation of (P g

h ), we have, using the lemma 4.1,

∀i ∈ {1..nc}, ‖div(ph
i )‖0,Ω ≤ C{‖f‖0,Ω + ‖g‖0,Ω},

that allows to conclude.

We are able to prove the result on approximation error given by the following theorem.

Theorem 4.1. Denoting (N, p̃) the solution of problem (P ). If (N, p̃) ∈ (H2(Ω) × (H1(Ω))2)nc and div(p̃) ∈
(H1(Ω))nc , then, ∃C > 0 independent of h, such that,

‖p̃− p̃h‖H(div,Ω)nc + |N− Nh|(1,Ω)nc ≤ Ch{|div(p̃)|(1,Ω)nc + |p̃|(1,Ω)nc + ‖N‖(2,Ω)nc}·

Proof. We consider r̃h and mh two elements of W1h and M1h. We have, ∀q̃h ∈W2h,

mi
h(p̃h − r̃h, q̃h) + ai(Nh − mh, q̃h) = mi(p− r̃h, q̃h) + ai(N − mh, q̃h) +mi

h(r̃h, q̃h) −mi(r̃h, q̃h).
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In a same way, ∀vh ∈M2h,

bi(vh, p̃h − r̃h) + di
h(Nh − mh, vh) = bi(vh, p̃− r̃h) − di

h(mh, vh) + di(N, vh).

Thus, with lemma 4.3, we get, summing on i,

‖p̃h − r̃h‖H(div,Ω)nc + |Nh − mh|(1,Ω)nc ≤ C
{‖p̃− r̃h‖(0,Ω)nc + |N − mh|(1,Ω)nc

+ ‖R(r̃h) − r̃h‖(0,Ω)nc + ‖div(p̃− r̃h)‖(0,Ω)nc

+ ‖N− Π0,h(mh)‖(0,Ω)nc

}
.

We easily deduce the result, using Lemma 4.1 and some triangular inequalities.

4.3. Study of the evolutive problem

In this part we study the initial evolutive problem. However, we place ourselves in the framework of the
remark 4.1. This assumption, made to simplify the study, is justified in any situation where the mixture is
highly diluted, i.e. each specie is low concentrated (so that it gives strong concentration gradients). In order

to do a time discretization of the system, for a fixed time step ∆t =
T

N
, we state tn = n∆t and we note

Ni(n∆t,x) = Ni,n(x), p̃i(n∆t,x) = p̃i,n(x). Let us introduce the problem defined by the following variational
formulation

(Pn
h )




Find
(
p̃h

n+1,N
h
n+1

) ∈ W1h ×M1h

∀i ∈ {1..nc} ,
{ ∀q̃h ∈W2h,m

i
h(p̃h

n+1, q̃
h) + ai(Nh

n+1, q̃
h) = 0

∀vh ∈M2h, b
i(vh, p̃h

n+1) + 1
∆td

i
h(vh,Nh

n+1 − Nh
n) = li,n(vh).

Theorem 4.2. The problem (Ph) admits a unique solution.

Proof. The proof of this theorem is essentially based on the fact that dim(W1h) + dim(M1h) = dim(W2h) +
dim(M2h) which leads the study of the existence of a solution to the question of the uniqueness. Moreover, one
has to consider the Nicoläıdes theory (cf. [21]), and particularly one of the three “Inf-Sup” conditions given by
the existence of a real constant αi

2 verifying

inf
Nh∈M1h

sup
q̃h∈W 0

2h

ai(Nh, q̃h)
‖Nh‖ · ‖q̃h‖ ≥ αi

2 > 0.

The proof of a such condition is based on the essential assumption of pseudo-ellipticity of the tensors ˜̃D and ˜̃K,
given by the the Hypothesis 1.(H). So, we consider the homogeneous problem of which we want to prove that
its solution is zero. Taking the following test-functions,

q̃h
i = R∗(Nh

i ) and vh = Π0,h(Nh
i ),

we obtain, summing the equations of (Ph)

∀1 ≤ i ≤ nc,

{
mi

h(p̃, R∗(Nh)) + ai(Nh, R∗(Nh))

+bi(Π0,h(Nh
i ), p̃h) + di

h(Π0,h(Nh
i ),Nh) = 0.

Then we use a discrete Green’s formula that we prove with a direct calculus element by element and which is
given by

mi
h(p̃, R∗(Nh)) = −bi(Π0,h(Nh

i ), p̃h),



498 S. BLANCHER ET AL.

and thus, summing on each component

∑
1≤i≤nc

ai(Nh, R∗(Nh)) +
∑

1≤i≤nc

di
h(Π0,h(Nh

i ),Nh) = 0.

As

∑
1≤i≤nc

di
h(Π0,h(Nh

i ),Nh) =
∑

1≤i≤nc

Kij

∫
Ω

Π0,h(Nh
j )Π0,h(Nh

i )dx,

we have, using Assumption 1.(H),

∑
1≤i≤nc

di
h(Π0,h(Nh

i ),Nh) ≥ α ‖Π0,h(Nh)‖2
(W1,h) ≥ 0

and thus ∑
1≤i≤nc

ai(Nh, R∗(Nh)) ≤ 0,

and, always with the help of direct consequences of 1.(H),

|Nh
i |1,Ω = 0, ∀i ∈ {1..nc} · �

4.4. Schema’s consistence

In this study, we first define the equivalent of a projection of the exact solution on the discrete space
W1h ×M1h. Thus, we get at each time tn, the couple (Φp̃h

n, ψNh
n) using the following permanent problem




Find
(
Φp̃h

n, ψNh
n

) ∈W1h ×M1h

∀q̃h ∈W2h, mi
h(Φp̃h

n, q̃
h) + ai(ψNh

n, q̃
h) = 0

∀vh ∈M2h, b
i(vh,Φp̃h

n) = bi(vh, p̃h
n).

(4.4)

This problem has already been studied in the previous paragraph; considering that

‖Φp̃i,n − p̃i,n‖H(div,Ω) + ‖ψNi,n −Ni,n‖ ≤ Ch,

it remains to study the error between (Φp̃h
n, ψNh

n) and (p̃h
n,N

h
n). We state then, ∀n = 1, ..., N

{
En

i = Φp̃i,n − p̃h
i,n and En = (En

i )i

en
i = ψNi,n −Nh

i,n and en = (en
i )i .

Thus, we can write, ∀q̃h ∈ W2h

mi
h(En+1, q̃h) + ai(en+1, q̃h) = 0.

Moreover,

bi(vh,En+1) +
1

∆t
di

h(vh, en+1 − en) = li,n(vh) + bi(vh,Φp̃n) +
1

∆t
di

h(vh, ψNn+1 − ψNn).
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Then, with the initial problem (4.4), we obtain

bi(vh,En+1) +
1

∆t
di

h(vh, en+1 − en) = −di(vh, ∂tNn) +
1

∆t
di(vh, ψNn+1 − ψNn)

− 1
∆t
di

h(vh, ψNn+1 − ψNn) − di(vh, ψNn+1 − ψNn).

Considering the solution N as being enough regular, we state the following estimate∥∥∥∥ ∑
1≤l≤nc

Kil∂tNi,n − 1
∆t

∑
1≤l≤nc

Kil(ψNl,n+1 − ψNl,n)
∥∥∥∥

0,Ω

≤ C(∆t+ h).

We use the lemma 4.1 to deduce the inequality∥∥∥∥ 1
∆t

∑
1≤l≤nc

KilΠ0,h(ψNl,n+1 − ψNl,n) − (ψNl,n+1 − ψNl,n)
∥∥∥∥

0,Ω

≤ C
h

∆t

∑
1≤l≤nc

Kil ‖ψNl,n+1 − ψNl,n‖0,Ω ,

and so, for a sufficiently regular solution, we prove the existence of a constant C > 0, such that,∥∥∥∥ 1
∆t

∑
1≤l≤nc

KilΠ0,h(ψNl,n+1 − ψNl,n) − (ψNl,n+1 − ψNl,n)
∥∥∥∥

0,Ω

≤ C.h.

Then, we state

εni =
∑

1≤l≤nc

Kil∂tNi,n − 1
∆t

∑
1≤l≤nc

Kil(ψNl,n+1 − ψNl,n)

+
1

∆t

∑
1≤l≤nc

Kil [Π0,h(ψNl,n+1 − ψNl,n) − (ψNl,n+1 − ψNl,n)] .

According to the previous results, we conclude that

∀i ∈ {1..nc}, ∃Ci > 0, such that ‖εni ‖0,Ω ≤ Ci(∆t+ h).

4.5. Convergence of the numerical scheme

As mentioned above, we proved that

∀1 ≤ i ≤ nc, ∀q̃h ∈W2h, m
i
h(R(En+1), q̃h) + ai(en+1, q̃h) = 0, (4.5)

∀1 ≤ i ≤ nc, ∀vh ∈M2h, b
i(vh,En) +

1
∆t

di
h(vh, en+1 − en) =

∫
Ω

εni v
h dx. (4.6)

We are now able to prove the following convergence result:

Theorem 4.3. For a “regular enough” solution N = (Ni)1≤i≤nc ,

∀i ∈ {1..nc}, ∃Ci > 0, such that max
n

|Nh
i,n −Ni,n| ≤ Ci(∆t+ h).

Proof. In (4.5) and (4.6) we chose the following test-functions

vh = Π0,h(en+1
i − en

i ), q̃h = R∗(en+1
i − en

i ).
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Then we have,

bi(en+1
i − en

i ,E
n) +

1
∆t

di
h(Π0,h(en+1

i − en
i ), en+1 − en) =

∫
Ω

εni Π0,h(en+1
i − en

i ) dx.

We use the Green’s formula to state

bi(en+1
i − en

i ,E
n) = mh

i

(
R(En), R∗(en+1 − en)

)
=

∫
Ω

∇̃en
i .R

∗(en+1
i − en

i ) dx

and thus ∫
Ω

∇̃en
i · R∗(en+1

i − en
i )dx +

1
∆t

di
h(Π0,h(en+1

i − en
i ), en+1 − en) =

∫
Ω

εni Π0,h(en+1
i − en

i ) dx.

We sum over each component in order to use the coercivity assumption on the adsorption tensor to deduce the
inequality

∑
1≤i≤nc

∫
Ω

∇̃en
i ·R∗(en+1

i − en
i )dx+

α

∆t

∥∥Π0,h(en+1 − en)
∥∥2

0,Ω
≤

∑
1≤i≤nc

∫
Ω

∣∣εni Π0,h(en+1
i − en

i )
∣∣dx.

Then, considering the definition of the norm |.| and the Young’s inequality, we obtain

∑
1≤i≤nc

[|en+1
i |2 − |en

i |2 − |en+1
i − en

i |2
]
+

α

∆t

∥∥Π0,h(en+1 − en)
∥∥2

0,Ω
≤ ∆t

α

∑
1≤i≤nc

‖εni ‖2
0,Ω.

Now, obviously,

∃C1,i > 0, such that |en+1
i − en

i |2 ≤ C1,i

h2

∥∥(en+1
i − en

i )
∥∥2

0,Ω
.

Then, for specific values of the time step ∆t given by

∆t ≤ αh2

2nc max
i∈{1..nc}

(C∗
i C1,i)

(where the constants (C∗
i ) are given by the Lemma 4.2), we obtain the following inequality

∑
1≤i≤nc

[|en+1
i |2 − |en

i |2
] ≤ ∆t

α

∑
1≤i≤nc

‖εni ‖2
0,Ω,

and thus, summing over the time iterations, we have, ∀i ∈ {1..nc}
∣∣en+1

i

∣∣ ≤ Ci (∆t+ h) . �
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5. An upscaling method

We describe here the results obtained with the application of homogenization methods to the equations
treated in the previous parts. We try to determine their limit state in order to obtain an accurate modelization
of thermodiffusion phenomena in porous media, of which the macroscopic description is still unsufficiently
known.

We consider a nonempty bounded open part Ω of R
3 which boundary is regular, and we denote by Y = [0, 1[3

the semi-open unity cube of R
3. This cell is divided in two parts, the solid part Ys and the free medium Yf

such that Yf ∩ Int(Y ) is an open part.
We introduce then the medium’s porosity φ , defined by

φ =
L3 − meas(Y \Ys)
L3 − meas(Y )

=
meas(Yf )
meas(Y )

· (5.1)

Let us state ε a nonnegative real. We can divide R
n in a free part and the substrate in the following manner

Ef =
⋃

z∈Zn

(z + Yf ), Es =
⋃

z∈Zn

(z + Ys). (5.2)

It remains to define the fluid flow domain with the expression

Ωf,ε = Ω ∩ εEf

and the part

Cε = Int


 ⋃

ε(z+Y )⊂Ω

ε(z + Y )


.

Then we introduce the following notations

Ω0
f,ε = Cε ∩ εEf Ω0

ε,s = Ω\Ω0
f,ε.

We classically use the following assumptions on Y, Yf , Ys, Ef , Es and their boundaries, these assumptions
having already been introduced in [2] and [5]. We assume particularly that this partition is a real one, i.e.

min (meas(Yf ),meas(Yf )) > 0,

and that the set Yf ∩ int(Y ) is an open and connected part∗ with a Lipschitz boundary. We introduce different
notations relative to the functions used in the analysis. We define the notion of extension or again the mean
notion. In the following part, for all function f defined on Ωε, we denote by f̄ its extension by zero on Ω, out
of Ωε. In the same way, for all function f of L1(Ω) where Ω is an open part of R

3, we denote by f̃ its mean
over this open part, i.e. the real value

f̃ =
1

meas(Ω)

∫
Ω

f(x) dx.

as a rule, the suffix ] will denote a periodic function. So, f ∈ L2
] (Y ) is equivalent to f ∈ L2(Y ) and f is

an Y-periodic function. In the following part, the function χΩf,ε
refers to characteristic function of the fluid

∗In [2], the author gives geometrical representations of situations where these assumptions are not verified, and an illustration
of the connectivity notion.
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medium, i.e. the function defined by

∀x ∈ Ω, χΩf,ε
(x) =

{
1 if x ∈ Ωf,ε

0 elsewhere.

5.1. From Navier-Stokes to linear Darcy

The treatment of flow equations has been made using asymptotic developments and will not be detailed here.
We used the technique introduced by Diaz in [9], which is based on the particular choice of coefficients in the
asymptotic development of the velocity, which allows to obtain the rigorous proof of the transition from the
evolutive Navier-Stokes equation to the Darcy’s equation. This mathematical transition from a phenomenologi-
cal law to an empiric one has been studied a lot. A rigorous demonstration of the homogenization of permanent
Navier-Stokes equation has been done by Tartar in [24], while the homogenization of “Stokes type” equations
has been studied by Antontsev et al. in [5].

5.2. Homogenization of the heat transfer

We consider the energy equation in the permanent state, with some boundary conditions at the free media-
porous media interface, the temperature and the fluxes continuity, associated to respective thermal diffusivities.

{
κf∆θ + U · ∇θ = 0 in the free medium,

κs∆θ = 0 in the porous structure.
(5.3)

This equation is different from the two others in the sense that the thermal field is defined everywhere on the
domain and it is not necessary to introduce extensions by zero. The variational formulation associated to this
problem is the following one:

(Eθ
ε )


 ∀v ∈ H1

0 (Ω),
∫

Ω

κ(
x

ε
)∇θε · ∇v dx+

∫
Ω

χΩf,ε
θεUε · ∇v dx = 0

θε|∂Ω = g
(5.4)

where g is a function in H
1
2 (∂Ω) and κ the function defined by

κ(.) = κfχ(Y \Y s) + κsχ(Ys)
= κfχ(Yf ) + κsχ(Ys),

with κf and κs the thermal diffusivities of the solid and the fluid media.
Our aim here is to use a process of two scale convergence, in order to dispose of a strong enough convergence

on the temperature to introduce it in the mass conservation equation and to conclude. We distinguish in
the following argumentation four main parts; first, we deduce with a priori estimates a result of two scale
convergence for the unknown θε (Th. 5.1). Secondly, we multiply the micro state equation by appropriated
test-functions in order to obtain a variational formulation at the limit state. An integration part by part allows
then to determine the macroscopic problem. A last step consists in eliminating local variables in the macroscopic
problem by decoupling this one from a problem posed on an elementary cell (Th. 5.2).

We recall in a first time the following result:

Theorem 5.1. The generalized sequences (θε)ε and (∇θε)ε two-scale converge respectively to elements θ∗(x) of
H1(Ω) and (∇xθ

∗ + ∇yξ(x, y)) of H1(Ω) × L2[Ω;H1
] (Y )\R].
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The proof of this theorem has already been done in the case of perforated media by Allaire in [1]. Now, we
are able to determine the homogenized problem verified by the limit state θ∗:

Theorem 5.2. θ∗ is the unique solution in H1(Ω) of the following homogenized problem

(Eθ∗
)


 ∀v ∈ H1

0 (Ω),
∫

Ω

Λ̃∇θ∗ · ∇v dx+
∫

Ω

φθ∗U · ∇v dx = 0

θ∗|∂Ω = g
(5.5)

where Λ̃ is the elliptical tensor given by

Λkl =
∫

Y

κ(∇yσk + ~ek) · ~el dy

=
∫

Yf

κf (∇yσk + ~ek) · ~el dy +
∫

Ys

κs(∇yσk + ~ek) · ~el dy (5.6)

and (σk) is a family of solutions of the following problem

(Eθ
cell)




σk ∈ H1
] (Y )

divy(κf [∇yσk + ~ek]) = 0 inYf

divy(κs[∇yσk + ~ek]) = 0 inYs

[κf (∇yσk + ~ek) − κs(∇yσk + ~ek)] · ~n = 0 on∂Yf\∂Y.

(5.7)

Proof. We rewrite the energy equation in free medium (5.3) and multiplying this one by the test function
ψ(x) + ψ1(x, y) where ψ ∈ D(Ω) and ψ1 ∈ D[Ω; C∞

] (Y )], we obtain, with a Green’s formula,

−
∫

Ω

∫
Y

κ(
x

ε
)∇θε · ∇(ψ(x) + εψ1(x,

x

ε
)) dxdy −

∫
Ω

∫
Y

χΩf,ε
θεUε · ∇(ψ(x) + εψ1(x,

x

ε
)) dxdy

=
∫

Ω

∫
Y

fε(ψ(x) + εψ1(x,
x

ε
)) dxdy.

Noticing that

∇(ψ(x) + εψ1(x, y)) = ∇xψ(x) + ∇yψ1(x, y) + ε∇xψ1(x, y),

we obtain, passing to the limit when ε→ 0,

−
∫

Ω

∫
Y

κ(y) [∇xθ
∗ + ∇yξ(x, y)] · [∇xψ(x) + ∇yψ1(x, y)] dxdy

−
∫

Ω

∫
Y

χΩf
φθ∗U · [∇xψ(x) + ∇yψ1(x, y)] dxdy =

∫
Ω

∫
Y

fψ(x) dxdy

for all (ψ, ψ1) ∈ D(Ω) ×D[Ω; C∞
] (Y )] and thus, by density, for all (ψ, ψ1) ∈ H1

0 (Ω) × L2[Ω;H1
] (Y )/R]. We will

first have defined the function f = div(κ(x)∇ĝ + φχΩf
ĝU). The problem can then be interpreted by




divy (κ(y)(∇θ∗ + ∇yξ(x, y))) = 0 in Ω × Y

divx

(∫
Y

κ(y)(∇θ∗ + ∇yξ(x, y)) dy + χΩf
φθ∗U

)
= 0 in Ω × Y

θ∗|∂Ω = g.
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This problem having a unique solution (the proof of this result is obvious as soon as one has observed that
‖∇xθ

∗ + ∇yξ‖L2(Ω×Y )n is a norm for the space H1
0 (Ω) × L2[Ω;H1

] (Y )\R]), we can conclude that the entire
sequence (θε) (resp. ∇θε) converges to θ∗(x) (resp. (∇θ∗(x) +∇yξ(x, y)). The first equation represents a local
problem (on an elementary cell) allowing to determine the function ξ. The second one is the homogenized
energy equation. In order to have a better characterization of the homogenized problem, one can eliminate the
local variable y from this formulation. This is done in the sequel of this proof.

Let us consider the solutions σk(x, y) of the problem (Eθ
cell), and the function ξ(x, y) defined by the relation

ξ(x, y) =
3∑

k=1

∂θ∗

∂xk
σk(x, y). (5.8)

A simple calculus allows to verify that this function is a solution of the equation on the elementary cell. It
remains now to determine the macroscopic form of the equation

divx

(∫
Y

κ(y)(∇θ∗ + ∇yξ(x, y)) dy + χΩf
φθ∗U

)
= 0 in Ω × Y.

Considering (5.8), we easily establish that

∫
Y

κ(y) [∇θ∗ + ∇yξ(x, y)] dy =
3∑

k=1

∂θ∗

∂xk

(∫
Y

κ(y) [~ek + ∇yσk(x, y)] dy
)
. (5.9)

Having defined the tensor Λ̃ by

Λkl =
∫

Y

κ(y) [~ek + ∇yσk(x, y)] · ~el dy,

it comes, with the help of Green’s formula,

(Eθ∗
)


 ∀v ∈ H1

0 (Ω),
∫

Ω

Λ̃∇θ∗ · ∇v dx+
∫

Ω

φθ∗U · ∇v dx = 0

θ∗|∂Ω = g.

The homogenized problem has been entirely determined. We remark that it is a problem very similar to the
one posed in a free medium. The study of such a problem is not necessary as soon as the tensor introduced has
properties (symmetry, pseudo-ellipticity) that allow to conclude immediately, using the study made in the first
part, about existence and uniqueness of a solution.

The complete determination of the thermal field in the porous medium via the homogenized equation requires
the resolution of the problem (Eθ

cell) and the knowledge of the functions (σk) and more precisely the estimation
of energies relative to these functions (the term Λkl), less expensive in terms of calculus.

Remark 5.1. In the case of constant thermal diffusivities in free and porous media, the problem (Eθ
cell) is

equivalent to



σk ∈ H1
] (Y )

∆yσk = 0 inYf , ∆yσk = 0 inYs,

[κf (∇yσk + ~ek) − κs(∇yσk + ~ek)] · ~n = 0 on∂Yf\∂Y.
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5.3. Soret effect equations

In this part, we are interested in the homogenization of mass conservation equations of each component of
the mixture. The sorption effects are not considered here as they will be treated in a next part. This model
is mainly different from the energy one as the quantities Ni,ε are defined on a domain Ωε,f depending on the
parameter ε. This difficulty is overcame by introducing an extension operator.

We consider the convecto-diffusive equations with Soret effect in Ωf,ε

∀ i ∈ {1..n}, ∂tNi,ε + Uε · ∇Ni,ε −
n∑

j=1

Dij∆Nj,ε − Si
tdiv(Ni,ε(1 −Ni,ε)∇θε) = 0 (5.10)

associated to initial and boundary conditions


n∑
j=1

Dij
∂Nj,ε

∂n
+ Si

tNi,ε(1 −Ni,ε)
∂θε

∂n
= 0

Ni,ε(x, 0) = N0
i .

The variational formulation associated to this problem is the following one:∫
Ω

χΩf,ε
∂tNi,εv dx +

∫
Ω

χΩf,ε
Ni,εUε · ∇v dx

−
∑

j

Dij

∫
Ω

χΩf,ε
∇Nj,ε · ∇v dx −

∫
Ω

χΩf,ε
Si

tNi,ε(1 −Ni,ε)∇θε · ∇v dx = 0
(5.11)

5.3.1. Behaviour of N̄i,ε

We have seen in the part relative to the mathematical analysis of Soret effect equations (cf. Prop. 1.1) that
the unknowns Ni,ε are bounded in H1(Qε), independently of ε. The method consists in searching an extension
operator on H1(Q) for the unknowns that allows to conserve such a property. Thus, we introduce the extension
operator Pε

Pε :
∣∣∣∣ H1(Qε) −→ H1(Q)
Ni,ε 7−→ Pε(Ni,ε) = N̄i,ε

which is continue, with a continuity constant Cp independent of ε. This operator, already introduced by Diaz
in [9] allows to conserve a priori estimates, independently of ε. As a direct consequence, we have

‖N̄i,ε‖1,Q ≤ Cp‖Ni,ε‖1,Qε ≤ C′ (5.12)

C ′ being independent of ε. Since Q is a bounded lipschitzian part, we can apply the Rellich Kondrachoff theorem
(cf. [18] or again [19])which ensure us of the compacity of H1(Q) in L2(Q). The inequality (5.12) allows to prove
the existence of an extracted subsequence of N̄i,ε that converges weakly in H1(Q). The injection of H1(Q) in
L2(Q) being compact, there exists an extracted subsequence -again denoted by (N̄i,ε)- which converges strongly
in L2(Q) and almost everywhere in Q to a limit Ni.
Then we have the following convergence results:

χΩf,ε
⇀ φχΩ in L∞ weakly− ∗ (5.13)

∇θε ⇀ ∇θ∗ in (L2(Ω))3 weakly (5.14)
Ni,ε ⇀ Ni in H1(Q) weakly (5.15)

Ni,ε −→ Ni in L2(Q) and a.e. in Q. (5.16)
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In the sequel, we detail the passing to the limits in each term of the equation.

Theorem 5.3. The sequence N̄i,ε converges to the solution of a problem associated with the variationnal for-
mulation ∫

Ω

φ∂tNiv dx+
∫

Ω

φNiU · ∇v dx

−
∑

j

Dij

∫
Ω

[
Υ̃∇Nj

]
· ∇v dx−

∫
Ω

Ni(1 −Ni)[Σ̃i∇θ∗] · ∇v dx = 0
(5.17)

where Υ̃i and Σ̃i are the tensors defined by

(Σ̃i)kl = Si
t(Υ̃)kl (5.18)

=
Si

t

L3 − meas(Y )

∫
Yf

(∇yωk + ~ek)(∇yωl + ~el) dy (5.19)

with (ωk)k=1,2 is a family of functions, solutions of problems on the elementary cell Y


ωk ∈ H1
] (Y )

−divy(∇yωk + ~ek) = 0 inYf

(∇yωk + ~ek) · ~n = 0 on ∂Yf\∂Y.
(5.20)

Proof. The proof of the convergence of diffusive and convective terms is similar to the one done for the energy

equation problem. We treat now the passing to the limit in the nonlinear term of Soret effect
∫

Ω

χΩεS
i
tNε,i(1−

Nε,i)∇θε · ∇v dx. With this aim in view, we use the convergence results given in (5.13) and (5.14) which allow
to establish that

χΩε∇θε ⇀ Υ̃∇θ∗ in (L2(Ω))3 weakly , (5.21)

the tensor Υ̃ being calculable with auxiliary functions constructed on Yf . Then we use the convergence re-
sult (5.16) in order to prove the existence of a subsequence (again denoted by Nε,i) that converges strongly in
L2(Q) to a limit Ni. So the sequence Nε,i(1−Nε,i)∇v converges strongly to a limit Ni(1−Ni)∇v in (L2(Q))3,
and then

lim
ε→0

∫
Q

χΩεS
i
tNε,i(1 −Nε,i)∇θε · ∇v dx =

∫
Q

Ni(1 −Ni)[Σ̃i∇θ?] · ∇v dx (5.22)

Σ̃ being the tensor defined by Σ̃ = Si
tΥ̃.

Remark 5.2. The tensor Υ̃ can also be rewritten, using problems (5.20) as follows:

Υkl =
1

L3 − meas(Y )

{∫
Yf

∂ωk

∂yl
dy + mes(Yf )δkl

}

= φδkl +
1

L3 − meas(Y )

∫
Yf

∂ωk

∂yl
dy. (5.23)

We recognize a formulation similar to the one of Λ̃ in (5.6), having on the diagonal the porosity (modulo the
diffusive coefficients). The symmetry of the tensor Υ̃ is no more obvious, but implicitly given by elementary
problems.
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Remark 5.3. One can notice the importance in this process of the existence of the operator Pε. The fact that
the continuity constant Cp of Pε does not depend on ε is of capital importance in the proof. The main difficulty
in the proof of the convergence remains in the fact that quantities Ni,ε are defined on a part Ωε,f ; as Allaire
recalls in [1], two methods can be used to overcome this problem. Other techniques can be used, as the proof
of the compacity of the injection of H1(Ωε,f ) in L2(Ωε,f ), which is uniform in ε (this is an adapted version of
Rellich theorem to the perforated media).

5.4. Upscaling in sorption effects

We are now interested in the contamination of aquifer layers by adsorption of pollutant. The modelization of
such phenomena requires the knowledge of adsorption isotherms of each specie (function linking the adsorbed
concentration by surface unity to the free one). These isotherms can be represented by simple functions which
main parameters are temperature and the nature of the solid. We consider the adsorption in a general way and
perform the analysis for two extreme cases: the irreversible case (the solid fixes definitively the pollutant) and
the reversible one (all the matter adsorbed is rejected in the fluid phase). The application of homogenization
processes to such phenomena has been already done by Hornung in [15] or Hornung and Jäger in [16], but the
proof of the convergence had not been established.

5.4.1. Statement of the problem

In this part, we are interested in adsorption phenomena occurring on the porous surface. The repartition of
the species into the fluid is modelized by a classic “convecto-diffusive” equation

∂tNε + div(NεUε −D∇Nε) = 0 in Ωf,ε. (5.24)

The adsorption effects are translated by a boundary condition on the fluid-solid interface of the type

−D∂Nε

∂n
= ελ(

x

ε
)ϕ(Nε) on Γε (5.25)

where λ is an element of L∞
] (Γ) and D the diffusion coefficient of the component in the fluid. The initial and

the complete boundary conditions remain similar to the ones considered in the first part. Thus, with a Green’s
formula, and for a test function v “regular enough” defined on Q̄, we obtain the variational formulation∫

Ωf,ε

∂tNεv dx+
∫

Ωf,ε

NεUε · ∇v dx+D

∫
Ωf,ε

∇Nε · ∇v dx−D

∫
Γε

v
∂Nε

∂n
dσε = 0 a.e. in t. (5.26)

Then we use the inequality (5.25) in order to obtain the formulation with a sink term∫
Ωf,ε

∂tNεv dx+
∫

Ωf,ε

NεUε · ∇v dx+D

∫
Ωf,ε

∇Nε · ∇v dx = −ε
∫

Γε

λ(
x

ε
)ϕ(Nε)v dσε (5.27)

for “regular enough” functions v defined on Q̄. One can easily verify that the problem composed of equa-
tions (5.27) and (5.25) admits a unique solution (evolutive parabolic problem with a non linear sink term).

5.4.2. Irreversible case: The Langmuir isotherm

We are interested here in the case of full irreversible adsorption, given by the Langmuir’s model, one of the
most classically used isotherm. The flux at the interface is then described by

ϕ : r ∈ R 7−→ ϕ(r) =
(

αr

1 + βr
−Nsat

)+

. (5.28)

Nsat being a saturation value.
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Proposition 5.1. We have the following estimates:

∃C1 > 0, ‖Nε‖H1(Qε) ≤ C1 (5.29)
∃C2 > 0, ‖ϕ(Nε)‖H1(Qε) ≤ C2. (5.30)

The function ϕ being lipschitzian and vanishing at r = 0, with a Lipschitz constant Lip(ϕ), we get that ϕ(Nε)
is bounded in H1(Qε) and

‖ϕ(Nε)‖H1(Qε) ≤ Lip(ϕ)‖Nε‖H1(Qε). (5.31)

Proposition 5.2 (Langmuir’s isotherm). The generalized sequence (Nε)ε converges to an element N , solution
of the equation

φ∂tN + div
(
φNU −DΥ̃∇N

)
+

[∫
Γ

λ(y) dσ(y)
]
ϕ(N) = 0 in Q. (5.32)

Proof. Considering the variational formulation verified by Nε, and integrating the inequality (5.27) on [0, T ],
we have ∫ T

0

∫
Ωf,ε

∂tNεv dxdt +
∫ T

0

∫
Ωf,ε

NεUε · ∇vdxdt

+ D

∫ T

0

∫
Ωf,ε

∇Nε · ∇v dxdt = −ε
∫ T

0

∫
Γε

λ(
x

ε
)ϕ(Nε)vdσε dt.

The convergence of convective, diffusive and evolutive terms has already been proved in the previous parts. In a
first time we use a suitable extension Ñε of the unknowns Nε in order to obtain a constant C > 0, independent
of ε, such that

‖Ñε‖H1(Qε) ≤ C ‖Nε‖H1(Qε). (5.33)

The tricky point consists in passing to the limit in the term ε

∫
Γε

λ(
x

ε
)ϕ(Nε)v dσε. With this aim in view, we

use results of two scale convergence for the expressions on the boundaries. These results, introduced by Allaire,
Damlamian and Hornung in [3], are the generalization to the boundaries of the two scale convergence notion
introduced in [2] and have been applied to diffusive equations with Fourier type boundary conditions. In the
following, we will denote by

uε

2−scale

−→Γ u0

this type of convergence.
The adaptation of this notion to our model do not give any difficulty with the help of the proposition (5.1).

Thus, taking for test function v = ϕ(Nε) in the variational formulation (5.27), we easily obtain the inequality

ε

∫ T

0

∫
Γε

|λ(x
ε
)ϕ(x)|2 dσε(x) ≤ C. (5.34)

Therefore, as mentioned in [3], there exists a function ϕ(x, y) ∈ L2(Ω;L2(Γ)) such that

ϕε

2−scale

−→Γ ϕ. (5.35)
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We have the following convergence properties:

ε′
∫ T

0

∫
Γε′

λ(
x

ε′
)ϕ(Nε′)φ(t, x,

x

ε′
) dσε′ (x) dt ε′→0−→

∫
Q

∫
Γ

λ(y)ϕ(N)φ(t, x, y)dσ(y) dxdt (5.36)

for each continuous function φ(x, y) ∈ C[Ω̄; C](Y )]. Moreover, with the compacity of the injection from H1(Q)
in L2(Q), it comes

Ñε′ ⇀ N in H1(Q) weakly

Ñε′ → N in L2(Q) strongly.

Then we have

ϕ(Ñε′ ) −→ ϕ(N) in L2(Q) strongly. (5.37)

Remark 5.4. In the case of a constant exchange coefficient λ(.), the expression of the nonlinear sink term
introduced in the macroscopic conservative equation (5.32) becomes

−λ meas(Γ)γ
(

αN

1 + βN
−Nsat

)+

. (5.38)

The previous proof remains true for all lischitzian function ϕ, which is nondecreasing and which vanishes at
0, that allows to consider a wide set of natural behaviours. In the next section, we present another type of
behaviour which corresponds to the case of reversible adsorption.

5.4.3. The reversible case: The Freundlich isotherm

We consider here the reversible case which can be modelized by the Freundlich isotherm. This isotherm
corresponds to the the function

ϕ : r ∈ R 7−→ ϕ(r) = rp (0 < p < 1) (5.39)

which is translated by a condition on the fluid-solid interface

−∂Nε

∂n
= ελ|Nε −Nsat|p−1(Nε −Nsat) on Γε. (5.40)

Proposition 5.3 (Freundlich isotherm). The macroscopic conservative equation is the following one:

φ∂tN + div
(
φNU −DΥ̃∇N

)
= −λmeas(Γ)|N −Nsat|p−1(N −Nsat) in Q. (5.41)

The proof of such a result has been established by Diaz in [9] in the case of the homogenization of chemical
reactions between fluid and solid phases at the interface.

6. Numerical simulations

6.1. The pore scale

We present here the first simulations obtained using the numerical scheme described in part 4. These
computations have been made on a planar rectangular domain which modelizes a capillary in quasi-linear
thermal field.
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Table 1. Macroscopic coefficients (κf = 1.3 × 10−7 m2 · s−1, κs = 1.3 × 10−7 m2 · s−1, D =
2.75 × 10−7 m2 · s−1, S∗

t = 4.92 × 10−3).

Tensor \ Cell Cell 1 Cell 2

Λ̃
(

3.49 × 10−7 0
0 3.48 × 10−7

) (
2.67 × 10−7 0

0 2.66 × 10−7

)

Σ̃ 2.77 × 10−3I2

(
1.313 × 10−3 0

0 1.314 × 10−3

)

Υ̃ 5.63 × 10−1I2

(
2.67 × 10−1 0

0 2.671 × 10−1

)

The main parameters used here are the dimensionless Soret coefficients Si∗
t = Si

t∆θ(1 − Ni(x = 0)), the

Peclet numbers Pei =
‖U‖L
Dii

, the adsorption isotherms of each component and the data relative to the system

such as the applied temperature difference ∆θ and the velocity profile U . The adsorption isotherm chosen for
the simulations is the Langmuir isotherm, defined by

∀i ∈ {1..n}, ∀x ∈ Ω, ∀y = (yi)1≤i≤nc ∈ {0..1}nc , ki(x, y) =
Ki(x)yi

φ+
∑

1≤j≤nc

Kj(x)yj

where φ denotes the medium porosity and (Ki)1≤i≤nc the Langmuir equilibrium constants family. One can
easily show that assumptions (H) hold for the diffusive and adsorption tensors. This isotherm is one of the
most simple and most often used functions for the modelization of the adsorption processes, and, if it is well
known that it is not the more precise, it remains a good function for the tests, in order to better understand the
mechanism that governs the system. In Figure 2(a), we show that the adsorption process and more precisely
its speed is modified by the thermal profile (via the Langmuir coefficients): in a first time the elution occurs
normally (first visualization) before that the fluid reaches the non isothermal area where the front part is
accelerated, while the back part is not disturbed. That’s why we observe a deformation of the initial velocity
profile (which is more stretched) before reaching the capillary outlet (third visualization), while the desorption
process occurs, slowed down by viscous effects. These effects can be better visualized on the isovalue graph for
the concentrations of the first component (Fig. 2(b)).

6.2. Upscaling

A second set of simulations has been made in order to compute precisely the macroscopic diffusion (and
thermodiffusion) tensors determined in part 5. An unstructured mesh for the unit cell has been constructed.
The resolution of elementary problems (5.7) and (5.20) has been done using a finite volume code. The type of
elementary cell chosen for these simulations is a stack of balls of “cell centered” type (cell 1 porosity φ1 = 0.72)
or “cubic face centered type” (cell 2, porosity φ2 = 0.43). Some solutions of the auxiliary problems can be
visualized in Figures 3(a) and 3(b). One can easily see the influence of the thermal diffusivities discontinuity on
the solution of (5.7) and the importance of boundary conditions in the computations of the solutions of (5.20).
The energies linked to the computed auxiliary functions have allowed the evaluation of macroscopic coefficients
given in Table 1 (I2 denotes the “identity” matrix of order 2).
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(a) (b)

Figure 2. 2D-visualization of a flow in a capillary tube: Pe = 2000, ∆θ = 30K.

(a) ω1, 1st cell, 1220 elements (b) ω2, 2nd cell, 409 elements

Figure 3. Auxiliary problem solutions (5.7) and (5.20).

Other computations must be performed with more realistic and thus more complex geometries. Nonsymetric
cells or anisotropic media should improve the effect of tortuosity on thermodiffusion phenomena.
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(1999).
[10] J.I. Dı́az and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion.

Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 11 (1998) 59–82.
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[13] G. Gagneux, Sur l’analyse de modèles de la filtration diphasique en milieu poreux, in Equations aux dérivées partielles et

applications. Articles dédiés à J.L. Lions. Gauthier-Villars, Paris (1998) 527–540.
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[16] U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differential

Equations 92 (1991) 199–225.
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