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1. Introduction

Ray tracing is a widespread numerical technique. Its is, for instance, routinely used in the oil industry to
compute travel-times of seismic waves in the underground under the geometric optics approximation of wave
propagation. Geometric optics is also a prototype problem for first order Hamilton–Jacobi equations when the
Hamiltonian function enjoys convexity properties. This class of problems appears in rather diverse applications
such as wave propagation, mesh generation, combustion, crystal growth and more generally in a large number
of problems of the calculus of variations.

Ray tracing consists in solving a set of ordinary differential equations called the Hamiltonian systems. One
of the variable describes a Lagrangian trajectory (the ray) along which the others, the Lagrangian variables,
are transported. This approach is conceptually simple and numerically easy to use. However, as a Lagrangian
method, it does not give any control on the spatial resolution of the Lagrangian solution. Indeed, the rays are
necessarily in finite numbers and produce when diverging poor resolution. Various refinement procedures exist
to fix this problem [13,18] which are based on interpolation techniques.

In the Eulerian approach the main variable, defined on the configuration space, satisfies a Hamilton–Jacobi
partial differential equation. It can be discretized on an a-priori fixed grid. The space resolution of the numerical
method is therefore automatically maintained and the accuracy of the approximation depends on this resolution.
These two approaches, Lagrangian and Eulerian, are mathematically equivalent only when the Lagrangian
solution is well defined and single-valued (rays do not cross). The Eulerian method otherwise produces a weak
“viscosity” solution which can be identified as the minimum value of the multi-valued Lagrangian solution (the
problem of computing the Lagrangian solution using a Eulerian representation when it is multi-valued has been
the subject of on-going work in the last ten years [1, 4, 5, 7, 10, 11, 14, 16, 17] ...).
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We review here the basic framework of the problem, introducing both Lagrangian and Eulerian solutions and
their relations. Next we detail the structure of our software which is intended to provide a C++ framework
for an easy implementation, use and comparison of both Lagrangian and Eulerian numerical methods applied
to Hamilton–Jacobi equations. We explain then how GO++ can be used to solve a standard Geometric Optics
problem and modified to accommodate for a general Hamiltonian. Finally we give indications on how a new
solver can be added to this modular software and again give an example. Even though large parts of GO++
are documented here, this paper is not a manual or a tutorial but rather a description of the choices we made
to build the software.

We would like to point out that one of our purposes is to explore the use of C++ for providing an efficient
open source library for education and research. Scientific computing nowadays often combines several numerical
techniques and makes software development rather difficult and time consuming. Instead of programming from
scratch, meta-languages (such as Matlab�) allowing a fast and easy (bug free) use of standard numerical algo-
rithms are popular. However, theses libraries are too large to be fast enough for 2-D and 3-D “realistic” applica-
tions. A more efficient general scientific solver like FreeFem + (http://www-rocq.inria.fr/Frederic.Hecht/
FreeFemPlus.htm) uses a C++ idiom as a wrapper. We want to simplify further the interface and we believe
that it is possible to directly use the C++ language. We think that a C++ modular library which targets
a particular class of application can be made “user-friendly” for researchers (used to programming but not
necessarily C++ experts) without any sort of “wrapping”. The expected gain is the efficiency of the produced
compiled code in term of running time.

2. The models

2.1. The Lagrangian solution and the ray method

A Hamiltonian function H(s, y, p) is given, defined on R
+
s × R

2
y × R

2
p (we will generically set y = (y1, y2),

p = (p1, p2) ...); R
+
s × R

2
y is the time-space configuration in which rays can evolve and R

+
s × R

2
y × R

2
p is called

the phase space.
The Lagrangian method consists in solving (using an ODE solver) the Hamiltonian system formed by the

following set of ordinary differential equations (ODEs) [2, 9, 12, 19]:




ẏ(s, y0) = Hp(s, y(s, y0), p(s, y0)), y(0, y0) = y0,

ṗ(s, y0) = −Hy(s, y(s, y0), p(s, y0)), p(0, y0) = φ0
y0(y0),

ϕ̇(s, y0) = p(s, y0) · Hp(s, y(s, y0), p(s, y0)) − H(s, y(s, y0), p(s, y0)),

ϕ(0, y0) = φ0(y0).

(1)

The dot stands for derivation with respect to “time” ˙(.) = d(.)
ds , gx(x1, x2) denotes the gradient with respect

to x = (x1, x2), φ0 is a given initial phase and also appears in the initial condition for p. For each y0 ∈ R
2
y

(or a subset of R
2
y), the system generates a “bicharacteristic strip” (y(s, y0), p(s, y0)) depending on s and y0.

The projections of the strips onto R
2
y: y(s, y0), are called the rays. Each ray is therefore “labeled” by its initial

position y0. The phase ϕ(s, y0) is transported by the corresponding ray y(s, y0) and, when rays are crossing, is
a multi-valued function of the configuration space R

+
s × R

2
y.

2.2. The Eulerian solution and the Hamilton–Jacobi partial differential equation

As we proceed along the ray and as long as rays do not cross, we can apply a local inversion theorem to
the mapping y0 → y(s, y0). Assuming that every point (s, x) ∈ R

+
s × R

2
y is reached by only one ray, we can

introduce the Eulerian variable φ(s, x) which, evaluated at the Lagrangian coordinates specified by the rays,
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matches the Lagrangian phase:

φ
(
s, y

(
s, y0

))
= ϕ

(
s, y0

)
. (2)

It is possible to derive a Hamilton–Jacobi equation satisfied by φ(s, x) either in the classical sense when rays
do not cross or in the viscosity sense [3, 8] else




∂φ

∂s
(s, x) + H(s, x,∇φ(s, x)) = 0, for (s, x) ∈ R

+
s × R

d
y

φ(0, y0) = φ0(y0), for y0 ∈ R
d
y.

(3)

A link can be made between Lagrangian and Eulerian viscosity solution using the theory of optimal control [5].
The viscosity solution can be characterized as the minimum of the associated Lagrangian phases:

φ(s, x) = min
y0, s.t. y(s,y0)=x

ϕ
(
s, y0

)
. (4)

If there is a zone where no ray penetrates, the viscosity solution implicitly generates “non-classical” rays to fill
this empty zone. It means that the optimal curves will satisfy the Hamiltonian system (1) with initial conditions
different from those specified for classical rays. This situation seems to be linked to diffraction phenomena and
should hopefully be investigated elsewhere.

2.3. Domain and boundary conditions

In practice, computations are limited to a given bounded domain and we must enforce boundary conditions.
The simplest condition for rays is to ignore them as soon as they exit the domain. It corresponds to an
“out-going” boundary condition for the Hamilton–Jacobi equation. It is implemented by the enforcement of
the continuity of the flux across the boundary (for instance for Lax-Friedrich solvers) or more simply, in the
case of Godunov solver by the Dirichlet boundary condition φ = +∞ (in practice φ = M , M large enough)
(Soner condition). More generally, we want to be able to treat general Dirichlet, Neumann or mixed boundary
conditions which can be for instance interpreted in the Lagrangian case as reflecting laws for the rays (see [3]
for more on boundary conditions).

2.4. Initialization

The simplest Eulerian initialization (the default initialization) is φ0(y0) = 0 in (3). In term of rays, it means
that they start with a direction p = 0 from all points of the domain.

An other common initialization for ray tracing is the isotropic point source. All rays start at a source point
S with direction p on the unit circle. We can use a Eulerian initialization using the distance function from S:
φ0(y0) = ‖S − y0‖ to obtain a Eulerian emulation of the Lagrangian isotropic source initialization.

3. The main structure of GO++

The computational kernel of GO++ is more general that is needed for our purpose. It is designed to solve a
set of ordinary differential equations

Ẋ(s) = RHS(X(s)) (5)

where X(s) is a collection of variables and RHS a function depending on the Hamiltonian, the boundary
conditions and the discretization. We recall that GO++ must allow Lagrangian and/or Eulerian computations.
We therefore decided to define a unique data structure in a class called ISH for solving (5). A member of
this class X represents either a set of bicharacteristics and associated phases: (X.y, X.p, X.phi) = (y, p, ϕ) at
a fixed time s and (5) represents the Hamiltonian system (1) or, in the Eulerian framework, X.y = x stands
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for the discretization points while (X.p, X.phi) = (∇φ(s, x), φ(s, x)) are respectively the gradient of the phase
and the phase itself at those points. In this case the equation satisfied by X.phi in (5) corresponds to the
Hamilton–Jacobi equation (3).

This approach is obviously not optimal in the Eulerian case alone because the remaining equations in (5) are
not a priori needed and the data could resume to a simple scalar function φ. In our opinion these drawbacks
are compensated by the following advantages:

• This setting allows to define a unique class describing the Hamiltonian in which a function called Hxph
maps the ISH data X described above to another ISH data Y which stands for (Hy(s, y, p), Hp(s, y, p),
H(s, y, p)). At a fixed time s, the same data structure can be used for X and Y .

• The Hamiltonian function may be straightforwardly generalized to depend also on φ: H(s, y, p, φ).
• The time solver modules used to solve (5) can be applied in Lagrangian and Eulerian modes.
• In the Eulerian mode, y = x and p = ∇φ(s, x); the additional quantities (Hy(s, x,∇φ(s, x)), Hp(s, x,
∇φ(s, x)) are needed to implement some Hamilton–Jacobi solvers.

• The data X.y representing the grid points and the associated equation in (5) could be used to implement
a moving or adaptative grid.

The software consists of independent modules in the the form of C++ classes. Those of these classes which
prescribe the problem or the numerical methods are virtual classes containing virtual functions. Adding new
problems or new numerical methods to GO++ consists in writing or modifying existing children classes of the
virtual classes. We now describe the basic classes needed to get started.

4. Domain, discretization and data structure

The software is for now restricted to a rectangular 2-D spatial domain and regular Cartesian discretizations.
This choice simplifies the implementation of finite difference solvers.

In order to generalize the software to treat 3-D problems or unstructured grid, the class presented in this
section must be modified. Even though it may be possible to treat such generalization by creating virtual
geometry, discretization and data classes, we believe that a better (and simpler) solution is to create several
versions of the software, each one dedicated to a particular discretization and to 2D or 3D problems.

4.1. Domain: the GEOM class

The GEOM class describes the geometry of the problem. It is used to define rectangular domains.
The declaration GEOM geometry(x1,min, x1,max, x2,min, x2,max) creates a regular 2-D rectangular geometry

by means of the x1 and x2 coordinates of its corners: x1,min, x1,max, x2,min, x2,max.

4.2. Discretization: the DSCR class

The DSCR class describes the discretization of the problem. We will consider that in the Eulerian framework
the discretization stands for the set of grid points at which the solution will be computed. In the Lagrangian
mode, the discretization will be the set of initial points for the rays. The DSCR needs a GEOM class to build
this set of points. The accuracy of the Eulerian solution depends on the number of discretization points and
also on the expected “order” of accuracy of the numerical methods to be used. An integer ord specify the order
and sets the number of points of the external layer used for computing finite differences at the boundary.

The declaration DSCR discretization(geometry, nx1, nx2, ord) can be used both in Lagrangian and Eulerian
mode. It specifies the number of discretization points (nx1, nx2) in each coordinate direction. It builds the
regular 2-D Cartesian grid of points (x1,i, x2,j), i = 1, .., nx1 +2∗ord, j = 1, .., nx2 +2∗ord needed to implement
a finite difference method of order ord with nx1 ×nx2 points covering the domain specified by the GEOM class
or one of its children (note that the actual domain is spanned by the set of points (x1,i, x2,j), i = ord, .., nx1 +
ord − 1, j = ord, .., nx2 + ord − 1).
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In the Lagrangian mode, it determines the size of the arrays which will describes number of rays we use
(nx1×nx2). It can also be used for a default initialization of the initial points y0 = (x1,i, x2,j), i = 1, .., nx1, j =
1, .., nx2. The general initialization process is described in Section 5.

4.3. Data structure: the ISH class

The discretization class provides the necessary information for defining the data structure of a member
X of ISH . It will typically be three arrays which numbers of dimensions and sizes are determined by the
discretization of the problem.

The basic data structure is made of two 2×nx1 ×nx2 arrays of reals called X.y and X.p and one nx1 ×nx2

array of reals called X.phi.
ISH is built on top of a collection of freely available array classes: RNM (see http://www-rocq.inria.fr/

Frederic.Hecht). These classes are much simpler than other packages (such as Blitz), easy to compile and the
functionalities (vectorial Matlab-like operations, scalar products, ...) sufficient for our purpose.

ISH also contains utility member functions for reading and writing at any time step s either the collection
of (y0, ϕ0

x(s, y0), ϕ0(y0)) for the rays or of the Eulerian variables (x,∇φ(s, x), φ(s, x)). It uses the overload of
“�” (used for the output) in the RNM class.

When an ISH variable is declared, the default initialization is X = 0. There is however the possibility of
specifying a function φ0 in the initialization list. The function maps an array X describing either y0 or x into
an ISH Y for which you have to specify (Y.y=X of course) Y.phi = f(X) and Y.p = fx(X) (see next section).

5. Describing functions of the configuration (x) space: the XFCT class

We first need a virtual class XFCT which describes a function of the configuration space. This class has a
virtual function called F which takes an ISH variable FX for which FX.y is a 2 × nx1 × nx2 array describing a
set of points in the domain. The remaining variables FX.p = ∇F (X) is the gradient of the function at these
points and FX.phi = F (X) the function itself.

The class has two families of children in which the XFCT can be specialized. In the XFCT ANAL class the
function is specified analytically. In the second class XFCT INTR, the function is specified by its evaluation
at given configuration points. To build such an object, we must read data in the form of two arrays (the
specification of sample points and the value of the function at these points) and we need an interpolation
method to be able to evaluate the XFCT on any array of points (more details on this class in Sect. 11.1.)

As an example, suppose we want to initialize a Lagrangian problem where all the rays start at a source point S,
with initial direction on the sphere. We need to define an XFCT child class called XFCT INIT LAG SRCP
for which S is given as a data member.
class XFCT_INIT_LAG_SRCP : public XFCT
{
public:
XFCT_INIT_LAG_SRCP(point& S, R anglmin=0.,R anglmax=2.*pi, R inds=1,
int nfdism=1) : XFCT(nfdism),Source(S),angmax(anglmax),angmin(anglmin), indS(inds) {}
~XFCT_INIT_LAG_SRCP(){ }

//* point = 2 reals
point Source;

//* shooting angle oriented from anglemin to anglemax
R angmax;
R angmin;
//* value of the index at source point
R indS;
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void F(ISH* FX) const;
};

Then the F function, is specialized in the following C++ source:
//* specializes the F function of the new class

void XFCT_INIT_LAG_SRCP ::F(ISH* FX) const
{
for (int i=FX->discr.ord;i<FX->discr.nx+FX->discr.ord;i++)
{
for (int j=FX->discr.ord;j<FX->discr.ny+FX->discr.ord;j++)

{
// All rays at the source point
FX->y(0,i,j)=S.x;
FX->y(1,i,j)=S.y;

// With an equidistributed shooting angle
R ang(angmin+(angmax-angmin)*(j+FX->discr.ny*i)/(FX->discr.nx*FX->discr.ny-1.));

FX->p(0,i,j)=cos(ang)/indS;
FX->p(1,i,j)=sin(ang)/indS;

}
}

// All with a phase equal to zero
FX->phi=0.;

}

As discussed in Section 2.4, the corresponding behavior in the Eulerian mode can be emulated by the initial func-
tion φ0(X) = ‖S − X‖. The implementation of this function is similar. We create the child
XFCT INIT EUL SRCP for which S is given as a data member.

class XFCT_INIT_EUL_SRCP : public XFCT
{
public:
XFCT_INIT_EUL_SRCP(point& S, int nfdism=1) : XFCT(nfdism),Source(S) {}
~XFCT_INIT_EUL_SRCP(){ }

// point = 2 reals
point Source;

void F(ISH* FX) const;
};

Then the F function, is specialized as in the following C++ source:
// specializes the F function of the new class
void XFCT_INIT_EUL_SRCP ::F(ISH* FX) const
{
// Initialization of the position of the unknown at the grid points
for (int i=0;i<FX->discr.nx+2*FX->discr.ord;i++)
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{
FX->y(0,i,’.’)=FX->discr.xi(i);

}

for (int j=0;j<FX->discr.ny+2*FX->discr.ord;j++)
{
FX->y(1,’.’,j)=FX->discr.yj(j);

}

// Computation of Euclidean distance between
// grid points and the source point (result in FX->phi)

distE_PtPts(FX->discr,S,FX->phi);

FX->p=0.;
}

(where we omitted the function distE PtPts).

6. The model

6.1. Boundary conditions: the BCON class

The boundary condition class can be used either to implement classical boundary conditions in the Eulerian
case or to specify the behavior of rays when the limit of the computational domain is reached. The virtual class
BCON has a virtual member function Sbco which uses information from the DSCR class (discretization) to
modify an ISH variable. In the Lagrangian mode, Sbco modifies the ISH standing for the RHS in (5) for those
of the rays which exit the domain. When solving a Eulerian problem, boundary conditions are implemented by
filling the boundary layer (one or more points) with correct values of the ISH representing the current solution.
The width of the boundary layer is set by the order ord.

The simplest boundary conditions are “out-going” boundary conditions as described in Section 2.3. It is
implemented in the child classes BCON LAG OUTG, BCON EUL OUTG LAXFR for Lax-Friedrich solvers
and BCON EUL OUTG GODUNOV for Godunov solvers.

// Here, X represents the solution, and Y the flux.
void BCON_LAG_OUTG::Sbco(const R& t, ISH* X,ISH& Y) const
{

for (int i=0;i<X->discr.nx;i++)
{
for (int j=0;j<X->discr.ny;j++)

{
//* If the ray exit the domain , the whole computation is stopped
if (X->y(0,i,j)<=X->discr.geom.xmin+1e-6 ||

X->y(0,i,j)>=X->discr.geom.xmax-1e-6 ||
X->y(1,i,j)<=X->discr.geom.ymin+1e-6 ||
X->y(1,i,j)>=X->discr.geom.ymax-1e-6)

{
//* Set RHS=0

Y.y(’.’,i,j)=0.;
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Y.p(’.’,i,j)=0.;
Y.phi(i,j)=0.;

}
}

}
}

and in the Eulerian mode (for Godunov type solvers)

/**
outgoing BC for hami. num GODUNOV
Ghost points set to + infty
*/
void BCON_EUL_OUTG_GODUNOV::Sbco(const R& t, ISH* X,ISH& Y) const
{
const R BigVal(1e20);

for (int i=1;i<=X->discr.ord;i++)
{
X->phi(X->discr.ord-i,’.’)=BigVal;
X->phi(X->discr.nx+X->discr.ord+i-1,’.’)=BigVal;
X->phi(’.’,X->discr.ord-i)=BigVal;
X->phi(’.’,X->discr.ny+X->discr.ord+i-1)=BigVal;

}
}

6.2. Hamiltonian function: the HAMI class

The Hamiltonian function H(t, y, p) is the central object of the problem and is represented through a virtual
class HAMI. As discussed in Section 3, a virtual function Hxph maps an ISH data X to another ISH data Y .
The HAMI hierarchy of class has two main branches.

In the first branch called HAMI CONT , the (X.y, X.p, X.phi) variables are the set of bicharacteristics
and phase at a fixed “time”s and the Y data stands for the corresponding set of “continuous” evaluations
of (Hy(s, X.y, X.p), Hp(s, X.y, X.p), H(x, X.y, X.p)) needed to solve the Hamiltonian system (1). It can be
straightforwardly used for Lagrangian computations.

In the Eulerian case, the space discretization of the Hamilton–Jacobi equation needs a second branch called
HAMI NUM described in Section 7.1.

One of the simplest H-J function is analytically specified by H(s, y, p) = 0.5 ∗ ‖p‖2. It is contained in the
child class HAMI CONT ANAL P2. It is implemented in the following piece of C++ header

class HAMI_CONT_ANAL_P2 : public HAMI_CONT
{
public:
HAMI_CONT_ANAL_P2() : HAMI_CONT() {}
~HAMI_CONT_ANAL_P2(){}

void SupGrH(const Rnmk& X, Rnmk& SupgradH) {SupgradH=1.;} ;
void Hxph(const R& t, const ISH* X, ISH& Y) ;

};



GO++ 891

and the code

/**
Analytic Hamiltonian H(x,p)=|p|^2/2

*/
void HAMI_CONT_ANAL_P2 ::Hxph(const R& t, const ISH* X, ISH& Y) const
{
//* dH/dp=p
Y.p=X->p;

//* dH/dy=0
Y.y=0.;

for (int i=X->discr.ord;i<X->discr.nx+X->discr.ord;i++)
{
for (int j=X->discr.ord;j<X->discr.ny+X->discr.ord;j++)

{
//* H=.5*(p,p) (RNM scalar product)
Y.phi(i,j)=((X->p(’.’,i,j),X->p(’.’,i,j));
Y.phi(i,j)/=2.;

}
}

7. Numerical methods

7.1. Space solvers, the HAMI NUM and GRAP classes

This section only concerns the Eulerian approach even though one could think of further development in the
Lagrangian case which would require an enrichment of the HAMI structure (symplectic solvers for instance).

In the Eulerian framework, the ISH data (X.y, X.p) stands for (x,∇φ(s, x)) and we need to specify a method
for approximating the gradient of the phase, i.e. to numerically implement the affectation X.p = ∇φ(s, x).
This is the object of the GRAP class. As “upwinding” is a classical tool in this context a member function
Grphi takes the nx1×nx2 array representing the phase X.phi as an input and returns two 2×nx1×nx2 arrays
Grphim = (a, c) and Grphip = (b, d) which are the discrete upwind derivatives of order ord: if ord = 1 and
φ(s, x1,i, x2,j) � φi,j then a = (φi,j−φi−1,j)

∆x1
, b = (φi+1,j−φi,j)

∆x1
, c = (φi,j−φi,j−1)

∆x2
, d = (φi,j+1−φi,j)

∆x2
.

The simplest child class of GRAP is GRAP UPW1 which computes upwind finite difference of order 1 (the
(a, b, c, d) quantities above). Other types of approximation such a TVD or ENO are available.

The discretization of (3) may also require some modifications of the Hamiltonian function itself. We there-
fore created a virtual child class of HAMI called HAMI NUM which uses the specifications of a given
HAMI CONT Hamiltonian function and a method of approximation of ∇φ (a GRAP class) to evaluate
its own “numerical” Hxph function.

A simple method is the Lax-Friedrichs solver which replaces H(s, x,∇φ(s, x)) by

Hnum
LF (s, x, a, b, c, d) := H

(
s, x,

a + b

2
,
c + d

2

)
− α(x)

2
(b − a) − β(x)

2
(d − c), (6)

where (a, c) resp. (b, d) are defined above, is designed by the HAMI NUM LAXF class. The coefficients
α(x) := sup(u,v) |∂H

∂u |, and β(x) := sup(u,v) |∂H
∂v | are the maximum of the speeds ((u, v) stands for the (φx1 , φx2)

variables). They are computed in a function called SupGrH which is a virtual member of the HAMI NUM
class.
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The HAMI NUM and HAMI NUM LAXF class of HAMI look like:

class HAMI_NUM : public HAMI
{
public:
HAMI_NUM(HAMI_CONT &H, const GRAP& ApGrad) : HAMI(H.nf),Hamc(H), ApxGrad(ApGrad)

{
Grphip=new Rnmk(2,ApGrad.discr.nx+2*ApGrad.discr.ord,ApGrad.discr.ny+2*ApGrad.dis

cr.ord);
Grphim=new Rnmk(2,ApGrad.discr.nx+2*ApGrad.discr.ord,ApGrad.discr.ny+2*ApGrad.dis

cr.ord);
Xmod=new ISH(ApGrad.discr);

}

virtual ~HAMI_NUM(){delete Grphip;delete Grphim;delete Xmod;}

//* The continuous Hamiltonian that we have to discretized
HAMI_CONT &Hamc ;

//* The type of approximation of the gradients (TVD, ENO ...)
const GRAP &ApxGrad ;

//* current upwind derivatives
Rnmk* Grphip;
Rnmk* Grphim;

//* pointer on modified solution (only the gradient is different)
ISH* Xmod;

//* ACCESS FUNCTION TO FX
//* -----------------------
//* The access function to FX is overloaded,
//* it permits to use the SAME FX variable in the
//* Numerical Hamiltonian and the continuous one,
//* but only the latter has got a real meaning.

ISH*& fX() {return Hamc.fX();}

//* MODIFICATION FUNCTION TO FX
//* ---------------------------
//* In the case of a Numerical Hamiltonian
//* we don’t re compute the X fields (the grid is fixed).
//* here FX is set to GridVal (fixed grid and values on it) at
//* the level of rhs in the application, then here, it doesn’t
//* do anything.

inline void xFHami(ISH* FX) {}

//* The SupGrH is overloaded like the access function fX() to
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void SupGrH(const Rnmk& X, Rnmk& SupgradH) {Hamc.SupGrH(X,SupgradH);};

};

then we can specified the Lax-Friedrichs as a child class of HAMI NUM

class HAMI_NUM_LFX : public HAMI_NUM
{
public:
HAMI_NUM_LFX(HAMI_CONT &H,const GRAP& ApGrad) : HAMI_NUM(H,ApGrad)

{
// Compute and stores maximum speeds for the Hamiltonian

Hamc.fX()=new ISH[Hamc.nf](ApGrad.discr,0.);
Hamc.SupGRADH()=new Rnmk(2,ApGrad.discr.nx+2*ApGrad.discr.ord,

ApGrad.discr.ny+2*ApGrad.discr.ord);
Hamc.SupGrH(Hamc.fX()[0].y,*Hamc.SupGRADH());
delete[] Hamc.fX();

}

~HAMI_NUM_LFX(){delete Hamc.SupGRADH();}

void Hxph(const R& t, const ISH* X, ISH& Y) ;
};

and the code for the numerical Hamiltonian
/**
Lax-Friedrichs numerical Hamiltonian
Specialization of Hxph

*/
void HAMI_NUM_LFX::Hxph(const R& t, const ISH* X, ISH& Y) const
{
//* The modified solution is set to the solution
//* Below, we change his gradient (Xmod->p) ...

*Xmod=*X;

// unpwind derivatives
ApxGrad.Grphi(X->phi,*Grphim,*Grphip);

/**
Centered gradient

*/

for (int i=X->discr.ord;i<X->discr.nx+X->discr.ord;i++)
{
for (int j=X->discr.ord;j<X->discr.ny+X->discr.ord;j++)

{
for (int d=0;d<2;d++)
{
Xmod->p(d,i,j)=(*Grphip)(d,i,j)+(*Grphim)(d,i,j);
Xmod->p(d,i,j)/=2.;
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}
}

}
//* evaluate the Hamiltonian function with approximate gradient
Hamc.Hxph(t,Xmod,Y) ;

//* Artificial viscosity
//* Compute de maximum of the speed.

for (int i=X->discr.ord;i<X->discr.nx+X->discr.ord;i++)
{
for (int j=X->discr.ord;j<X->discr.ny+X->discr.ord;j++)

{
Y.phi(i,j)-=((*Hamc.SupGRADH())(0,i,j)*((*Grphip)(0,i,j)-(*Grphim)(0,i,j))

+(*Hamc.SupGRADH())(1,i,j)*((*Grphip)(1,i,j)-(*Grphim)(1,i,j)))/2.;
}

}
}

7.2. Time solver, the TSLV class

Time solvers are designed to solve the set of ODE’s (5) satisfied by an ISH unknown that has to be declared
and initialized (see the ISH section). It also assumes that a particular Rhs function is identified through the
declaration of the type of application (see the APLI section below). The TSLV virtual class has a virtual
member function Tstep which solves (5) on a time step dt (e.g. it takes the ISH unknown X(t) and the scalar
dt and return X(t + dt). We already mentioned the structure of GO++ makes it possible to use time solver for
Lagrangian or Eulerian problems. The discretization is passed to time solver first for optimization purposes. It
also provides the possibility to modify the discretization in time.

The simplest time solver is the Euler method X(t + dt) = X(t) + dt ∗RHS(X(t)) and is implemented in the
child class TLSV EUL. Several other methods of Runge-Kutta type are also available.

8. Defining the type of application: the APLI class

Once a discretization and a model is fixed, an ISH variable X can be declared which represents the solution of
the problem at a fixed time. It is then necessary to specify the type of application (e.g. Lagrangian or Eulerian)
we wish to solve. It is done through the specialization of the Rhs function on the right hand side of (5).

Thus there exist a virtual class APLI of which Rhs is a virtual member function. It can be specialized into (at
least) two child classes APLI LAG and APLI EUL EV for Lagrangian and Eulerian evolution applications.
The function Rhs of course needs information on the model characterized by an Hamiltonian function Hxph
and boundary conditions BCON . In the Lagrangian mode the boundary conditions are enforced (calling the
Sbco function) after the evaluation of Rhs while in the Eulerian mode it is before (see Sect. 5.1).

9. The main program: a first example

This section shows how all these objects can be combined to produce a simple Lagrangian/Eulerian compu-
tation for the Hamiltonian H(s, y, p) = 0.5 ∗ ‖p‖2 on a rectangular domain with outgoing boundary conditions,
artesian discretization and point source initialization. This following source code is a prototype main program
for GO++ applications. Changes in domain, discretization, initialization, Hamiltonian functions, numerical
methods, ..., can be implemented separately in child classes of the basic classes. The following sections detail
such changes.



GO++ 895

#include <iostream>
#include <fstream>
#include <assert.h>
#include <math.h>
#include <utility>
#include <algorithm>
#include <GO++.hpp>

/*
A typical main program for
Eulerian and Lagrangian computations

*/

int main(int argc, char **argv)
{
/* ******* Domain and discretization *******

define a 2D rectangular domain with (x,y)
coordinates of the corners

*/
R xmin(0.),xmax(4.),ymin(0.),ymax(2.);
GEOM geom(xmin,xmax,ymin,ymax);

// Define a discretization of the domain
// Eulerian case
int nxE(51),nyE(51),ord(1);
DSCR discrE(geom,nxE,nyE,ord);

// Lagrangian case
int nxL(5),nyL(5);
DSCR discrL(geom,nxL,nyL);

/* *********** model ************
*/

// Boundary Conditions: Eulerian Case
BCON_EUL_OUTG_LAXFR bcond;

// Boundary Conditions: Lagrangian Case
BCON_LAG_OUTG bclag;

// Hamiltonian
HAMI_CONT_ANAL_P2 ham;

/* **** Numerical methods in space for HJ eq. **** */

// Type of approximation of grad phi
GRAP_UPW1 gradap(discrE);

// Numerical Hamiltonian (space) Lax-Friedrich



896 J.-D. BENAMOU AND P. HOCH

HAMI_NUM_LFX hamnum(ham,gradap);

// ***** type of application *****
// define type of RHS

// Eulerian Evolution application
APLI_EUL_EV eul(hamnum,bcond);

// Lagrangian application
APLI_LAG lag(ham,bclag);

// ****** define and initialize by XFCT *****
// Source Point
point S;
S.x=(xmax+xmin)/2.;
S.y=(ymax+ymin)/2.;

// Eulerian Initialization (source point)
XFCT_INIT_EUL_SRCP phi0(S);
ISH* X_eul= new ISH(discrE,phi0);

// Lagrangian Initialization (source point)
XFCT_INIT_LAG_SRCP xsi0(S);
ISH* X_lag= new ISH(discrL,xsi0);

// **** time solver define TSTEP ****
// euler for Eulerian
TSLV_EUL tseul(eul,discrE);
// RK4 for Lagrangian
TSLV_RK4 tslag(lag,discrL);

// Initial / Final time / constant time step
R t(0),t1(3.4),dt(1e-3);

// counter to write solutions at every nexec times step
int cp(0),nexec(10);

ofstream solLag("SOL_lag.dat");
ofstream solEul("SOL_eul.dat");

while (t<t1)
{
cout << " t=" << t << "\n";
cp++;

// Evolution of Lagrangian Sol over one time step
tslag.Tstep(t,dt,X_lag);

// Evolution of Eulerian Sol over one time step



GO++ 897

0 1 2 3 4
0

1

2

PLOT

X−Axis

Y−
Ax

is

Figure 1. Rays and level curves of the phase.

tseul.Tstep(t,dt,X_eul);

t+=dt;

// Every nexec time step, write data into files
if (fmod(cp,nexec)==0)

{
cp=0;
//* write the array of ray positions at time t
solLag << t << endl << X_lag->y << endl;
//* write the array of phases on the Eulerian grid at time t
solEul << t << endl << X_eul->phi << tendl;

}
}

}

9.1. Results

The parameters are x1min = 0, x1max = 4, x2min = 0, x2max = 2. The source point S is located at the center
of the domain. In the Eulerian case, we took nxe

1 = nxe
2 = 51, ord = 1, and for the Lagrangian problem

nxl
1 = nxl

2 = 5 which gives 25 rays. We evolve the two problems simultaneously until time tmax = 3.4 with a
constant time step 0.01. The compile time takes about 20 s, and the run time 1.5 s, on a pentium 750 mHz.

Figure 1 shows on the same plot the projection of the “space-time rays” on the plane and the zero level
curves of t−φ(t, x) of the Eulerian phase. As expected (the Lagrangian problem can be solved analytically, the
phase is single-valued and the Eulerian solution follows automatically) the rays are straight lines and the level
curves behave as regular expanding circular wavefronts.

Here we have used plotmtv as a graphical software (see [6] for more on graphic facilities in GO++).

10. A second example: a waveguide problem

We review the different steps needed to solve a similar problem set with a different and more general Hamil-
tonian function and a different numerical method.
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10.1. Creating a new Hamiltonian class

Our new Hamiltonian function is the classical geometric optic Hamiltonian with variable index of refraction n:

H(s, y, p) =
1
2

(|p|2 − n2(y)
)
. (7)

We take

n(x) =
{
1 |x| > 0.5,
1 + cos2(π |x|) |x| ≤ 0.5

a function of configuration space which can be implemented in a child class of the XFCT class called
XFCT INDEX WG:

void XFCT_INDX_WG::F(ISH* FX) const
{
//* Cylindrical waveguide
//* X.y X.p phase-space coordinates

R ray,s;

for (int i=FX[0].discr.ord;i<FX[0].discr.nx+FX[0].discr.ord;i++)
{
for (int j=FX[0].discr.ord;j<FX[0].discr.ny+FX[0].discr.ord;j++)

{
ray = sqrt((FX[0].y(’.’,i,j),FX[0].y(’.’,i,j)));

if (ray > .5)
{ //* constant index out of the ball B(0,0.5)
FX[0].phi(i,j)=1.;
FX[0].p(’.’,i,j)=0.;

}
else
{ //* cosine of the radius inside the ball B(0,0.5)
s=cos(pi*ray);
FX[0].phi(i,j)=1.+s*s;
FX[0].p(’.’,i,j)=FX[0].y(’.’,i,j);
FX[0].p(’.’,i,j)*=-2.*s*pi*sin(pi*ray)/(ray+1e-9);

}
}

}
}

Then we create a child class of HAMI CONT which includes the specification of an index of refraction
in the form of a XFCT class. This new Hamiltonian class is called HAMI CONT XFCT . We specialize
further the Hamiltonian class to take into account the particular geometrical optics form (7) in the class
HAMI CONT XFCT GO.

class HAMI_CONT_XFCT: public HAMI_CONT
{
public:
//* Specify a function XFF
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HAMI_CONT_XFCT(const XFCT& XFF ) : HAMI_CONT(XFF.nfdis), XF(XFF) {}
virtual ~HAMI_CONT_XFCT(){}

//* The XFCT class (analytic or discrete)
const XFCT &XF;

//* The xFHami function is then F member
//* data function of an instantiation of a XFCT
inline void xFHami(ISH* FX) {XF.F(FX);}

};

and the code for the child class HAMI CONT XFCT GO

/**
H = Y.phi = (|p|^2-n^2(y))/2
Hp = Y.p = p
Hy = Y.y = -n Grad n

*/
void HAMI_CONT_XFCT_GO::Hxph(const R& t, const ISH* X,ISH& Y) const
{
//* ci dessous dH/dp = p (idem)
Y.p=X->p;

//* ci-dessous dH/dy (initialized to Grad n)
Y.y=fX()[0].p;

for (int i=X->discr.ord;i<X->discr.nx+X->discr.ord;i++)
{
for (int j=X->discr.ord;j<X->discr.ny+X->discr.ord;j++)
{
// H=(|p|^2 - n(y)^2)/2
Y.phi(i,j)=(X->p(’.’,i,j),X->p(’.’,i,j))-(fX()[0].phi(i,j)*fX()[0].phi(i,j));
Y.phi(i,j)/=2.;

// dH/dy=-n * Grad n
Y.y(’.’,i,j)*=-fX()[0].phi(i,j);
}

}

}

The last step is to modify the declaration lines for the Hamiltonian to make these changes operational, (i.e.
modify the declaration in the model section of the main program)

\* define the Hamiltonian function
HAMI_CONT_ANAL_P2 ham;

by

\* define the index of refraction
XFCT_INDX_WG indrefct;
\* define the GO Hamiltonian function , specify an index
HAMI_CONT_XFCT_GO ham(indrefct);
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10.2. Implementing a new numerical Hamiltonian

The same mechanism is used to modify the numerical Hamiltonian. A Godunov method specialized for
convex Hamiltonian depending on p2 like for HAMI CONT XFCT GO can simply be written as:

Hnum
GOD(s, x, a, b, c, d) := H(s, x, max(max(a, 0),−min(b, 0)), max(max(c, 0),−min(d, 0)))

where (a, b, c, d) are defined in Section 7.1. We then create a child class HAMI NUM GOD (source below)
and modify accordingly the class declaration:

GRAP_UPW1 gradphi(discr)
\* numerical Hamiltonian (space)
HAM_NUM_GOD hamnum(ham,gradphi)

Note that ham describes our new Hamiltonian function and gradphi the upwind formula, the C++ code in this
case is:

/*
Numerical Hamiltonian for Square Hamiltonian

*/
void HAMI_NUM_GOD::Hxph(const R& t, const ISH* X, ISH& Y) const
{
//* The modified solution Xmod is set to the solution X
//* Below, we will change his gradient (Xmod->p) ...
*Xmod=*X;

//* approximate upwind gradient
ApxGrad.GradPM(X->phi,*Grphim,*Grphip);

/**
when H=H(x,p^2,q^2)=G(x,p,q),
Godunov gradient is grad phi = max(max(Grphi-,0),-min(Grphi+,0))

*/

/**
Godunov gradient for the solution

*/
for (int i=X->discr.ord;i<X->discr.ord+X->discr.nx;i++)
{
for (int j=X->discr.ord;j<X->discr.ord+X->discr.ny;j++)

{
for(int d=0;d<2;d++)
{
Xmod->p(d,i,j)=max(max((*Grphim)(d,i,j),0.),-min((*Grphip)(d,i,j),0.));

}
}

}

\ref //* Evaluate the continuous hamiltonian with this gradient
Hamc.Hxph(t,Xmod,Y);

}
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Figure 2. Space time perspective of the rays.

10.3. Changing the initialization

In Section 4.4, we already created initialization functions (for a source point simulation). One can modify
the initialization function by creating his own XFCT child class. For the wave guide simulation the default
initialization φ0 = 0 (straight rays) is used.

//******** define X and initialize *****
// Eulerian
ISH* X_eul= new ISH(discrE,0.);

// Lagrangian
ISH* X_lag= new ISH(discrL,0.);

10.4. Changing the boundary conditions

As we use a Godunov solver for our numerical Hamiltonian we must modify the boundary conditions accord-
ingly.

// Conditions Limites cas Eulerien (Godunov solver)
BCON_EUL_OUTG_GODUNOV bcond;

10.5. Results

The index of refraction has a maximum at x = 0 and bends the rays towards the x = 0 line. Shooting
straight rays (φ0 = 0) in the interior region |x| < 0.5 will produce a wave guide effect. In this simulation,
x1,min = −1, x1,max = 1, x2,min = −1, x2,max = 1. In the Eulerian case, we took nxe

1 = nxe
2 = 101, ord = 1,

and for the Lagrangian case 11× 11 rays. We evolve the two problems simultaneously until the time tmax = 4.5
with a constant time step 0.0075.

In Figure 2 we see the waveguide effect on the rays while outside the zone of inhomogeneity of the index rays
propagate in straight lines.

Figure 3 shows two time slices of the phase computed with the Hamilton Jacobi equation. On can observe
the radial spatial gradient of the phase corresponding to the index of refraction. The Eulerian solution picks
up the phase of only the fastest rays according to formula (4).
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Figure 3. Greyscale map of times slices of the phase.

11. A generalization to semi-analytically defined Hamiltonian

In many applications the Hamiltonian function reflects the properties of a medium which are not necessarily
known analytically. For example the sound speed c in the ground may be specified on a grid like in the Mar-
mousi test case (see http://www-rocq.inria.fr/~benamou/traveltimes.html). In this case, the geometric
optics Hamiltonian is H(s, y, p) = c(y)|p| with the sound speed c given as collection of samples at grid points
(xint

1,i , x
int
2,j ), i = 1, .., nint

x1 , j = 1, .., nint
x2 . An interpolation method is therefore needed at least for the Lagrangian

resolution and also in the Eulerian case when the Eulerian grid does not match with the location of the samples.
This functionality can be integrated into GO++ by the addition of a family of a new class.

11.1. Interpolation methods: the XF CT INTR and the INTR classes

We recall that the XFCT has a child XFCT INTR which stands for functions specified only at a discrete
set of points and needs and interpolation method. The F member function of XFCT is then replaced by
a member function of INTR called Interp which does the interpolation job. The INTR virtual class has
therefore a virtual member function Interp which takes an ISH variable say IX that contains IX.y = X the
set of points, IX.p = ∇F (X) the gradient of the function at these points and FX.phi = F (X) the function
itself.

To build such an object, we must read sample data. We treated the case of data specified on a Cartesian
discretization of a square domain in a specialized class called INTR CART . A text data file (generically called
Intrfile.dat) containing (xint

1,min, xint
1,max, xint

2,min, xint
2,max), nint

x1 nint
x2 ) the coordinates and discretization of the

sample points followed by the value of the function at these points must be specified. The several methods can be
used such as B-splines (INTR CART BSPLINE) or Catmull-Romm splines (INTR CART CRSPLINE).

In the Marmousi test case the top lines of the Intrfile.dat (called “marmousi.dat”) file looks like:

0. 9192. // x1intmin x1intmax
2904. 0. // x2intmin x2intmax
384 122 // nx1 nx2
1 // only 1 field to interpolate
1500. // index in m/s (column wise.....)
1549.
1598.
1637.
1675.
:
:
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Figure 4. The speed c, the point source and the rays.

where the data are respectively: xint
1,min, xint

1,max, and xint
2,min, xint

2,max, and nint
x1 nint

x2 , and the number of data fields,
and finally the values (regularly spaced) of the sound speed.
Then if we want to use B-spline, the syntax are defined by the following specifications:
\* define the interpolation method and data file
INTR_CART_BSPLINE interp("marmsmooth.dat");

\* Define the index
XFCT_INTR marmind(interp);

\*define the Hamiltonian
HAMI_XFCT_CONT_MI ham(marmind) ;

11.2. Result

We solve the problem on the domain defined by x1min = 0, x1max = 9192, x2min = 0, x2max = 2904 with a
source point S located at (6000, 104). In the Eulerian case, we use the same initial condition as in Section 9 and
apply outgoing boundary conditions. The discretization uses nxe

1 = 384, nxe
2 = 122, and a 2nd order TVD [15]

(ord = 2) method for the approximation of the gradient.
In the Lagrangian case, we shoot 7 × 7 rays, the initial condition is the same as in the isotropic case except

that X.p is divided by the sound speed at the source point S. We evolve the two problems simultaneously until
the time tmax = 2.6 with a constant time step 0.0043.

Figure 4 shows the heterogeneous speed function characterizing the underground, the location of the source
point and the associated rays which are bent according to the variation of the index 1

c . A grayscale plot of two
time slices of the Eulerian phase are given in Figure 5. It provides in particular the phase function in shadow
regions.
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Figure 5. Grey scale map of the phase at two different times.
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