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FINITE VOLUME SCHEMES FOR THE P-LAPLACIAN
ON CARTESIAN MESHES
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Abstract. This paper is concerned with the finite volume approximation of the p-Laplacian equation
with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm
of the gradient on the mesh’s interfaces is needed in order to discretize the p-Laplacian operator. We
give a detailed description of the possible nine points schemes ensuring that the solution of the resulting
finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally
conservative and in addition derive from the minimization of a strictly convexe and coercive discrete
functional. The convergence rate is analyzed when the solution lies in W 2,p. Numerical results are
given in order to compare different admissible and non-admissible schemes.
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1. Introduction

1.1. Mathematical background

In this paper, we are interested in the study of the numerical approximation of solutions to the 2D p-Laplacian
with homogeneous Dirichlet boundary conditions (1 < p < +∞):

{
−div

(
|∇u|p−2∇u

)
= f, on Ω,

u = 0, on ∂Ω.
(1)

This equation arises as a model problem in various physical situations such as non-Newtonian flows (for example
in glaciology models [14, 15]), turbulent flows, or in the study of flows in porous media. Some of these models
are described and studied for instance in [8].

Throughout this paper, we will denote by p′ = p
p−1 the conjugate exponent of p. Let us recall that for any

data f ∈ W−1,p′
(Ω), problem (1) is well-posed in W 1,p

0 (Ω). This can be proved easily using the monotony of
the p-Laplacian operator or equivalently using the fact that (1) is the Euler-Lagrange equation for the problem
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of minimizing the coercive and strictly convex functional

J : W 1,p
0 (Ω) → R

u �→ 1
p

∫
Ω

|∇u(z)|p dz −
∫

Ω

f(z)u(z) dz
(2)

on the whole space W 1,p
0 (Ω). Formula (2) is only valid for f ∈ Lp′

(Ω) but we may replace the last integral by
a duality bracket if f is in W−1,p′

(Ω). Furthermore, we have the a priori estimate

‖u‖W 1,p ≤ ‖f‖
1

p−1

W−1,p′ ≤ C‖f‖
1

p−1

Lp′ . (3)

Many authors (see for instance [4–6, 13]) have studied the finite elements approximation of (1). In this work,
we propose a new approach in the framework of cell-centered finite volume schemes. Indeed, the choice of finite
volume methods is natural as soon as the equation we consider is in a divergence form. It consists, for this kind
of problems, in approaching in a conservative way, the equation expressing the balance of fluxes in each control
volume.

It appears that the approximation of the fluxes for (1) is not straightforward. Indeed, the difficulty arises
from the need to approximate the complete gradient of the solution (and not only its normal derivatives on the
edges as for the Laplace equation on admissible meshes). This problem of the complete gradient approximation
for finite volume methods has interested many authors in the last few years in different contexts. We refer
for instance to [7, 11, 12] for anisotropic diffusion problems and to [9] for the Laplace equation on almost
arbitrary meshes. In the context of non-linear diffusion problems, the finite volume approach with gradient
reconstruction was only considered, to our knowledge, in the work by Andreianov, Gutnic and Wittbold in [3],
for general elliptic-parabolic equations and systems involving the p-Laplacian. Using an original “continuous”
approach, these authors obtain a convergence result for general schemes that inherit the essential properties
of the underlying continuous problem; they are not interested in the convergence rate. Their examples of
admissible schemes include meshes dual to triangular ones, but not arbitrary rectangular meshes.

In this paper, we provide a detailed study of the approximation of the model elliptic problem (1) on general
rectangular meshes. We first give a complete description of the possible nine points finite volume schemes
for which existence and uniqueness of the approximate solution is ensured in spite of the non-linearity of the
problem. Moreover, this approximate solution can be computed by solving a finite dimensional minimization
problem. Then we analyze the convergence properties of these schemes and obtain error estimates. We finally
propose numerical results.

1.2. Outline

This article is organized as follows. In Section 2, we introduce the notations used in this work then we
give the construction of the finite volume schemes we consider. We give the general form of conservative finite
volume schemes that lead to a symmetric non-linear system (and thus derive from the minimization of a discrete
functional approaching J), and that are consistent with piecewise affine functions. The symmetry property is
crucial in order to ensure that for any given data, the scheme has a unique solution (Th. 2.12).

The construction of the schemes is summed up in Definition 2.6 or equivalently in (31) which gives the explicit
formula for the discrete energy associated to the scheme.

Section 3 is concerned with the proof of error estimates for the approximate solutions of problem (1) in the
case where u ∈ W 2,p(Ω). This assumption is a natural extension of the usual H2(Ω) regularity for the Laplace
equation (case p = 2), which is studied for example in [10]. Furthermore, it is proved in [4] that, when 1 < p ≤ 2
and f ∈ Lq(Ω) (q > 2) then u actually belongs to W 2,p(Ω).

In this case we use similar methods than in [10] to prove error estimates, and we obtain the same kind of
results than in the work by Glowinski and Marrocco [13] in the finite elements framework, namely a convergence
order in h

1
p−1 when p ≥ 2 (Th. 3.1).
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Notice that in the finite elements case, the convergence orders given in [13] have been improved by Barrett
and Liu in [4, 5] and by Chow in [6]. The method used by S. Chow cannot be used in the finite volume case to
improve Theorem 3.1 but it is useful to obtain error estimates for less regular solution. Indeed, in [2], we use it
in the framework of Besov spaces, which are the natural regularity spaces for the p-Laplacian (see [16]).

We conclude this paper by giving some numerical results in Section 4.

1.3. Remarks

Of course, many physical applications occur in domains with more complex geometry and the use of rect-
angular meshes seems to be too restrictive. Nevertheless, it is well known (especially in fluid mechanics) that
one can cope with complex geometries with Cartesian meshes using a penalization method. More precisely, in
order to solve (1) in any bounded domain Ω, we take U a rectangle containing Ω and we solve instead of (1)
the penalized problem 

−div
(
|∇uε|p−2∇uε

)
+

1
εp

1U\Ω|uε|p−2uε = f, in U ,
uε = 0, on ∂U .

(4)

Note that the penalization term is monotone so that this problem has a unique solution. Furthermore one can
easily show that

‖∇uε‖Lp(U\Ω) +
1
ε
‖uε‖Lp(U\Ω) + ‖∇u−∇uε‖Lp(Ω) ≤ Cε

1
p . (5)

Hence, one can use our schemes on a rectangular mesh on U to solve (4) which gives a good approximation of
the solution to (1). Notice that the schemes we propose in this paper can be easily extended to the problem (4)
without changing their basic properties. In particular, all the error estimates remain valid for the penalized
problem. Notice that the estimate (5) may not be optimal. Indeed, for the Laplace equation as for the Stokes
problem, we can obtain sharper results by studying the corresponding boundary layer problem (see for instance
[1]). We do not address this particular problem in this paper.

This method can be useful in many situations. Indeed, the practical computation of the approximate solution
on Cartesian meshes can be easily optimized using multigrids methods and/or parallel computing. Furthermore,
some glaciology models consist in free boundary problems in which a stationary non-linear diffusion equation
like (1) has to be solved at each time step in a time dependent domain (see for instance [15]). Such problems
can be handled with our methods by computing the solution to (4) on a fixed Cartesian mesh with a time
dependent penalization term. Finally, the extension of our schemes to the 3D case would be much more simple
than for unstructured grids.

We also want to emphasize the fact that our study can be applied to more general non-linear diffusion
equation of the form

−div(k(|∇u|)∇u) = f,

provided that k : R → R is smooth enough and satisfies some monotony properties (see [14]).

2. Construction of the finite volume schemes

2.1. Notations

Let Ω be a rectangular bounded domain of R
2. We consider T a set of disjoint rectangular control volumes

K ⊂ Ω such that ∪K̄ = Ω. We denote by h the maximum of the diameters of the control volumes in T .
Let xK be the center of the control volume K. For all adjacent control volumes K and L, denote by K|L the

edge between K and L.
In order to take the boundary conditions into account, we introduce artificial points constructed by symmetry

with respect to the boundaries of Ω, as shown in Figure 1. This procedure is useful to state the scheme in a
uniform way in the whole domain. We will give the details below.

The dual mesh T ∗ of T is defined to be the set of rectangle dual control volumes whose vertices are the
points xK as well as the artificial points introduced above, see Figure 1.
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Figure 1. Non uniform rectangular mesh and treatment of the boundary conditions.
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Figure 2. Notations.

Furthermore, for any control volume K ∈ T , we define (see Fig. 2):

• m(K) the measure of K;
• νK the outward unit normal vector on ∂K;
• VK = {K∗ ∈ T ∗/m(K ∩ K∗) �= 0}, the set of the four dual control volumes around the control volume K;
• For any K∗ ∈ VK, σh

K,K∗ (resp. σv
K,K∗) is the horizontal (resp. vertical) half-edge of ∂K included in K∗

and EK = {σh
K,K∗ , σv

K,K∗ /K∗ ∈ VK} is the set of all the half-edges included in ∂K.
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Figure 3. Notations in a dual control volume K∗.

We will see in the sequel that the schemes we propose are naturally written in each dual control volume. That
is the reason why, given a dual control volume K∗, we introduce some notations to describe the situation in K∗

(see Fig. 3):

• (xK∗

i )i=1,2,3,4 are the vertices of the dual control volume K∗ numbered counter clockwise starting from
the lower left hand corner;

• (KK∗

i )i=1,2,3,4 are the corresponding control volumes with centers (xK∗

i )i=1,2,3,4;
• lK

∗

i is the distance between xK∗

i and xK∗

i+1;
• σK∗

i is the half-edge between KK∗

i and KK∗

i+1 located in K∗;
• mK∗

i is the measure of σK∗

i .

Conventionally, in a given dual control volume, the indices i ∈ Z are understood modulo 4.

The finite volume method associates to all control volumes K an unknown value uK. We denote by uT =
(uK)K∈T ∈ R

T the approximate solution on the mesh T .
For any continuous function v on Ω, we will also denote by vT = (vK)K∈T , with vK = v(xK), the projection

of v on the space R
T of discrete functions.

• Boundary conditions:

We only consider in this paper the homogeneous Dirichlet condition. For a given discrete function uT ∈ R
T ,

which is a set of values on each control volume K ∈ T , the boundary conditions are taken into account by using
the so-called ghost cells method. More precisely, we extend the values of uT on artificial points outside of Ω, as
shown in Figure 1, each time it is needed.

Given a dual control volume K∗, we define the projection operator TK∗ which associates to each uT ∈ R
T its

values in the four control volumes (KK∗

i )i around K∗

TK∗(uT ) def=
(
uT1,K∗ , uT2,K∗ , uT3,K∗ , uT4,K∗

)
. (6)
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Notice that for boundary dual control volumes, we need the ghost cells described above in order to give sense
to the definition of TK∗ . For instance, if K∗ is located at the right boundary of Ω, then

uT2,K∗ = −uT1,K∗ , uT3,K∗ = −uT4,K∗ ,

as shown in Figure 1.

• Regularity of mesh families:
In the sequel, we will prove error estimates for families of meshes which satisfy the following regularity

assumption:
There exists a constant c1 (independent of the mesh T ) such that

m(K) ≥ c1h
2, ∀K ∈ T . (7)

Remark 2.1. Under the previous regularity assumption, there exist constants c2, c3 independent of T such
that, for all dual control volume K∗ ∈ T ∗,

diam(K∗) ≤ c2h and m(K∗) ≥ c3h
2.

2.2. Discrete norms and classical inequalities

Each discrete function uT ∈ R
T can be considered as a (piecewise constant) function in Lr(Ω) (for any

r ∈ [1,+∞]) by noting abusively
uT (z) =

∑
K∈T

uK1K(z), ∀z ∈ Ω.

Then, we naturally define

‖uT ‖Lr =

(∑
K∈T

m(K)|uK|r
) 1

r

, ∀r < +∞,

and
‖uT ‖L∞ = sup

K∈T
|uK|.

Now let us define a discrete Sobolev norm for the elements of R
T . For any uT ∈ R

T , and any K∗ ∈ T ∗, denote
by δK∗

i (uT ) the differential quotient

δK∗

i (uT ) =
uTi+1,K∗ − uTi,K∗

lK
∗

i

, ∀i ∈ {1, . . . , 4}.

One can remark that δK∗

1 and −δK∗

3 are approximations of the horizontal derivative operator ∂x while δK∗

2 and
−δK∗

4 are approximations of the vertical derivative operator ∂y.

Definition 2.2. For any uT ∈ R
T and any K∗ ∈ T ∗, we introduce an approximation of |∇u| on K∗ defined by

|uT |1,K∗ =

(
1
2

4∑
i=1

∣∣∣δK∗

i (uT )
∣∣∣2
) 1

2

.

The discrete W 1,p
0 norm of uT is then defined by

‖uT ‖1,p,T =

( ∑
K∗∈T ∗

m(K∗ ∩ Ω)|uT |p1,K∗

) 1
p

.
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Remark 2.3.
• The Dirichlet boundary conditions are taken into account in the definition of the discrete W 1,p

0 norm
through the introduction of the ghost cells. Actually, this implies that ‖ · ‖1,p,T is a norm on R

T .
• For any function v ∈W 1,p

0 (Ω), with p > 2, we have

‖vT ‖1,p,T ≤ C‖v‖W 1,p , (8)

where vT = (v(xK))K∈T is the projection of v on the mesh T , and C depends only on the mesh regularity
constant c1 in (7).

Let us state the discrete version of the Poincaré inequality. This result is classical in the case p = 2 (see for
example [10]). When p �= 2, it is proved in a slightly different context in [3]. Note that one does not assume
any regularity assumptions on the mesh.

Lemma 2.4 (discrete Poincaré inequality). Let T be a mesh of the rectangle Ω. There exists a constant C
which only depends on p such that for any uT ∈ R

T , we have

‖uT ‖Lp ≤ C diam(Ω)‖uT ‖1,p,T .

Proof. It is a straightforward adaptation from the proof in [3], taking into account the ghost cells method used
for the boundary conditions. �

2.3. Construction of the schemes

A family of nine-points finite volume schemes is proposed to compute approximate solutions of problem (1).
Such schemes are obtained by integrating equation (1) on each control volume K ∈ T :∫

K

f(z) dz =
∫

K

−div
(
|∇u|p−2∇u

)
dz = −

∫
∂K

|∇u|p−2∇u · νK ds

=
∑

K∗∈VK

(
−
∫

σh
K,K∗

|∇u|p−2∇u · νK ds−
∫

σv
K,K∗

|∇u|p−2∇u · νK ds

)
. (9)

Then, the finite volume method consists in approaching the exact relation between the fluxes (9) by a system
of discrete equations

aK(uT ) def=
∑

K∗∈VK

aK,K∗(uT ) = m(K)fK, ∀K ∈ T , (10)

where aK,K∗(uT ) is a numerical flux to be determined which is supposed to approach the exact flux, that is:

aK,K∗(uT ) ≈ −
∫

σh
K,K∗

|∇u|p−2∇u · νK ds−
∫

σv
K,K∗

|∇u|p−2∇u · νK ds, (11)

and fK denotes

fK =
1

m(K)

∫
K

f(z) dz. (12)

2.3.1. General structure

The classical finite volume theory for the Laplace equation (see [11] for instance) provides very natural ways
to approach the normal derivative ∇u · νK on the edges. On the other hand, in the literature there is no
systematic method to discretize the norm of the gradient of the solution.

In this paragraph, we describe a wide class of possible choices for the numerical fluxes aK,K∗(uT ) in which the
approximations of the terms ∇u · νK and |∇u|p−2 are chosen independently. Actually, in the next paragraph we
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show that these two discretizations have to be compatible (in a sense to be precised) to ensure good properties
of the schemes, in particular the well-posedness of the discrete non-linear equations.

The general framework we propose is the following.
(1) On each dual control volume K∗, we choose to approximate |∇u|2 by a quadratic form (to be precised

later) in the variables (uTi,K∗){i=1,2,3,4}, namely

|∇u|2 ≈ qK∗(TK∗(uT )) on K∗, (13)

where TK∗(uT ) is defined at the end of Section 2.1. This leads to a first approximation of the fluxes on
any half edge σ ⊂ K∗ by

−
∫

σ

|∇u|p−2∇u · νK ds ≈ −qK∗(TK∗(uT ))
p−2
2

∫
σ

∇u · νK ds.

(2) The problem is now reduced to the approximation of the same linear fluxes as for the Laplace equation.
We suppose that we are given linear forms Ah

K,K∗ , Av
K,K∗ , in the variables (uTi,K∗){i=1,2,3,4}, such that

−
∫

σh
K,K∗

∇u · νK ds ≈ Ah
K,K∗(TK∗(uT )) and −

∫
σv
K,K∗

∇u · νK ds ≈ Av
K,K∗(TK∗(uT )). (14)

(3) The numerical flux satisfying (11) is then given by

aK,K∗(uT ) def= qK∗(TK∗(uT ))
p−2
2
(
Ah

K,K∗(TK∗(uT )) +Av
K,K∗(TK∗(uT ))

)
.

2.3.2. Choice of qK∗ and Ah
K,K∗, Av

K,K∗

First of all, it is convenient to represent qK∗ through a symmetric non negative matrix on R
4 denoted by BK∗

so that we have
qK∗(v) = (BK∗v, v), ∀v ∈ R

4.

Notice that the schemes proposed above can also be written as a sum of contributions on each dual control
volume. Indeed, each numerical flux aK,K∗(uT ) depends only on the values TK∗(uT ) = (uTi,K∗){i=1,2,3,4} of uT at
the four vertices of the dual control volume K∗. More precisely, one can easily see that the map a : uT ∈ R

T �→
(aK(uT ))K ∈ R

T defined in (10) which represents the scheme reads

a(uT ) =
∑

K∗∈T ∗

m(K∗ ∩ Ω)T t
K∗ ◦ aK∗ ◦ TK∗(uT ) (15)

with

aK∗(v) def=
1

m(K∗)
(BK∗v, v)

p−2
2



Ah

K1,K∗v +Av
K1,K∗v

Ah
K2,K∗v +Av

K2,K∗v

Ah
K3,K∗v +Av

K3,K∗v

Ah
K4,K∗v +Av

K4,K∗v


 =

1
m(K∗)

(BK∗v, v)
p−2
2 AK∗v, ∀v ∈ R

4, (16)

where AK∗ is the corresponding 4 × 4 matrix.

We first derive some properties of BK∗ and AK∗ , which ensure the consistency of the scheme but also the
existence and uniqueness of a solution of the scheme.

• Consistency of qK∗ :
By definition, BK∗ is a symmetric non-negative matrix. Moreover, qK∗ is supposed to approach |∇u|2 so that

is natural to impose the following consistency property:

Approximation (13) is exact for affine functions on K∗, and qK∗(v) = 0 if and only if v1 = v2 = v3 = v4. (17)
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In particular, this imposes that the kernel of BK∗ is spanned by the vector e0 = (1, 1, 1, 1)t, so that the rank
of BK∗ is 3.

• Conservativity of the linear fluxes:
Any reasonable finite volume scheme has to be locally conservative, in our case it means that, for any dual

control volume K∗, the linear fluxes have to be in the following form


Ah

K1,K∗ = A4,K∗ , Av
K1,K∗ = −A1,K∗ ,

Ah
K2,K∗ = −A2,K∗ , Av

K2,K∗ = A1,K∗ ,
Ah

K3,K∗ = A2,K∗ , Av
K3,K∗ = −A3,K∗ ,

Ah
K4,K∗ = −A4,K∗ , Av

K4,K∗ = A3,K∗ ,

(18)

where Ai,K∗ is an approximation of the linear flux
∫

σK∗
i

∇u · νK∗

i ds, νK∗

i being the unit normal to σK∗

i oriented

conventionally from KK∗

i to KK∗

i+1 (see Fig. 3).

• Construction of the linear fluxes:
To ensure the consistency of the numerical fluxes Ai,K∗ , the approximation has to be exact on affine functions.

One easily checks that this requirement amounts to

Ai,K∗ = mK∗

i

(
µK∗

i

uTi+1,K∗ − uTi,K∗

lK
∗

i

+
(
1 − µK∗

i

) uTi+2,K∗ − uTi+3,K∗

lK
∗

i+2

)
, (19)

where µK∗

i is a real parameter. Notice that the classical finite volume approximation of the Laplace equation
(i.e. when p = 2) corresponds to the case µK∗

i = 1, ∀i ∈ {1, . . . , 4}, ∀K∗ ∈ T ∗.

For any K∗ ∈ T ∗ and any i, let us define

τK∗

i =
mK∗

i

lK
∗

i

, (20)

which depends only on the geometrical structure of the mesh. Using (18) the matrix AK∗ defined in (16) reads
for each dual control volume K∗




τ1µ1 + τ4µ4 −τ1µ1 + τ4(1−µ4) −τ1(1−µ1) − τ4(1−µ4) −τ4µ4 + τ1(1−µ1)
τ2(1−µ2) − τ1µ1 τ2µ2 + τ1µ1 −τ2µ2 + τ1(1−µ1) −τ2(1−µ2) − τ1(1−µ1)

−τ3(1−µ3) − τ2(1−µ2) τ3(1−µ3) − τ2µ2 τ3µ3 + τ2µ2 −τ3µ3 + τ2(1−µ2)
τ3(1−µ3) − τ4µ4 −τ4(1−µ4) − τ3(1−µ3) τ4(1−µ4) − τ3µ3 τ4µ4 + τ3µ3


 (21)

where we dropped the subscript K∗ for τK∗

i and µK∗

i .

• Symmetry property of the scheme:
One of the fundamental properties of the continuous equation (1) is that it derives from a minimization

problem. It is natural to look for numerical schemes which preserve this property.
The scheme (28) is the Euler-Lagrange equation for critical points of a functional JT : R

T �→ R if and only
if the differential of the map

a : uT = (uK)K∈T �→ (aK(uT ))K∈T ,

is symmetric at each point. In that case, we shall see later that we can give an explicit formula for JT , and
that JT is strictly convex and coercive.

For non-symmetric schemes, the existence and uniqueness of a solution to the non-linear discrete equations
is not guaranteed. Even if the solution exists, its practical computation is not obvious. That is the reason why,
from now on, we focus our attention on symmetric schemes.
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We now state the following proposition which characterizes such schemes in our framework. The proof is
given in Section 2.6.

Proposition 2.5. The differential of the map a : uT = (uK)K∈T �→ (aK(uT ))K∈T is symmetric at each point if
and only if one of the two following conditions is fulfilled:

• p = 2 and AK∗ is a symmetric matrix for any K∗ ∈ T ∗;
• p �= 2 and for any K∗ ∈ T ∗ there exists a λK∗ ∈ R such that

AK∗ = λK∗BK∗ .

In order for the scheme to be consistent with the balance equation (9) we will see later that, necessarily,
λK∗ = m(K∗).

Hence, at this point, the choice of the discretization of the linear part of the fluxes across half-edges in each
dual control volume (i.e. the choice of the parameters µK∗

i in (19)) determines the scheme completely. In other
words, if we want the scheme to be symmetric we cannot choose independently the discretization of the norm
of the gradient |∇u| (represented by BK∗) and the discretization of the normal derivative ∇u · νK (represented
by AK∗).

Furthermore, Proposition 2.5 implies that AK∗ is necessarily symmetric. The expression (21) shows that
the (µK∗

i )i have to fulfill the following constraints

{
τK∗

4 (µK∗

4 − 1) = τK∗

2 (µK∗

2 − 1),

τK∗

3 (µK∗

3 − 1) = τK∗

1 (µK∗

1 − 1).
(22)

The scheme on the dual control volume K∗ now seems to be determined by the choice of µK∗

1 and µK∗

4 for
instance. Nevertheless, using (22), it is easy to see that the matrix AK∗ given by (21) depends only on the
quantity τK∗

1 µK∗

1 +τK∗

4 µK∗

4 . Consequently, without loss of generality the coefficients (µK∗

i )i can be chosen so that

τK∗

1 (µK∗

1 − 1) = τK∗

2 (µK∗

2 − 1) = τK∗

3 (µK∗

3 − 1) = τK∗

4 (µK∗

4 − 1) def= ξK∗
. (23)

Therefore, for any K∗ the matrix AK∗ only depends on a real parameter ξK∗
in the following way:

AK∗ =




2ξK∗
+ τK∗

1 + τK∗

4 −2ξK∗ − τK∗

1 2ξK∗ −2ξK∗ − τK∗

4

−2ξK∗ − τK∗

1 2ξK∗
+ τK∗

1 + τK∗

2 −2ξK∗ − τK∗

2 2ξK∗

2ξK∗ −2ξK∗ − τK∗

2 2ξK∗
+ τK∗

2 + τK∗

3 −2ξK∗ − τK∗

3

−2ξK∗ − τK∗

4 2ξK∗ −2ξK∗ − τK∗

3 2ξK∗
+ τK∗

4 + τK∗

3


 , (24)

and BK∗ is given by Proposition 2.5.

• Consistency of the scheme:
As we have claimed above, the consistency of the whole scheme determines the value of the coefficient λK∗

introduced in Proposition 2.5.
Indeed, let w be an affine function in a dual control volume K∗, whose gradient is (α, β)t, and let v = TK∗wT .

We easily check that
v2 = v1 + αlK

∗

1 , v3 = v1 + αlK
∗

1 + βlK
∗

2 , v4 = v1 + βlK
∗

2 ,

so that, using (24), we have

AK∗v =




−mK∗

4 β −mK∗

1 α

−mK∗

2 β +mK∗

1 α

mK∗

2 β +mK∗

3 α

mK∗

4 β −mK∗

3 α


 .
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As lK
∗

1 = mK∗

2 +mK∗

4 and lK
∗

2 = mK∗

1 +mK∗

3 (see Fig. 3), we get

(AK∗v, v) = −mK∗

1 α(v1 − v2) −mK∗

3 α(v4 − v3) −mK∗

2 β(v2 − v3) −mK∗

4 β(v1 − v4)

= lK
∗

1 mK∗

1 α2 + lK
∗

1 mK∗

3 α2 +mK∗

2 lK
∗

2 β2 +mK∗

4 lK
∗

2 β2

= lK
∗

1 lK
∗

2 (α2 + β2) = m(K∗)|∇w|2.

By Proposition 2.5, we also have AK∗ = λK∗BK∗ so that

λK∗ (BK∗v, v) = m(K∗)|∇w|2.

Hence, the consistency requirement (17) holds if and only if λK∗ = m(K∗).

• Admissible schemes:
Given a dual control volume K∗ and a value of ξK∗

, the matrices AK∗ and BK∗ are defined by (24) and by
BK∗ = 1

m(K∗)AK∗ . It remains to check that BK∗ is a non negative matrix of rank 3, as required in (17).
It is easy to check that the kernel of the matrix BK∗ defined above contains e0. Consider now the qua-

dratic form v �→ (BK∗v, v) restricted to the hyperplane {e0}⊥ orthogonal to the vector e0. In the basis
(−1, 1, 1,−1)t, (1, 1,−1,−1)t, (1,−1, 1,−1)t, its matrix reads

4
m(K∗)



τK∗

1 + τK∗

3 0 τK∗

3 − τK∗

1

0 τK∗

2 + τK∗

4 τK∗

4 − τK∗

2

τK∗

3 − τK∗

1 τK∗

4 − τK∗

2 8ξK∗
+ τK∗

1 + τK∗

2 + τK∗

3 + τK∗

4


 . (25)

The computation of main minor determinants show that this matrix is positive definite if and only if

2ξK∗
+
mK∗

1 mK∗

3 +mK∗

2 mK∗

4

lK
∗

1 lK
∗

2

> 0.

This gives a condition on ξK∗
which ensures the admissibility of the scheme. It will be shown that this condition

guarantees existence and uniqueness for the approximate solution uT as well as the discrete W 1,p estimate (see
Lems. 2.8 and 3.3).

2.3.3. Admissible finite volume schemes

Let us sum up our construction of admissible schemes in the following definition. We recall that the projec-
tor TK∗ is defined in (6). In particular, the boundary conditions are taken into account in the scheme through
the definition of this projector for boundary dual control volumes.

Definition 2.6. For each dual control volume K∗, we suppose given a real number ξK∗
such that

2ξK∗
+
mK∗

1 mK∗

3 +mK∗

2 mK∗

4

lK
∗

1 lK
∗

2

> 0. (26)

Recall that τK∗

i = mK∗
i

lK
∗

i

and consider the matrix AK∗ defined by (24) and BK∗ by

BK∗ =
1

m(K∗)
AK∗ . (27)

The finite volume scheme associated to the parameters (ξK∗
)K∗∈T ∗ is then defined by

a(uT ) = (m(K)fK)K∈T , (28)
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where a =
∑

K∗∈T ∗

m(K∗ ∩ Ω)T t
K∗ ◦ aK∗ ◦ TK∗ , and

aK∗(v) = (BK∗v, v)
p−2
2 BK∗v, for all v ∈ R

4.

Note that the admissibility condition (26) is fundamental to give sense to the definition of aK∗ since it ensures
that (BK∗v, v) ≥ 0 for any v ∈ R

4.

2.4. Discrete energy

2.4.1. Construction of the discrete energy

The schemes defined in Definition 2.6 are built in such a way that the symmetry of the differential of the
map a on R

T is ensured. Hence, there exists a discrete functional JT : uT ∈ R
T �→ R, that we call the discrete

energy of the system, such that we have

aK(uT ) −m(K)fK =
∂JT
∂uK

, ∀K ∈ T . (29)

Using the homogeneity of the map a, it is possible to obtain an explicit formula for JT . Indeed, let us check
that the functional defined by

JT (uT ) =
1
p

∑
K∈T

aK(uT )uK −
∑
K∈T

m(K)fKuK

is the discrete energy of the scheme (which is unique up to a constant). An easy computation shows that

∇JT (uT ) =
1
p
(da(uT ))t.uT +

1
p
a(uT ) − (m(K)fK)K. (30)

Since a : (uK)K �→ (aK(uT ))K is a positively homogeneous function of degree p− 1, we have

da(uT ).uT = (p− 1) a(uT ).

By construction (see Prop. 2.5), we know that da(uT ) is symmetric so that, we obtain

(da(uT ))t.uT = da(uT ).uT = (p− 1) a(uT ).

Hence, (30) yields (29).

Let us now give a more precise expression for the energy JT .

Lemma 2.7. Let uT , vT ∈ R
T , we have

a(uT ) · vT def=
∑

K∈T ∗

aK(uT )vK =
∑

K∗∈T ∗

m(K∗ ∩ Ω)(BK∗TK∗(uT ), TK∗(uT ))
p−2
2 (BK∗TK∗(uT ), TK∗(vT )).

Proof. It is a straightforward application of formulas (15) and (27). �

Denote by B
1
2
K∗ the square root of the non-negative symmetric matrix BK∗ . From Lemma 2.7, we deduce that

JT (uT ) =
1
p

∑
K∗∈T ∗

m(K∗ ∩ Ω)|B
1
2
K∗TK∗(uT )|p −

∑
K∈T

m(K)fKuK. (31)

It is now clear that this discrete functional can be seen as an approximation of the continuous functional J
associated to problem (1).
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2.4.2. Properties of JT
Let us begin with the following technical lemma:

Lemma 2.8. Consider a mesh T satisfying the regularity assumption (7). Consider the matrices AK∗ and BK∗

defined by (24) and (27).
Let γ > 0 be such that

ξK∗ ≤ 1
γ
, and 2ξK∗

+
mK∗

1 mK∗

3 +mK∗

2 mK∗

4

lK
∗

1 lK
∗

2

≥ γ, ∀K∗ ∈ T ∗. (32)

There exist β1, β2 > 0, depending only on γ and on c1 in (7), such that

β1|uT |1,K∗ ≤ |B
1
2
K∗TK∗(uT )| ≤ β2|uT |1,K∗ , ∀uT ∈ R

T , ∀K∗ ∈ T ∗.

Proof. Consider the quadratic form qK∗(v) = (BK∗v, v) = |B
1
2
K∗v|2. For any v ∈ R

4, we can write v = v0 + v⊥0
with v0 ∈ Re0 and v⊥0 ∈ (Re0)⊥, and we have qK∗(v) = qK∗(v⊥0 ). Consider the linear map Ψ : R

4 → R
4,

defined by:
Ψ : v �→ η = (ηi)i=1,2,3,4, with ηi = vi+1 − vi,

where we recall that v5 stands for v1. The map Ψ is one-to-one from (Re0)⊥ onto itself. Since Ψ(v) = Ψ(v⊥0 ),
we have qK∗(v) = qK∗(Ψ−1(η)). We immediately deduce that for any v ∈ R

4,

minSp
(
BK∗ |(Re0)⊥

) ‖η‖2

‖Ψ‖2
≤ qK∗(v) ≤ maxSp

(
BK∗ |(Re0)⊥

)
‖η‖2‖Ψ−1‖2,

where ‖.‖ denotes the Euclidean norm on R
4 but also the corresponding norm on the space of linear maps

on R
4. The matrix BK∗ |Re⊥

0
is given by (25). Therefore, using assumption (32), we get

1
‖Ψ‖2

minSp
(
BK∗ |(Re0)⊥

)
≥ C

∥∥∥(BK∗ |(Re0)⊥
)−1
∥∥∥−1

∞
≥ C

2ξK∗
+ mK∗

1 mK∗
3 +mK∗

2 mK∗
4

lK
∗

1 lK
∗

2

(1 + ξK∗)
1

m(K∗)
≥ C1γ

2 1
m(K∗)

,

and

‖Ψ−1‖2 maxSp
(
BK∗ |(Re0)⊥

)
≤ C

∥∥BK∗ |(Re0)⊥
∥∥
∞ ≤ C(1 + ξK∗

)
1

m(K∗)
≤ C2

1
γ

1
m(K∗)

,

where C1 and C2 only depend on the constant c1 in (7). Thus for all v ∈ R
4, we have

C1(γ)
1

m(K∗)
‖η‖2 ≤

∣∣∣B 1
2
K∗v
∣∣∣ ≤ C2(γ)

1
m(K∗)

‖η‖2.

If we take v = TK∗(uT ), we have ηi = lK
∗

i δK∗

i (uT ). From (7) we have c5m(K∗) ≤ |lK∗

i |2 ≤ c6m(K∗), therefore the
claim of the lemma follows. �

We first recall the following inequalities whose proofs can be found for example in [5, 13]

Lemma 2.9. For any p > 1 and δ ≥ 0, there exist C1 and C2 such that for any n ≥ 1 and for any (η, ξ) ∈ (Rn)2,
we have

||ξ|p−2ξ − |η|p−2η| ≤ C1|ξ − η|1−δ (|ξ| + |η|)p−2+δ
,(

|ξ|p−2ξ − |η|p−2η, ξ − η
)
≥ C2|ξ − η|2+δ(|ξ| + |η|)p−2−δ.
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We can now prove the monotony of the scheme, which is equivalent to the convexity of JT as well as the
coercivity of JT . The proof is formally similar to the one for the continuous problem that one can find for
example in [6, 13].

Lemma 2.10. Let T be a mesh satisfying the regularity assumption (7). Consider an admissible scheme as
defined in Definition 2.6 and satisfying the uniform admissibility condition (32).

There exists a constant C > 0 (depending only on the regularity constants of the mesh and on the parameter γ)
such that for any elements uT and vT of R

T we have the following inequality:(
∇JT (uT ) −∇JT (vT ), uT − vT

)
≥ C‖uT − vT ‖p

1,p,T , if p ≥ 2, (33)

(
∇JT (uT ) −∇JT (vT ), uT − vT

)
≥ C‖uT − vT ‖2

1,p,T

(
‖uT ‖p

1,p,T + ‖vT ‖p
1,p,T

) p−2
p

, if 1 < p ≤ 2. (34)

Corollary 2.11. Under the assumptions of the previous Lemma, there exists a constant C > 0 such that for
any uT , vT ∈ R

T we have

JT (vT ) − JT (uT ) − (∇JT (uT ), vT − uT ) ≥ C‖uT − vT ‖p
1,p,T , if p ≥ 2,

and

JT (vT ) − JT (uT ) − (∇JT (uT ), vT − uT ) ≥ C‖uT − vT ‖2
1,p,T (‖uT ‖1,p,T + ‖vT ‖1,p,T )p−2, if 1 < p < 2.

We can now prove the fundamental theorem of this section.

Theorem 2.12. Consider an admissible finite volume scheme for (1) on a mesh T of Ω, in the sense of
Definition 2.6. Then the system (28) admits a unique solution uT , which is the unique minimizing point of the
discrete energy JT .

Proof. Lemmas 2.4 and 2.10 and Corollary 2.11 ensure that the functional JT is strictly convex and that JT (uT )
tends to infinity as the norm of uT tends to infinity. The claim follows immediately. �

This theorem shows that the approximate solution of the equation exists and is unique under the admissibility
conditions. Furthermore, it shows that this unique solution can be obtained numerically, for instance, thanks
to minimization algorithms such as nonlinear conjugate gradient methods (Polak-Ribière for instance). Hence,
the schemes we are studying can be implemented in a straightforward way.

Remark 2.13.
• Assume that the family of meshes satisfies the uniform regularity assumption (7). Then, the scheme

obtained with ξK∗
= 0, ∀K∗ ∈ T ∗, is always admissible and satisfies the uniform admissibility condition

(32).
• For a uniform mesh, i.e. a mesh consisting of control volumes isometric to a reference control volume

]0, hx[×]0, hy[, assumption (32) becomes

2
γ
≥ 2ξK∗ ≥ −1

4

(
hy

hx
+
hx

hy

)
+ γ, ∀K∗ ∈ T ∗.

2.5. Examples of schemes

As we have seen above, an admissible scheme is completely determined if we know, for each dual control
volume K∗, the quadratic form

qK∗(v) =
∣∣∣B 1

2
K∗v
∣∣∣2 =

1
m(K∗)

4∑
i=1

τK∗

i (vi+1 − vi)2 +
2ξK∗

m(K∗)
(v1 + v3 − v2 − v4)2. (35)
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We have already seen that it is convenient to express this quadratic form in v as a quadratic form QK∗ of the
quantities δi = vi+1−vi

lK
∗

i

. Note that this representation is not unique since
∑

i l
K∗

i δi = 0. The representations we
choose below are, in a sense, the canonical ones.

• As we have seen before, the scheme given by ξK∗
= 0 is always admissible. It corresponds to the case

QK∗(δ1, δ2, δ3, δ4) =
1

m(K∗)

4∑
i=1

mK∗

i lK
∗

i δ2i =
4∑

i=1

mK∗

i

lK
∗

i+1

δ2i . (36)

Note that for p = 2, this scheme corresponds to the classical finite volume scheme for the Laplace
equation (see for example [10]) on a Cartesian rectangular mesh. Proposition 2.5 shows that (36) is the
unique way to extend this scheme to the case p �= 2 while preserving the symmetric structure of the
equations. Let us emphasize that, if the mesh is not uniform, we cannot approach |∇u|2 using on each

K∗ ∈ T ∗, the quadratic form

QK∗(δ1, δ2, δ3, δ4) = Q0(δ1, δ2, δ3, δ4) =
1
2

4∑
i=1

δ2i , (37)

which seems to be a natural choice. Indeed, it is possible to use the form Q0 in order to define a discrete
energy J0

T by the analogue of (31). This new functional is convex and coercive, so that there is a unique
minimum satisfying ∇J0

T (uT ) = 0. Nevertheless, if we write down the Euler-Lagrange equation for uT ,
it is easy to see that the scheme is not a consistent approximation of the flux balance equation (9).

• If p = 2 and if ξK∗ �= 0 satisfies (32), we obtain non classical nine points finite volume schemes for the
Laplace equation. As we will see in the sequel of this paper, these schemes enjoy the same convergence
properties that the classical five points scheme (see [10]).

• If the mesh is uniform, then we have τK∗

1 = τK∗

3 = hy

2hx
and τK∗

2 = τK∗

4 = hx

2hy
, for any dual control

volume. Hence, the general form of the schemes is given by

QK∗(δ) =
1
2

4∑
i=1

δ2i + ξK∗
(
hx

hy
(δ1 + δ3)2 +

hy

hx
(δ2 + δ4)2

)
.

• In the case of a uniform mesh, the scheme corresponding to ξK∗
= − 1

8

(
hy

hx
+ hx

hy

)
, is exactly the limiting

case in the admissibility condition of Definition 2.6. Therefore, in this case the rank of the matrix BK∗

is only equal to 2. Our analysis does not apply for this particular non-admissible scheme. Nevertheless,
some numerical computations (see (4)) seem to show that the approximate solutions obtained through
this scheme converge towards the exact solution u.

Note that, this non-admissible scheme is quite natural since it correspond to a centered approximation
of the normal derivatives of u through the semi-edges of the mesh. In other words, it corresponds to
the choice of µK∗

i = 1
2 in (19).

2.6. Proof of Proposition 2.5

In this section, we prove that the scheme defined by (15) and (16) is symmetric if and only if for each dual
control volume K∗, the matrix AK∗ is proportional to the matrix BK∗ .

It is quite clear that if the matrix AK∗ is linked to the symmetric matrix BK∗ by the relation AK∗ = λK∗BK∗ ,
then the differential of each dual contribution aK∗ is symmetric and so far is the differential of a.

Conversely, suppose that the differential of a is symmetric, that is for any control volume K and L,

∂aK

∂uL
=
∂aL

∂uK
· (38)
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Figure 4. Notations.

Let us fix some dual control volume K∗ and take two control volumes K and L whose centers are vertices of K∗.
Let us notice that the following proofs are only given if K∗ ⊂ Ω. The arguments can be adapted without
difficulty to the case of boundary dual control volumes by taking into account the values assigned to the ghost
cells (see Fig. 1).

Figure 4 exhibits the two different situations we have to deal with. In case I, the symmetry property (38)
readily yields that

∂aK,K∗

∂uL
− ∂aL,K∗

∂uK
=
∂aK

∂uL
− ∂aL

∂uK
= 0. (39)

In case II, xK, xL belong simultaneously to two dual control volumes K∗ and L∗, so that (38) gives

∂aK,K∗

∂uL
+
∂aK,L∗

∂uL
=
∂aL,K∗

∂uK
+
∂aL,L∗

∂uK

or, equivalently,
∂aK,K∗

∂uL
− ∂aL,K∗

∂uK
=
∂aL,L∗

∂uK
− ∂aK,L∗

∂uL
· (40)

We will show below in Lemmas 2.15 and 2.16 that both sides of (40) are in fact zero.
In the sequel, we fix some dual control volume K∗, so that we have

aK∗(v) =
1

m(K∗)
(Bv, v)

p−2
2 Av ∈ R

4,

where we drop the K∗ dependency of the matrices A and B, in order to simplify the notations. Let us denote
by (ai,j)1≤i,j≤4 and (bi,j)1≤i,j≤4 the entries of the matrices A and B. We want to prove that, there exists λ ∈ R

such that A = λB.

Remark 2.14. Following (17), the value of (Bv, v) is zero if and only if v is parallel to e0 = (1, 1, 1, 1)t. Hence,
aK∗ is a differentiable function except on the line Re0 if p < 4. If v /∈ Re0, we have

daK∗(v).w =
1

m(K∗)
(Bv, v)

p−2
2 Aw +

1
m(K∗)

(p− 2)(Bv, v)
p−4
2 (Bv,w)Av

=
1

m(K∗)
(Bv, v)

p−4
2
(
(Bv, v)Aw + (p− 2)(Av) ⊗ (Bv)w

)
. (41)

We refer to Figures 3 and 4 for the notations (Ki)i corresponding to the dual control volume K∗. For i �= j, set

ρi,j(v) =
∂aKi,K∗(v)

∂vj
−
∂aKj ,K∗(v)

∂vi
·

We recall that indices i, j are understood modulo 4.
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Lemma 2.15. We have:
(1) for any i ∈ {1, . . . , 4}, the function ρi,i+2 is identically zero;
(2) for any i ∈ {1, . . . , 4}, the function ρi,i+1 only depends on the variables vi, vi+1.

Proof. Without loss of generality, we can assume that i = 1. The equalities (39) taken for K = K1, and L = K3

immediately yield ρ1,3 ≡ 0. The equality (40) taken for K = K1 and L = K2 shows that ρ1,2 is a function of the
variables v1, v2, v3, v4 on the one hand, and of the variables v1, v2, v5, v6 on the other hand. Therefore, ρ1,2 can
only depend on v1, v2. �

We can now state the following Lemma which is essentially an homogeneity argument.

Lemma 2.16. Suppose that p �∈ {2, 4}. Let q be a quadratic form defined on R
4, B a symmetric non-negative

matrix, whose kernel is spanned by e0, and ρ the function defined on R
4 by

ρ(v) = (Bv, v)
p−4
2 q(v).

Assume that ρ only depends on the variables (v1, v2). Then, ρ is identically zero.

Proof. Let us fix v1 and v2. As B is a definite positive matrix on {e0}⊥, its entry b3,3 is positive. Moreover we
can consider q(v) as a quadratic polynomial in the variable v3:

q(v) = α2v
2
3 + α1v3 + α0,

where α2, α1, α0 may depend on v1, v2, v4.
• Suppose that α2 �= 0, we deduce that

lim
|v3|→+∞

ρ(v)
(
b

p−4
2

3,3 α2|v3|p−2
)−1

= 1,

which is impossible since p �= 2 and ρ does not depend on v3. Thus, α2 = 0.
• Now if α1 �= 0 and p �= 3, we get

lim
|v3|→+∞

ρ(v)
(
b

p−4
2

3,3 α1|v3|p−3
)−1

= 1.

This is also a contradiction. Thus, α1 = 0 unless p = 3.
• Now if α0 �= 0 and p �= 3, we have α1 = 0 and then

lim
|v3|→+∞

ρ(v)
(
b

p−4
2

3,3 α0|v3|p−4
)−1

= 1.

Since p �= 4, we get another contradiction.
Hence, if p �= 3, we have proved that q is identically zero, which gives the claim.

It remains to treat the case where p = 3 and α1 �= 0. In this case, we have

ρ(v) = (Bv, v)−
1
2 q(v) = ψ(v1, v2)

or, equivalently,
q(v) = ψ(v1, v2)(Bv, v)

1
2 .

As α2 = 0 and α1 �= 0, the quadratic form q is linear with respect to the variable v3.
Let us consider any v1 �= v2, then for any choice of v3, v4, we have (Bv, v) �= 0 (because the kernel of B

is Re0). Moreover, we can choose v4 = 0 and then, as α2 = 0 and α1 �= 0, there exists a value of v3 (depending
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on v1, v2, v4) such that q(v) = 0. We immediately deduce that ψ(v1, v2) = 0. As ψ is a continuous function, the
result still holds for v1 = v2. Hence, for p = 3, ρ vanishes identically. �

Let us now prove the following result:

Lemma 2.17. Let i, j ∈ {1, 2, 3, 4}, i �= j. Suppose that ρi,j is identically zero.

• If p = 2, we have ai,j = aj,i.
• If p �= 2, there exists a real number λi,j such that

ai,i = λi,jbi,i, aj,j = λi,jbj,j, ai,j = aj,i = λi,jbi,j (42)

Proof. The assertion ρi,j ≡ 0 is equivalent to

∂aKi,K∗

∂vj
(v) =

∂aKj ,K∗

∂vi
(v), ∀v ∈ R

4.

Hence, from (41) we deduce that the quadratic form defined on R
4 by

qij(v) = (Bv, v)(ai,j − aj,i) + (p− 2)((Av)i(Bv)j − (Bv)i(Av)j), ∀v ∈ R
4

is identically zero. This implies that

(Bv,w)(ai,j − aj,i) +
p− 2

2
((Av)i(Bw)j + (Aw)i(Bv)j − (Bv)i(Aw)j − (Bw)i(Av)j) = 0, ∀v, w ∈ R

4.

In particular, using the symmetry of B, for (v, w) equal respectively to (ei, ei), (ej , ej) and (ei, ej), we get the
following relations:

bi,i(ai,j − aj,i) + (p− 2)(ai,ibi,j − bi,iaj,i) = 0,

bj,j(ai,j − aj,i) + (p− 2)(ai,jbj,j − bi,jaj,j) = 0,

p

2
bi,j(ai,j − aj,i) +

p− 2
2

(ai,ibj,j − bi,iaj,j) = 0.

These equations can be written as an underdetermined linear system:


 (p− 2)bi,j 0 bi,i −(p− 1)bi,i

0 −(p− 2)bi,j (p− 1)bj,j −bj,j
p−2
2 bj,j − p−2

2 bi,i
p
2bi,j − p

2bi,j





ai,i

aj,j

ai,j

aj,i


 = 0. (43)

Let us extract a 3 × 3 matrix, whose determinant is given by

∣∣∣∣∣∣
0 bi,i −(p− 1)bi,i

(2 − p)bi,j (p− 1)bj,j −bj,j
− p−2

2 bi,i
p
2bi,j − p

2bi,j

∣∣∣∣∣∣ = (p− 2)2
p

2
bi,i(b2i,j − bi,ibj,j). (44)

As the kernel of B is reduced to Re0, the restriction of the quadratic form v �→ (Bv, v) to the plane defined
by ei et ej is definite positive. Then we obtain

bi,i > 0, bj,j > 0, and (bi,ibj,j − b2i,j) > 0.
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Hence, the 3×3 determinant (44) is non zero and it follows that the system (43) admits a one dimensional vector
space of solutions. The vector (bi,i, bj,j , bi,j , bi,j)t is an obvious non zero solution of the system. Therefore, there
exists a real λi,j such that

ai,i = λi,jbi,i, aj,j = λi,jbj,j , ai,j = aj,i = λi,jbi,j . �

Collecting all the previous facts, we get the claim of Proposition 2.5 for the case p �∈ {2, 4}. Indeed, Lemmas 2.15
and 2.16 show that for any i �= j, we have ρi,j = 0. Hence by Lemma 2.17, we deduce that equations (42) must
be satisfied for any (i, j), i �= j. Consequently, the real numbers λi,j are independent of i and j. Therefore,
equations (42) imply that there exists λ ∈ R such that

A = λB.

In order to conclude the proof of Proposition 2.5, we have to consider separately the cases p = 2 and p = 4.

Lemma 2.18. For any p > 1, and any K∗ ∈ T ∗, the matrix AK∗ is symmetric.

Proof. For p �∈ {2, 4}, we just have proved that AK∗ = λK∗BK∗ . The claim follows since BK∗ is symmetric.
For p = 2 and p = 4, Lemmas 2.15 and 2.17 show, in particular, that a1,3 = a3,1 and a2,4 = a4,2. These two

equalities together with the general expression for the matrix AK∗ given by (21), imply that τK∗

1 (1 − µK∗

1 ) =
τK∗

3 (1− µK∗

3 ) and τK∗

2 (1− µK∗

2 ) = τK∗

4 (1− µK∗

4 ). It is easily seen that these relations imply the symmetry of the
matrix AK∗ . �

Note that in the case p �∈ {2, 4} we do not use the specific expression (21) for the matrix AK∗ , whereas this
expression is useful when p ∈ {2, 4}. In fact, we believe that this particular form of the matrix is not necessary
to conclude even when p = 4, but the proof seems to be heavier.

Lemma 2.18 implies Proposition 2.5 in the case p = 2. Now suppose p = 4. In this case, Lemma 2.18 shows
that AK∗ is symmetric and Lemmas 2.15 and 2.17 show that relations (42) are valid for j = i+ 2. Now using
the fact that for i = 1, 2, 3, 4, ρi,i+1 does not depend on vi+2, vi+3, we get in particular

∂2ρi,i+1

∂2vi+2
= 0,

∂2ρi,i+1

∂vi+1∂vi+3
= 0 and

∂2ρi,i+1

∂2vi+3
= 0,

∂2ρi,i+1

∂vi∂vi+2
= 0.

Consider the case i = 1. The previous relations are equivalent to{
(a4,1 − λ2,4b4,1) b4,2 = 0,
(a2,1 − λ2,4b2,1) b4,2 + (a4,1 − λ2,4b4,1) b2,2 = 0,

and {
(a3,2 − λ1,3b3,2) b3,1 = 0,
(a2,1 − λ1,3b2,1) b3,1 + (a3,2 − λ1,3b3,2) b1,1 = 0.

Combining these equations, and using the fact that b1,1 > 0 and b2,2 > 0, we deduce that

a4,1 − λ2,4b4,1 = 0 and a3,2 − λ1,3b3,2 = 0. (45)

For i = 2, 3, 4, we get in a similar way

a2,1 − λ1,3b2,1 = 0, a4,3 − λ2,4b4,3 = 0,
a4,1 − λ1,3b4,1 = 0, a3,2 − λ2,4b3,2 = 0,
a4,3 − λ1,3b4,3 = 0, a2,1 − λ2,4b2,1 = 0.

(46)

First of all, it is impossible that b1,2 = b2,3 = b1,4 = b3,4 = 0, because in that case the vector ẽ0 = (0, 1, 0, 1)t

would have been in the kernel of B which is spanned by e0 = (1, 1, 1, 1)t by assumption (17).
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Hence using relations (45) and (46), we see that we have λ1,3 = λ2,4
def= λ, so that we can conclude that

AK∗ = λBK∗ .

3. Error estimates

Let f be a given data in Lp′
(Ω), so that there exists a unique solution u of (1) in W 1,p

0 (Ω). Throughout this
section, we consider an admissible scheme, in the sense of Definition 2.6, on a finite volume mesh T on Ω. We
recall that h is the maximum of the diameters of the control volumes in T and we assume that (7) and (32)
hold. Let uT be the unique solution to (28). In the sequel, we denote by C a generic constant that depends
only on Ω, p, c1 in (7) and γ in (32).

Our main result is the following.

Theorem 3.1. Assume that the solution u of problem (1) belongs to W 1,p
0 (Ω) ∩W 2,p(Ω), then we have




‖uT − uT ‖1,p,T ≤ Chp−1‖u‖p−1
W 2,p‖f‖

2−p
p−1

Lp′ , if p ≤ 2,

‖uT − uT ‖1,p,T ≤ Ch‖u‖W 2,p + Ch
1

p−1 ‖u‖
3p−4

p(p−1)

W 2,p ‖f‖
(p−2)2

p(p−1)2

Lp′ , if p > 2.

Recall that Barrett and Liu proved in [4], that if f ∈ Lq(Ω) and if 1 < p ≤ 2 then u belongs to H2(Ω) and then
to W 2,p(Ω), so that the assumption in the previous theorem is fulfilled.

On the other hand when p > 2, there exists solutions of (1) with f ∈ Lp′
(Ω) which are not in W 2,p(Ω). We

address the problem of proving error estimates for these solutions in [2].

Remark 3.2. Using the Poincaré inequality (Lem. 2.4), we also deduce error estimates for the Lp(Ω) norm of
order hp−1 when p < 2 and h

1
p−1 when p ≥ 2.

3.1. A priori estimates on the approximate solution

Lemma 3.3. Under the previous assumptions, the approximate solution uT satisfies the estimate

‖uT ‖1,p,T ≤ C‖f‖
1

p−1

Lp′ . (47)

Furthermore, if uT1 and uT2 are the solutions corresponding respectively to the data f1, f2 ∈ Lp′
(Ω) then we have


 ‖uT1 − uT2 ‖1,p,T ≤ C‖f1 − f2‖

1
p−1

Lp′ , if p ≥ 2,

‖uT1 − uT2 ‖1,p,T ≤ C‖f1 − f2‖Lp′ (‖uT1 ‖
2−p
1,p,T + ‖uT2 ‖

2−p
1,p,T ), if 1 < p < 2.

(48)

Proof.

(1) By Lemmas 2.7 and 2.8, we have

0 =
(
∇JT (uT ), uT

)
=
∑
K∈T

aK(uT )uK −m(K)fKuK ≥ C‖uT ‖p
1,p,T −

∑
K∈T

m(K)fKuK.

It follows by the Hölder inequality that

‖uT ‖p
1,p,T ≤ C

∑
K∈T

m(K)|fK||uK| ≤ C

(∑
K∈T

m(K)|fK|
p

p−1

) p−1
p
(∑

K∈T
m(K)|uK|p

) 1
p

.
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Now, the discrete Poincaré inequality yields

‖uT ‖p−1
1,p,T ≤ C

(∑
K∈T

m(K)|fK|
p

p−1

) p−1
p

. (49)

Using the definition of fK given by (12) and the Jensen inequality we have

|fK|
p

p−1 ≤
(

1
m(K)

∫
K
|f(z)| dz

) p
p−1

≤ 1
m(K)

∫
K
|f(z)|

p
p−1 dz,

so that (49) gives (47).
(2) In order to prove (48), let us subtract the discrete equations for uT1 and uT2 :

aK(uT1 ) − aK(uT2 ) = m(K)((f1)K − (f2)K), ∀K ∈ T .

Multiplying by (uT1 )K − (uT2 )K and summing over K, we deduce, using (33) and (34), that

‖uT1 − uT2 ‖
p
1,p,T ≤ C‖uT1 − uT2 ‖Lp‖f1 − f2‖Lp′ , if p ≥ 2,

‖uT1 − uT2 ‖2
1,p,T (‖uT1 ‖

p−2
1,p,T + ‖uT2 ‖

p−2
1,p,T ) ≤ C‖uT1 − uT2 ‖Lp‖f1 − f2‖Lp′ , if 1 < p < 2.

We conclude using Lemma 2.4. �

Remark 3.4. This result gives the Hölder continuity of the inverse discrete p-Laplacian operator. As we have
already seen, the approximate solution uT of problem (1) is obtained as the minimum of the discrete energy JT .
Hence, the practical computation of the solution can be performed using a classical iterative method. The
appropriate stopping criterion is given by the previous Lemma.

Indeed, consider for instance, the case where p ≥ 2. If we denote by uT the exact approximate solution
and uTk an iteration of any numerical algorithm used to solve the scheme, then the error between uT and uTk is
estimated by

‖uT − uTk ‖1,p,T ≤ C‖f − a(uTk )‖
1

p−1

Lp′ .

Consequently, if we know that the numerical scheme has an order hs, we can choose the stopping criterion

‖f − a(uTk )‖Lp′ ≤ Chs(p−1),

so that finally

‖uT − uTk ‖1,p,T ≤ ‖uT − uT ‖1,p,T + ‖uT − uTk ‖1,p,T ≤ C1h
s + (C2h

s(p−1))
1

p−1 ≤ Chs.

3.2. Consistency error of the scheme

Definition 3.5 (local consistency error). For any control volume K and for any half-edge σ ⊂ ∂K, we define
the local consistency error by

Rσ,K = aK,σ(uT ) −
(
−
∫

σ

|∇u|p−2∇u · νK ds
)
,

where {
aK,σ(uT ) = qK∗(TK∗(uT ))

p−2
2 Ah

K,K∗(TK∗(uT )) if σ = σh
K,K∗

aK,σ(uT ) = qK∗(TK∗(uT ))
p−2
2 Av

K,K∗(TK∗(uT )) if σ = σv
K,K∗ .
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Remark that aK,σ(uT ) can be written (in a non-unique way) as a function of δK∗
(uT ) = (δK∗

i (uT ))i=1,2,3,4. Let
us define gσ to be a function such that

m(σ)gσ(δK∗
(vT )) def= aK,σ(vT ), ∀vT ∈ R

T .

For example, suppose that σ = σv
K1,K∗ so that with (18) we have aK,σ = q

p−2
2

K∗ A1,K∗ . In this case, following (19),
(23) and (35), we can take

gσ(δ1, δ2, δ3, δ4) =

(
1

m(K∗)

4∑
i=1

mK∗

i lK
∗

i δ2i +
2ξK∗

m(K∗)
(δ1 + δ3)2

) p−2
2 (

−δ1 − ξK∗ lK
∗

1

mK∗
1

(δ1 + δ3)
)
. (50)

Hence the local consistency error can be written as follows:

Rσ,K = m(σ)gσ(δK∗
(uT )) +

∫
σ

|∇u|p−2∇u · νK ds. (51)

Lemma 3.6. Let K∗ be a dual control volume and σ ⊂ K∗. For any point s ∈ σ, let us write δK∗
(uT ) =

δ0(s) + ε(s), where δ0(s) = (δ0i (s))i=1,2,3,4 is defined by δ0i (s) = ∇u(s) · νi.
• If K∗ ⊂ Ω, we have

εi(s) =
1
li

∫ 1

0

(1 − t)D2u(txi+1 + (1 − t)s) · (xi+1 − s)2 dt− 1
li

∫ 1

0

(1 − t)D2u(txi + (1 − t)s) · (xi − s)2 dt.

• If K∗ is a boundary dual control volume, we have

εi(s) = s1i
1
li

∫ 1

0

(1 − t)D2u(tyi+1 + (1 − t)s) · (yi+1 − s)2 dt+ s2i
1
li

∫ 1

0

(1 − t)D2u(tyi + (1 − t)s) · (yi − s)2 dt,

where yi denotes either the point xi if xi ∈ Ω, either the point symmetric of xi with respect to ∂Ω, if
xi �∈ Ω, and s1i , s

2
i ∈ {−1, 1}.

Proof. The result is a straightforward consequence of the Taylor expansion:

ui − u(s) = u(xi) − u(s) = ∇u(y) · (xi − s) +
∫ 1

0

(1 − t)D2u(txi + (1 − t)s) · (xi − s)2 dt.

When K∗ is a boundary dual control volume, it suffices to take into account the values imposed in the ghost
cells (see Fig. 1). �

Lemma 3.7. There exists a constant C > 0 such that for any σ ⊂ K∗ ∩ Ω, we have∫
σ

|ε(s)|p ds ≤ Chp−1

∫
K∗∩Ω

|D2u(z)|p dz.

Proof. Using the previous Lemma, we see that the estimate of
∫

σ

|ε(s)|p ds requires the control of the terms:

Ai
def=
∫

σ

∣∣∣∣ 1li
∫ 1

0

(1 − t)D2u(txi + (1 − t)s) · (xi − s)2 dt
∣∣∣∣
p

ds, i = 1, . . . , 4.



FINITE VOLUME SCHEMES FOR THE P-LAPLACIAN ON CARTESIAN MESHES 953

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����

�����
�����
�����
�����

Σσ,3

Σσ,4

Σσ,1

Σσ,2

σ = σv
K1,K∗

xK∗

4 xK∗

3

xK∗

1
xK∗

2

Figure 5. Definition of the domains Σσ,1,Σσ,2,Σσ,3 and Σσ,4.

Thanks to the regularity of the mesh, using the change of variables (t, s) �→ z = txi + (1 − t)s, we get:

Ai ≤
∫

σ

1
lpi

∫ 1

0

∣∣(1 − t)D2u(txi + (1 − t)s) · (xi − s)2
∣∣p dt ds ≤ Chp−1

∫
Σσ,i

|D2u(z)|p dz,

where the domains Σσ,1,Σσ,2,Σσ,3,Σσ,4 are introduced in Figure 5. Note that the Jacobian determinant of the
change of variables is C(1 − t)h.

The lemma follows immediately. �

We can now estimate the local consistency error of the scheme.

Lemma 3.8. For any control volume K, and for any half-edge σ ⊂ ∂K, we have

|Rσ,K| ≤ Ch
(p−1)2+1

p

(∫
K∗∩Ω

|D2u(z)|p dz
) p−1

p

, if p ≤ 2,

|Rσ,K| ≤ C

(
h

(p−1)2+1
p

(∫
K∗∩Ω

|D2u(z)|p dz
) p−1

p

+ h
2(p−1)

p ‖∇u‖p−2
L∞(Ω)

(∫
K∗∩Ω

|D2u(z)|p dz
) 1

p

)
, if p > 2,

where K∗ is the dual control volume which contains σ.

Proof. Without loss of generality, we still assume that σ = σv
K1,K∗ is the vertical half-edge in K∗ between KK∗

1

and KK∗

2 . As in Lemma 3.6, we write δK∗
(uT ) = δ0(s) + ε(s). Let us first prove that

Rσ,K =
∫

σ

∫ 1

0

∇gσ(δ0(s) + tε(s)) · ε(s) dt ds. (52)
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Indeed, for all s ∈ σ,

gσ(δK∗
(uT )) = gσ(δ0(s) + ε(s)) = gσ(δ0(s)) +

∫ 1

0

∇gσ(δ0(s) + tε(s)) · ε(s) dt.

Integrating this relation over the edge σ and using the fact that δK∗
(uT ) does not depend on s, we have

m(σ)gσ(δK∗
(uT )) =

∫
σ

gσ(δ0(s)) ds+
∫

σ

∫ 1

0

∇g(δ0(s) + tε(s)) · ε(s) dt ds.

Hence, (52) follows from (51).

We remark that, thanks to (50), for any α, β ∈ R we have gσ(α, β,−α,−β) = −
(
α2 + β2

) p−2
2 α (this

amounts to the consistency of the scheme on piecewise affine functions). Hence, since we have δ0(s) =
(ux(s), uy(s),−ux(s),−uy(s)), we deduce that

∫
σ

gσ(δ0(s)) ds = −
∫

σ

|∇u|p−2∇u · νK ds,

which proves (52).
According that for any η1, η2 ∈ R

4, we have |∇gσ(η1) · η2| ≤ C|η1|p−2|η2|, we obtain

|Rσ,K| ≤ C

∫
σ

|ε(s)|
(∫ 1

0

|δ0(s) + tε(s)|p−2 dt
)

ds. (53)

Remark that, for any 1 < p ≤ 2, there exists a constant C such that, for any n ≥ 0 and for any (η, ξ) ∈
(Rn)2\{(0, 0)}, we have ∫ 1

0

|η||ξ + tη|p−2 dt ≤ C|η|p−1.

Therefore, we deduce from (53) that

|Rσ,K| ≤ C

∫
σ

|ε(s)|
(
|δ0(s)|p−2 + |ε(s)|p−2

)
ds, if p > 2,

|Rσ,K| ≤ C

∫
σ

|ε(s)|p−1 ds, if p ≤ 2.

Hence we readily get

|Rσ,K| ≤ Cm(σ)
1
p

(∫
σ

|ε(s)|p ds
) p−1

p

, if 1 < p ≤ 2.

For p > 2, note that W 1,p(Ω) ⊂ L∞(Ω), so that we have |δ0(s)| ≤ ‖∇u‖L∞ , and finally

|Rσ,K| ≤ C

(
m(σ)

p−1
p ‖∇u‖p−2

L∞(Ω)

(∫
σ

|ε(s)|p ds
) 1

p

+m(σ)
1
p

(∫
σ

|ε(s)|p ds
) p−1

p

)
, if p > 2.

We conclude using Lemma 3.7. �
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3.3. Proof of Theorem 3.1

Using the estimate of the local consistency error obtained in Lemma 3.8, we can now prove the error estimates
stated in Theorem 3.1.

Thanks to Lemma 2.10, we have for p ≥ 2

‖uT − uT ‖p
1,p,T ≤ C

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
,

and for 1 < p ≤ 2, we derive

‖uT − uT ‖2
1,p,T

(
‖uT ‖p

1,p,T + ‖uT ‖p
1,p,T

) p−2
p ≤ C

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
.

By (29), we have

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
=
∑
K∈T

∑
σ∈EK

(
aK,σ(uT ) − aK,σ(uT ), uK − uK

)
.

Integrating equation (1) over a control volume K and using the definition of the scheme (28), we have

−
∑

σ∈EK

∫
σ

|∇u|p−2∇u · νK ds =
∫

K

f(z) dz = m(K)fK =
∑

σ∈EK

aK,σ(uT ).

Therefore, the definition of Rσ,K implies

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
=
∑
K∈T

∑
σ∈EK

(Rσ,K, uK − uK) . (54)

The conservativity property ensures that for any half-edge σ ⊂ K|L, we have Rσ,L = −Rσ,K. Bringing together
the terms corresponding to neighbors K and L, we get a sum over all the half-edges in the mesh which reads

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
≤
∑

σ=K|L

∣∣∣∣
(
Rσ,K, (uK − uK − uL + uL)

)∣∣∣∣ ,
where the ghost cells values are taken into account near the boundary. Let us note Rσ = |Rσ,K| = |Rσ,L| so
that we get

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
≤ ‖uT − uT ‖1,p,T


 ∑

K∗∈T ∗

1

m(K∗)
1

p−1

∑
σ⊂K∗∩Ω

diam(K∗)
p

p−1 |Rσ|
p

p−1




p−1
p

.

The mesh regularity assumption (7) ensures that

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
≤ C‖uT − uT ‖1,p,T h

p−2
p


 ∑

K∗∈T ∗

∑
σ⊂K∗∩Ω

|Rσ|
p

p−1




p−1
p

.

According to Lemma 3.8, the term
∑

K∗∈T ∗

∑
σ⊂K∗∩Ω

|Rσ|
p

p−1 is controlled using the following inequalities:
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• For any p > 1, we have

h
(p−1)2+1

p−1
∑

K∗∈T ∗

∑
σ⊂K∗∩Ω

∫
K∗∩Ω

|D2u(z)|p dz ≤ Ch
(p−1)2+1

p−1

∫
Ω

|D2u(z)|p dz.

• For any p ≥ 2, using (7) we also have

h2|∇u|
p−2
p−1
∞

∑
K∗∈T ∗

∑
σ⊂K∗∩Ω

(∫
K∗∩Ω

|D2u(z)|p dz
) 1

p−1

≤ Ch2|∇u|
p−2
p−1
∞

( ∑
K∗∈T ∗

∫
K∗∩Ω

|D2u(z)|p dz

) 1
p−1

( ∑
K∗∈T ∗

1

) p−2
p−1

≤ Ch
2

p−1 |∇u|
p−2
p−1
∞

(∫
Ω

|D2u(z)|p dz
) 1

p−1

.

Hence, for p > 2, using the interpolation inequality ‖∇u‖∞ ≤ C‖u‖1− 2
p

W 2,p‖u‖
2
p

W 1,p ,we obtain

‖uT − uT ‖1,p,T ≤ C

(
h‖u‖W 2,p + h

1
p−1 ‖u‖

3p−4
p(p−1)

W 2,p ‖u‖
(p−2)2

p(p−1)

W 1,p

)
,

and we can conclude using (3).
In the case where 1 < p ≤ 2, we first obtain

‖uT − uT ‖1,p,T ≤ Chp−1‖u‖p−1
W 2,p

(
‖uT ‖2−p

1,p,T + ‖uT ‖2−p
1,p,T

)
,

then with (3), (8) and (47) we deduce

‖uT − uT ‖1,p,T ≤ Chp−1‖u‖p−1
W 2,p‖f‖

2−p
p−1

Lp′ .

3.4. Improved error estimates

The convergence estimate of Theorem 3.1 can be improved for p = 2 and p > 3, in the case where:

(H1) the mesh is uniform, i.e. all the control volumes are isometric to a given reference rectangular volume
[0, hx] × [0, hy]. In this case, the regularity assumptions on the mesh (7) writes

∃c1 > 0, such that c1 ≤ hy

hx
≤ 1
c1

; (55)

(H2) the exact solution u of (1) is smooth enough;
(H3) the same approximation scheme is chosen on all dual control volumes.

The meaning of the last assumption has to be precised. As we have seen before, our schemes are determined
by the value of the parameter ξK∗

in each dual control volume. As the mesh is supposed to be uniform in this
section, it makes sense to impose ξK∗ def= ξ independently of the dual control volume K∗. As usual (see (32)) we
suppose that for a given family of meshes and associated schemes, there exists γ > 0 such that

ξ ≤ 1
γ
, and 2ξ +

1
4

(
hy

hx
+
hx

hy

)
≥ γ. (56)
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Theorem 3.9. Assume that p = 2 or p > 3. Consider an admissible scheme, in the sense of Definition 2.6,
on a uniform mesh which satisfies (7) and (56). There exists a constant C > 0 such that, for any u ∈
W 4,1(Ω) ∩W 1,p

0 (Ω) solution of (1), we have

‖uT − uT ‖1,p,T ≤ C ‖u‖W 4,1hm/(p−1) + C

(
sup
∂Ω

|f |
) 1

p−1

h
1
p + 1

p−1 ,

where m = 2 for p = 2 and for p ≥ 4, and m = p− 2 for 3 < p < 4.

Note that in each case we have m > 1, so that the convergence order obtained here is improved compared to
the order h

1
p−1 obtained in Theorem 3.1, for less regular solutions.

The proof of this result is quite technical and can be found in [2]. We only give here a brief sketch of this
proof.

The idea is to treat the right-hand side of (54) in a different manner, bringing together the terms originated
from all the eight half-edges which delimit a control volume K ∈ T in order to take advantage of the symmetries
of the schemes. More precisely, we rewrite (54) under the form

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
=
∑
K∈T

(∑
σ∈EK

Rσ,K

)
(uK − uK).

As it has been shown in Lemma 3.8, for any σ and K, the local consistency error Rσ,K is in general of order h2

if u is smooth enough (say in C2(Ω)). We can show that compensations due to symmetries of the scheme imply
that the term

∑
σ∈EK

Rσ,K is of order h4 (if K is an interior control volume) provided that u is regular enough
(roughly speaking, in C4(Ω)) and gσ lies at least in C2(R4). For this last reason, this result is restricted to p ≥ 3
or p = 2.

4. Numerical results

The admissible finite volume schemes we have constructed derive from a discrete energy JT . Hence, the
practical computation of the approximate solution has been performed using the Polak-Ribière nonlinear conju-
gate gradient method. Note that for large values of p, there exist more efficient methods for this minimization
problem (see for instance [13]).

As it is classical in such problems (see for instance [5]), we observe numerically better convergence orders than
the results given in Theorems 3.1 and 3.9. Hence, we concentrate in this section on the qualitative properties
of the schemes.

All the figures show the relative discrete W 1,p error eT =
‖uT −uT ‖1,p,T

‖uT ‖1,p,T
as a function of the size of the mesh h,

in a logarithmic scale. The domain Ω is the unit square ]0, 1[×]0, 1[.
First, we compare admissible schemes as defined by Definition 2.6 (we choose here ξK∗ = 0) and the non-

admissible scheme introduced in Section 2.5, that is the scheme defined by the functional J0
T issued from the

quadratic form (37). We recall that the Euler-Lagrange equation for J0
T is not a consistent finite volume

discretization of (1) on the mesh T if the mesh is not uniform.
Two kinds of behavior are observed and presented in Figure 6. In case A, the mesh is non-uniform but quite

regular. We see that the convergence order is roughly the same for the two schemes but the error is smaller for
the admissible scheme than for the non-admissible scheme. Note that the dual mesh T ∗ is uniform in this case.

In case B, the dimensions of the control volumes are randomly chosen between h/2 and 3h/2 so that the
regularity condition (7) is satisfied. We see that the non-admissible scheme has very bad convergence properties
whereas our admissible scheme is convergent.

In Figure 7, we give another example of the bad convergence properties of non-admissible schemes in the
case of random meshes.
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Case A :
u = ex sin(πx) sin(πy)

p = 2.5
h

h/2

h

h/2 Case B :
u = ex sin(πx) sin(πy)

p = 2.5
Random mesh
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Figure 6. Comparison between Admissible and Non-admissible schemes.

u = sin(3πx) sin(3πy)
p = 2.5 Random mesh
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− log10(eT )

− log10(h)

Figure 7. Comparison between Admissible and Non-admissible schemes (2).

Secondly, we compare in Figure 8 the various admissible schemes obtained by choosing different values of the
parameter ξK∗ . In all the following results, we have chosen the same ξK∗

on each dual control volume.
We recall that the natural scheme (extended from the classical finite volume scheme for the Laplace equation)

is obtained for ξ = 0.0 (see Sect. 2.5). We see in Figure 8 that the convergence order is the same for each value
of ξ. For p = 2.5, the smallest error is obtained for ξ = 0.0, i.e. with the “classical” finite volume scheme. On
the other hand, for p = 4 we see that the smallest error is obtained for ξ = 1.0, so that the “classical” scheme
(ξ = 0.0) is not the best scheme in this case.

Note that the scheme for ξ = −0.25 is not admissible in the sense of Definition 2.6 since this is the limiting
case in condition (26). Even though this particular scheme does not fulfill the assumptions of our error estimates
theorem, we can see that the scheme seems to be convergent, for instance for p = 4.
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u = ex sin(3πx) sin(3πy)
p = 2.5

Uniform mesh
N ×N control volumes

u = ex sin(3πx) sin(3πy)
p = 4

Uniform mesh
N ×N control volumes
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Figure 8. Comparison of Admissible schemes for different ξ.
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