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Abstract. A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is con-
sidered, the convective terms being disregarded. A finite element discretization in space is proposed.
Existence of the numerical solution is proved for small data, so as a priori error estimates, using an
implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ. 6 (2006)
381–398] for the solution of the continuous problem. A posteriori error estimates are also derived.
Numerical results with small time steps and a large number of realizations confirm the convergence
rate with respect to the mesh size.
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Introduction

Numerical modeling of viscoelastic flows is of great importance for complex engineering applications involv-
ing blood, paints or adhesives. In the traditional macroscopic approach the unknowns are the velocity, the
pressure and the extra-stress satisfying the mass and momentum equations supplemented with a so-called con-
stitutive equation. This constitutive equation between the velocity and the stress can be either differential or
integral [9, 57].

The simplest macroscopic example is the Oldroyd-B model which can be derived from the mesoscopic Hookean
dumbbells model. The stochastic dumbbells model corresponds to a dilute solution of liquid polymer, that is
a newtonian solvent with non interacting polymer chains. The polymer chains are modeled by dumbbells, two
beads connected with elastic springs, see Figure 1.
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Figure 1. The mesoscopic dumbbells model for a dilute solution of liquid polymer.

The mass and momentum conservation laws lead to the following partial differential equations for the veloc-
ity u, the pressure p and the extra-stress σ

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (2ηsε(u) + σ) + ∇p = f, (0.1)

∇ · u = 0. (0.2)

Here ρ is the density, f a force term, ηs is the solvent viscosity and ε(u) = 1
2

(
∇u + (∇u)T

)
is the symmetric

part of the velocity gradient. On the other hand, the dimensionless spring elongation q satisfies the following
stochastic differential equation

dq =
(
−(u · ∇)q) + (∇u)q − 1

2λ
F(q)

)
dt +

1√
λ

dB, (0.3)

where λ is the relaxation time, F is the force due to the elastic spring and B is a vector of independent Wiener
processes modeling the thermal agitation and collisions with the solvent molecules. The transport term (u ·∇)q
in (0.3) corresponds to the fact that the trajectories of the dumbbells center of mass are those of the liquid
particles. The term (∇u)q takes into account the drag force due to the beads. The extra-stress σ is then
obtained by the mean of the closure equation

σ =
ηp

λ
(IE(q ⊗ F(q)) − I), (0.4)

with ηp the polymer viscosity. The case F(q) = q, namely Hookean dumbbells, leads to the Oldroyd-B model
where the extra-stress σ satisfies

σ + λ

(
∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T

)
= 2ηpε(u). (0.5)

The FENE dumbbells model (see [9, 57] for a detailed description) is a more realistic model corresponding
to F (q) = q

1−q2/b , where b > 0 depends on the number of monomer units of a polymer chain. The goal of
the FENE model is to take into account the finite extensibility of the polymer chains. In that case, there is
no equivalent constitutive relation for the extra-stress, but closure approximations (such as FENE-P, see for
instance [9,57]) have been derived. These approximations can have significant impact on rheological prediction,
see for instance [1,17,43]. Recently, due to increasing computational resources, equations (0.1)–(0.4) have been
solved numerically to obtain more realistic results [14,16,18,43,46,47]. For a review of numerical methods used
in viscoelastic flows we refer for instance to [3, 44, 58].
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The kinetic theory can also be formulated by introducing the probability density f(x, q, t) of the spring
elongation which must satisfy a Fokker-Planck equation. We refer to [21, 29, 30] for numerical experiments
and [8,62] for a mathematical analysis. This deterministic approach seems to be inappropriate when considering
more complex kinetic models involving chains [44], although recent advances are encouraging [68].

We will focus in this paper on the stochastic description of the simplest dumbbells model, namely the Hookean
dumbbells model F (q) = q. Although the Hookean dumbbells model is too simple to reproduce experiments
such as shear thinning for instance, it already contains some numerical difficulties included in the kinetic theory.
At the continuous level, the model is formally equivalent to the Oldroyd-B model but the equivalence does not
hold when considering equal order finite element discretizations. Thus, to the major difficulties already present
in the macroscopic model, we must add those coming from stochastic modeling. All these difficulties gathered
are:

(i) the presence of the quadratic term (∇u)q which prevents to obtain a priori estimates leading to existence
and convergence for any data;

(ii) the presence of the convective term (u · ∇)q which requires an adequate mathematical analysis [48] and
the use of numerical schemes suited to transport dominated problems;

(iii) the case ηs = 0 which require either a compatibility condition between the finite element spaces for u,
q and p or the use of adequate stabilization procedures, such as EVSS for instance;

(iv) the Wiener process in (0.3) which requires efficient procedures such as variance reduction to be consid-
ered, see for instance [13, 18, 39, 44].

Concerning the analysis and numerical analysis of macroscopic viscoelastic models, a large amount of pub-
lications can be found. The existence of slow steady viscoelastic flow has been proved in [2, 61]. For the
time-dependent case, existence of solutions locally in time and, for small data, globally in time has been proved
in [37] in Hilbert spaces. Extensions to Banach spaces and a review can be found in [32]. Finally, existence
for any data has been proved in [52] for a corotational Oldroyd model only. Convergence of finite element
methods for the linear three fields Stokes problem have been studied for instance in [15,33,34,64]. Convergence
of continuous and discontinuous finite element methods for steady state viscoelastic fluids have been presented
in [6, 31, 56, 65], provided the solution of the continuous problem is smooth and small enough. Extension to
time-dependent problems have been proposed in [7, 27, 28, 55].

On the other hand, few papers pertaining to the kinetic theory have been published. From the analysis
point of view, the deterministic (Fokker-Planck) formulation has been studied in [8, 51, 62, 69]. Concerning
the stochastic formulation, existence of FENE dumbbells in one space dimension is proved in [40], long-time
asymptotics are used in [41]. The well posedeness of the dumbbells model in three space dimensions has been
proved for nonlinear elastic dumbbells in [26].

The complete analysis and numerical analysis of a one dimensional Hookean dumbbells shear flows can be
found in [38]. The authors consider the error due to space and time discretization, but also the error due to the
Monte Carlo method. Optimal convergence is obtained for the velocity in the L2(H1) norm (the L2(L2) norm is
considered in [49]), a similar study is available in [25]. From the authors knowledge, the only numerical analysis
in more than one space dimension is [50]. An implicit finite difference method is considered in the unit square
(or cube) with periodic boundary conditions. Assuming the velocity u ∈ C5 and the time step τ = O(h2), the
authors prove optimal convergence rates.

The numerical analysis of a finite element method in more than one space dimension is still missing. In this
paper, only the finite element discretization in space is considered and the numerical analysis is proposed for a
simplified time-dependent Hookean dumbbells problem in dimension two. More precisely, we disregard items (ii)
and (iii) above, assume ηs > 0 and remove the convective terms. The reason for removing the convective terms
is motivated by the fact that this simplified problem corresponds to the correction step in the splitting algorithm
described in [12, 36] for solving viscoelastic flows with complex free surfaces. The consequence when removing
convective terms is that the implicit function theorem can be used to prove convergence results, whenever the
data are small enough, using the same techniques as in [10, 59]. Existence and regularity has already been
proved in [11], this regularity being sufficient to prove convergence of a finite element discretization in space.
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The outline of the paper is as follows. The continuous problem and its finite elements scheme are described
in the next section. Then, some notations and the results of [11] are presented. Existence of the finite element
solution and a priori error estimates are established in Section 3. A posteriori error estimates are derived
in Section 4. Finally, numerical results with small time steps and a large number of realizations confirm the
convergence rate with respect to the mesh size.

1. The simplified Hookean dumbbells problem and its finite element

approximation in space

Let D be a bounded, connected open set of R
d, d = 2 or 3 with boundary ∂D of class C2, and let T > 0.

Let (Ω,F ,P) be a complete filtered probability space. The filtration Ft upon which the Brownian process B is
defined is completed with respect to P and is assumed to be right continuous on [0, T ].

Given the initial conditions q0 : Ω → R
d, u0 : D → R

d, a force term f , constant solvent and polymer viscosities
ηs > 0, ηp > 0, a constant relaxation time λ > 0, we are searching for the velocity u : D × (0, T ) → R

d, the
pressure p : D × (0, T ) → R and the elongation vector q : D × (0, T ) × Ω → R

d, which must satisfy

dq −
(

(∇u)q − 1
2λ

q

)
dt − 1√

λ
dB = 0 in D × (0, T )× Ω, (1.1)

ρ
∂u

∂t
−∇ ·

(
2ηsε(u) +

ηp

λ
(IE(q ⊗ q) − I)

)
+ ∇p = f in D × (0, T ), (1.2)

∇ · u = 0 in D × (0, T ), (1.3)

u (., 0) = u0 in D, (1.4)

q(., 0, .) = q0 in D × Ω, (1.5)

u = 0 on ∂D × (0, T ). (1.6)

Remark 1.1. Equations (1.1) and (1.5) are notations for

q(x, t, ω) − q0(t, ω) −
∫ t

0

(
(∇u(x, s))q(x, s, ω) − 1

2λ
q(x, s, ω)

)
ds − 1√

λ
B(t, ω) = 0,

where (x, t, ω) ∈ D × [0, T ]× Ω.

Due to the regularity of the Brownian process, little Hölder spaces will be used. They are closed subset of
the classical Hölder spaces Cµ([0, T ]; E) and are defined for all Banach space E and for all 0 < µ < 1 by

hµ([0, T ]; E) =

{
f ∈ Cµ([0, T ]; E); lim

δ→0
sup

t,s∈[0,T ],|t−s |<δ

‖f(t) − f(s)‖E

|t − s |µ = 0

}
.

Provided with the norm of Cµ([0, T ]; E), little Hölder spaces are Banach spaces and are separable Banach
spaces assuming E is a separable Banach space, see for instance [54] for more details. We will use the notation
hµ

0 ([0, T ]; E) for the restriction of functions of hµ([0, T ]; E) vanishing at the origin. For simplicity, the notation
will be abridged as follows whenever there is no possible confusion. For d < r < ∞, the space Lr denotes
Lr(D; R) or Lr(D; Rd). Also, for 0 < µ < 1/2 and 2 ≤ γ < ∞, hµ(Lr) stands for hµ([0, T ]; Lr(D; R)) or
hµ([0, T ]; Lr(D; Rd)) and Lγ(hµ(Lr)) for Lγ(Ω; hµ([0, T ]; Lr(D; R))) or Lγ(Ω; hµ([0, T ]; Lr(D; Rd))). The same
notation applies for higher order spaces such as W 1,r, h1+µ(W 1,r) and Lγ(h1+µ(W 1,r)).

The implicit function theorem has been used in [11] to prove that (1.1)–(1.6) admits a unique solution

u ∈ h1+µ(Lr) ∩ hµ(W 2,r), p ∈ hµ(W 1,r ∩ Lr
0), q ∈ Lγ(hµ(W 1,r)), (1.7)
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with 2 ≤ γ < ∞, d < r < ∞ and 0 < µ < 1/2, for any data (f, u0) small enough in appropriate spaces and
assuming the space Ω is rich enough to accommodate a given random vector q0 ∈ Lγ(Ω) such that{

q0 is independent of B and (q0)i is independent of (q0)j , 1 ≤ i 
= j ≤ d,

and IE(q0) = 0, IE(q0 ⊗ q0) = I.
(1.8)

Since hµ([0, T ]; W 1,r(D)) ⊂ C([0, T ] × D), let us notice that in particular, a process q ∈ Lγ(hµ(W 1,r)) has a
continuous sample path for almost each realization ω ∈ Ω.

In this paper we assume that the above existence result still holds when D is a convex polygon in R
2. The

key point to prove this result when D is a convex polygon is to prove that the negative Stokes operator −Ar

is still the generator of an analytic semi-group, see for instance [35]. We did not find such a result in the
literature, therefore we will make this assumption and prove convergence of the finite element scheme. It should
be noted that the corresponding property is true in stationary case for some r > 2 depending on the angles of
the polygon, see [59].

Let us introduce the finite element approximation in space for D, a convex polygon in R
2. For any h > 0,

let Th be a decomposition of D into triangles K with diameter hK less than h, regular in the sense of [22].
We consider Vh, Rh and Qh the finite element spaces for the velocity, dumbbells elongation and pressure,
respectively defined by:

Vh = {vh ∈ C0(D; Rd); vh |K∈ (P1)d ∀K ∈ Th} ∩ H1
0 (D; Rd),

Rh = {rh ∈ C0(D; Rd); rh |K∈ (P1)d ∀K ∈ Th},
Qh = {sh ∈ C0(D; R); sh |K∈ P1 ∀K ∈ Th} ∩ L2

0(D; R).

We denote ih the L2(D) projection onto Vh, Rh or Qh and introduce the following stabilized finite element
discretization in space of (1.1)–(1.6). Given f , u0, q0 find

(uh, qh, ph) : Ω × (0, T ) −→Vh × Rh × Qh,

(ω, t) 
−→(uh(t), qh(ω, t), ph(t)),

such that uh(0) = ihu0, qh(0) = q0 and such that the following weak formulation holds in (0, T )× Ω:

ρ
(∂uh

∂t
, vh

)
+ 2ηs

(
ε(uh), ε(vh)

)
−
(
ph,∇ · vh

)
+

ηp

λ

(
IE(qh ⊗ qh) − I, ε(vh)

)
−
(
f, vh

)
+
(
∇ · uh, sh

)
+
∑

K∈Th

αh2
K

2ηp
(∇ph,∇sh)K + (qh(t), rh) − (1, rh)q0

+
(∫ t

0

(
1
2λ

qh(k) − (∇uh(k))qh(k)
)

dk, rh

)
− 1√

λ
(1, rh)B = 0, (1.9)

for all (vh, rh, sh) ∈ Vh ×Rh ×Qh. Here α > 0 is a dimensionless stabilization parameter and (·, ·) (respectively
(·, ·)K) denotes the L2(D) (resp. L2(K)) scalar product for scalars, vectors and tensors.

The main results of this paper are Theorems 3.6 and 4.2. Assuming the data f and u0 to be sufficiently
small in an appropriate space (the space Y defined in the next section), assuming the mesh size h to be small
enough, Theorem 3.6 states the existence of (uh, qh) ∈ L2(Vh) × L2(L∞(Rh)) solution of (1.9), unique in the
neighbourhood of (u, q), the solution of the continuous problem (1.1)–(1.6). Moreover, optimal a priori error
estimates hold in the L2(H1) norm for the velocity and in the L2(L∞(L2)) norm for the dumbbells elongation.
A posteriori error estimates are then proposed in Theorem 4.2. More precisely, assuming f , u0 and h to be
sufficiently small, the error is bounded above by an explicit, residual based error estimator.
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The difficulty in proving such results is due to the fact that no useful (so far) a priori estimates are available
due to the nonlinear term (∇uh)qh. The interested reader should note that an L1(D) estimate for the extra-
stress has been proved in [53] but it is not sufficent to prove convergence of finite element schemes. We will
proceed as in the continuous problem [11]. More precisely, we will prove that the linearized problem in the
neighborhood of the equilibrium state uh = 0, qh = qS is well posed (qS will be defined in the next section).
Then, using an implicit function theorem taken from [20], existence and a priori error estimates will be obtained.

The above nonlinear finite element scheme is closely linked to the Oldroyd-B scheme studied in a previous
paper [10]. However, the numerical schemes are not equivalent, therefore the analysis has to be done again.
Moreover, it should be noted that in this paper the case ηs = 0 is not considered, therefore some of the
stabilization terms present in [14] are not included in the finite element formulation (1.9).

2. Preliminaries on the continuous problem

In this section, notations and results from [11] are recalled to the reader.
The proof of the existence of a solution (u, q, p) satisfying (1.1)–(1.6) with the regularity (1.7) is based on

the splitting
q = qS + qD.

The equilibrium state qS is the Ornstein-Uhlenbeck stochastic process independent of the space variable x ∈ D
which satisfies

dqS = − 1
2λ

qSdt +
1√
λ

dB, qS(0) = q0, (2.1)

whilst qD is the discrepancy with respect to the equilibrium qS . The unknown function qD satisfies a differential
equation with a stochastic forcing term

∂qD

∂t
−∇u (qD + qS) +

1
2λ

qD = 0, q(0) = 0. (2.2)

Let (X, ‖.‖X) be the Banach space defined by

X =
{
(u, q) ∈ h1+µ(Lr) ∩ hµ(W 2,r) × Lγ(h1+µ(W 1,r) ∩ hµ

0 (W 1,r)); q adapted to (Ft)t∈[0,T ]

}
,

and let ‖.‖X be the product norm. Since existence (and uniqueness) of qS ∈ Lγ(Ω; hµ([0, T ])) (see App. C) is
ensured by classical results on stochastic differential equations, existence and uniqueness of problem (1.1)–(1.6)
for small data arise from existence and uniqueness of (u, qD, p) ∈ X × hµ(W 1,r ∩ Lr

0) solution of

∂qD

∂t
−∇u (qD + qS) +

1
2λ

qD = 0 in D × [0, T ]× Ω, (2.3)

ρ
∂u

∂t
−∇ · ε(u) − ηp

λ
∇ ·
(
IE((qD + qS) ⊗ (qD + qS)) − I

)
+ ∇p = f in D × (0, T ), (2.4)

∇ · u = 0 in D × (0, T ), (2.5)

u (., 0) = u0 in D, (2.6)

q(., 0, .) = 0 in D × Ω, (2.7)

u = 0 on ∂D × (0, T ). (2.8)

More precisely, given qS ∈ Lγ(Ω; hµ([0, T ])) and (f, u0) ∈ Y small enough, there exists a unique (u, qD, p) ∈
X × hµ(W 1,r ∩ Lr

0) solution to (2.3)–(2.8) and the mapping

Y −→X

(f, u0) 
−→(u(f, u0), qD(f, u0))
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is analytic (see [19], Def. 4.3.1), therefore continuous. The space for the data Y is a subset of hµ(Lr) × W 2,r,
which will be defined precisely later in this section. The above result is based on properties of the linearized
problem: given q0 ∈ Lγ(Ω) satisfying (1.8), (f1, u0) ∈ Y , f2 ∈ U and w ∈ W , find (ũ, q̃D, p̃) ∈ X×hµ(W 1,r∩Lr

0)
such that

ρ
∂ũ

∂t
− 2ηs ∇ · ε(ũ)

− ηp

λ
∇ ·
(
IE(q̃D ⊗ qS + qS ⊗ q̃D) + f2

)
+ ∇p̃ = f1 in D × (0, T ), (2.9)

∇ · ũ = 0 in D × (0, T ), (2.10)

∂q̃D

∂t
+

1
2
q̃D − (∇ũ)qS = w in D × (0, T ) × Ω, (2.11)

ũ(·, 0) = u0 in D, (2.12)

q̃D(·, 0) = 0 in Ω, (2.13)

ũ = 0 on ∂Ω × (0, T ), (2.14)

where qS ∈ Lγ(Ω; hµ([0, T ])) is defined by (2.1),

U =
{
f2 ∈ hµ(W 1,r);∇ · f2(0) = 0

}
and

W =
{
w ∈ Lγ(hµ(W 1,r)); w adapted to (Ft)t∈[0,T ]

}
are Banach spaces endowed with the norm of hµ(W 1,r) and Lγ(hµ(W 1,r)) respectively.

The space Y is now defined. Let us introduce the Helmholtz-Weyl projector Pr : Lr → Hr, where Hr is the
completion of the divergence free C∞

0 (D) vector fields with respect to the norm of Lr. The Stokes operator
Ar = −Pr∆ with domain DAr = W 2,r ∩ W 1,r

0 ∩ Hr and range Hr will be necessary to characterize the space
for the data Y . For this purpose, let

Eµ,∞ = (Hr,DAr )µ,∞ =
{

x ∈ Hr; sup
t>0

∥∥t1−µAre
−tArx

∥∥
Lr(D)

< +∞
}

be a Banach space endowed with the norm

‖x‖Eµ,∞ = ‖x‖Lr(D) + sup
t>0

∥∥t1−µAre
−tArx

∥∥
Lr(D)

.

We will consider the data (f, u0) belonging to Y defined by

Y =
{

(f, u0) ∈ hµ(Lr) ×DAr such that − ηsAru0 + Prf(0) ∈ DAr

Eµ,∞
}

,

provided with the norm ‖.‖Y defined by

‖f, u0‖Y = ‖f‖hµ(Lr) + ‖u0‖W 2,r + ‖−ηsAru0 + Prf(0)‖DAr
Eµ,∞ .

Finally, it should be noted that since the differential equation (2.11) can be solved explicitly, then the solution
(ũ, p̃) ∈ h1+µ(Lr) ∩ hµ(W 2,r ∩ W 1,r

0 ) × hµ(W 1,r ∩ Lr
0) of (2.9)–(2.14) satisfies

ρ
∂ũ

∂t
−∇ · (2ηsε(ũ) + 2k ∗ ε(ũ)) + ∇p̃ = f1 +

ηp

λ
∇ · f2 + ∇ · g, ∇ · ũ = 0, ũ(., 0) = u0, (2.15)
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where k ∈ C∞([0, T ]) is defined for t ∈ [0, T ] by k(t) = ηp

λ e−
t
λ , g ∈ hµ

0 (Hr) is defined for t ∈ [0, T ] by

g(t) =
ηp

λ

∫ t

0

e−
t−s
2λ IE

(
w(s) ⊗ qS(t) + qS(t) ⊗ w(s)

)
ds, (2.16)

and k ∗ ε(ũ) is the convolution in time of the kernel k with ε(ũ)

(k ∗ ε(ũ))(t) =
∫ t

0

k(t − s)ε(ũ(s))ds.

Moreover, there exists a constant C > 0 independent of f1, f2, u0 and w such that∥∥∥∥∂ũ

∂t

∥∥∥∥
hµ(Lr)

+ ‖Arũ‖hµ(Lr) + ‖p̃‖hµ(W 1,r) ≤ C
(
‖f1, u0‖Y + ‖f2‖hµ(W 1,r) + ‖w‖Lγ(hµ(W 1,r))

)
. (2.17)

In this paper, we will assume the results presented in this section still hold when D is a convex polygon. Once
again, the key point to prove these results when D is a convex polygon is to prove that the negative Stokes
operator −Ar is still the generator of an analytic semi-group, see for instance [35].

3. Existence and A PRIORI error estimates

In order to prove that the solution of the nonlinear finite element discretization (1.9) exists and converges to
that of (1.1)–(1.6), we introduce Xh ⊂ X defined by

Xh = L2(Vh) × L2(L∞(Rh)),

provided with the norm ‖.‖Xh
defined for all xh = (uh, qh) ∈ Xh by

‖xh‖2
Xh

= 2ηs

∫ T

0

‖ε(uh(t))‖2
L2(D) dt +

∫
Ω

sup
t∈[0,T ]

‖qh(ω, t)‖2
L2(D) dP(ω).

The splitting qh = qS + qD
h will also be used for the space discretization (remember qS does not depend on the

space variable and satisfies (2.1)) where qD
h ∈ L2(L∞(Rh)) satisfies

(
qD
h (t), rh

)
+
(∫ t

0

(
1
2λ

qD
h (k) − (∇uh(k))(qS(k) + qD

h (k))
)

dk, rh

)
= 0, (3.1)

for all rh ∈ Rh, a.e. in (0, T ) and a.e. in Ω.
It will be shown that there exists a unique (uh, qD

h ) ∈ Xh converging to (u, qD) ∈ X and thus a unique
(uh, qh) converging to (u, q). For this purpose, the discrete problem corresponding to the unknowns (uh, qD

h , ph)
will be written in the abstract framework of [20]. Using the splitting qh = qS + qD

h , we rewrite the solution
of (1.9) as the following fixed point problem. Given y = (f, u0) ∈ Y , find xh = (uh, qD

h ) ∈ Xh such that

xh = Th

(
y, Sc(xh), Sd(xh)

)
, (3.2)

where

Sc : L2(H1) × L2(L∞(L2)) −→ L2(L2)

xh = (uh, qD
h ) 
−→ Sc(xh) = IE(qD

h ⊗ qD
h ), (3.3)
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Sd : L2(H1) × L2(L∞(L2)) −→ L2(L2(L2))

xh = (uh, qD
h ) 
−→ Sd(xh) = (∇uh)qD

h . (3.4)

The linear operator Th : Y × L2(L2) × L2(L2(L2)) −→ Xh is defined as follow

(f1, u0, f2, w) 
−→ Th(f1, u0, f2, w) = (ũh, q̃D
h ) ∈ Xh, (3.5)

where for almost all t ∈ (0, T ) and almost all ω ∈ Ω

(ũh, q̃D
h , p̃h) : (ω, t) 
−→ (ũh(t), q̃D

h (ω, t), p̃h(t)) ∈ Vh × Rh × Qh

satisfies ũh(0) = ihu0 and

ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+

ηp

λ

(
IE(q̃D

h ⊗ qS + qS ⊗ q̃D
h ) + f2, ε(vh)

)
−
(
f1, vh

)
+
(
∇ · ũh, sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇sh

)
K

(q̃D
h (t), rh) +

(∫ t

0

(
1
2λ

q̃D
h (k) − (∇ũh(k))qS(k) − w

)
dk, rh

)
= 0, (3.6)

for all (vh, rh, sh) ∈ Vh × Rh × Qh, a.e. in (0, T ) and a.e. in Ω.
It should be noticed that, given y = (f, u0) ∈ Y sufficiently small, the solution x(y) = (u(y), qD(y)) ∈ X of

the continuous Hookean dumbbells problem (2.3)–(2.8) also satisfies a fixed point problem, namely

x(y) = T
(
y, Sc(x(y)), Sd(x(y))

)
. (3.7)

Here the operator T is defined by

T : Y × U × W → X

(f1, u0, f2, w) → T(f1, u0, f2, w) =
def.

(ũ, q̃D), (3.8)

where (ũ, q̃D, p̃) ∈ X ×hµ(W 1,r ∩L2
0) satisfy (2.9)–(2.14). Problem (3.7) is well defined since it has been proved

that for x = (u, qD) ∈ X we have Sc(x) ∈ hµ(W 1,r) and Sd(x) ∈ W (see Rem. 3.6 in [11]). Moreover, since
qD(0) = 0, it follows that Sc(x) = IE(qD ⊗ qD) vanishes at time t = 0 and thus Sc(x) ∈ U for x ∈ X .

The elongation vector q̃D
h can be eliminated from (3.6) and the next Lemma provides the equation satisfied

by ũh. This equation is a discrete approximation of (2.15).

Lemma 3.1. Let γ ≥ 2, 0 < µ < 1/2 and r > 2. Let (f1, u0) ∈ Y , f2 ∈ L2(L2), w ∈ L2(L2(L2)) and let
qS ∈ Lγ(hµ(W 1,r)) be defined by (2.1). Then problem (3.6) admits a unique solution (ũh, q̃D

h ) ∈ Xh. Moreover,
(ũh, p̃h) satisfies

ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+ 2
(
k ∗ ihε(ũh), ihε(vh)

)
+
(
∇ · ũh, sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇sh

)
K

=
(
f1, vh

)
+
(
−ηp

λ
f2 − ihg, ε(vh)

)
, (3.9)

where k ∈ C∞([0, T ]) is defined by k(t) = ηp

λ e−t/λ and where g ∈ Lγ(hµ(W 1,r)) is defined by (2.16) and where
ih is the L2(D) projection onto Rh ⊗ Rh.
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Proof. In order to prove the existence (and uniqueness) of a solution (ũh, q̃D
h ), we will write (3.6) using a basis

of Rh. Hence, let us introduce ϕn
i , n = 1, 2, i = 1, . . . , P an orthonormal basis of Rh where P is the number of

nodes of the mesh. Let q̃D,n
h,i be the components of qD

h and ũn
h,i be those of uh with respect to the given basis

ϕn
i . We have

q̃D
h (ω, t, x) =

2∑
n=1

P∑
i=1

qD,n
h,i (ω, t)ϕn

i (x),

ũh(t, x) =
2∑

n=1

P∑
i=1

un
h,i(t)ϕ

n
i (x).

Choosing vh = 0, sh = 0, rh = ϕn
i in (3.6) we have

q̃D,n
h,i (t) =

∫ t

0

e−
t−s
2λ

(
2∑

k=1

∂ũn
h

∂xk
(s)qS,k(s) + wn, ϕn

i

)
ds, n = 1, 2, i = 1, . . . , P,

a.e. in (0, T ), a.e. in Ω and with w = (w1, w2)T . The definition of the L2(D) projection ih implies for t ∈ [0, T ]

q̃D
h (t) =

∫ t

0

e−
t−s
2λ

(
ih(∇ũh)qS + ihw

)
ds, (3.10)

a.e. in Ω. Going back to (3.6) we find that (ũh, p̃h) satisfies

ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+ 2
(
k ∗ ihε(uh), ε(vh)

)
+
(
∇ · ũh, sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇sh

)
K

=
(
f1, vh

)
+
(
−ηp

λ
f2 − ihg, ε(vh)

)
.

Using the property of the L2-projection

(ihε(ũh), ε(vh) − ihε(vh)) = 0 ∀vh ∈ Vh,

we obtain (3.9). Thus, problem (3.6) is equivalent to (3.9) and (3.10). Existence (and uniqueness) of ũh ∈
C1([0, T ]; Vh) satisfying (3.9) is ensured by a standard argument on Stokes system (see for instance [60]) and
a contraction mapping theorem (see for instance [45] or App. A in [10]). Finally, since qS ∈ Lγ(hµ(W 1,r)),
equation (3.10) ensures the existence (and uniqueness) of q̃D

h ∈ Lγ(C1(Rh)) thus in L2(L∞(Rh)). �

Remark 3.2. We proved in the previous Lemma that q̃D
h belongs to Lγ(C1(Rh)), thus (3.1) can be rewritten

(
∂qD

h

∂t
, rh

)
+
(

1
2λ

qD
h , rh

)
− ((∇uh)(qS + qD

h ), rh) = 0 ∀rh ∈ Rh, a.e. in Ω. (3.11)

We have the following stability and convergence result.

Lemma 3.3. The operator Th is well defined and uniformly bounded with respect to h: there exists C1 > 0 such
that for all h > 0 and for (f1, u0) ∈ Y , f2 ∈ L2(L2), w ∈ L2(L2(L2)) we have

||Th(f1, u0, f2, w)||Xh
≤ C1

(
||f1, u0||Y + ||f2||L2(L2) + ||w||L2(L2(L2))

)
. (3.12)
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Moreover, there exists C2 > 0 such that for all h > 0 and for all (f1, u0, f2, w) ∈ Y × U × W , we have

||(T − Th)(f1, u0, f2, w)||Xh
≤ C2h

(
||f1, u0||Y + ||f2||U + ||w||W

)
. (3.13)

Proof. Let us use the notation (ũh, q̃D
h ) = Th(f1, u0, f2, w), where (ũh, q̃D

h ) ∈ Xh satisfies (3.9). From Lemma 1
in [66], we have ∫ T

0

∫ t

0

e−
t−s

λ (ihε(ũh(s)), ihε(ũh(t))) ds dt ≥ 0. (3.14)

Therefore, choosing vh = uh(t) in (3.9), there exists a constant C independent of f1, f2, g such that

||ũh||L2(H1) ≤ C
(
||f1, u0||Y + ||f2||L2(L2) + ||ihg||L2(L2)

)
, (3.15)

where g ∈ hµ
0 (W 1,r) is defined by (2.16). Moreover since ih is bounded in L2(D), using the continuous embedding

hµ([0, T ]) ⊂> L∞([0, T ]) and Cauchy-Schwarz inequality, we have

‖ihg‖L2(L2) ≤ C
∥∥qS

∥∥
L2(hµ)

‖w‖L2(L2(L2)) (3.16)

where C is a constant independent of h, w, qS and g.
On the other hand from (3.10) we have

∥∥q̃D
h

∥∥
L2(L∞(L2))

≤ C
(
‖ũh‖L2(H1) + ‖w‖L2(L2(L2))

)
, (3.17)

where C is a constant independent of h, f1, u0, f2 and w. Thus (3.16) in (3.15) and (3.17) leads to (3.12). The
proof of (3.13) is provided in Appendix A. �

Our goal is now to prove that (1.9) has a unique solution (uh, qh) converging to that of (2.3)–(2.8). Since qS

does not depend on x ∈ D, it suffices to show that (3.2) has a unique solution (uh, qD
h ) converging to (u, qD)

solution of (1.1)–(1.6). For this purpose, we use, as in [10, 59], an abstract framework and write (1.9) as the
following problem : given y = (f, u0) ∈ Y , find xh = (uh, qD

h ) ∈ Xh such that

Fh(y, xh) = 0, (3.18)

where Fh : Y × Xh → Xh is defined by

Fh(y, xh) = xh − Th

(
y, Sc(xh), Sd(xh)

)
.

In order to prove existence and convergence, we use Theorem 2.1 of [20]. The mapping Fh : Y × Xh → Xh is
C1. We first prove that the scheme is consistent and that DxFh is locally Lipschitz.

Lemma 3.4. Let y = (f, u0) ∈ Y be sufficiently small, let x(y) = (u(y), qD(y)) ∈ X be the solution of (2.3)–(2.8).
Then, there exists a constant C1 such that for all 0 < h < 1, for all y ∈ Y we have

‖Fh(y, ihx(y))‖Xh
≤ C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
. (3.19)

Moreover, there exists a constant C2 such that for all h > 0, for all y ∈ Y , for all z ∈ Xh we have

‖DxFh(y, ihx(y)) − DxFh(y, z)‖L(Xh) ≤
C2

h
‖ihx(y) − z‖Xh

. (3.20)
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Proof. From the definition of Fh we have

Fh(y, ihx) = ihx − Th

(
y, Sc(ihx), Sd(ihx)

)
= (ihx − x) + Th(0, 0, Sc(x) − Sc(ihx), Sd(x) − Sd(ihx)) + (T − Th)(y, Sc(x), Sd(x))

so that,

1
3
‖Fh(y, ihx)‖2

Xh
≤ ‖ihx − x‖2

Xh
+ ‖Th(0, 0, Sc(x) − Sc(ihx), Sd(x) − Sd(ihx))‖2

Xh

+ ‖(T − Th)(y, Sc(x), Sd(x))‖2
Xh

.

Using standard interpolation results for the first term of the right hand side, Lemma 3.3 for the second and
third terms, it follows that

‖Fh(y, ihx)‖2
Xh

≤ C
(
h2 ‖x‖2

X + ‖Sc(x) − Sc(ihx)‖2
L2(L2) + ‖Sd(x) − Sd(ihx)‖2

L2(L2(L2))

+ h2 ‖y‖2
Y + h2 ‖Sc(x)‖hµ(W 1,r) + h2 ‖Sd(x)‖2

L2(hµ(W 1,r))

)
, (3.21)

C being independent of h and y. Proceeding as in Corollary 3.5 in [11], we have

‖Sc(x)‖hµ(W 1,r) + ‖Sd(x)‖L2(hµ(W 1,r)) =
∥∥∥∥ λ

ηp
IE(qD ⊗ qD)

∥∥∥∥
hµ(W 1,r)

+
∥∥(∇u)qD

∥∥
L2(hµ(W 1,r))

≤ C ‖x‖2
X , (3.22)

C being independent of h and y. On the other hand, we also have

Sd(x) − Sd(ihx) = (∇u)qD − (∇ihu)ihqD

= (∇(u − ihu))qD + (∇ihu)(qD − ihqD)

so that, using Cauchy-Schwarz inequality

‖Sd(x) − Sd(ihx)‖L2(L2(L2)) ≤ C ‖x − ihx‖Xh

(∥∥qD
∥∥

L2(L∞(L∞))
+ ‖∇ihu‖L2(L∞)

)
C being independent of h and y. Standard interpolation results lead to

‖x − ihx‖Xh
≤ C1h ‖x‖X

and
‖∇ihu‖L2(L∞) ≤ ‖∇u‖L2(L∞) + ‖∇(u − ihu)‖L2(L∞) ≤ C2 ‖u‖hµ(W 2,r) ,

for 0 < h < 1 and where C1, C2 are constants independent of h and x. Thus we obtain

‖Sd(x) − Sd(ihx)‖L2(L2(L2)) ≤ Ch ‖x‖X , (3.23)

C being independent of h and y. Similarly, we obtain

‖Sc(x) − Sc(ihx)‖L2(L2) ≤ Ch ‖x‖X . (3.24)

Finally, (3.22), (3.23) and (3.24) in (3.21) yields (3.19).
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Let us now prove (3.20). Let z = (v, r) ∈ Xh, let z̃ = (ṽ, r̃) ∈ Xh, we have(
DxFh(y, ihx) − DxFh(y, z)

)
z̃ = −Th

(
0, 0, (DSc(ihx) − DSc(z))z̃, (DSd(ihx) − DSd(z))z̃

)
.

Using Lemma 3.3 we obtain

‖(DxFh(y, ihx) − DxFh(y, z)) z̃‖Xh

≤ C
(
‖(DSc(ihx) − DSc(z))z̃‖L2(L2) + ‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2))

)
, (3.25)

C being independent of h and y. Using Cauchy-Schwarz inequality, there exists a constant C independent of h
and y such that

‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2)) ≤ C
(
‖∇(ihu − v)‖L2(L∞) ‖r̃‖L2(L∞(L2))+‖∇ṽ‖L2(L∞)

∥∥ihqD − r
∥∥

L2(L∞(L2))

)
.

A classical inverse inequality yields

‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2)) ≤
C̃

h

(
‖∇(ihu − v)‖L2(L2) ‖r̃‖L2(L∞(L2))+‖∇ṽ‖L2(L2)

∥∥ihqD − r
∥∥

L2(L∞(L2))

)
,

C̃ being independent of h and y, so that we finally have

‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2)) ≤ C̃

h
‖ihx − z‖Xh

‖z̃‖Xh
. (3.26)

Similarly, we obtain

‖(DSc(ihx) − DSc(z))z̃‖L2(0,T ;L2(D)) ≤ C ‖ihq − r‖L2(L∞(L∞)) ‖r̃‖L2(L∞(L2))

≤ C̃

h
‖ihx − z‖Xh

‖z̃‖Xh
. (3.27)

Inequalities (3.26) and (3.27) in (3.25) yields (3.20). �
Before proving existence of a solution to (3.18) we still need to check that DxFh(y, ihx) is invertible.

Lemma 3.5. Let y = (f, u0) ∈ Y be sufficiently small, let x(y) = (u(y), qD(y)) ∈ X be the solution of (2.3)–(2.8).
Then, for y sufficiently small, for all h ≤ 1 we have∥∥DxFh(y, ihx(y))−1

∥∥
L(Xh)

≤ 2.

Proof. By definition of Fh, we have

DxFh(y, ihx) = I − Th(0, 0, DSc(ihx), DSd(ihx)),

so that we can write

DxFh(y, ihx) = I − Gh with Gh = Th(0, 0, DSc(ihx), DS(ihx)).

If we prove that ‖Gh‖L(Xh) ≤ 1/2 for y sufficiently small, then DxFh(y, ihx) is invertible and

∥∥DxFh(y, ihx)−1
∥∥
L(Xh)

≤ 2.
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Let z = (v, τ) ∈ Xh. Using Lemma 3.3 we have

‖Gh(z)‖Xh
≤ C1

(
‖DSc(ihx)z‖L2(L2) + ‖DSd(ihx)z‖L2(L2(L2))

)
,

C1 being independent of y and h. Proceeding as in the proof of Lemma 3.4, we have

‖DSd(ihx)z‖L2(L2(L2)) ≤ C2

(
‖∇u‖L2(W 1,r) ‖τ‖L2(L∞(L2)) + ‖∇v‖L2(L2)

∥∥qD
∥∥

L2(L∞(W 1,r))

)
,

C2 being independent of y, h and z. Hence,

‖Gh(z)‖Xh
≤ C3 ‖x‖X ‖z‖Xh

,

where C3 is independent of y, h and z. From Lemma 3.10 in [11], the mapping y → x(y) is continuous, thus if
||y||Y is sufficiently small we have ‖x‖X ≤ 1/(2C3) so that

‖Gh(z)‖Xh
≤ 1

2
‖z‖Xh

. �

We can now prove existence of a solution to the finite element scheme (1.9) and convergence to the solution
of (1.1)–(1.6).

Theorem 3.6. Let y = (f, u0) ∈ Y be sufficiently small, let x(y) = (u(y), qD(y)) ∈ X be the solution
of (2.3)–(2.8). Then, there exists ζ > 0 such that for y and h sufficiently small, there exists a unique
xh(y) = (uh(y), qD

h (y)) in the ball of Xh centered at ihx(y) with radius ζh, satisfying

Fh(y, xh(y)) = 0.

Moreover, the mapping y → xh(y) is continuous and there exists C > 0 independent of h and y such that the
following a priori error estimate holds

‖x(y) − xh(y)‖Xh
≤ Ch. (3.28)

In order to prove the above theorem, we will use the following abstract result.

Lemma 3.7 (Thm. 2.1 of [20]). Let Y and Z be two real Banach spaces with norms ‖.‖Y and ‖.‖Z respectively.
Let G : Y → Z be a C1 mapping and v ∈ Y be such that DG(v) ∈ L(Y ; Z) is an isomorphism. We introduce
the notations

ε = ‖G(v)‖Z ,

γ =
∥∥DG(v)−1

∥∥
L(Y ;Z)

,

L(α) = sup
x∈B(v,α)

‖DG(v) − DG(x)‖L(Y ;Z) ,

with B(v, α) = {y ∈ Y ; ‖v − y‖Y ≤ α}, and we are interested in finding u ∈ Y such that

G(u) = 0. (3.29)

We assume that 2γL(2γε) ≤ 1. Then Problem (3.29) has a unique solution u in the ball B(v, 2γε) and, for all
x ∈ B(v, 2γε), we have

‖x − u‖Y ≤ 2γ ‖G(x)‖Z .
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Proof of Theorem 3.6. We apply Lemma 3.7 with Y = Xh, Z = Xh, G = Fh and v = ihx(y). According to
Lemma 3.4 there exists a constant C1 independent of y and h such that

ε = ‖Fh(y, ihx(y))‖Xh
≤ C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
. (3.30)

According to Lemma 3.5, for ‖y‖Y sufficiently small

γ = ‖DxFh(y, ihx(y))‖L(Xh) ≤ 2.

According to Lemma 3.4, there is a constant C2 independent of y and h such that

L(α) = sup
x∈B(ihx(y),α)

‖DFh(ihx(y)) − DFh(x)‖L(Xh) ≤
C2

h
α.

Hence, we have

2γL(2γε) ≤ 2.2
C2

h

(
2.2C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

))

= 16C1C2

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

Using the continuity of the mapping y → x(y) it follows that, for sufficiently small y ∈ Y

‖y‖Y + ‖x(y)‖X + ‖x(y)‖2
X <

1
16C1C2

,

then 2γL(2γε) < 1 and Lemma 3.7 applies. There exists a unique xh(y) in the ball B(ihx(y), 2γε) such that

Fh(y, xh(y)) = 0

and we have

‖ihx(y) − xh(y)‖Xh
≤ 2γε ≤ 4C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
≤ 1

4C2
h. (3.31)

It suffices to use the triangle inequality

‖x(y) − xh(y)‖Xh
≤ ‖x(y) − ihx(y)‖Xh

+ ‖ihx(y) − xh(y)‖Xh
,

and standard interpolation results to obtain (3.28). The fact that the mapping y → xh(y) is continuous is a
direct consequence of the implicit function theorem. �
Corollary 3.8. Under the assumptions of Theorem 3.6, there exists a constant C independent of h and y
such that

sup
t∈[0,T ]

∫
D

∣∣IE (qD(t) ⊗ qD(t) − qD
h (t) ⊗ qD

h (t)
) ∣∣2 ≤ C

∥∥qD − qD
h

∥∥2

L2(L∞(L2))
.

Moreover, there exists a constant C independent of y and h such that

sup
t∈[0,T ]

∫
D

∣∣IE (qD(t) ⊗ qD(t) − qD
h (t) ⊗ qD

h (t)
) ∣∣2 ≤ Ch2.
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Proof. Let us use the notation

qD =
(

qD,1

qD,2

)
, qD

h =
(

qD,1
h

qD,2
h

)
.

It follows, using Cauchy-Schwarz inequalities that

sup
t∈[0,T ]

∫
D

∣∣IE(qD(t) ⊗ qD(t) − qh(t) ⊗ qh(t))
∣∣2 = sup

t∈[0,T ]

∫
D

2∑
i,j=1

IE(qD,i(t)qD,j(t) − qD,i
h (t)qD,j

h (t))2

≤ sup
t∈[0,T ]

∫
D

2∑
i=1

IE((qD,i(t) − qD,i
h (t))2)

2∑
i=1

IE((qD,i(t) + qD,i
h (t))2).

Fubini’s Theorem and an Hölder’s inequality lead to

sup
t∈[0,T ]

∫
D

∣∣IE(qD(t) ⊗ qD(t) − qD
h (t) ⊗ qD

h (t))
∣∣2 ≤

∥∥qD − qD
h

∥∥2

L2(Ω;L∞(0,T ;L2(D)))

∥∥qD + qD
h

∥∥2

L2(Ω;L∞(0,T ;L∞(D)))
.

It remains to prove that the term
∥∥qD + qD

h

∥∥2

L2(Ω;L∞(0,T ;L∞(D)))
is uniformly bounded with respect to h. Since

ih is bounded from L∞(D) to W 1,r(D) we have∥∥qD + qD
h

∥∥
L2(L∞(L∞))

≤
∥∥qD

h − ihqD
∥∥

L2(L∞(L∞))
+ C

∥∥qD
∥∥

L2(L∞(W 1,r))
,

where C is independent of h and y. Using an inverse estimate we have

∥∥qD
h − ihqD

∥∥
L2(L∞(L∞))

≤ C

h

∥∥qD
h − ihqD

∥∥
L2(L∞(L2))

,

where C is independent of h. From (3.31)
∥∥qD

h − ihqD
∥∥

L2(L∞(L2))
≤ Ch so that we obtain

∥∥qD + qD
h

∥∥
L2(L∞(L∞))

≤ C,

with C a constant independent of h, which yields to the first estimate of the Corollary. The second estimate is
a consequence of Theorem 3.6. �

4. A POSTERIORI error estimates

Let us consider again the operator Th : Y × L2(L2) × L2(L2(L2)) → Xh defined by (3.5). A residual based
error estimator for Th is now introduced using the notations of [4]. For any triangle K of the triangulation Th,
let EK be the set of its three edges. For each interior edge l of Th, let us choose an arbitrary normal direction n
and let [.]l denotes the jump of the inside quantity across edge l. For each edge l of Th lying on the boundary
∂D, we set [.]l = 0. The local error estimators corresponding to (3.6) are then defined by

µ2
K(f1, u0, f2, w) =

∫ T

0

{
h2

K

∥∥∥∥ρ∂ũh

∂t
− 2ηs∇ · ε(ũh) + ∇p̃h − 2k ∗ ∇ · ε(ũh) − f1 −

ηp

λ
∇ · f2 −∇ · g

∥∥∥∥
2

L2(K)

+ ‖∇ · ũh‖2
L2(K) +

1
2

∑
l∈EK

|l |
(
‖[2ηsε(ũh)n]l‖2

L2(l) + ‖2k ∗ [ε(ũh)n]l‖2
L2(l)

)

+ ‖ihg − g‖2
L2(K) + ‖k ∗ (ihε(ũh) − ε(ũh))‖2

L2(K)

+
∫

Ω

∥∥∥∥∂q̃D
h

∂t
− 1

2λ
q̃D
h − (∇ũh)qS − w

∥∥∥∥
2

L2(K)

}
+ ‖u0 − ihu0‖2

L2(K) ,
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almost everywhere in [0, T ] × Ω, where (ũh, q̃D
h ) = Th(f1, u0, f2, w) is given by (3.6). We recall that ih denotes

indifferently the L2-projections onto Vh or Mh and that given qS ∈ Lγ(Ω; hµ([0, T ])) and w ∈ Lγ(hµ(W 1,r)),
the function g present in the error estimator µK is defined for t ∈ [0, T ] by

g(t) =
ηp

λ

∫ t

0

e−
t−s
2λ IE

(
w(s) ⊗ qS(t) + qS(t) ⊗ w(s)

)
ds.

Let T : Y ×U ×W → X be the continuous linear operator defined by (3.8). The following a posteriori error
estimate holds for the operator T − Th.

Lemma 4.1. There exists C such that for all h > 0 and for all (f1, u0, f2, w) ∈ Y × U × W we have

‖(T − Th)(f1, u0, f2, w)‖Xh
≤ C

∑
K∈Th

µ2
K(f1, u0, f2, w).

The proof of Lemma (4.1) is provided in Appendix B.
We are now in position to state a posteriori error estimates for the solution of (3.2).

Theorem 4.2. Let y = (f, u0) ∈ Y be sufficiently small and let x(y) = (u(y), qD(y)) ∈ X be the solution
of (2.3)–(2.8). Let h be sufficiently small and let xh(y) = (uh(y), qD

h (y)) ∈ Xh be the solution of (3.2). Then
there exists a constant C independent of h and y such that the following a posteriori error estimate holds

‖x(y) − xh(y)‖Xh
≤ C

( ∑
K∈Th

µ2
K(f, u0, Sc(xh(y)), Sd(xh(y)))

)1/2

.

Proof. We recall that x = x(y) ∈ X and xh = xh(y) ∈ Xh satisfy

x = T(y, Sc(x), Sd(x)), xh = Th(y, Sc(xh), Sd(xh)),

where the operators Sc and Sd are defined by (3.3) and (3.4) respectively. It follows

x − xh = T(y, Sc(x), Sd(x)) − Th(y, Sc(xh), Sd(xh))

= T(0, Sc(x) − Sc(xh), Sd(x) − Sd(xh)) + (T − Th)(y, Sc(xh), Sd(xh)). (4.1)

We now bound the first term in the right hand side of the above equation. Let x = (u, qD) be defined by

x = T(0, Sc(x) − Sc(xh), Sd(x) − Sd(xh)),

then there exists p ∈ L2(0, T ; L2
0(D)) such that

(u, qD) ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D)) × L2(Ω; L∞(0, T ; L2(D)))

and satisfies

ρ
∂u

∂t
− 2ηs∇ · ε(u) + ∇p − ηp

λ
∇ · IE(qD ⊗ qS + qS ⊗ qD)) =

ηp

λ
(Sc(x) − Sc(xh)),

∇ · u = 0,

∂qD

∂t
− 1

2λ
qD − (∇u)qS = Sd(x) − Sd(xh),

u(0) = 0,

qD(0) = 0.
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Recalling that
∫ T

0
(k ∗ ε(u), ε(u)) ≥ 0 (Lem. 1 in [66]) and using a classical method to obtain energy estimate for

the Stokes system, there exists a constant C independent of h, x and xh such that

∥∥u, qD
∥∥

Xh
≤ C

(
‖Sc(x) − Sc(xh)‖L2(L2) + ‖Sd(x) − Sd(xh)‖L2(L2(L2))

)
.

Now we have

Sd(x) − Sd(xh) = (∇u)qD − (∇uh)qD
h

= (∇u − uh)qD + (∇uh)(qD − qD
h ),

so that

‖Sd(x) − Sd(xh)‖L2(L2(L2)) ≤ ‖∇(u − uh)‖L2(L2)

∥∥qD
∥∥

L2(L∞(L∞))
+ ‖∇uh‖L2(L∞)

∥∥qD − qD
h

∥∥
L2(L∞(L2))

≤ ‖x − xh‖Xh

(∥∥qD
∥∥2

L2(L∞(L∞))
+ ‖∇uh‖2

L2(L∞)

)1/2

.

Let us now bound ‖∇uh‖L2(L∞). We have

‖∇uh‖L2(L∞) ≤ ‖∇(u − uh)‖L2(L∞) + ‖∇u‖L2(L∞)

≤ ‖∇(u − ihu)‖L2(L∞) + ‖∇(ihu − uh)‖L2(L∞) + ‖∇u‖L2(L∞) ,

where ih is the L2-projection onto Vh. Standard interpolation estimates, an inverse estimate, and a Sobolev
imbedding theorem can be used to obtain

‖∇uh‖L2(L∞) ≤ C

(
‖u‖L2(W 2,r) +

1
h
‖∇(ihu − uh)‖L2(L2)

)
,

with C independent of x, xh and h. Using estimate (3.31) we find

‖∇uh‖L2(L∞) ≤ C
(
‖y‖Y + ‖x‖X + ‖x‖2

X

)
so that

‖Sd(x) − Sd(xh)‖L2(L2(L2) ≤ C
(
‖y‖Y + ‖x‖X + ‖x‖2

X

)
C being independent of h, y and x. Similarly, one obtains

‖Sc(x) − Sc(xh)‖L2(L2) ≤ C
(
‖y‖Y + ‖x‖X + ‖x‖2

X

)
.

Thus, we have shown that

‖T(0, Sc(x) − Sc(xh), Sd(x) − Sd(xh))‖Xh
≤ C ‖x − xh‖Xh

(
‖y‖Y + ‖x‖X + ‖x‖2

X

)
, (4.2)

where C is independent of h, y and x.
In order to bound the second term in the right hand side of (4.1), we use Lemma 4.1. There exists a constant

C independent of h, y and x such that for h sufficiently small

‖(T − Th)(f, u0, Sc(xh), Sd(xh))‖Xh
≤ C

( ∑
K∈Th

µ2
K(f, u0, Sc(xh), Sd(xh))

)1/2

.
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Finally, using the above estimate and estimate (4.2) in (4.1) one obtains

‖x − xh‖Xh
≤ C

(
‖x − xh‖Xh

(
‖y‖Y + ‖x‖X + ‖x‖2

X

)
+
∑

K∈Th

µ2
K(f, u0, Sc(xh(y)), Sd(xh(y)))

)
.

From the continuity of the mapping y 
→ x(y) we conclude the proof for y ∈ Y sufficiently small. �

5. Numerical results

Let (u, q) be the solution of (1.1)–(1.6), let (uh, qh) be the solution of (1.9). According to Theorem 3.6 and
Corollary 3.8, our goal is now to check numerically that

(∫ T

0

‖∇(u − uh)‖2
L2(D)

)1/2

+ sup
0≤t≤T

‖IE(q ⊗ q) − IE(qh ⊗ qh)‖L2(D) = O(h),

for a simple test case. For this purpose we consider the fully discretized scheme corresponding to (1.9). Then,
we check convergence with respect to the mesh size h when the error due to the time step and that due to the
Monte Carlo method is negligible.

Following [13,18], we use equilibrium control variates in order to reduce the variance due to the Monte Carlo
method. This corresponds to computing u, p, q and qS (the so-called control variable corresponding to the
dumbbells elongations at equilibrium) such that

dq −
(

(∇u)q − 1
2λ

q

)
dt − 1√

λ
dB = 0,

dqS +
1
2λ

qSdt − 1√
λ

dB = 0,

ρ
∂u

∂t
−∇ ·

(
2ηsε(u) +

ηp

λ

(
IE(q ⊗ q) − IE(qS ⊗ qS)

))
+ ∇p = f,

and using the same random numbers for q and qS . The reader should note that qS = qS(t, ω) only. Let P be
the number of mesh vertices, ϕi, i = 1, .., P , be the usual hat functions attached to the vertices. Let N be the
number of time steps, let τ = T/N be the time step, tn = nτ , n = 0, ..., N . Finally, let J be the number of
realizations of the Monte-Carlo method. At time t = 0, we set the initial dumbbells elongations

q0
h,j(x) =

P∑
i=1

q0
j ϕi(x) ∀x ∈ D,

where the two components of q0
j , j = 1, ..., J , are independent N (0, 1) random variables. We also set the

initial control variates qS,0
j to the same random variables, that is qS,0

j = q0
j , j = 1, ..., J , and the initial velocity

u0
h = ihu0 ∈ Vh. Then, for n = 0, ..., N − 1, we proceed as follows. Assume that un

h ∈ Vh, qn
h,j ∈ Rh, j = 1, ..., J ,

and that the random variables qS,n
j , j = 1, ..., J , are known. We first compute un+1

h ∈ Vh and pn+1
h ∈ Qh

such that

ρ

(
un+1

h − un
h

τ
, vh

)
+ 2ηs

(
ε
(
un+1

h

)
, ε(vh)

)
−
(
pn+1

h ,∇ · vh

)
+
(
∇ · un+1

h , sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇pn+1

h ,∇sh

)
K

=
(
f(tn+1), vh

)
− ηp

λ

⎛
⎝ 1

J

J∑
j=1

(
qn
h,j ⊗ qn

h,j − qS,n
j ⊗ qS,n

j

)
, ε(vh)

⎞
⎠ ,
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for all (vh, rh) ∈ Vh × Rh. Then, the dumbbells elongations are updated

(
1 +

τ

2λ

)
(qn+1

h,j , rh) =
(
qn
h,j, rh

)
+ τ(∇un+1

h qn
h,j , rh) +

√
τ

λ
Bn

j ,

(
1 +

τ

2λ

)
qS,n+1
j = qS,n

j +
√

τ

λ
Bn

j .

Here the two components of Bn
j , j = 1, ..., J , are independent N (0, 1) random variables. As usual, the mass

matrices are lumped so that the computation of qn+1
h,j becomes explicit. Following the theoretical results of [38]

(one-dimensional shear flow) and the numerical results reported in [13], it is expected that

(
N∑

n=0

τ‖∇(u(tn) − un
h)‖2

L2(D)

)1/2

+ max
0≤n≤N

∥∥∥∥∥∥IE(q(tn) ⊗ q(tn)) − 1
J

J∑
j=1

qn
h,j ⊗ qn

h,j

∥∥∥∥∥∥
L2(D)

= O

(
h + τ +

1√
J

)
.

Therefore, when τ = O(h2) and J = O(h−4), then the error due to time discretization and the error due to the
Monte Carlo method should be negligeable, so that O(h) convergence should be observed.

The following simple test case is considered. Let D = (0, 1)2 be the unit square, the velocity field u is defined by

u(x1, x2) =
(

u1(x2) = ex2

u2(x1) = ex1

)
∀(x1, x2) ∈ D.

Setting

σ(x1, x2, t) =
(

σ11 σ12

σ12 σ22

)
,

the simplified Oldroyd-B constitutive relationship for the extra-stress σ – equation (0.5) without the convective
term – becomes

σ11 + λ

(
∂σ11

∂t
− 2(u1)′σ12

)
= 0,

σ12 + λ

(
∂σ12

∂t
− (u2)′σ11 − (u1)′σ22

)
= ηp((u1)′ + (u2)′),

σ22 + λ

(
∂σ22

∂t
− 2(u2)′σ12

)
= 0.
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Choosing σ(0) = 0, a simple but tedious calculation yields to the following formula for the extra-stress

σ11 = ηp
(u1)′ + (u2)′

1 − 4λ2(u1)′(u2)′

(
2λ(u1)′ − 1

2

√
(u1)′

(u2)′

(
(1 + 2λ

√
(u1)′(u2)′)e−

t
λ (1−2λ

√
(u1)′(u2)′)

− (1 − 2λ
√

(u1)′(u2)′)e−
t
λ (1+2λ

√
(u1)′(u2)′)

))
,

σ12 = ηp
(u1)′ + (u2)′

1 − 4λ2(u1)′(u2)′

(
1 − 1

2

(
(1 + 2λ

√
(u1)′(u2)′)e−

t
λ (1−2λ

√
(u1)′(u2)′)

+ (1 − 2λ
√

(u1)′(u2)′)e−
t
λ (1+2λ

√
(u1)′(u2)′)

))
,

σ22 = ηp
(u1)′ + (u2)′

1 − 4λ2(u1)′(u2)′

(
2λ(u2)′ − 1

2

√
(u2)′

(u1)′

(
(1 + 2λ

√
(u1)′(u2)′)e−

t
λ (1−2λ

√
(u1)′(u2)′)

− (1 − 2λ
√

(u1)′(u2)′)e−
t
λ (1+2λ

√
(u1)′(u2)′)

))
,

whenever λ < 1/
√

4 max |(u1)′(u2)′| = 1
2e � 0.184. Using (0.4), that is

σ11 =
ηp

λ

(
IE(q1q1) − 1

)
, σ12 =

ηp

λ

(
IE(q1q2)

)
, σ22 =

ηp

λ

(
IE(q2q2) − 1

)
,

where q = ( q1

q2 ), we therefore obtain explicit formula for IE(q1q1), IE(q1q2) and IE(q2q2).

The viscosities are ηs = ηp = 1, the elastic relaxation time is λ = 0.1 and the GLS stabilization parameter
in (1.9) is α = 0.01. In Table 1, we have reported the error for the velocity and extra-stress defined by

eui =

(
N∑

n=0

τ‖∇(ui(tn) − ui,n
h )‖2

L2(D)

)1/2

i = 1, 2,

eσkl =
ηp

λ
max

0≤n≤N

∥∥∥∥∥∥IE
(
qk(tn)ql(tn)

)
− 1

J

J∑
j=1

qk,n
h,j ql,n

h,j

∥∥∥∥∥∥
L2(D)

k, l = 1, 2,

where we have set

un
h =

(
u1,n

h

u2,n
h

)
and qn

h,j =

(
q1,n
h,j

q2,n
h,j

)
.

The results reported in Table 1 are given with two digits. They correspond to averages over 30 runs. The
95% confidence intervals are reported that is average value ± twice the root mean square. Clearly, the error
is O(h) which corresponds to theoretical results. It should be noted that the memory required to perform the
last computation corresponding to the last row in Table 1 is 1.7 Gb (400 vertices times 256 000 dumbbells thus
400× 2× 256 000× 8 = 1.64 Gb). Therefore, performing a computation with a 40× 40 mesh and 16 times more
dumbbells would require more than 64 Gb memory. This is possible only with a parallel, distributed memory
machine and is not within the scope of this contribution.
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Table 1. Error with respect to mesh size h, with 95% confidence intervals corresponding to 30 runs.

Mesh h τ N J eu1 eu2 eσ11 eσ12 eσ22

5 × 5 0.2 0.01 50 1000 0.073 ± 0.000 0.073 ± 0.000 0.36 ± 0.18 0.46 ± 0.17 0.36 ± 0.17

10 × 10 0.1 0.0025 200 16000 0.037 ± 0.000 0.037 ± 0.000 0.13 ± 0.04 0.19 ± 0.03 0.13 ± 0.03

20 × 20 0.05 0.000625 800 256000 0.018 ± 0.000 0.018 ± 0.000 0.061 ± 0.006 0.089 ± 0.003 0.060 ± 0.005
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Appendix A. Proof of (3.13) in Lemma 3.3

Let

eu = ũ − ũh = Πu + Cu, Πu = ũ − ihũ, Cu = ihũ − ũh,

ep = p̃ − p̃h = Πp + Cp, Πp = p̃ − ihp̃, Cp = ihp̃ − p̃h,

where (ũh, p̃h) solve (3.9) and (ũ, p̃) solve (2.15). Using the triangle inequality we have

‖eu‖L2(H1) ≤ ‖Πu‖L2(H1) + ‖Cu‖L2(H1) .

Using classical interpolation results, we obtain

‖Πu‖L2(H1) ≤ Ch ‖ũ‖L2(H2) .

We now estimate ‖Cu‖L2(H1). The solution of (2.15) satisfies

ρ
(∂ũ

∂t
, vh

)
+ 2ηs

(
ε(ũ), ε(vh)

)
−
(
p̃,∇ · vh

)
+ 2
(
k ∗ ε(ũ), ε(vh)

)
−
(
f1, vh

)
+
(
∇ · ũ, sh

)
+
(ηp

λ
f2 − g, ε(vh)

)
= 0

for all (vh, sh) ∈ Vh × Qh. Subtracting (3.9) to the above equation, it follows that

ρ
(∂eu

∂t
, vh

)
+ 2ηs

(
ε(eu), ε(vh)

)
−
(
ep,∇ · vh

)
+ 2
(
k ∗ (ε(ũ) − ihε(ũh)), ε(vh)

)
+
(
∇ · eu, rh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇ep −∇p̃,∇rh

)
K
−
(
g − ihg, ε(vh)

)
= 0, (A.1)

for all (vh, rh) ∈ Vh×Qh. On the other hand, from the definition of ih (the L2 projection onto the finite element
spaces), Cu and Πu, we have

(
k ∗ ihε(Cu), ihε(Cu)

)
=
(
k ∗ ihε(Cu), ε(Cu)

)
=
(
k ∗ (ε(ũ) − ihε(ũh)) + k ∗ (ihε(ũ) − ε(ũ)) − k ∗ ihε(Πu), ε(Cu)

)
.
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Hence, we obtain

ρ
(∂Cu

∂t
, Cu

)
+2ηs

(
ε(Cu), ε(Cu)

)
−
(
Cp,∇·Cu

)
+2
(
k∗ihε(Cu), ihε(Cu)

)
+
(
∇·Cu, Cp

)
+
∑

K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

= ρ
(∂(eu − Πu)

∂t
, Cu

)
+ 2ηs

(
ε(eu − Πu), ε(Cu)

)
−
(
ep − Πp,∇ · Cu

)
+ 2
(
k ∗ (ε(ũ) − ihε(ũh)), ε(Cu)

)
− 2
(
k ∗ (ε(ũ) − ihε(ũ)), ε(Cu)

)
− 2
(
k ∗ ihε(Πu), ε(Cu)

)
+
(
∇ · (eu − Πu), Cp

)
+
∑

K∈Th

αh2
K

2ηp

(
∇(ep − Πp),∇Cp

)
K

(A.2)

From the definition of ih again, we obviously have(
∂Πu

∂t
, Cu

)
= 0,

so that, using (A.1), (A.2) yields

ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
+
∑

K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

+ 2
(
k ∗ ihε(Cu), ihε(Cu)

)

= −2ηs

(
ε(Πu), ε(Cu)

)
+
(
Πp,∇ · Cu

)
−
(
∇ · (Πu), Cp

)
−
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇Cp

)
K

+
∑

K∈Th

αh2
K

2ηp

(
∇p̃,∇Cp

)
K

+ 2
(
k ∗ (ε(ũ) − ihε(ũ)), ε(Cu)

)
+ 2
(
k ∗ ihε(Πu), ε(Cu)

)
+ (g − ihg, ε(Cu))

= I1 + · · · + I8. (A.3)

It now remains to bound the terms I1, ..., I8 in the above equality. Using Cauchy-Schwarz and Young’s inequal-
ities, we have

I1 = −2ηs

(
ε(Πu), ε(Cu)

)
≤ 2ηs||ε(Πu)||L2(D)||ε(Cu)||L2(D)

≤ 5ηs||ε(Πu)||2L2(D) +
ηs

5
||ε(Cu)||2L2(D).

Similarly, we have

I2 =
(
Πp,∇ · Cu

)
≤ 5

4ηs
||Πp||2L2(D) +

ηs

5
||∇ · Cu||2L2(D)

≤ 5
4ηs

||Πp||2L2(D) +
ηs

5
||ε(Cu)||2L2(D).

An integration by parts yields, since Πu = 0 on ∂D

I3 =
(
∇ · (Πu), Cp

)
= −

(
Πu,∇Cp

)
= −

∑
K∈Th

(
Πu,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

∑
K∈Th

3ηp

αh2
K

||Πu||2L2(K).
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Again, Cauchy-Schwarz and Young’s inequalities yield

I4 = −
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

3αh2

4ηp
||∇Πp||2L2(D)

and

I5 =
∑

K∈Th

αh2
K

2ηp

(
∇p̃,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

3αh2

4ηp
‖∇p̃‖2

L2(D) .

Since k ∈ C∞([0, T ]) ⊂> L∞([0, T ]), using Cauchy-Schwarz and Young’s inequalities yield

I6 = −2
(
k ∗ (ihε(ũ) − ε(ũ)), ε(Cu)

)
≤ 5

ηs
‖k‖2

L∞(0,T ) ‖ihε(ũ) − ε(ũ)‖2
L2(D) +

ηs

5
‖ε(Cu)‖2

L2(D)

and
I7 = −2

(
k ∗ ihε(Πu), ε(Cu)

)
≤ 5

ηs
‖k‖2

L∞ ‖ε(Πu)‖2
L2(D) +

ηs

5
‖ε(Cu)‖2

L2(D) ,

where in the last inequality we used the stability of ih : L2(D) → L2(D). Finally, Cauchy-Schwarz and Young’s
inequalities again yields

I8 = (g − ihg, ε(Cu)) ≤ 5
4ηs

‖g − ihg‖2
L2(D) +

ηs

5
‖ε(Cu)‖2

L2(D) .

The above estimates of I1, ..., I8 in (A.3) yield

ρ
(∂Cu

∂t
, Cu

)
+

1
2
2ηs

(
ε(Cu), ε(Cu)

)
+

1
2

∑
K∈Th

αh2
K

2ηp
(∇Cp,∇Cp)K + 2 (k ∗ ihε(Cu), ihε(Cu))

≤ C

(
||ε(Πu)||2L2(D) + ||Πp||2L2(D) +

∑
K∈Th

1
h2

K

‖Πu‖2
L2(K) + h2||∇Πp||2L2(D) + h2||∇p̃||2L2(D)

)

where C depends only on ρ, ηs, ηp, k and α. Time integration for 0 ≤ s ≤ T yields

ρ

2
‖Cu(s)‖2

L2(D) + ηs

∫ s

0

‖ε(Cu)‖2
L2(D) + 2

∫ s

0

(
(k ∗ ihε(Cu))(s), ihε(Cu(s))

)
ds

≤ ρ

2
‖Cu(0)‖2

L2(D) + C

∫ s

0

(
||ε(Πu)||2L2(D) + ||Πp||2L2(D) + ||Πσ||2L2(D)

+
∑

K∈Th

1
h2

K

‖Πu‖2
L2(K) + h2||∇Πp||2L2(D) + h2||∇p̃||2L2(D).

Using standard interpolation results and (3.14), we obtain

‖ε(Cu)‖2
L2(L2) ≤ Ch2

(
‖ũ‖2

hµ(W 2,r) + ‖p̃‖2
hµ(W 1,r) + ‖∇u0‖2

L2(D) + ‖g‖2
L2(W 1,r(D))

)
,

where C does not depend on h, f1, f2, u0 and g. Then, since

‖g‖L2(W 1,r) ≤ C
∥∥qS

∥∥
L2(Ω;L∞([0,T ])

‖w‖L2(L2(W 1,r)) and ‖∇u0‖L2(D) ≤ C ‖u0‖DAr

we obtain
||ε(Cu)||L2(L2) ≤ Ch

(
||f1, u0||Y + ||f2||U + ||w||W

)
,
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where C does not depend on h, f1, f2, u0 and w. Thus

||ε(eu)||L2(L2) ≤ Ch
(
||f1, u0||Y + ||f2||U + ||w||W

)
. (A.4)

It remains to prove that

∥∥q̃D − q̃D
h

∥∥
L2(L∞(L2))

≤ Ch
(
||y||Y + ||f2||U + ||w||W

)
, (A.5)

where C does not depend on h, f1, f2, u0 and w. The solution (ũ, q̃D) = T(y, f2, w) satisfies for t ∈ [0, T ]

q̃D(t) =
∫ t

0

e−
t−s
2λ

(
(∇ũ)qS + w

)
ds.

Hence, (A.5) follows by substracting (3.10) to the above equation.

Appendix B. Proof of Lemma 4.1

Let (ũ, q̃D) = T(f1, u0, f2, w), where (ũ, q̃D, p̃) is the solution of (2.9)–(2.14) and let (ũh, q̃D
h ) = Th(f1, u0, f2, w),

where (ũh, q̃D
h , p̃h) is the solution of (3.6). Let

eu = ũ − ũh, Πu = eu − iCh eu, ep = p̃ − p̃h, (B.1)

where iCh is the Clément’s interpolant [23]. Using (2.15) it follows

ρ

(
∂eu

∂t
, eu

)
+ 2ηs(ε(eu), ε(eu)) + 2k ∗ (ε(eu), ε(eu))

= (f1 −∇p̃, eu) − (
ηp

λ
f2 + g, ε(eu)) − ρ

(
∂ũh

∂t
, eu

)
− 2ηs(ε(ũh), ε(eu)) − 2k ∗ (ε(ũh), ε(eu)),

where g is defined by (2.16). The decomposition (B.1) leads to

ρ

(
∂eu

∂t
, eu

)
+ 2ηs(ε(eu), ε(eu)) + 2k ∗ (ε(eu), ε(eu))

= (f1 −∇p̃, Πu) − (
ηp

λ
f2 + g, ε(Πu)) − ρ

(
∂ũh

∂t
, Πu

)
− 2ηs(ε(ũh), ε(Πu)) − 2k ∗ (ε(ũh), ε(Πu))

+ (f1 −∇p̃, iCh eu) − (
ηp

λ
f2 + g, ε(iCh eu)) − ρ

(
∂ũh

∂t
, iCh eu

)
− 2ηs(ε(ũh), ε(iCh eu)) − 2k ∗ (ε(ũh), ε(iCh eu)).

Hence, using relation (3.9) and since ∇ · u = 0, we have after reordering the terms

ρ

(
∂eu

∂t
, eu

)
+ 2ηs(ε(eu), ε(eu)) + 2k ∗ (ε(eu), ε(eu))

= −2ηs(ε(ũh), ε(Πu)) + (p̃h,∇ · Πu) − 2k ∗ (ε(ũh), ε(Πu)) − (
ηp

λ
f2 + g, ε(Πu))

+ (f1, Πu) − ρ

(
∂ũh

∂t
, Πu

)
+ (ep,∇ · uh) + (ihg − g, ε(iCh eu)) + 2k ∗ (ihε(ũh) − ε(ũh), ε(iCh eu)).
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We then proceed as in [5, 67], integrate by parts on each triangle K ∈ Th the first four terms in the right hand
side of the above equation and use Cauchy-Schwarz inequalities, interpolation results for Clément’s interpolant
to obtain

ρ

(
∂eu

∂t
, eu

)
+ 2ηs(ε(eu), ε(eu)) + 2k ∗ (ε(eu), ε(eu))

≤ C

( ∑
K∈Th

µ2
K(f1, u0, f2, w)

)1/2 (
‖ep‖L2(D) + ‖ε(eu)‖L2(D)

)
,

where C is a constant only depending on the physical domain D. Then, a time integration and Young inequalities
lead to

1
2
‖eu(T )‖2

L2(D) + ηs ‖ε(eu)‖2
L2(L2) +

∫ T

0

2k ∗ ‖ε(eu)‖2
L2(D) ≤ C

∑
K∈Th

µ2
K(f1, u0, f2, w) +

1
2
‖ep‖2

L2(L2) , (B.2)

where C is a constant independent of h.
In order to estimate the last term of the right hand side, let us consider w ∈ H1(0, T ; H−1(D))∩L2(0, T ; H1(D))

and r ∈ L2(0, T ; L2(D)) a solution of the problem

−ρ

(
∂w

∂t
, v

)
+ 2ηs(ε(w), ε(v)) + 2(k ∗ ε(w), ε(v)) − (r,∇ · v) + (r,∇ · w) = (ep, v), (B.3)

for all (v, r) ∈ H1
0 (D) × L2(D). Recalling that

∫ T

0
(k ∗ ε(w), ε(w))) ≥ 0 (Lem. 1 in [66]) and since∫ T

0
(k ∗ ε(eu), ε(w)) ≤ ‖k‖L∞(0,T ) T ‖ε(eu)‖L2(L2) ‖ε(w)‖L2(L2), there exists a constant Cd independent of (w, r)

and ep such that

ρ

∥∥∥∥∂w

∂t

∥∥∥∥
L2(H−1)

+ ρ ‖w(0)‖L2(D) + 2ηs ‖ε(w)‖L2(L2) + 2 ‖r‖L2(L2) ≤ Cd ‖ep‖L2(L2) . (B.4)

Thus, choosing v ≡ 0, r = ep in (B.3) and after time integration we have

‖ep‖2
L2(L2) =

∫ T

0

(ep,∇ · w),

so that equations (2.15), (3.9) lead to

‖ep‖2
L2(L2) = 2ηs

∫ T

0

(ε(uh), ε(Πw)) + 2ηs

∫ T

0

k ∗ (ε(uh), ε(Πw)) −
∫ T

0

(ph,∇ · Πw) +
(ηp

λ
f2 + g, ε(Πw)

)

+
∫ T

0

(
ρ
∂uh

∂t
− f, Πw

)
+
∫ T

0

(
ρ
∂eu

∂t
, w

)
+ 2ηs

∫ T

0

(ε(eu), ε(w)) + 2
∫ T

0

(k ∗ ε(eu), ε(w))

−
∫ T

0

(
ihg − g, ε

(
iCh w

))
− 2k ∗ (ihε(uh − ε(uh)) , ε

(
iCh w

)
).

where Πw = w − iCh w and iCh is the Clément’s interpolant [23]. We then integrate by parts on each triangle
K ∈ Th the first four terms in the right hand side of the above equation, use Cauchy-Schwarz and (B.4)
inequalities to obtain

‖ep‖2
L2(L2) ≤ C

∑
K∈Th

µ2
K(f1, u0, f2, w) +

∫ T

0

(ρ
∂eu

∂t
, w) + 2ηs

∫ T

0

(ε(eu), ε(w)) + 2
∫ T

0

(k ∗ ε(eu), ε(w)),
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where C is a constant only depending on D. Integrating by parts the second term in the right hand side, using
equation (B.3) and estimate (B.4), we obtain

‖ep‖2
L2(L2) ≤ C

∑
K∈Th

µ2
K(f1, u0, f2, w) + Cd ‖ep‖L2(L2) (‖∇ · eu‖L2(L2) + ‖eu(0)‖2

L2(D)).

Since ∇ · u = 0, a Young inequality implies

‖ep‖2
L2(L2) ≤ C

∑
K∈Th

µ2
K(f1, u0, f2, w).

The above estimate coupled with (B.2) leads to

‖ε(eu)‖2
L2(L2) ≤ C

∑
K∈Th

µ2
K(f1, u0, f2, w), (B.5)

where C is a constant independent of (f1, u0, f2, w), (ũ, q̃D, p̃) and (ũh, q̃D
h , p̃h).

It remains to prove the a posteriori estimate for eq = q̃D − q̃D
h where q̃D satisfies (2.11) and q̃D

h satisfies (3.6).
We have (

∂eq

∂t
, eq

)
+

1
2λ

(eq, eq) = −
(

∂q̃D
h

∂t
+

1
2λ

eq − (∇ũh)qS , eq

)
+ (∇(ũh − ũ), eq).

Time integration, Cauchy-Schwarz inequalities and estimate (B.5) conclude the proof.

Appendix C. Regularity of the Ornstein-Uhlenbeck process

Let a ≥ 0, b 
= 0, c be three constants and T > 0 be the final time. In this appendix, it will be proved
that given W the Brownian motion and q0 ∼ N (0, c2) an initial condition independent of W , the solution
q : Ω × (0, T ) → R of

dq = −aqdt + bdW, q(0) = q0, (C.1)

satisfies
q ∈ Lγ(Ω; hµ([0, T ]; R)) (C.2)

for all 1 < γ < ∞ and 0 < µ < 1/2. The proof proposed in this appendix follows the ideas of Theorem 5.20
in [24], where the case of linear stochastic equations in infinite dimensions is treated.

We first note that, in order to prove (C.2), it suffices to show that

q ∈ C1/2([0, T ]; Lγ(Ω)), (C.3)

for all 1 < γ < ∞. Indeed, using the Kolmogorov criterion (see for instance [63], Thm. 2.1), we know that if q
satisfies (C.3) then we have

q ∈ Lγ(Ω; C1/2−1/γ−ε([0, T ])),

for all 1 < γ < ∞ and 0 < ε ≤ 1/2 − 1/γ. Since for 0 < µ′ < µ < 1 we have that hµ([0, T ]) ⊂ Cµ′
([0, T ])

(see [54]), thus we find that if q satisfies (C.3), then q satisfies (C.2) for all 1 < γ < ∞, 0 < µ < 1/2.
We now prove (C.3). Let us recall that

‖q‖C1/2(Lγ) = sup
t∈[0,T ]

‖q(t)‖Lγ + sup
t,s∈[0,T ]

t�=s

‖q(t) − q(s)‖Lγ

|t − s |1/2
·
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Let 1 < γ < ∞. Consider the first term in the right hand side of the above equation. From [42], we know that
the solution q of (C.1) satisfies for t, s ∈ [0, T ]

IE(q(t)) = 0, Cov(q(t), q(s)) =
(

c2 +
b2

2a

(
e2a min(t,s) − 1

))
e−a(t+s), (C.4)

when a > 0 (note that IE(q(t)) = 0, Cov(q(t), q(s)) = c2 + b2 min(t, s) when a = 0). Let m ≥ 1 be an integer
such that γ ≤ 2m. By using Hölder’s inequality and since P(Ω) = 1, it follows

‖q(t)‖Lγ ≤ ‖q(t)‖L2m .

Since q is a Gaussian process, using integrations by parts there exists a constant C only depending on γ, a, b
and c such that

‖q(t)‖Lγ ≤ C ‖q(t)‖L2 .

Using (C.4) and since for x < 0, 1 − ex < |x |, we obtain for t ∈ [0, T ]

‖q(t)‖Lγ ≤ C
√

c2 + b2T , (C.5)

and
sup

t∈[0,T ]

‖q(t)‖Lγ < ∞. (C.6)

The same arguments can be applied to prove that

sup
t,s∈[0,T ]

t�=s

‖q(t) − q(s)‖Lγ

|t − s |1/2
< ∞. (C.7)

Indeed, by using Hölder’s inequality it follows that for t, s ∈ [0, T ]

‖q(t) − q(s)‖Lγ ≤ ‖q(t) − q(s)‖L2m ,

where m ≥ 1 is an integer such that γ ≤ 2m. Again, q(t) − q(s) is a Gaussian process and we have

‖q(t) − q(s)‖Lγ ≤ C ‖q(t) − q(s)‖L2 = C
(
‖q(t)‖2

L2 + ‖q(s)‖2
L2 − 2Cov(q(t), q(s))

)1/2

,

where C is a constant only depending on γ, a, b and c. Using again (C.4) and since 1 − ex < |x | for x < 0, a
simple but tedious calculation yields for t, s ∈ [0, T ]

‖q(t) − q(s)‖Lγ ≤ C
(
c2(e−2as + e−2at) + b2(1 + e−2a min(s,t))

)1/2

|t − s |1/2
,

and (C.7) follows. The estimates (C.6) and (C.7) show that q ∈ C1/2([0, T ]; Lγ(Ω)), for all 1 < γ < ∞.
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[66] P.E. Sobolevskĭı, Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk SSSR 157 (1964) 52–55.
[67] R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309–325.
[68] T. von Petersdorff and Ch. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004)

93–127.
[69] H. Zhang and P. Zhang, Local existence for the FENE-Dumbbells model of polymeric liquids. Arch. Ration. Mech. An. 181

(2006) 373–400.


