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1. Introduction

In this article, consideration is given to the error analysis of a spectral collocation projection of the periodic
Korteweg-de Vries (KdV) equation

∂tu+ u∂xu+ ∂3
xu = 0 (1.1)

on the interval [0, 2π]. It is proved that under appropriate assumptions on the initial data, the convergence of
the numerical approximation is exponentially fast. This stands in contrast with previous results that achieved
spectral convergence, or in other words super-polynomial convergence.

Since it was first derived by Boussinesq [5] and Korteweg and de Vries [20] as a model for water waves in
a channel, the KdV equation has been useful as a model equation in a variety of contexts. The discovery
by Zabusky and Kruskal of the elastic interaction of solitary waves [29], and the subsequent formulation of a
solution algorithm by way of solving an inverse-scattering problem [1,10], excited interest in the equation from
both the mathematical and physical point of view. Along with the nonlinear Schrödinger equation, the KdV
equation has subsequently become a paradigm for nonlinear wave equations featuring competing nonlinear and
dispersive effects.

There have been a number of successful numerical schemes for the KdV equation. An interesting review of
some of these methods is given by Taha and Ablowitz in [26]. Here we want to investigate the equation in the
context of periodic boundary conditions, with a corresponding Fourier-collocation method. Since the discovery
by Cooley and Tukey of a fast algorithm to compute the discrete Fourier transform [8], spectral methods based
on the Fast Fourier Transform have become a popular choice for the spatial discretization of nonlinear partial
differential equations. In particular, in wave propagation problems, spectral projection has been widely used
in connection with the Fourier basis. In order to exploit the operational advantage of the fast algorithm, any
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nonlinear terms in the equations have to be implemented pseudospectrally. That means that even though
derivatives are taken in transform space, nonlinearities are computed in physical space, making it necessary to
perform a transform and an inverse transform at each time step. In this way, the convolution product which
inherently takes O(N2) operations can be computed in O(N logN) operations. For large N , this represents a
significant reduction in total operations.

In the Fourier basis, the pseudospectral method is in fact equivalent to a collocation projection. In connection
with this, it becomes clear that instead of the usual Fourier coefficients û(k, t) of the solution u(x, t), the discrete
Fourier coefficients have to be used for the differentiation. These are given by the sum

w̃N (k, t) =
1

2N + 1

2N∑
j=0

wN (xj , t)e−ikxj , (1.2)

where wN denotes the Fourier-collocation approximation, and xj = 2πj
2N+1 are the collocation points.

The convergence of both the Galerkin and collocation projections of the KdV equation has been proved by
Maday and Quarteroni [23]. In particular, it was shown that for these approximations, spectral convergence is
achieved. This means that for smooth solutions of (1.1), the approximants converge to the solution faster than
any polynomial. It is our purpose in this article to improve the convergence result of Maday and Quarteroni by
showing that if the initial data are analytic in a strip about the real axis, then the convergence rate is actually
exponential. That is, if wN denotes the Fourier-collocation approximation, there exist constants ΛT and σT ,
depending on the initial data and the final time T , such that

sup
t∈[0,T ]

‖u(·, t) − wN (·, t)‖2
L2 ≤ ΛT e−σT N . (1.3)

A similar result for the Fourier-Galerkin method was obtained in a recent article of one of the authors [16].
However, as expounded above, collocation methods are more practical in the implementation, so that it is
imperative to have a proof for the collocation method, as well. The exponential convergence of Galerkin
schemes for parabolic equations has been previously advocated by Ferrari and Titi [11] and proved for the
Ginzburg-Landau equation by Doelman and Titi [9]. In these papers, as is the case in our work, the proofs rely
on existence results in analytic Gevrey classes. The study of the KdV equation in spaces of analytic functions
was initiated by Kato and Masuda in [18]. The problem was subsequently studied by Hayashi [14,15], and more
recently by Bona and Grujić [2] and Bona et al. [3]. In particular, it was proved that the radius σ of spatial
analyticity decreases at most exponentially over time [2].

All these studies have been in the context of the initial-value problem on the real line. For the periodic
problem, existence, uniqueness and continuous dependence on the initial data of solutions to (1.1) have been
studied by Temam [27], Kenig et al. [19], and more recently by Colliander et al. [7], and Kappeler and Topalov
[17]. There does not appear to exist any work on the periodic problem in Gevrey-type function spaces.

Besides the Gevrey space analysis and the convergence results of Maday and Quarteroni already mentioned,
our proof rests on previous work of Tadmor [25], who showed that for functions analytic in a strip, the Galerkin
and collocation projections (to be defined in the next section) converge exponentially fast. This fact, combined
with the estimates on solutions of the KdV equation provided in [2] and some techniques used by Maday and
Quarteroni [23] will yield exponential convergence of the collocation projection of the KdV equation. In the
present work, only a spatial discretization is considered, so that the resulting semi-discrete equation is a system
of ordinary differential equations. Though time discretization is not addressed here, it goes without saying that
this is also very active field, and time integration schemes for the KdV equation abound.

In the next section, the Galerkin and collocation projections of functions in Gevrey spaces will be discussed,
and a version of Tadmor’s theorem [25] proved. In Section 3, an estimate on the Gevrey norm of the solution
u of (3.1) with periodic boundary conditions will be established. Finally, in Section 4, we put together all the
pieces to prove the estimate (1.3). To close the introduction, we will introduce notation to be used throughout.
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To quantify the domain of analyticity, we use the class of periodic Gevrey spaces as introduced by Foias and
Temam in [12]. Here we follow the notation of Ferrari and Titi [11]. For σ ≥ 0 and s ≥ 0, we define the Gevrey
norm ‖ · ‖Gs,σ by

‖f‖2
Gσ,s

=
∑
k∈Z

(1 + |k|2)se2σ
√

1+|k|2 |f̂(k)|2,

where the Fourier coefficients f̂(k) of the function f , periodic on the interval [0, 2π] are defined by

f̂(k) =
1
2π

∫ 2π

0

e−ikxf(x) dx.

A Paley-Wiener type argument shows that functions in the space Gσ,s are analytic in a strip of width 2σ about
the real axis. Note that by setting σ equal to zero, we recover the usual periodic Sobolev spaces Hs. These
norms are written as

‖f‖2
Hs =

∑
k∈Z

(1 + |k|2)s|f̂(k)|2.

In particular, for σ = 0 and s = 0, the space L2(0, 2π) appears. For simplicity, the L2-norm is written without
any subscript, so that ‖f‖ = ‖f‖H0 . In the sequel, we will often use the inner product on this space, given by

(f, g) =
∫ 2π

0

f(x)g(x) dx.

We will also have occasion to use the inner product on Gσ,s, given by

(f, g)Gσ,s =
∑
k∈Z

(1 + |k|2)se2σ
√

1+|k|2 f̂(k)ĝ(k).

For functions f ∈ Hs with s > 1
2 , we have the Sobolev inequality, namely

‖f‖L∞ = sup
x

|f(x)| ≤ C ‖f‖Hs

for some constant C. The space of continuous functions from the interval [0, T ] into Hs or Gσ,s is denoted by
C([0, T ], Hs) or C([0, T ], Gσ,s), respectively.

2. Projection and interpolation operators

The subspace of L2(0, 2π) spanned by the set

{
eikx

∣∣∣ k ∈ Z, −N ≤ k ≤ N
}

is denoted by SN . The self-adjoint operator PN denotes the orthogonal projection from L2 onto SN , defined by

PNf(x) =
∑

−N≤k≤N

eikxf̂(k).

Observe that PN may also be characterized by the property that, for any f ∈ L2, PNf is the unique element in
SN such that ∫ 2π

0

(PNf − f)φdx = 0,
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for all φ ∈ SN . Using a straightforward calculation, the following inequality can be proved.

‖f − PNf‖Hr ≤ N r−s‖f‖Hs , (2.1)

for 0 ≤ r ≤ s. Moreover, it appears immediately that when f ∈ Gσ,s, the inequality

‖f − PNf‖Hr ≤ N r−se−σN‖f‖Gσ,s (2.2)

holds for 0 ≤ r ≤ s and σ > 0. The proof is given by the following computation.

‖f − PNf‖2
Hr ≤

∑
|k|≥N

(1 + |k|2)r|f̂(k)|2

≤ sup
|k|≥N

{
1

(1 + |k|2)s−r
e−2σk

} ∑
|k|≥N

e2σ|k|(1 + |k|2)s|f̂(k)|2

≤
(

1
Ns−r

e−σN

)2

‖f‖2
Gσ,s

.

Finally note the inverse inequality
‖φ‖Hr ≤ (2N)r−s ‖φ‖Hs , (2.3)

which holds for r > s ≥ 0 and φ ∈ SN . The proof of this estimate proceeds along the lines of the proof of (2.2).
We now turn to the interpolation operator IN . Let the collocation points be xj = 2πj

2N+1 for j = 0, 1, ..., 2N .
Then, given a continuous periodic function u, INu is the unique element in SN , such that INu(xj) = u(xj) for
j = 0, 1, ..., 2N . Note that SN is an invariant subspace with respect to IN . In other words, we have

INPN = PN . (2.4)

In connection with the interpolation operator IN , we also consider the discrete semi-inner product on the space
of continuous periodic function on [0, 2π], defined as

(φ, ψ)N =
2π

2N + 1

2N∑
j=0

φ(xj)ψ(xj). (2.5)

Recall that for functions φ, ψ ∈ SN , this inner product is equal to the L2-inner product, as shown by the identity

(φ, ψ)N = (φ, ψ). (2.6)

It follows immediately from (2.5), (2.6), and the definition of IN that

(f, g)N = (INf, INg) (2.7)

for any two functions f, g ∈ L2. The corresponding semi-norm is defined by

‖f‖2
N = (f, f)N .

An estimate corresponding to (2.1) also holds for the interpolation operator. It has been proved in [21,24] that
when f ∈ Hs with s ≥ 1, and 0 ≤ r ≤ s, then there exists a constant CI , such that

‖f − INf‖r ≤ CIN
r−s‖f‖s. (2.8)
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Moreover, when f ∈ Gσ,s for some σ > 0 and s > r, then the difference between f and its interpolant INf is
exponentially decreasing. This is established in the following lemma.

Lemma 2.1. Let σ > 0 and s > r ≥ 0. For any f ∈ Gσ,s, the estimate

‖f − INf‖Hr ≤ CIN
r−se−σN ‖f‖Gσ,s

, (2.9)

holds for some constant CI which only depends on σ, r and s.

Proof. The function INf can be expressed in terms of the discrete Fourier coefficients of f as

INf(x) =
∑

|p|≤N

f̃(p)eipx,

where

f̃(p) =
1

2N + 1

2N∑
j=0

f(xj)e−ipxj . (2.10)

The discrete Fourier coefficients f̃(p) are related to the usual Fourier coefficients f̂(k) by the aliasing relation

f̃(p) =
∑
k∈Z

f̂
(
p+ (2N + 1)k

)
.

In order to prove (2.9), it is convenient to split the norm into two parts.

‖f − INf‖2
Hr =

∑
|p|≤N

(1 + |p|2)r
∣∣∣ ∑

k �=0

f̂(p+ (2N + 1)k)
∣∣∣2 +

∑
|p|>N

(1 + |p|2)r|f̂(p)|2. (2.11)

An application of the Cauchy-Schwarz inequality yields

∣∣∣ ∑
k �=0

f̂(p+ (2N + 1)k)
∣∣∣2 ≤

∑
j=p+(2N+1)k

k �=0

(1 + |j|2)−se−2σ
√

1+|j|2 ∑
j=p+(2N+1)k

k �=0

(1 + |j|2)se2σ
√

1+|j|2 |f̂(j)|2,

where the sums on the right are over k ∈ Z\{0} and j is a function of k. Let us estimate the first factor appearing
on the right-hand side, keeping p fixed for the moment. For any j that can be written as j = p + (2N + 1)k
with |p| ≤ N and k �= 0, we have |j| ≥ (2 |k| − 1)N ≥ 0. Hence,

∑
j=p+(2N+1)k

k �=0

(1 + |j|2)−se−2σ
√

1+|j|2 ≤
∑
k �=0

(
1 + (2 |k| − 1)2N2

)−s
e−2σ

√
(1+(2|k|−1)2N2)

≤
∑
k �=0

N−2se−2σ(2|k|−1)N

= 2N−2se2σN
∑
k>0

e−4σkN

≤ C1N
−2se−2σN ,
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where the constant C1 = 2
1−e−4σ only depends on σ. Continuing the estimate in (2.11), we sum over |p| ≤ N

to obtain∑
|p|≤N

(1 + |p|2)r
∣∣∣ ∑

k �=0

f̂(p+ (2N + 1)k)
∣∣∣2 ≤ C1(1 + |N |2)r

∑
j=p+(2N+1)k

|p|≤N
k �=0

N−2se−2σN (1 + |j|2)se2σ
√

1+|j|2 |f̂(j)|2.

In the sum above, for a given j ∈ Z, there exists at most one couple (p, k) with |p| ≤ N such that j = p+(2N+1)k.
Hence, there appears

∑
|p|≤N

(1 + |p|2)r
∣∣∣ ∑

k �=0

f̂(p+ (2N + 1)k)
∣∣∣2 ≤ C1(1 +N2)rN−2se−2σN ‖f‖2

Gσ,s
.

Finally, the last term in (2.11) can be estimated as in the proof of (2.2). �
The error estimate in Lemma 2.1 will be key in establishing the exponential convergence of the collocation

approximation to a solution of the KdV equation. However it is only applicable if the solution u of (1.1) can be
shown to be bounded in a corresponding Gevrey norm. Obtaining such a bound will be on the agenda in the
next section.

3. Estimates in Gevrey spaces

It will be now shown that if initial data u0 are taken to be analytic in a strip around the real axis, then
for any t, the solution u(·, t) of (1.1) can also be continued analytically to a (possible smaller) strip around the
real axis. The key estimate was proved by Bona and Grujic̀ in the case of the real line [2]. Here we outline a
corresponding proof for the initial-value problem on the interval [0, 2π] with periodic boundary conditions. The
periodic initial value problem associated to equation (1.1) is⎧⎪⎨

⎪⎩
∂tu+ u∂xu+ ∂3

xu = 0, x ∈ [0, 2π] , t ≥ 0,

u(0, t) = u(2π, t), t ≥ 0,

u(x, 0) = u0(x).

(3.1)

As mentioned in the introduction, existence, uniqueness and continuous dependence on the initial data of this
problem in the usual periodic Sobolev classes have been well documented. For our purposes, the following
theorem suffices.

Theorem 3.1. Suppose s ≥ 1, and u0 ∈ Hs. Then there exists a solution u ∈ C([0,∞), Hs) of (3.1). Moreover,
there is a constant κs depending on ‖u0‖s, such that u satisfies the estimate

sup
t∈[0,∞)

‖u(·, t)‖Hs ≤ κs. (3.2)

In order to gain estimates in Gevrey norms, we use a standard approximation procedure based on a Galerkin
projection of the KdV equation. It should be noted here, that the Galerkin procedure is only used as a tool
to obtain existence and estimates for the solution of the KdV equation. The numerical scheme in focus in this
article is the collocation projection of the KdV equation, which is treated in Section 4. The Galerkin projection
of (1.1) is defined as the solution of the equation{ (

∂tuN + 1
2 ∂x(u2

N ) + ∂3
xuN , φ

)
= 0, t ∈ [0, T ],

uN(0) = PNu0,
(3.3)

for all φ ∈ SN . The following theorem was proved by Maday and Quarteroni [23].
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Theorem 3.2. Assume that u0 belongs to Hs, for some s ≥ 2, and u is a solution of (3.1). Then for N
large enough, there exists a solution of (3.3). Moreover, there exists a constant c > 0 independent of N , but
depending on T and ‖u0‖Hs , such that

sup
t∈[0,T ]

‖uN (·, t) − u(·, t)‖H1 ≤ cN2−s. (3.4)

In connection with Theorem 3.1, we can state the following corollary.

Corollary 3.3. Assume that u0 belongs to Hs, for some s > 1, and u is a solution of (3.1). Let 0 ≤ r < s− 1.
Then for N large enough,

sup
t∈[0,T ]

‖uN(·, t)‖Hr ≤ 2κs. (3.5)

Proof. Using the triangle inequality, the inverse inequality (2.3), and the estimates (2.1) and (3.4), it follows
that

‖uN − u‖Hr ≤ ‖uN − PNu‖Hr + ‖PNu− u‖Hr

≤ (2N)r−1‖uN − PNu‖H1 +N r−s‖u‖Hs

≤ (2N)r−1‖uN − u‖H1 + (2N)r−1‖u− PNu‖H1 +N r−sκs

≤ (2N)r−1cN2−s + (2N)r−1N1−sκs +N r−sκs.

Thus it can be seen that

sup
t∈[0,T ]

‖uN(·, t)‖Hr ≤ sup
t∈[0,T ]

‖uN(·, t) − u(·, t)‖Hr + sup
t∈[0,T ]

‖u(·, t)‖Hr

≤ κs + κs

for N large enough. �

The next step is the derivation of a priori estimates in Gevrey norms for each of the approximants uN . As
the estimates turn out to be independent of N , a standard argument will yield estimates on the limit function u.
The main result of this section is the following theorem.

Theorem 3.4. Suppose that u ∈ C([0, T ], Hs) is a solution of (3.3) with initial data u0 ∈ Gσ0,s for some
σ0 > 0 and s > 5

2 . Then u(·, t) extends uniquely to a function in Gσ(t),s with σ(t) given by

σ(t) = σ0e
−ct‖u0‖Gσ0,s e−ct3/2

, (3.6)

for some constant c independent of t. Moreover, for any τ ∈ (0, T ], we have u ∈ C([0, τ ], Gσ(τ),s), and the
estimate

‖u(·, t)‖Gσ(τ),s
≤ ‖u0‖Gσ0,s

+ c
√
t, (3.7)

holds for another constant c independent of t.

Remark 3.5. Note that exponential decay of the radius of analyticity is not an optimal result, and could lead
to the perception of non-analyticity in a short time. Recently, the algebraic decrease of the radius of analyticity
has been proved for the KdV equation on the real line [3]. While it is very likely that a similar result holds for
periodic boundary conditions, it has not yet been established.

The proof of the theorem builds on the following auxiliary results which can be found in [2, 12, 22].
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Lemma 3.6. Let σ ≥ 0 and s > 1
2 . Then there exists a constant c(s), not depending on σ, such that

‖fg‖Gσ,s
≤ c(s) ‖f‖Gσ,s

‖g‖Gσ,s
, (3.8)

for any f and g in Gσ,s.

Lemma 3.7. Let σ > 0, s > 0 and r > 0. Then there exists a constant c, not depending on σ, s or r, such that

‖f‖Gσ,s
≤ c ‖f‖Hs + c σr ‖f‖Gσ,s+r

,

for any f ∈ Gσ,s+r.

Lemma 3.8. Let σ ≥ 0 and s > 3
2 . There exists a constant c(s), not depending on σ, such that

(u∂xv, v)Gσ,s ≤ c(s) ‖u‖Hs+1 ‖v‖2
Hs + σc(s) ‖u‖Gσ,s+1

‖v‖2
Gσ,s+1/2

,

for u ∈ Gσ,s+1 and v ∈ Gσ,s+1/2.

Proof of Theorem 3.4. To prove the theorem, it is more convenient to work with v = ux. The discrete counter-
part vN satisfies the problem{ (

∂tvN + v2
N + uN∂xvN + ∂3

xvN , φ
)

= 0, t ∈ [0, T ],
vN (0) = PN∂xu0,

(3.9)

for all φ ∈ SN . Note that uN exists on the time interval [0, T ] by Theorem 3.2, and that it is bounded by
Corollary 3.3. Since vN is sought in C([0, T ], SN), this is equivalent to a finite-dimensional system of ordinary
differential equations for the Fourier coefficients v̂N (k, t) of vN (x, t). Short-time existence can be proved using
a standard contraction argument since the nonlinearity clearly satisfies the Lipschitz condition. It is remarked
here that each vN is a member of Gσ,s for all s > 0 and σ > 0, and for all times t where the solution exists.

Taking the function φ(·, t) ∈ SN defined by its Fourier coefficients φ̂(k, t) = (1 + |k|2)s−1e2σ
√

(1+|k|2)v̂N (k, t) as
a test function in (3.9), there appears the equation(

∂tvN + v2
N + uN∂xvN + ∂3

xvN , vN

)
Gσ,s−1

= 0.

Now if σ is allowed to depend on t, it is plain from the definition of vN and the inner product on Gσ,s−1 that

d
dt

(
vN , vN

)
Gσ,s−1

= 2
(
∂tvN , vN

)
Gσ,s−1

+ 2σ̇
(
vN , vN

)
Gσ,s−1/2

.

Since the third derivative operator is skew-symmetric, the equation

1
2

d
dt

(
vN , vN

)
Gσ,s−1

− σ̇
(
vN , vN

)
Gσ,s−1/2

+
(
v2

N , vN

)
Gσ,s−1

+
(
uN∂xvN , vN

)
Gσ,s−1

= 0

appears. Using Cauchy-Schwarz and the previous inequalities, one may now estimate the third and fourth terms
of this equation in order to arrive at the differential inequality

d
dt

‖vN (·, t)‖2
Gσ(t),s−1

− (
σ̇ + c σ ‖vN‖Gσ,s−1

) ‖vN‖2
Gσ,s−1/2

≤ C ‖vN‖3
Hs−1 ,

for two constants c and C. Recall that it was established in Corollary 3.3 that uN (·, t) is bounded in the
Hs-norm for t ∈ [0, T ] . Thus the right hand side of the differential inequality is strictly less than a constant,
say K2. Accordingly, we may write

d
dt

‖vN (·, t)‖2
Gσ(t),s−1

− (σ̇ + cσ ‖vN‖Gσ,s−1
) ‖vN‖2

Gσ,s−1/2
≤ C ‖uN‖3

Hs < K2. (3.10)
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Now define
σ(t) = σ0e

−ct‖∂xu0‖Gσ0,s e−
2
3 cKt3/2

, (3.11)
and note that for t = 0, we have

d
dt

‖vN (·, t)‖2
Gσ(t),s−1

< K2,

so that at least for a short time t ∈ [0, t̃)

‖vN (·, t)‖Gσ(t),s−1
< ‖∂xu0‖Gσ0,s

+K
√
t. (3.12)

Let t̃ be the largest time such that (3.12) is true for all t ∈ [0, t̃). Then, if we assume that t̃ < T , we have

∥∥vN (·, t̃)∥∥
Gσ(t̃),s−1

= ‖∂xu0‖Gσ0,s
+K

√
t̃. (3.13)

For all t ∈ [0, t̃], it follows from (3.11) and (3.12), that

σ̇(t) ≤ −cσ(t) ‖vN (·, t)‖Gσ(t),s−1
,

so that (3.10) implies that d
dt ‖vN (·, t)‖2

Gσ(t),s−1
< K2 and, after integrating,

‖vN (·, t)‖Gσ(t),s−1
< ‖∂xu0‖Gσ0,s

+K
√
t,

for all t ∈ [0, t̃], which contradicts (3.13). Thus we can conclude that (3.12) holds for all t ∈ [0, T ], and
hence ‖uN (·, t)‖Gσ(t),s

< ‖∂xu0‖Gσ0,s
+ K

√
t. Since this estimate is uniform in N , it appears that a compact-

ness argument can be used to conclude that the sequence uN has a subsequence that converges strongly in
C([0, T ], Gσ(T ),s−ε) for any ε > 0. By uniqueness, the limit is a classical solution of (3.3). Moreover, it can
be shown by an elementary argument that the limit function is bounded by the same constant in the space
C([0, T ], Gσ(T ),s). �

All the pieces are now in place to proceed to the proof of the main convergence theorem in the next section.

4. The Fourier-collocation method

The collocation approximation to (3.1) is given by a function wN from [0, T ] to SN , such that{
∂twN + 1

2∂xIN (w2
N ) + ∂3

xwN = 0, t ∈ [0, T ],

wN (0) = INu0.
(4.1)

Thus we assume that the solution is written as the sum

wN (x, t) =
∑

−N≤k≤N

w̃N (k, t)eikx,

where the w̃N (k, t) are the discrete Fourier coefficients of wN (x, t) as defined in (1.2).

Theorem 4.1. Let u be the solution of the periodic initial-value problem (3.1) with initial data u0 ∈ Gσ0,s,
where σ0 > 0 and s > 5

2 , and let T > 0 be given. For N large enough, there exists a unique solution wN of
the finite-dimensional problem (4.1) on the time interval [0, T ]. Moreover, there exists constants ΛT and σT ,
depending only on T and ‖u0‖Gσ0,s

, such that

sup
t∈[0,T ]

‖u(·, t) − wN (·, t)‖ ≤ ΛTN
3−se−σT N . (4.2)
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The remainder of this section is devoted to the proof of this theorem. The short-time existence of a maximal
solution of (4.1) is proved using the contraction mapping principle, and the solution is unique on its maximal
interval of definition, [0, tmN), where tmN is possibly equal to T . Since the argument is standard, the proof is
omitted here. Note that as stated in Theorem 3.1, the standard theory of the KdV equation yields the existence
of a constant κs, such that

sup
t∈[0,T ]

‖u(·, t)‖Hs ≤ κs.

The main ingredient in the proof of Theorem 4.1 is a local error estimate which will be established by the
following lemma.

Lemma 4.2. Let u be the solution of the periodic initial-value problem (3.1) with initial data u0 ∈ Gσ0,s, where
σ0 > 0 and s > 5

2 . Suppose there is a solution wN of (4.1) which exists on the time interval [0, t∗N ] and satisfies
supt∈[0,t∗N ] ‖wN (·, t)‖4 ≤ λ, for some λ > 0. Then there exist two constants σT and ΛT , which only depend on T ,
‖u0‖Gσ,s

and λ, such that

sup
t∈[0,t∗N ]

‖u(·, t) − wN (·, t)‖ ≤ ΛTN
3−se−σT N . (4.3)

Proof. Let wN be a solution of (4.1) which exists on the time interval [0, t∗N ] and satisfies1 supt∈[0,t∗N ] ‖wN (·, t)‖H4

≤ λ. In the remainder of this proof, we will always consider t ∈ [0, t∗N ]. For the sake of readability, the
t-dependence will be suppressed whenever possible. The constant σT is given by (3.6) with t = τ = T . We
denote by Cλ,T a generic constant that depends only on λ, T and ‖u0‖Gσ0,s

but not on N . Using this notation,
(3.7) can be written as

sup
t∈[0,T ]

‖u(·, t)‖GσT ,s
≤ Cλ,T .

Let h = wN − PNu. We apply the projection operator PN to (3.1) and take the scalar product of the resulting
equation with an arbitrary function ψ ∈ SN . We obtain

(PNut, ψ) +
1
2

(
PN∂x(u2), ψ

)
+

(
PN∂

3
xu, ψ

)
= 0. (4.4)

After taking the scalar product with ψ, we subtract (4.1) from (4.4) and, since PN commutes with ∂x, we get

(
∂th+ ∂3

xh+ 1
2∂xIN (w2

N ) − 1
2PN∂x(u2), ψ

)
= 0 (4.5)

for all ψ ∈ SN . For ψ = h, (4.5) yields

(ht, h) − 1
2

(
PN∂x(u2) − ∂xIN (w2

N ), h
)

+
(
∂3

xh, h
)

= 0.

By integrating by parts, one easily checks that
(
∂3

xh, h
)

= 0. Hence,

2 (∂th, h) =
(
∂x(PN (u2) − IN (w2

N )), h
)

=
(
∂x(PN (u2) − IN ((PNu)2)), h

)
+

(
∂xIN ((PNu)2 − w2

N ), h
)

=
(
∂x(PN (u2) − IN ((PNu)2)), h

) − (
IN ((PNu)2) − IN (w2

N ), hx

)
,

after one integration by parts, and

2 (∂th, h) ≤ ‖h‖∥∥PN (u2) − IN ((PNu)2)
∥∥

H1 + ‖hx‖
∥∥IN ((PNu)2 − w2

N )
∥∥ . (4.6)

1As can be anticipated, λ will be chosen to be λ = 2κ4.
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Let us estimate the terms on the right-hand side of (4.6). First note that∥∥IN ((PNu)2 − w2
N )

∥∥ = ‖IN (h(PNu+ wN ))‖
= ‖(h(PNu+ wN ))‖N (see (2.7))

≤ ‖h‖N ‖PNu+ wN‖L∞

= ‖h‖ ‖PNu+ wN‖L∞ ,

because ‖h‖N = ‖h‖ as h ∈ SN , see (2.6). Using the convention we introduced earlier for Cλ,T , the last
inequality reads ∥∥IN ((PNu)2 − w2

N )
∥∥ ≤ Cλ,T ‖h‖ , (4.7)

as ‖PNu‖L∞ ≤ C ‖u‖H1 ≤ Cλ,T (the first inequality corresponding to the Sobolev embedding of H1 into L∞)
and ‖wN‖L∞ ≤ C ‖wN‖H1 ≤ Cλ = Cλ,T . Using the triangle inequality, the first term on the right in (4.6) may
be estimated as∥∥PN (u2) − IN ((PNu)2)

∥∥
H1 ≤ ∥∥PN (u2) − (PNu)2

∥∥
H1 +

∥∥(PNu)2 − IN ((PNu)2)
∥∥

H1 .

Lemma 2.1 yields ∥∥(PNu)2 − IN ((PNu)2)
∥∥

1
≤ CIN

1−se−σN
∥∥(PNu)2

∥∥
Gσ,s

.

Recall Lemma 3.6 which states that Gσ,s is a continuous algebra for s > 1
2 . Accordingly, it follows that

∥∥(PNu)2 − IN ((PNu)2)
∥∥

H1 ≤ CIc(s)N1−se−σT N ‖PNu‖2
Gσ,s

≤ Cλ,TN
1−se−σT N .

Using the triangle inequality again, we have∥∥(PNu)2 − PN (u2)
∥∥

H1 ≤ ∥∥(PNu)2 − u2
∥∥

H1 +
∥∥u2 − PN (u2)

∥∥
H1 .

The second term on the right may be estimated using (2.2), so that∥∥u2 − PN (u2)
∥∥

H1 ≤ N1−se−σN
∥∥u2

∥∥
Gσ,s

≤ Cλ,TN
1−se−σT N .

Similarly, it appears that∥∥(PNu)2 − u2
∥∥

H1 ≤ C ‖PNu− u‖H1 ‖PNu+ u‖H1 (H1 is a continuous algebra)

≤ Cλ,TN
1−se−σT N2κ1.

Finally, using the last six inequalities, it is immediate that∥∥PN (u2) − IN ((PNu)2)
∥∥

H1 ≤ Cλ,TN
1−se−σT N . (4.8)

Then the inequalities (4.6), (4.7) and (4.8), yield

2 (∂th, h) ≤ Cλ,T ‖h‖ (‖∂xh‖ +N1−se−σT N ).

In conclusion, we obtain the differential inequality

d
dt

‖h‖ ≤ Cλ,T (‖∂xh‖ +N1−se−σT N ). (4.9)
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Our next task is to estimate ‖∂xh‖, which appears on the right-hand side of (4.9). For this purpose, we take
ψ = ∂2

xh in (4.5). Since
(
∂3

xh, ∂
2
xh

)
= 0, we obtain

(∂xth, ∂xh) = −1
2

(
IN (w2

N ) − PN (u2), ∂3
xh

)
, (4.10)

after integrating by parts. Next, we take ψ = 1
2IN (w2

N ) − 1
2PN (u2) in (4.5) and get

1
2

(
∂th, IN (w2

N ) − PN (u2)
)

+
1
2

(
∂3

xh, IN (w2
N ) − PN (u2)

)
+ (∂xψ, ψ) = 0. (4.11)

The last term in (4.11) vanishes. Comparing (4.10) and (4.11), we obtain

2 (∂xth, ∂xh) =
(
∂th, IN (w2

N ) − PN (u2)
)
,

or equivalently
d
dt

‖∂xh‖2 =
(
∂th, IN (w2

N ) − PN (u2)
)
.

An integration with respect to time now yields

‖∂xh(·, t)‖2 − ‖∂xh(·, 0)‖2 =
∫ t

0

(
∂th, IN (w2

N ) − PN (u2)
)
(τ) dτ.

Note also that

(
∂th, IN (w2

N ) − PN (u2)
)

=
(
∂th,w

2
N − PN (u2)

)
N

= (∂th, h(wN + PNu))N +
(
∂th, (PNu)2 − PN (u2)

)
N

=
1
2

(
∂t(h2), (wN + PNu)

)
N

+
(
∂th, (PNu)2 − PN (u2)

)
N
.

Combining the last two identities, and integrating by parts with respect to time leads to the following formula

‖∂xh(·, t)‖2 − ‖∂xh(·, 0)‖2 =
1
2

[(
h2, wN + PNu

)
N

(τ)
]τ=t

τ=0

− 1
2

∫ t

0

(
h2, ∂t(wN + PNu)

)
N

(τ) dτ +
[(
h, (PNu)2 − PN (u2)

)
N

(τ)
]τ=t

τ=0

−
∫ t

0

(
h, ∂t((PNu)2 − PN (u2))

)
N

(τ) dτ. (4.12)

In order to conclude this part of the proof, all terms on the right-hand side of (4.12) have to be estimated. For
the first one, we simply have

| (h2, wN + PNu
)
N
| ≤ ‖wN + PNu‖L∞ ‖h‖2

N

≤ Cλ,T ‖h‖2
, (4.13)

because ‖wN‖L∞ ≤ C ‖wN‖1 ≤ λC = Cλ,T . For the second one, note that

| (h2, ∂t(wN + PNu)
)
N
| ≤ ‖h‖2 ‖∂t(wN + PNu)‖L∞ . (4.14)
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Since

‖∂twN‖H1 =
∥∥∂xIN (w2

N ) + ∂3
xwN

∥∥
H1 , from (4.1),

≤ ∥∥IN (w2
N )

∥∥
H2 + ‖wN‖H4

≤ C
∥∥w2

N

∥∥
H2 + ‖wN‖H4 = Cλ,T ,

and similarly ‖∂tPNwN‖H1 ≤ Cλ,T , the inequality (4.14) implies

(
h2, ∂t(wN + PNu)

)
N

≤ Cλ,T ‖h‖2 . (4.15)

Using the estimate ab ≤ 1
2 (a2 + b2) for a, b ∈ R, it can be inferred that

| (h, ∂t((PNu)2 − PN (u2))
)
N
| ≤ 1

2

(
‖h‖2

N +
∥∥∂t((PNu)2 − PN (u2))

∥∥2

N

)
, (4.16)

and that ∥∥∂t((PNu)2 − PN (u2))
∥∥

N
= 2 ‖PN (u)PN (∂tu) − PN (u∂tu)‖N

= 2 ‖IN (PN (u)PN (∂tu)) − PN (u∂tu)‖ , see (2.7) and (2.4)

≤ 2 ‖IN (PN (u)PN (∂tu)) − PN (u)PN (∂tu)‖
+ 2 ‖PN (u)PN (∂tu) − PN (u∂tu)‖

≤ 2N3−se−σT N ‖PN (u)PN (∂tu)‖Gσ,s−3

+ 2 ‖PN (u)PN (∂tu) − PN (u∂tu)‖ . (4.17)

Using (3.8) and (3.1), we get

‖PNuPN (∂tu)‖Gσ,s−3
≤ ‖PN (u)‖Gσ,s−3

‖PN (∂tu)‖Gσ,s−3

≤ ‖PN (u)‖Gσ,s−3

∥∥PN (u∂xu) + PN∂
3
xu

∥∥
Gσ,s−3

≤ ‖u‖Gσ,s−3
(‖u‖Gσ,s−3

‖u‖Gσ,s−2
+ ‖u‖Gσ,s

)

≤ Cλ,T .

One may get a bound of the same type for ‖PN (u)PN (∂tu) − PN (u∂tu)‖ in (4.17) by writing

‖PN (u)PN (∂tu) − PN (u∂tu)‖ ≤ ‖PN (u)PN (∂tu) − PN (u)∂tu)‖ + ‖PN (u)∂tu− u∂tu)‖ + ‖u∂tu− PN (u∂tu)‖ .

In summary, there appears the estimate∥∥∂t((PNu)2 − PN (u2))
∥∥

N
≤ Cλ,TN

3−se−σT N .

Inserting this into (4.16), we obtain

| (h, ∂t((PNu)2 − PN (u2))
)

N
| ≤ Cλ,T (‖h‖2 + (N3−se−σT N )2). (4.18)

The only term which remains to be estimated in (4.12) is
(
h, (PNu)2 − PN (u2)

)
N

. This is done in a similar way
as (4.18). In fact, it is even more straight forward since it does not involve a time derivative. The result is that

∣∣(h, (PNu)2 − PN (u2)
)

N

∣∣ ≤ Cλ,T (‖h‖2 + (N1−se−σT N )2). (4.19)
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Let us now define v(t) = supτ∈[0,t] ‖h(·, τ)‖. From (4.12), using (4.13), (4.15), (4.18) and (4.19), we obtain

‖∂xh(·, t)‖2 ≤ ‖∂xh(·, 0)‖2 + Cλ,T ((N1−se−σT N )2 + ‖h(·, t)‖2)

+ Cλ,T

∫ t

0

( ‖h(·, τ)‖2 + (N3−se−σT N )2
)
dτ

≤ ‖∂xh(·, 0)‖2 + Cλ,T (v(t)2 + (N3−se−σT N )2).

Hence
‖∂xh(·, t)‖ ≤ Cλ,T (‖∂xh(·, 0)‖ + v(t) +N3−se−σT N ),

and since ‖∂xh(·, 0)‖ ≤ ‖h(·, 0)‖1 ≤ CN1−se−σT N , it follows that

‖hx(·, t)‖ ≤ Cλ,T (v(t) +N3−se−σT N ). (4.20)

Evidently, the preceding argument was inspired by the corresponding computation for the third conservation
law of the KdV equation. However, the fact that the interpolation operator IN does not commute with the
derivative ∂x makes the proof that much more complicated. Having in hand an estimate for ‖∂xh‖, we can
return to the main thread of the proof. We integrate (4.9) with respect to time, and use the bound for ‖∂xh‖
given by (4.20) to obtain

‖h(·, t)‖ ≤ ‖h(·, 0)‖ + Cλ,T

∫ t

0

(
v(τ) +N3−se−σT N

)
dτ

≤ Cλ,TN
3−se−σT N + Cλ,T

∫ t

0

v(τ) dτ.

Since v is positive, the function on the right is increasing, so that

‖h(·, τ)‖ ≤ Cλ,TN
3−se−σT N + Cλ,T

∫ t

0

v(τ ′) dτ ′, for any τ ∈ [0, t].

Taking the supremum over [0, t], it transpires that

v(t) ≤ Cλ,TN
3−se−σT N + Cλ,T

∫ t

0

v(τ) dτ.

Gronwall’s Lemma now yields
v(t) ≤ Cλ,TN

3−se−σT NeCλ,T t,

which implies that
‖h(·, t)‖ ≤ Cλ,TN

3−se−σT N (4.21)
for all t ∈ [0, t∗N ]. Finally, we have

‖u− wN‖ ≤ ‖u− PNu‖ + ‖PNu− wN‖
≤ N−se−σT N ‖u‖Gσ,s

+ ‖h‖
≤ Cλ,TN

3−se−σT N . (4.22)

Since (4.22) holds for any t ∈ [0, t∗N ], the estimate (4.3) follows directly from (4.22), with ΛT chosen to be the
constant Cλ,T appearing in (4.22). �
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Proof of Theorem 4.1. We want to extend the estimate (4.3) to the time interval [0, T ]. Let

λ = 2 sup
t∈[0,T ]

‖u(·, t)‖H4 ≤ 2κ4. (4.23)

We now define t∗N by
t∗N = sup {t ∈ [0, T ] | for all t′ ≤ t, ‖wN (·, t′)‖H4 ≤ λ} . (4.24)

Thus the time t∗N corresponds to the largest time in [0, T ] for which the H4-norm of wN is uniformly bounded
by λ and Lemma 4.2 applies for this particular λ. From (2.9), we obtain that

‖INu0‖H4 ≤ ‖u0‖H4 + CIN
4−se−σ0N ‖u0‖Gσ0,s

≤ λ

2
+ CIN

4−se−σ0N ‖u0‖Gσ0,s

< λ

for N large enough. Hence, ‖wN (·, 0)‖H4 = ‖INu0‖H4 < λ and t∗N > 0 for all large enough N . Note that t∗N is
necessarily smaller than the maximum time of existence. On the other hand, we are going to prove that there
exists N̄ such that

t∗N = T for all N ≥ N̄ , (4.25)

and therefore the supremum in (4.3) holds on [0, T ]. By definition (4.24), we either have t∗N = T or t∗N < T and
in this case, since ‖wN (t)‖H4 is a continuous function of time, ‖wN (t∗N )‖ = λ. Assume that t∗N < T . Using the
triangle inequality, we have

λ = ‖wN (·, t∗N )‖H4

≤ ‖wN (·, t∗N ) − u(·, t∗N )‖4 + sup
t∈[0,T ]

‖u(·, t)‖H4

= ‖wN (·, t∗N ) − u(·, t∗N )‖H4 +
λ

2
,

by the definition of λ. Hence, λ
2 ≤ ‖wN (·, t∗N ) − u(·, t∗N )‖H4 . By (4.21), the triangle inequality and the inverse

inequality (2.3), it follows that
λ ≤ CN7−se−σT N (4.26)

for some constant C independent of N . However, since limN→∞N7−se−σT N = 0, there exists N̄ such that for
all N ≥ N̄ , N7−se−σT N < λ/C. For such N ≥ N̄ , (4.26) does not hold and therefore we cannot have t∗N < T .
Thus it is plain that t∗N = T , and the claim (4.25) is proved. It follows that for N ≥ N̄ the solution wN of (4.1)
is defined on [0, T ] and, from (4.3), we get

sup
t∈[0,T ]

‖u(·, t) − wN (·, t)‖ ≤ ΛTN
3−se−σT N . (4.27)

�

It appears that when the initial data have sufficient Gevrey-class regularity, then the power of N on the right-
hand side of (4.27) can be eschewed, and the result advertised in the introduction appears. The statement is
summarized in the following corollary.

Corollary 4.3. Let u be the solution of the periodic initial-value problem (3.1) with initial data u0 ∈ Gσ0,s,
where σ0 > 0 and s ≥ 3; and let T > 0 be given. Then for N large enough, there exists a unique solution wN of
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the finite-dimensional problem (4.1) on [0, T ]. Moreover, there exist constants ΛT and σT , depending only on
T and ‖u0‖Gσ0,s

, such that

sup
t∈[0,T ]

‖u(·, t) − wN (·, t)‖ ≤ ΛT e−σT N .

Similar error estimates in higher Sobolev norms can be proved by using the triangle inequality, the inverse
inequality (2.3), and the estimates (2.2) and (4.21).
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