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ANALYSIS OF A FORCE-BASED QUASICONTINUUM APPROXIMATION ∗

Matthew Dobson1 and Mitchell Luskin1

Abstract. We analyze a force-based quasicontinuum approximation to a one-dimensional system of
atoms that interact by a classical atomistic potential. This force-based quasicontinuum approximation
can be derived as the modification of an energy-based quasicontinuum approximation by the addition
of nonconservative forces to correct nonphysical “ghost” forces that occur in the atomistic to continuum
interface during constant strain. The algorithmic simplicity and consistency with the purely atomistic
model at constant strain has made the force-based quasicontinuum approximation popular for large-
scale quasicontinuum computations. We prove that the force-based quasicontinuum equations have a
unique solution when the magnitude of the external forces satisfy explicit bounds. For Lennard-Jones
next-nearest-neighbor interactions, we show that unique solutions exist for external forces that extend
the system nearly to its tensile limit. We give an analysis of the convergence of the ghost force iteration
method to solve the equilibrium equations for the force-based quasicontinuum approximation. We show
that the ghost force iteration is a contraction and give an analysis for its convergence rate.
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1. Introduction

The local lattice structure for minimum energy configurations of atomistic systems subject to external forces
is usually slowly varying except near defects such as dislocations [14]. Quasicontinuum methods efficiently
approximate these multiscale features by maintaining atomistic degrees of freedom near defects and coarse-
graining the atomistic degrees of freedom in regions where the local lattice structure is nearly uniform through
the introduction of representative atoms [10,14,24]. The efficiency of quasicontinuum methods has allowed the
simulation of more complex problems than can be computed using a completely atomistic model [22].

Many quasicontinuum methods have been proposed [8,10,14,15,18,20,23,24], and each version gives a different
quasicontinuum approximation of the atomistic system. A force-based quasicontinuum approximation has been
proposed that modifies an energy-based quasicontinuum approximation by the addition of nonconservative forces
to correct nonphysical “ghost” forces that occur in the atomistic to continuum interface [10, 14, 20, 22]. The
force-based quasicontinuum approximation has been popular for large-scale computations because it correctly
computes forces under linear deformations and has a simple force computation: the force on each representative
atom comes from either an atomistic algorithm or a continuum finite element algorithm [10,14, 19, 20, 22].
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Adaptive mesh and error control have been successfully used with the force-based quasicontinuum approxima-
tion to efficiently choose representative atoms [10, 16, 19, 22]. The number of representative atoms surrounding
defects that need to be modeled atomistically (the core of the defect) can be determined by the error tolerance,
and the mesh in the continuum region surrounding the core can be coarsened beyond the atomistic-continuum
interface wherever the deformation gradient varies slowly. For simplicity, reported implementations have not
coarsened within the cut-off radius of atomistic representative atoms, but it is possible to coarsen immediately
beyond the atomistic-continuum interface by interpolating between continuum representative atoms.

In Section 2, we give a derivation following [10,14,20,22] of several quasicontinuum approximations leading to
the derivation of the force-based quasicontinuum approximation. In Section 3, we reformulate the equilibrium
equations as a balance of forces conjugate to the distances between representative atoms, rather than as a
balance of forces conjugate to the positions of the representative atoms. Our derivation and reformulation gives
the mathematical structure that is used in our analysis.

In Section 4, we prove that the force-based quasicontinuum equations have a unique solution under suitable
restrictions on the loads. This result is presented in Corollary 4.1. In the case of Lennard-Jones next-nearest-
neighbor interactions, we determine bounds for the magnitude of the loads for which unique solutions exist and
find that the allowable loads extend quite close to the tensile limit.

In Section 5, we give an analysis of the convergence of the ghost force iteration method that has been
most commonly used to solve the equilibrium equations for the force-based quasicontinuum approximation
[10, 14, 20, 22]. Corollary 4.1 shows that the ghost force iteration is a contraction and gives a bound for its
convergence rate. We show that the convergence rate is quite high in the case of a Lennard-Jones model subject
to moderate external forces.

Mathematical analyses of energy-based versions of the quasicontinuum approximation that do not include
ghost force corrections have been given in [2, 5–7, 11, 12, 17, 18], and a simplified version of our analysis can
be used to prove the existence of solutions to these energy-based quasicontinuum approximations. We show,
though, that the ghost forces are nonconservative forces, so they cannot be derived from an energy. Thus, the
force-based quasicontinuum approximation cannot be completely analyzed by energy methods.

We refer to [3] for a review of current progress on the mathematical analysis of atomistic to continuum models
for solids and to [14] for an introduction and overview of the quasicontinuum approximation.

2. Quasicontinuum approximations

In this section, we describe a sequence of one-dimensional coarse-grained approximations of a chain of atoms
with nearest-neighbor and next-nearest-neighbor interactions given by a classical two-body potential, φ(r). We
assume that the atomistic potential φ(r) is defined for all r > 0.

We begin with the atomistic model, which has degrees of freedom for all atomic positions and computes
a total internal energy directly from pairwise interactions. From there, we examine the constrained atom-
istic approximation and the local quasicontinuum approximation which both decrease the degrees of freedom
by interpolating atomic positions between representative atoms. We then introduce an energy-based and a
force-based quasicontinuum approximation which span atomistic and continuum scales by combining atomistic
regions where the atoms directly interact according to the atomistic model and continuum regions where the
atoms interact according to the local quasicontinuum approximation. We observe that the energy-based qua-
sicontinuum approximation gives nonphysical ghost forces near the atomistic to continuum interface that are
corrected by the force-based quasicontinuum approximation.

2.1. The atomistic model

We denote the positions of the atoms by yi for i = −M, . . . ,M + 1, where yi < yi+1 (see Fig. 1). The
total energy for the atomistic system with nearest-neighbor and next-nearest-neighbor interactions given by
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Figure 1. Atomistic chain with atoms labeled by their position.

the classical two-body potential φ(r) is

Ea(y) =
M∑

i=−M

[φ(yi+1 − yi) + φ(yi+2 − yi)] ,

where y = (y−M , . . . , yM+1) ∈ R
2M+2 and where the boundary terms φ(yi − yj) above and in the following

should be understood to be zero for i /∈ {−M, . . . ,M + 1} or j /∈ {−M, . . . ,M + 1}. We can also express the
total energy in terms of energies associated with each atom as

Ea(y) =
M+1∑

i=−M

Ea
i (y) (2.1)

with
Ea

i (y) =
1
2

[
φ(yi+1 − yi) + φ(yi+2 − yi) + φ(yi − yi−1) + φ(yi − yi−2)

]
. (2.2)

We then have that the force on the atom at position yi is given by

F a
i (y) = − ∂

∂yi

[
φ(yi+1 − yi) + φ(yi+2 − yi) + φ(yi − yi−1) + φ(yi − yi−2)

]
= [η(ri) + η(ri + ri+1)] − [η(ri−1) + η(ri−1 + ri−2)] , (2.3)

where η(r) = φ′(r) and ri = yi+1 − yi is the lattice spacing at yi. The terms η(ri) and η(ri + rj) above and in
the following should be understood to be zero for i /∈ {−M, . . . ,M} or j /∈ {−M, . . . ,M}.

We now assume that the atoms are also subject to an external force, f̃i(yi), that is obtained from an external
potential energy of the form

Pa(y) =
M+1∑

i=−M

Pa
i (yi),

so

f̃i(yi) = −∂P
a(y)
∂yi

= −∂P
a
i (yi)
∂yi

· (2.4)

For example, such external forces may model the interaction of the one-dimensional chain with atoms in layers
above and below the chain, as in the Frenkel Kontorova model [13].

We then have the equilibrium equations

F a
i (y) + f̃i(yi) = 0, i = −M, . . . ,M + 1.

2.2. The constrained atomistic quasicontinuum approximation

One can reduce the degrees of freedom in the atomistic model by linearly interpolating the positions of the
atoms between a set of representative atoms (see [18] for an analysis in this case). We introduce representative
atoms with positions zj such that

zj = y�j for j = −N, . . . , N + 1, (2.5)
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Figure 2. A coarsening of the atomistic chain.

where �−N = −M, �N+1 = M + 1, and �j < �j+1. We then let νj = �j+1 − �j denote the number of atoms
from zj to zj+1 (where the end atoms at zj and zj+1 are counted as half, see Fig. 2). We now have that

rj =
zj+1 − zj

νj

is the distance separating (νj + 1) equally spaced atoms from zj to zj+1, and we have the conservation of mass
equation

N∑
j=−N

νj =
N∑

j=−N

(�j+1 − �j) = �N+1 − �−N = 2M + 1. (2.6)

In the constrained atomistic model, the positions of atoms between zj and zj+1 are linearly interpolated as

y�j+i = y�j+1−(νj−i) =
νj − i

νj
zj +

i

νj
zj+1 for 0 ≤ i ≤ νj , (2.7)

and we define the total internal energy in terms of z = (z−N , . . . , zN+1) ∈ R
2N+2 to again be the interaction

energy of all atoms in the chain, computed according to (2.1), giving

Ec(z) =
M+1∑

j=−M

Ea
j (y(z)). (2.8)

So far, we have reduced the degrees of freedom necessary for denoting the atomistic positions, but the
total energy is still computed as a sum of energy contributions from all of the atomistic degrees of freedom.
However, all nearest-neighbor and next-nearest-neighbor contributions for atoms interpolated between a pair of
representative atoms are identical due to the uniform spacing, so if yi does not denote a representative atom
we have that

φ(yi+1 − yi−1) = φ(2(yi+1 − yi)) = φ(2(yi − yi−1)) = φ(2rj) for �j < i < �j+1.

These interactions account for all of the energy contributions except for next-nearest-neighbor interactions that
straddle a representative atom. We can treat these interactions by observing that

φ(yi+1 − yi−1) − 1
2
φ(2(yi − yi−1)) − 1

2
φ(2(yi+1 − yi)) ={

φ(rj−1 + rj) − 1
2φ(2rj−1) − 1

2φ(2rj), if i = �j for some j = −N, . . . , N + 1,
0, if i �= �j for all j = −N, . . . , N + 1.
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We can therefore partition the total energy into the energy of the region between zj and zj+1 for each
j = −N, . . . , N, plus interfacial energy terms that account for interactions that straddle a representative atom.
We have from (2.8) that

Ec(z) =
M∑

i=−M

φ(yi+1 − yi) +
M∑

i=−M+1

φ(yi+1 − yi−1)

=
M∑

i=−M

[φ(yi+1 − yi) + φ(2(yi+1 − yi))]

+
M∑

i=−M+1

[
φ(yi+1 − yi−1) − 1

2
φ(2(yi − yi−1)) − 1

2
φ(2(yi+1 − yi))

]

− 1
2
φ(2(y−M+1 − y−M )) − 1

2
φ(2(yM+1 − yM ))

=
N∑

j=−N

νj φ̂ (rj) +
N+1∑

j=−N

Sj (rj−1, rj) , (2.9)

where
φ̂(r) = φ(r) + φ(2r) for r > 0 (2.10)

and where

S−N (r−N ) = − 1
2
φ(2r−N ),

Sj(rj−1, rj) = − 1
2
φ(2rj−1) + φ(rj−1 + rj) − 1

2
φ(2rj), j = −N + 1, . . . , N,

SN+1(rN ) = − 1
2
φ(2rN ).

We note that φ̂(r) = φ(r) + φ(2r) is the energy per atom for an infinite atomistic chain with the uniform
lattice spacing yi+1− yi = r for all −∞ < i <∞, and that Sj(rj−1, rj) can be considered to be a surface energy
at z−N and zN+1 and to be an interfacial energy at zj for j = −N + 1, . . . , N. We observe that Sj(rj−1, rj) is
a second divided difference for φ(r) about r = rj−1 + rj with increment rj − rj−1, so

Sj(rj−1, rj) = −1
2
φ′′(rj−1 + rj)(rj − rj−1)2 +O(|rj − rj−1|4), j = −N + 1, . . . , N.

We will see that if φ(r) satisfies the assumptions given in Section 4, then the convexity condition

Sj(rj−1, rj) > 0, j = −N + 1, . . . , N,

holds for the range of r = (r−N , . . . , rN ) ∈ R
2N+1 defined by (4.15) in Theorem 4.1 and Corollary 4.1 where

solutions of the force-based quasicontinuum equilibrium equations are shown to exist and where the iterates of
the ghost force iteration reside.

2.3. The local quasicontinuum approximation

If we neglect the surface and interfacial energy terms, Sj , in (2.9), then we obtain the local quasicontinuum
approximation [14]

EL(z) =
N+1∑

j=−N

EL
j (z),
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where

EL
j (z) =

1
2

[
φ̂(rj)νj + φ̂(rj−1)νj−1

]
. (2.11)

To treat the boundary terms consistently, we set ν−N−1 = νN+1 = 1 and φ̂(r−N−1) = φ̂(rN+1) = 0.
We remark that the representative atoms need not be placed at atomistic sites as described by (2.5). The

local quasicontinuum approximation only requires that zj < zj+1 for j = −N, . . . , N and that the νj are positive
and satisfy the conservation of mass condition (2.6). The approximation can be generalized to higher space
dimensions by using the Cauchy-Born rule [14]. The local quasicontinuum approximation is computationally
simpler than the constrained atomistic quasicontinuum approximation, especially in higher dimensions where
the computation of the interfacial energy becomes expensive. In the following, we will sometimes refer to the
local quasicontinuum approximation as the continuum approximation.

The force on a representative atom at zj for j = −N + 1, . . . , N is given for the local quasicontinuum
approximation by

FL
j (z) = − ∂

∂zj

[
φ̂

(
zj+1 − zj

νj

)
νj + φ̂

(
zj − zj−1

νj−1

)
νj−1

]

= − ∂

∂zj

[
φ

(
zj+1 − zj

νj

)
νj + φ

(
2(zj+1 − zj)

νj

)
νj

+ φ

(
zj − zj−1

νj−1

)
νj−1 + φ

(
2(zj − zj−1)

νj−1

)
νj−1

]
= [η(rj) + 2η(2rj)] − [η(rj−1) + 2η(2rj−1)] , (2.12)

where again

rj =
(zj+1 − zj)

νj

is the lattice constant for the atoms from zj to zj+1. In the above, we see the “local” nature of the approximation,
as the force on a degree of freedom is determined only by the positions of adjacent degrees of freedom and no
long-range interactions occur.

We can similarly compute the force on the boundary atoms, noting the one-sided nature of EL
j (z) for the

boundary atoms, by

FL
−N (z) = − ∂

∂z−N

[
φ̂

(
z−N+1 − z−N

ν−N

)
ν−N

]

= − ∂

∂z−N

[
φ

(
z−N+1 − z−N

ν−N

)
+ φ

(
2(z−N+1 − z−N )

ν−N

)]
ν−N

= [η(r−N ) + 2η(2r−N )] , (2.13)

FL
N+1(z) = − ∂

∂zN+1

[
φ̂

(
zN+1 − zN

νN

)
νN

]

= − ∂

∂zN+1

[
φ

(
zN+1 − zN

νN

)
+ φ

(
2(zN+1 − zN )

νN

)]
νN

= − [η(rN ) + 2η(2rN )] . (2.14)

We note that the local quasicontinuum energy, EL(z), and the forces, FL
j (z), depend only on r = (r−N , . . . , rN ),

and we will denote the dependence by EL(r) and FL
j (r) without introducing distinct functions.

We can also derive a local quasicontinuum approximation for the external potential, PL(z), by setting

PL(z) = Pa(y(z)). (2.15)
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Figure 3. One end of the quasicontinuum chain, highlighting the interface. Filled circles are
atomistic representative atoms, whereas the unfilled circles are continuum representative atoms.

By (2.4) and (2.7), the external force on the representative atom at position zj is

fj(z) = −∂P
L(z)
∂zj

= −
νj−1∑
i=0

(
νj−1 − i

νj−1

)
∂Pa(y(z))
∂y�j−i

−
νj∑

i=1

(
νj − i

νj

)
∂Pa(y(z))
∂y�j+i

=
νj−1∑
i=0

(
νj−1 − i

νj−1

)
f̃�j−i

(
y�j−i(z)

)
+

νj∑
i=1

(
νj − i

νj

)
f̃�j+i

(
y�j+i(z)

)
.

It follows from the linear interpolation (2.7) that

fj(z) = fj(zj−1, zj, zj+1).

We shall assume in our analysis that the external forces, f̃i, are independent of y. In this case, the local
quasicontinuum forces, fj , are independent of z and

fj =
νj−1∑
i=0

(
νj−1 − i

νj−1

)
f̃�j−i +

νj∑
i=1

(
νj − i

νj

)
f̃�j+i, j = −N, . . . , N + 1. (2.16)

We consider any term f̃j to be zero if j /∈ {−M, . . . ,M + 1} and any term νj to be one if j /∈ {−N, . . . , N}.
2.4. The energy-based quasicontinuum approximation

To describe the energy-based quasicontinuum approximation [14], we again introduce representative atoms
with positions zj for j = −N, . . . , N + 1, where zj < zj+1. Each representative atom is considered to be an
“atomistic” or “continuum” degree of freedom and will contribute either Ea

j (z) or EL
j (z) to the total internal

energy according to the atomistic model (2.2) or the local quasicontinuum approximation (2.11), respectively.
In applications, atomistic degrees of freedom are used in regions of interest where highly non-uniform behavior

is expected. Continuum regions surround this, gradually coarsening by increasing νj in regions with slowly
varying strain. For simplicity of exposition, we will consider an approximation with a single atomistic region,
symmetrically surrounded by continuum regions large enough so that no atomistic degrees of freedom interact
with the surface atoms through nearest-neighbor or next-nearest-neighbor interactions.

We denote the representative atom positions by zj and define the range j = −K + 1, . . . ,K to be atomistic
sites and the ranges j = −N, . . . ,−K and K + 1, . . . , N + 1 to be continuum sites (see Fig. 3). Therefore, the
total quasicontinuum energy, EQC(r), for the chain is given by

EQC(r) =
−K∑

j=−N

EL
j (r) +

K∑
j=−K+1

Ea
j (r) +

N+1∑
j=K+1

EL
j (r), (2.17)

where Ea
j (r) is defined in (2.2) and EL

j (r) is defined in (2.11). We assume that νj = 1 for j = −K−1, . . . ,K+1.
This guarantees that νj = 1 within the next-nearest-neighbor cutoff radius of any atomistic site and enables a
seamless transition to the continuum approximation.
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The force, FQCE
j (r), at zj is then given by

FQCE
j (r) = −∂E

QC

∂zj
(r) = −

N∑
�=−N

∂EQC

∂r�
(r)

∂r�
∂zj

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL
j (r), −N ≤ j ≤ −K − 2,
FL
−K−1(r) + 1

2η(r−K−1 + r−K), j = −K − 1,
FL
−K(r) − η(2r−K) + 1

2η(r−K + r−K+1), j = −K,
F a
−K+1(r) − η(2r−K) + 1

2η(r−K−1 + r−K), j = −K + 1,
F a
−K+2(r) + 1

2η(r−K + r−K+1), j = −K + 2,
F a

j (r), −K + 3 ≤ j ≤ K − 2,
F a

K−1(r) − 1
2η(rK−1 + rK), j = K − 1,

F a
K(r) + η(2rK) − 1

2η(rK + rK+1), j = K,

FL
K+1(r) + η(2rK) − 1

2η(rK−1 + rK), j = K + 1,
FL

K+2(r) − 1
2η(rK + rK+1), j = K + 2,

FL
j (r), K + 3 ≤ j ≤ N + 1.

(2.18)

In the above expression, we notice that in the large ranges interior to the atomistic and continuum regions
the forces are exactly those from the individual models, namely, either F a

j (r) or FL
j (r). Near the atomistic to

continuum interface, there are additions to these force terms which contain non-physical “ghost” forces.
To see this, we consider the forces on the representative atoms when the lattice spacings are uniform, that is,

when rj = a for j = −N, . . . , N, or equivalently when r = a = (a, . . . , a) ∈ R
2N+1. We observe that the forces

computed according to the atomistic model (2.3) or the continuum model (2.12) are zero except at the ends of
the chain, that is, FL

j (a) = 0 for j = −N + 1, . . . , N and F a
j (a) = 0 for j = −N + 2, . . . , N − 1. We then have

from (2.18) that

FQCE
j (a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[η(a) + 2η(2a)] , j = −N,
0, −N + 1 ≤ j ≤ −K − 2,
1
2η(2a), j = −K − 1,
− 1

2η(2a), j = −K,
− 1

2η(2a), j = −K + 1,
1
2η(2a), j = −K + 2,
0, −K + 3 ≤ j ≤ K − 2,
− 1

2η(2a), j = K − 1,
1
2η(2a), j = K,
1
2η(2a), j = K + 1,
− 1

2η(2a), j = K + 2,
0, K + 3 ≤ j ≤ N,

− [η(a) + 2η(2a)] , j = N + 1.

Figure 4 shows the ghost forces at one of the interfaces. Figure 5 shows the origin of out of balance forces for a
single representative atom. We note that while the first neighbor terms are balanced, the second neighbor terms
are not balanced due to the fact that the continuum site does not contribute any second-neighbor interactions.

The force-based quasicontinuum approximation described in the next subsection corrects these ghost forces.
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zK−1 zK zK+1 zK+2

Figure 4. Direction of nonzero forces for a uniform configuration.

η(2a) η(a) 1
2
η(2a)η(a)

Figure 5. Imbalance of forces on an atomistic representative atom near the interface.

2.5. The force-based quasicontinuum approximation

The force-based quasicontinuum approximation [14] corrects the nonphysical forces described in the previous
subsection. The forces on the representative atoms in the interior of the atomistic and continuum regions are
defined by (2.3) and (2.12), but the forces on the representative atoms near the atomistic-continuum transition
given by the energy-based quasicontinuum method must be modified to remove the non-physical terms.

In the force-based quasicontinuum approximation, we again partition into atomistic and continuum represen-
tative atoms, where the force on a representative atom is the force that would result on it if the approximation
was entirely of its respective type (atomistic or continuum). With this convention, a continuum representative
atom only interacts with adjacent degrees of freedom regardless of how close any atomistic sites may be. We
will see that the tradeoff for this simple philosophy is that the forces are not conservative, that is, they cannot
be derived from an energy.

We now model the forces on the representative atoms for j = −K + 1, . . . ,K where K < N − 1 by the
atomistic model (2.3) and the forces on the representative atoms for j = −N, . . . ,−K and j = K+1, . . . , N +1
by the local quasicontinuum approximation (2.12)–(2.14). The forces on the representative atoms are then
given by

FQCF
j (r) =

⎧⎪⎨
⎪⎩
FL

j (r), −N ≤ j ≤ −K,
F a

j (r), −K + 1 ≤ j ≤ K,

FL
j (r), K + 1 ≤ j ≤ N + 1,

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[η(r−N ) + 2η(2r−N )] , j = −N,
[η(rj) + 2η(2rj)] − [η(rj−1) + 2η(2rj−1)] , −N + 1 ≤ j ≤ −K,
[η(rj) + η(rj + rj+1)] − [η(rj−1) + η(rj−1 + rj−2)] , −K + 1 ≤ j ≤ K,

[η(rj) + 2η(2rj)] − [η(rj−1) + 2η(2rj−1)] , K + 1 ≤ j ≤ N,

− [η(rN ) + 2η(2rN)] , j = N + 1.

The force-based quasicontinuum formulation has the desired property that if we take a uniform configuration,
a = (a, . . . , a) ∈ R

2N+1, we have that

FQCF
j (a) = 0, j = −N + 1, . . . , N,

and on the boundary we get values of equal magnitude and opposite signs. Thus, the equilibrium equations
have a uniform solution, a, whenever equal and opposite external forces are applied at the boundary, that is, a
chain in uniform tension or compression.
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However, the solution to the equilibrium equations for the force-based quasicontinuum method,

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1, (F)

cannot be obtained from the minimization of an energy since FQCF
j (r) is a nonconservative force. To see

this, we observe that the forces given by the force-based quasicontinuum approximation, FQCF
j (r), are not the

differential of an energy, EQCF (r), since FQCF
j (r) is not a closed form [9]. We can see this by noting that

∂FQCF
K

∂zK+1
(r) = η′(rK),

∂FQCF
K+1

∂zK
(r) = η′(rK) + 4η′(2rK),

implies that
∂FQCF

K

∂zK+1
(r) �= ∂FQCF

K+1

∂zK
(r).

2.6. The ghost force iteration

In the quasicontinuum method of [14], the forces, FQCF (r), are split into the force from the energy-based
quasicontinuum approximation, FQCE(r), and ghost force corrections defined by

FG
j (r) = FQCF

j (r) − FQCE
j (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −N ≤ j ≤ −K − 2,
− 1

2η(r−K−1 + r−K), j = −K − 1,
+η(2r−K) − 1

2η(r−K + r−K+1), j = −K,
+η(2r−K) − 1

2η(r−K−1 + r−K), j = −K + 1,
− 1

2η(r−K + r−K+1), j = −K + 2,
0, −K + 3 ≤ j ≤ K − 2,
+ 1

2η(rK−1 + rK), j = K − 1,
−η(2rK) + 1

2η(rK + rK+1), j = K,

−η(2rK) + 1
2η(rK−1 + rK), j = K + 1,

+ 1
2η(rK + rK+1), j = K + 2,

0, K + 3 ≤ j ≤ N + 1.

(2.19)

The forces FG
j (r) act as a model correction near the atomistic-continuum interfaces to enforce the convention

that each representative atom has forces acting on it as though it were surrounded by representative atoms of
the same type.

In [14], the solution to the equilibrium equations (F) is obtained by solving the iteration

FQCE
j (rn+1) + FG

j (rn) + fj = 0, j = −N, . . . , N + 1, (E)

by using a conjugate gradient method to compute rn+1 from rn. If the sequence of solutions {rn} converges,
then the iterative limit r satisfies the equilibrium equations (F).

We have split the internal forces of the force-based quasicontinuum approximation, FQCF
j (r), into a con-

servative force, FQCE
j (r), and correction, FG

j (r), to define the iterative method above (E). The conservative
force, FQCE

j (r), was defined by the quasicontinuum energy, EQC(r), given by (2.17), and the correction, FG
j (r),
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was defined simply by FG
j (r) = FQCF

j (r) − FQCE
j (r). However, we are free to try to improve the rate of con-

vergence of rn → r by constructing an energy EQCE2(r) different from EQCE(r) and then solving the iteration

FQCE2
j (rn+1) + FG2

j (rn) + fj = 0, j = −N, . . . , N + 1,

where FQCE2
j (r) is now the force that is derived from EQCE2(r) and FG2

j (r) = FQCF
j (r) − FQCE2

j (r). In the
following we restrict our attention to EQCE as presented in this section, leaving other choices to be addressed
in future work.

3. Conjugate forces

In this section, we simplify the analysis by reformulating the force-based quasicontinuum equilibrium equa-
tions (F) in terms of forces conjugate to the distance between representative atoms,

Rj = zj+1 − zj = νjrj , j = −N, . . . , N,

rather than conjugate to the positions of the representative atoms, zj . We will use the notation R=
(R−N , . . . , RN ) ∈ R

2N+1. Through this technique, we will be able to derive equations that are decoupled inside
the continuum regions and are the sum of tridiagonal terms and nonlocal interfacial terms in the atomistic
region. The main results, Theorems 4.1 and 5.1, will be in terms of the conjugate forces.

3.1. The internal conjugate force

We define the internal conjugate force for the energy-based quasicontinuum approximation by

ψE
j (r) =

∂EQC

∂Rj
(r(R)) =

1
νj

∂EQC

∂rj
(r), j = −N, . . . , N. (3.1)

We note that we have found it convenient to define ψE
j (r) as the negative of the usual convention for a conjugate

force. We next derive the following relation between FQCE
j (r) and the internal conjugate force ψE

j (r):

FQCE
j (r) = −∂E

QC

∂zj
(r) = −∂E

QC

∂Rj
(r(R))

∂Rj

∂zj
− ∂EQC

∂Rj−1
(r(R))

∂Rj−1

∂zj

= ψE
j (r) − ψE

j−1(r), j = −N, . . . , N + 1, (3.2)

where we set

ψE
−N−1(r) = ψE

N+1(r) = 0.

We can sum the forces from the left of the chain and use the preceding equation (3.2) to obtain that

ψE
j (r) =

j∑
i=−N

FQCE
i (r), j = −N, . . . , N + 1. (3.3)
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We can derive from either (3.1) or (3.3) that

ψE
j (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j = −N − 1
η(rj) + 2η(2rj), −N ≤ j ≤ −K − 2,
η(rj) + 2η(2rj) + 1

2η(rj + rj+1), j = −K − 1,
η(rj) + 1

2η(rj + rj−1) + 1
2η(rj + rj+1) + η(2rj), j = −K,

η(rj) + 1
2η(rj + rj−1) + η(rj + rj+1), j = −K + 1,

η(rj) + η(rj + rj−1) + η(rj + rj+1), −K + 2 ≤ j ≤ K − 2,
η(rj) + η(rj + rj−1) + 1

2η(rj + rj+1), j = K − 1,
η(rj) + 1

2η(rj + rj−1) + 1
2η(rj + rj+1) + η(2rj), j = K,

η(rj) + 2η(2rj) + 1
2η(rj + rj−1), j = K + 1,

η(rj) + 2η(2rj), K + 2 ≤ j ≤ N,

0, j = N + 1.

(3.4)

We cannot properly derive an internal conjugate force for the force-based quasicontinuum approximation
since it is not a conservative force. However, we will find it convenient to define one by following (3.3), setting

ψF
−N−1(r) = 0

and

ψF
j (r) =

j∑
i=−N

FQCF
i (r), j = −N, . . . , N + 1. (3.5)

We can then obtain that

FQCF
j (r) = ψF

j (r) − ψF
j−1(r), j = −N, . . . , N + 1. (3.6)

We have the following closed form expressions for the internal conjugate force ψF
j (r):

ψF
j (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j = −N − 1,
η(rj) + 2η(2rj), −N ≤ j ≤ −K,
η(rj) + η(rj + rj−1) + η(rj + rj+1)

+ [2η(2r−K) − η(r−K + r−K−1) − η(r−K + r−K+1)], −K + 1 ≤ j ≤ K,

η(rj) + 2η(2rj)
+ [2η(2r−K) − η(r−K + r−K−1) − η(r−K + r−K+1)]
− [2η(2rK) − η(rK + rK−1) − η(rK + rK+1)], K + 1 ≤ j ≤ N,

[2η(2r−K) − η(r−K + r−K−1) − η(r−K + r−K+1)]
− [2η(2rK) − η(rK + rK−1) − η(rK + rK+1)], j = N + 1.

(3.7)

The internal conjugate force, ψF
j (r), takes a simpler form when there is no resultant quasicontinuum force,

that is, when r satisfies

ψF
N+1(r) =

N+1∑
j=−N

FQCF
j (r) = 0, (3.8)

which is equivalent to

2η(2r−K) − η(r−K + r−K−1) − η(r−K + r−K+1) = 2η(2rK) − η(rK + rK−1) − η(rK + rK+1). (3.9)
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We note that (3.9) is satisfied when r is symmetric, that is, when r−j = rj for j = 1, . . . , N. Let us now define
ψ̂F

j (r) on all of R
2N+1 as a symmetric extension of ψF

j (r), with equality whenever r satisfies (3.9). This leads
to ψ̂F

j (r) having a more symmetric form,

ψ̂F
j (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j = −N − 1,
η(rj) + 2η(2rj), −N ≤ j ≤ −K,
η(rj) + η(rj + rj−1) + η(rj + rj+1)

+ [2η(2rK) − η(rK + rK−1) − η(rK + rK+1)], −K + 1 ≤ j ≤ K − 1,
η(rj) + 2η(2rj), K ≤ j ≤ N,

0, j = N + 1.

(3.10)

The intervals of definition changed slightly from (3.7), which is one of the simplifications afforded by (3.9). We
use ψ̂F

j (r) in our subsequent analysis, and in Section 3.3 we discuss the relation between using ψF
j (r) and ψ̂F

j (r)
to solve the equilibrium equations (F).

We identify in (3.10) a continuum internal conjugate force for j = −N, . . . ,−K and j = K, . . . , N given by

η(rj) + 2η(2rj)

and an atomistic internal conjugate force for j = −K + 1, . . . ,K − 1 given by

η(rj) + η(rj−1 + rj) + η(rj + rj+1).

We identify the remaining terms,

2η(2rK) − η(rK + rK−1) − η(rK + rK+1),

for j = −K + 1, . . . ,K − 1 as the nonlocal part of the internal conjugate force.
For consistency, we wish to define ψ̂E

j (r) as we did for ψ̂F
j (r). Since ψE

j (r) is derived from the energy EQCE(r),
it has no resultant force. Thus, we define ψ̂E

j (r) = ψE
j (r).

We can also derive a corresponding internal conjugate ghost force, ψG
j (r), by summing FG

j (r) as in (3.5).
From the definition of FG

j (r) (2.19), we have that

ψF
j (r) = ψE

j (r) + ψG
j (r), j = −N − 1, . . . , N + 1.

We can define ψ̂G
j (r) by

ψ̂F
j (r) = ψ̂E

j (r) + ψ̂G
j (r), j = −N − 1, . . . , N + 1,

and we can then check that

ψ̂G
j (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −N − 1 ≤ j ≤ −K − 2,
− 1

2η(r−K + r−K−1), j = −K − 1,
η(2r−K) − 1

2η(r−K + r−K+1) − 1
2η(r−K + r−K−1), j = −K,

2η(2r−K) − 1
2η(r−K + r−K+1) − η(r−K + r−K−1), j = −K + 1,

2η(2rK) − η(rK + rK−1) − η(rK + rK+1), −K + 2 ≤ j ≤ K − 2,
2η(2rK) − 1

2η(rK + rK−1) − η(rK + rK+1), j = K − 1,
η(2rK) − 1

2η(rK + rK−1) − 1
2η(rK + rK+1), j = K,

− 1
2η(rK + rK+1), j = K + 1,

0, K + 2 ≤ j ≤ N + 1.

(3.11)
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If r satisfies the condition (3.9), then we have that ψ̂G
j (r) = ψG

j (r). We note that the nonlocal part of the
internal conjugate force is found in ψG

j (r) and ψ̂G
j (r).

We finally observe that if r is symmetric, then ψ̂F
j (r) = ψF

j (r), ψ̂E
j (r) = ψE

j (r), and ψ̂G
j (r) = ψG

j (r) are
symmetric.

3.2. The external conjugate force

We recall that we are assuming in our analysis that the external forces, f̃i, are independent of y, and that
consequently the local quasicontinuum forces, fj, given in (2.16) are independent of z. The external potential,
PL(z), given in (2.15) thus has the form

PL(z) = −
N+1∑

j=−N

fjzj.

We now assume that there is also no resultant force from the external forces, so that

N+1∑
j=−N

fj = 0. (3.12)

It then follows that the external potential, PL(z), is also a function of r, and we can define the external conjugate
force by

Φj = −∂P
L

∂Rj
(r(R)) = − 1

νj

∂PL

∂rj
(r), j = −N, . . . , N. (3.13)

We next derive the following relation between fj and the external conjugate force Φj :

fj = −∂P
L

∂zj
(r) = −∂P

L

∂Rj
(r(R))

∂Rj

∂zj
− ∂PL

∂Rj−1
(r(R))

∂Rj−1

∂zj

= −(Φj − Φj−1), j = −N, . . . , N + 1, (3.14)

where we set
Φ−N−1 = ΦN+1 = 0.

We can sum the external forces from the left of the chain and use the preceding equation (3.14) to obtain that

Φj = −
j∑

i=−N

fi, j = −N, . . . , N + 1. (3.15)

If the external forces, fj , are anti-symmetric, that is,

fj+1 = −f−j, j = 0, . . . , N, (3.16)

then we can conclude from (3.15) that the external conjugate force, Φj , is symmetric about j = 0, that is,

Φj = Φ−j , j = −N − 1, . . . , N + 1. (3.17)

We note that the external forces, fj , are anti-symmetric if the chain is subject only to tensile or compressive
loads of equal magnitude, but opposite sign, at its ends.
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3.3. Equilibrium equations

We now derive equilibrium equations in terms of the symmetric internal conjugate force, ψ̂F
j , and discuss

when solutions of these equilibrium equations correspond to solutions of (F). The same is done for ψ̂E
j .

It follows from (3.5), (3.6), (3.15), and (3.14) that the force-based quasicontinuum equilibrium equations

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1, (F)

are equivalent to
ψF

j (r) = Φj , j = −N − 1, . . . , N + 1.
We recall that ΦN+1 = 0 since we have assumed that the external forces satisfy the condition of no resul-
tant force (3.12). Therefore, if r satisfies the force-based quasicontinuum equilibrium equations (F), then
ψN+1(r) = 0, and by (3.8) we have ψF

j (r) = ψ̂F
j (r) for all j = −N −1, . . . , N +1. Thus, we see that if r satisfies

the force-based equilibrium equations (F), then

ψ̂F
j (r) = Φj , j = −N − 1, . . . , N + 1.

We also recall that if r is symmetric, then

ψF
j (r) = ψ̂F

j (r), j = −N − 1, . . . , N + 1.

Hence, if r is a symmetric solution of

ψ̂F
j (r) = Φj , j = −N − 1, . . . , N + 1, (CF)

then r is a solution of the force-based quasicontinuum equilibrium equations (F). The equilibrium equations (CF)
are used in the following analysis and provide criteria for the existence of solutions to the equilibrium equa-
tions (F).

If we sum the ghost force iteration equations

FQCE
j (rn+1) + FG

j (rn) + fj = 0, j = −N, . . . , N + 1, (E)

then we also get the following equivalent corresponding iterative method in terms of the internal and external
conjugate forces

ψE
j (rn+1) + ψG

j (rn) = Φj , j = −N − 1, . . . , N + 1.
We also have that if the sequence {rn} satisfies the iteration equations (E), then the sequence {rn} satisfies

ψ̂E
j (rn+1) + ψ̂G

j (rn) = Φj , j = −N − 1, . . . , N + 1. (CE)

We finally note that if the sequence {rn} is a symmetric solution of (CE), then the sequence {rn} satisfies the
ghost force iteration equations (E).

4. Existence of solutions to the force-based quasicontinuum system

In this section, we will give conditions on Φ = (Φ−N , . . . ,ΦN ) ∈ R
2N+1 such that there exists a unique

solution r to
Ψ̂F (r) = Φ (CF)

in a domain Ω ⊂ R
2N+1, where Ψ̂F (r) =

(
ψ̂F
−N (r), . . . , ψ̂F

N (r)
)

∈ R
2N+1 has the symmetric form given

in (3.10). We note that we ignore ψ̂F
−N−1, ψ̂

F
N+1, Φ−N−1, ΦN+1 in the above formulation since
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ψ̂F
−N−1 = ψ̂F

N+1 = Φ−N−1 = ΦN+1 = 0. We conclude this section by showing that the unique symmetric
solution r to (CF) for a symmetric Φ is a solution of the force-based equilibrium equations (F).

For any uniform lattice spacing a = (a, . . . , a) ∈ R
2N+1, we have a corresponding uniform Ψ̂F (a). Under

appropriate assumptions on the atomistic potential, φ(r), and the interatomic spacing, a, we will give an explicit
neighborhood around a in which we have a unique solution to (CF) for any external potential, Φ, in an explicit
neighborhood of Ψ̂F (a). We will show that these assumptions on the atomistic potential, φ(r), are satisfied by
the Lennard-Jones potential

φ(r) =
1
r12

− 2
r6

· (4.1)

4.1. Assumptions on the atomistic potential, φ(r)

We now give the assumptions on the atomistic potential, φ(r), that are required for our analysis. We will
assume that φ(r) ∈ C3 ((0,∞)), and we recall that η(r) = φ′(r) and φ̂(r) = φ(r) + φ(2r). We define

η̂(r) = φ̂′(r),

so
η̂(r) = φ′(r) + 2φ′(2r) = η(r) + 2η(2r).

We assume that the atomistic potential, φ(r), satisfies the following properties that are graphically displayed
in Figures 6 and 7:

η′(r) > 0 for 0 < r < r̃1 and η′(r) < 0 for r > r̃1, (4.2)

η′′(r) < 0 for 0 < r < r̃2 and η′′(r) > 0 for r > r̃2, (4.3)

η̂(r) < 0 for 0 < r < a0 and η̂(r) > 0 for r > a0, (4.4)

η̂′(r) > 0 for 0 < r < a1 and η̂′(r) < 0 for r > a1, (4.5)

0 < a0 < r̃1 < r̃2 < 2a0, (4.6)

a0 < a1. (4.7)

We note that a0 is the equilibrium bond length of a uniform chain, and a1 is the bond length of a uniform
chain at the load limit. It follows from (4.4) that FQCF

j (a0) = 0 for j = −N, . . . , N + 1 and Ψ̂F (a0) = 0 where
a0 = (a0, . . . , a0) ∈ R

2N+1.
The local quasicontinuum approximation is simply the case where all of the representative atoms are contin-

uum, giving a decoupled system
Ψ̂L(r) = Φ,

where Ψ̂L(r) = (ψ̂L
−N (r), . . . , ψ̂L

N (r)) is defined by

ψ̂L
i (r) = η̂(ri), i = −N, . . . , N. (4.8)

We thus have that
Djψ̂

L
i (r) = η̂′(ri)δij ,

and we see that the local quasicontinuum approximation is unstable when ri > a1 for some i = −N, . . . , N.

4.2. Existence and uniqueness by the inverse function theorem

While the main theorem of this section gives explicit conditions on Φ for which Ψ̂F (r) = Φ is solvable,
we begin by showing that the inverse function theorem [4] can be used to show that Ψ̂F (r) is bijective
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Figure 6. The Lennard-Jones potential (4.1) demonstrates the prototypical behavior of φ(r)
and its derivatives, η(r) = φ′(r) and η′(r) = φ′′(r).
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Figure 7. The energy density, φ̂(r), for the Lennard-Jones potential (4.1) and its derivatives,
η̂(r) = φ̂′(r) and η̂′(r) = φ̂′′(r).

in a neighborhood of r = a0. Therefore, we must analyze the invertibility of

Djψ̂
F
i (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[η′(ri) + 4η′(2ri)]δij , −N ≤ i ≤ −K,
[η′(ri) + η′(ri + ri−1) + η′(ri + ri+1)]δij

+ η′(ri + ri−1)δi−1j + η′(ri + ri+1)δi+1j

+ [4η′(2rK) − η′(rK + rK−1) − η′(rK + rK+1)]δKj

− η′(rK + rK−1)δK−1j − η′(rK + rK+1)δK+1j , −K + 1 ≤ i ≤ K − 1,
[η′(ri) + 4η′(2ri)]δij , K ≤ i ≤ N.

(4.9)
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Lemma 4.1. If η′(a0) + 8η′(2a0) > 0, then Ψ̂F (r) is bijective in a neighborhood of a0.

Proof. We will show that DΨ̂F (a0) (where (DΨ̂F )ij = Djψ̂
F
i ) is nonsingular by demonstrating that it is strictly

diagonal dominant [21] (with positive diagonal), that is,

Diψ̂
F
i (a0) >

∑
j �=i

|Djψ̂
F
i (a0)|, i = −N, . . . , N.

Looking at the rows of DΨ̂F (a0), all of the nearest-neighbor terms are on the diagonal. If we collect all
of the next-neighbor terms on the right hand side of the above inequality, we find that it is sufficient to
show that η′(a0) > 4|η′(2a0)| for rows i = −N, . . . ,−K and i = K, . . . , N and η′(a0) > 8|η′(2a0)| for rows
i = −K + 1, . . . ,K − 1. Since 2a0 > r̃1 by assumption (4.6), we have that η′(2a0) < 0 by (4.2). Thus,
the condition η′(a0) + 8η′(2a0) > 0 implies the strict diagonal dominance of (4.9). Therefore, we have that
DΨ̂F (a0) is nonsingular, and so by the inverse function theorem there exists a neighborhood of a0 in which
Ψ̂F (r) is bijective. �

4.3. Existence and uniqueness for general external forces

In the theorems of this section and the next, we will use the continuation method [1] to find explicit conditions
under which Ψ̂F (r) = Φ has a unique solution. The idea of the continuation method is to start with the uncou-
pled local quasicontinuum system, construct a homotopy transformation from the local quasicontinuum system
to the force-based quasicontinuum system, and show that existence and uniqueness persists through the trans-
formation. We use the following well-known lemma to show that unique solvability of the local quasicontinuum
system implies existence and uniqueness of a solution to the force-based quasicontinuum system [4].

Lemma 4.2. Let Ω ⊂ R
2N+1 be an open, bounded set. Suppose that f ,g ∈ C1(Ω̄; R2N+1) and the homotopy

h(r, t) = (1 − t)f(r) + tg(r) for t ∈ [0, 1] satisfies
(1) f(r) = 0 has a unique solution in Ω,
(2) detDrh(r, t) �= 0 in Ω × [0, 1],
(3) h(r, t) �= 0 for every (r, t) ∈ ∂Ω × [0, 1].

Then there is a unique solution r ∈ Ω satisfying g(r) = 0.

Proof. Since detDrh(r, t) �= 0 for all (r, t) ∈ Ω × [0, 1], we know by the implicit function theorem [4] that the
solution of h(r, t) = 0 in a neighborhood of a particular solution (r∗, t∗) satisfying h(r∗, t∗) = 0 can be written
as a function r(t) in a neighborhood of (r∗, t∗). Thus, by compactness, the curve can be continued until it leaves
the region Ω̄× [0, 1]. Since we have assumed that h(r, t) �= 0 on ∂Ω× [0, 1], there is a one-to-one correspondence
between solutions of f(r) = 0 and solutions of g(r) = 0. Therefore, the existence of a unique solution of f(r) = 0
for r ∈ Ω implies that g(r) = 0 has a unique solution for r ∈ Ω. �

We define the homotopy

h(r, t) = (1 − t)[Ψ̂L(r) − Φ] + t[Ψ̂F (r) − Φ], t ∈ [0, 1],

where Ψ̂L(r) is the local quasicontinuum system (4.8). The next lemma uses the properties of the local quasi-
continuum system to simplify the hypothesis for the previous lemma.

Lemma 4.3. Let rL and rU satisfy 0 < rL < rU < a1, and set Ω = (rL, rU )2N+1. Suppose that for i =
−N, . . . , N we have that

hi(r, t) > 0 if ri = rU and r ∈ ∂Ω, t ∈ [0, 1],

hi(r, t) < 0 if ri = rL and r ∈ ∂Ω, t ∈ [0, 1]. (4.10)
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If DΨ̂F (r) is strictly diagonally dominant for all r ∈ Ω, then there exists a unique solution in Ω to the system
of equations Ψ̂F (r) = Φ.

Proof. We show that the above conditions are enough to satisfy the hypotheses of Lemma 4.2. We first show
that Ψ̂L(r) = Φ has a unique solution in Ω. Since the system is decoupled, we need only demonstrate that the
scalar equations

η(rj) + 2η(2rj) = Φj , j = −N, . . . , N, (4.11)
have a unique solution for rL < rj < rU . We have from the hypothesis (4.10) on hi(r, t) at t = 0 that
η(rL)+2η(2rL)−Φj < 0 and η(rU )+2η(2rU)−Φj > 0. Hence, a solution rj to (4.11) exists by the intermediate
value theorem. Since η̂(r) = η(r) + 2η(2r) is increasing for 0 < r < rU < a1 by (4.5), the solution to (4.11)
must be unique.

The hypothesis (4.10) implies that h(r, t) �= 0 for every (r, t) ∈ ∂Ω × [0, 1]. Finally, to show that
detDrh(r, t) �= 0 for all (r, t) ∈ Ω × [0, 1] it is sufficient to demonstrate the strict diagonal dominance of
Drh(r, t) for all (r, t) ∈ Ω × [0, 1].

Now
Djhi(r, t) = (1 − t)Djψ̂

L
i (r) + tDjψ̂

F
i (r),

and
Djψ̂

L
i (r) = η̂′(ri)δij .

Since 0 < ri < a1, we have by (4.5) that η̂′(ri) > 0. Thus, we have that Djψ̂
L
i (r) is strictly diagonal dominant

(with positive diagonal). We can then conclude that Djhi(r, t) is strictly diagonal dominant (with positive
diagonal) ifDjψ̂

F
i (r) is strictly diagonal dominant (with positive diagonal) sinceDjhi(r, t) is then the sum of two

strictly diagonal dominant matrices (with positive diagonal). Thus, by Lemma 4.2, the equation Ψ̂F (r)−Φ = 0
has a unique solution in Ω. �

We next turn to giving results that allow the calculation of an explicit neighborhood of a for which Ψ̂F (r)
is bijective. We first give a condition on 0 < rL < rU such that DΨ̂F (r) is strictly diagonally dominant for all
r ∈ Ω where Ω = (rL, rU )2N+1.

Lemma 4.4. Suppose that rL and rU satisfy

r̃2
2
< rL < rU ,

η′(rU ) + 12η′(2rL) ≥ 0. (4.12)

Then rU < a1, and DΨ̂F (r) is strictly diagonally dominant for all r ∈ Ω where Ω = (rL, rU )2N+1.

Proof. First, we note that since rL > r̃2
2 , (4.3) implies that 12η′(2rL) < 12η′(2rU ). Also, (4.3) gives that the

next-neighbor terms are negative, so that η′(rU ) + 4η′(2rU ) > η′(rU ) + 12η′(2rU ) ≥ 0. Therefore, by (4.6) we
can conclude that rU < a1.

We can obtain from (4.9) by summing all of the next-nearest-neighbor terms in each row that DΨ̂F (r) is
strictly diagonally dominant if

η′(r) > 12|η′(2s)| for all r, s ∈ (rL, rU ).

(We note that the hypothesis of Lem. 4.1 required the weaker condition η′(a0) > 8|η′(2a0)| since we were able
to utilize the cancellation of terms in the expression

DKψ̂
F
i (r) = 4η′(2rK) − η′(rK + rK−1) − η′(rK + rK+1), i = −K + 1, . . . ,K − 1,

when it was evaluated at r = a0 to obtain that DK ψ̂
F
i (a0) = 2η′(2a0) for i = −K + 1, . . . ,K − 1.)
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We have by (4.2) and (4.3) that

η′(r) > 0 and η′(r) is decreasing for r < r̃1, (4.13)

and we have that
η′(2s) < 0 and η′(2s) is increasing for s >

r̃2
2
· (4.14)

It follows from (4.14) that to prove strict diagonal dominance it is sufficient to show that

η′(r) + 12η′(2s) > 0 for all r, s ∈ (rL, rU ).

We have from (4.13) and (4.14) that the above condition follows from the hypothesis (4.12). �
Theorem 4.1. Suppose that rL and rU satisfy

r̃2
2
< rL < rU , (4.15)

η′(rU ) + 12η′(2rL) ≥ 0. (4.16)

If
η(rL) + 4η(2rL) − 2η(2rU ) < Φj < η(rU ) + 4η(2rU ) − 2η(2rL), j = −N, . . . , N,

then there is a unique solution in Ω = (rL, rU )2N+1 to the system of equations Ψ̂F (r) = Φ.

Remark 4.1. The restriction on Φj corresponds to a restriction on the cumulative effect of the external
forces fj . The forces need not be small or restricted to the regime of linear elasticity, and they can be distributed
throughout the chain or focused on only a single pair of representative atoms as in the case of a chain in tension.
However, the condition does put an absolute bound on the magnitude by requiring that their total effect does
not exceed the load limit of the chain.

Proof. We have by Lemma 4.4 that DΨ̂F (r) is strictly diagonally dominant for all r ∈ Ω. By Lemma 4.2, we
need only show that

hi(r, t) > 0 if ri = rU and r ∈ ∂Ω, t ∈ [0, 1],

hi(r, t) < 0 if ri = rL and r ∈ ∂Ω, t ∈ [0, 1].

If we look at the entries of Ψ̂F (r), we see that there is always one nearest-neighbor term and at most four
positive and two negative next-nearest-neighbor terms (3.10). We also note that 2rL > r̃2 > r̃1 by (4.15)
and (4.6), so we have by (4.2) that η(2r) is deceasing for r ≥ rL and

2η(2rL) − 2η(2rU ) > 0.

We can thus estimate h(r, t) on the boundary to get

min
r∈∂Ω,rj=rU

hj(r, t) = min
r∈∂Ω,rj=rU

(1 − t)[ψ̂L
j (r) − Φj ] + t[ψ̂F

j (r) − Φj]

≥ (1 − t) [η(rU ) + 2η(2rU ) − Φj ] + t [η(rU ) + 4η(2rU ) − 2η(2rL) − Φj ]

= (1 − t)[2η(2rL) − 2η(2rU )] + [η(rU ) + 4η(2rU ) − 2η(2rL)] − Φj > 0,

max
r∈∂Ω,rj=rL

hj(r, t) = max
r∈∂Ω,rj=rL

(1 − t)[ψ̂L
j (r) − Φj ] + t[ψ̂F

j (r) − Φj ]

≤ (1 − t) [η(rL) + 2η(2rL) − Φj] + t [η(rL) + 4η(2rL) − 2η(2rU ) − Φj ]

= (1 − t)[2η(2rU ) − 2η(2rL)] + [η(rL) + 4η(2rL) − 2η(2rU )] − Φj < 0. (4.17)

Therefore, by Lemma 4.3, we have a unique solution to Ψ̂F (r) = Φ in Ω. �
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We now consider the case in which the external forces, fj , are anti-symmetric (3.16), so that the external
potential Φj is symmetric (3.17). We then have that the solution r to Ψ̂F (r) = Φ obtained in the proof of
Theorem 4.1 is symmetric, and will also solve the equilibrium equations (F).

Corollary 4.1. Suppose that rL and rU satisfy

r̃2
2
< rL < rU ,

η′(rU ) + 12η′(2rL) ≥ 0,

and that the external forces, fj , are anti-symmetric (3.16). If

η(rL) + 4η(2rL) − 2η(2rU ) < Φj < η(rU ) + 4η(2rU ) − 2η(2rL), j = −N, . . . , N,

then there is a unique symmetric solution in Ω = (rL, rU )2N+1 to the equilibrium equations

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1. (F)

Proof. We first note that since the external forces, fj, are anti-symmetric, the external potential Φ is symmetric.
We consider the solution r(t) to the homotopy continuation

h (r(t), t) = (1 − t)[Ψ̂L (r(t)) − Φ] + t[Ψ̂F (r(t)) − Φ], t ∈ [0, 1], (4.18)

that we have from Lemma 4.2. The unique solution to the decoupled local quasicontinuum system Ψ̂L(r) = Φ
is symmetric, therefore r(0) is symmetric. We obtain by differentiating (4.18) that

∇rh (r(t), t) rt (t) + ht (r(t), t) = 0, t ∈ [0, 1],

where
∇rh (r(t), t) = (1 − t)∇rΨ̂L (r(t)) + t∇rΨ̂F (r(t))

and
ht (r(t), t) = Ψ̂F (r(t)) − Ψ̂L (r(t)) .

All terms above are symmetric whenever r(t) is, and therefore the symmetry of r(0) implies that rt(t) and r(t)
are symmetric in the whole interval [0, 1], and in particular r(1) is symmetric. The proof that r is symmetric is
completed by observing that r(1) is the unique solution to Ψ̂F (r) = Φ.

Since the unique solution r to Ψ̂F (r) = Φ is symmetric, we can conclude that r is the unique symmetric
solution to the force-based equilibrium equations

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1. �

Remark 4.2. The assumption of anti-symmetric external forces allowed us to replace the force-based equi-
librium equations (F) with the symmetrized conjugate force equilibrium equations (CF) since we obtain a
symmetric solution. For more general external forces, our argument requires that there is no resultant internal
force on the chain, that is, that (3.8) holds, and we do not see how to ensure this in general without putting
some restriction on the form of fj in addition to the usual requirement of no resultant external force (3.12). It is
likely that a more involved proof can give the existence of solutions to the force-based equilibrium equations (F)
under weaker assumptions on the external forces fj.

We now apply Corollary 4.1 to the Lennard-Jones potential (4.1).
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Corollary 4.2. We assume that the external forces, fj, are anti-symmetric (3.16). For any r̃2
2 < rU < a1, let

rL = max

(
r̃2
2
,

(
63

16η′(rU )

) 1
8
)
· (4.19)

If rL < rU , then the equilibrium equations

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1, (F)

have a unique symmetric solution r in Ω = (rL, rU )2N+1 whenever

η(rL) + 4η(2rL) − 2η(2rU ) < Φj < η(rU ) + 4η(2rU ) − 2η(2rL), j = −N, . . . , N.

Proof. To prove this corollary using Theorem 4.1, we need to show that (4.16) holds. Evaluating (4.16) for the
Lennard-Jones potential (4.1), we get

η′(rU ) + 12η′(2rL) = η′(rU ) + 12
[

156
214r14L

− 84
28r8L

]

> η′(rU ) − 63
16r8L

·

Therefore, (4.16) holds if rL ≥
(

63
16η′(rU )

)1/8

. �

After solving for rL in (4.19), we have to check the additional hypothesis (4.15) that rL < rU , as it is not true
for every rU ∈ (r̂2/2, a1). However, this is not a very restrictive assumption since it is true for all rU < 1.1003,
whereas a1 = 1.1059. The lower end for the interval is r̃2

2 = 0.6085.
Using Corollary 4.2, we now find a symmetric region about Φ = 0. Solving numerically, if we take rL = 0.9700

and rU = 1.0883, we can conclude that for any Φ satisfying −2.62 < Φ < 2.62, we can uniquely solve the
force-based quasicontinuum equilibrium equations (F). For the Lennard-Jones potential η̂(a1) = 2.781, so this
symmetric region extends quite close to the load limit.

Remark 4.3. The techniques of this section can be applied to the analysis of the fully atomistic model or
the constrained atomistic quasicontinuum approximation, and the analysis will be simplified as there are no
non-local conjugate forces. In both cases, the continuation from the local quasicontinuum approximation can
be used.

We also note that the interfacial terms satisfy the convexity condition

Sj(rj−1, rj) = −1
2
φ(2rj−1) + φ(rj−1 + rj) − 1

2
φ(2rj) > 0, j = −N + 1, . . . , N,

for r in the region defined by (4.15) in Theorem 4.1 and Corollary 4.1 since (4.14) holds in this region.

5. Convergence of the ghost force iteration

We now give a similar analysis for the iterative equations (CE) which in vector form are

Ψ̂E(rn+1) + Ψ̂G(rn) = Φ, (CE)

where Ψ̂E(r) =
(
ψ̂E
−N (r), . . . , ψ̂E

N (r)
)

∈ R
2N+1 has the symmetric form given in (3.4), and Ψ̂G(r) =(

ψ̂G
−N(r), . . . , ψ̂G

N (r)
)

∈ R
2N+1 has the symmetric form given in (3.11). We also note that we can ignore



ANALYSIS OF A FORCE-BASED QUASICONTINUUM APPROXIMATION 135

ψ̂E
−N−1, ψ̂

E
N+1, ψ̂

G
−N−1, ψ̂

G
N+1 and Φ−N−1, ΦN+1 in the above formulation since

ψ̂E
−N−1 = ψ̂E

N+1 = ψ̂G
−N−1 = ψ̂G

N+1 = Φ−N−1 = ΦN+1 = 0.

We will determine Ω ⊂ R
2N+1 and D ⊂ R

2N+1 such that there is a unique rn+1 ∈ Ω that satisfies (CE)
whenever rn ∈ Ω and Φ ∈ D, and we will show that the induced mapping from rn to rn+1 is a contraction
mapping.

First, we need to compute DΨ̂E(r) and DΨ̂G(r). The following expressions are rather complex, but all we
will need to know about them is the number of first and second neighbor terms in each row. We have

Djψ̂
E
i (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[η′(ri) + 4η′(2ri)]δij , K + 2 ≤ i ≤ N,

[η′(ri) + 4η(2ri) + 1
2η

′(ri + ri−1)]δij
+ [12η

′(ri + ri−1)]δi−1j , i = K + 1,
[η′(ri) + 2η′(2ri) + 1

2η
′(ri + ri−1) + 1

2η
′(ri + ri+1)]δij

+ [12η
′(ri + ri−1)]δi−1j + [12η

′(ri + ri+1)]δi+1j , i = K,

[η′(ri) + η′(ri + ri−1) + 1
2η

′(ri + ri+1)]δij
+ [η′(ri + ri−1)]δi−1j + [12η

′(ri + ri+1)]δi+1j , i = K − 1,
[η′(ri) + η′(ri + ri−1) + η′(ri + ri+1)]δij

+ η′(ri + ri−1)δi−1j + η′(ri + ri+1)δi+1j , −K + 2 ≤ i ≤ K − 2,
η′(ri)δij + . . . , −N ≤ i ≤ −K + 3,

(5.1)

and

Djψ̂
G
i (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, K + 2 ≤ i ≤ N,

− 1
2η

′(rK + rK+1)δKj − 1
2η

′(rK + rK+1)δK+1j , i = K + 1,
[2η′(2rK) − 1

2η
′(rK + rK−1) − 1

2η
′(rK + rK+1)]δKj

− 1
2η

′(rK + rK−1)δK−1j − 1
2η

′(rK + rK+1)δK+1j , i = K,

[4η′(2rK) − 1
2η

′(rK + rK−1) − η′(rK + rK+1)]δKj

− 1
2η

′(rK + rK−1)δK−1j − η′(rK + rK+1)δK+1j , i = K − 1,
[4η′(2rK) − η′(rK + rK−1) − η′(rK + rK+1)]δKj

− η′(rK + rK−1)δK−1j − η′(rK + rK+1)δK+1j , −K + 2 ≤ i ≤ K − 2,
. . . , −N ≤ i ≤ −K + 3.

(5.2)

We recall that the maximum norm for r ∈ R
2N+1 is given by

‖r‖∞ = max
i=−N,...,N

|ri|.

Theorem 5.1. Suppose that rL and rU satisfy

r̂2
2
< rL < rU ,

η′(rU ) + 13η′(2rL) > 0, (5.3)

and that Φ satisfies

η(rL) + 4η(2rL) − 2η(2rU ) < Φj < η(rU ) + 4η(2rU ) − 2η(2rL), j = −N, . . . , N. (5.4)

Then for every rn ∈ Ω = (rL, rU )2N+1 there is a unique rn+1 ∈ Ω such that

Ψ̂E(rn+1) + Ψ̂G(rn) = Φ. (CE)
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We also have that the induced mapping rn → rn+1 is a contraction and satisfies the inequality

||rn+1 − sn+1||∞ ≤ 8|η′(2rL)|
η′(rU ) − 5|η′(2rL)| ||r

n − sn||∞, (5.5)

where we have from (5.3) that
8|η′(2rL)|

η′(rU ) − 5|η′(2rL)| < 1.

Proof. The first part of the proof will be very similar to the proofs of Lemma 4.4 and Theorem 4.1, as we will
again satisfy the hypotheses of Lemma 4.3. First, we note that (5.3) implies that rU < a1 by Lemma 4.4. We
prove strict diagonal dominance for Djψ̂

E
i (r) given by (5.1). For this argument, we only need to show that

η′(r) > 5|η′(2s)| whenever r, s ∈ (rL, rU ), or since η′(2s) < 0, we need only show

η′(r) + 5η′(2s) > 0 for r, s ∈ (rL, rU ).

We will need the factor 13 in the hypothesis (5.3) to prove that the mapping is a contraction, which is why the
hypothesis is as strong as it is. We further note that from (4.13), (4.14), and the hypothesis (5.4) that we have

η′(r) + 5η′(2s) > η′(r) + 13η′(2s)

> η′(rU ) + 13η′(2rL) > 0, r, s ∈ (rL, rU ).

Thus, we have established that detDΨ̂E(r) > 0 in Ω.
We now verify that h(r, t) satisfies the condition (4.10), that is, it does not vanish on ∂Ω× [0, 1]. In the proof

of Theorem 4.1, we analyzed h(r, t) on ∂Ω × [0, 1] by grouping the second-neighbor terms. From this point of
view (4.17), the iteration problem Ψ̂E(rn+1) + Ψ̂G(rn) = Φ, is identical to the problem, Ψ̂(r) = Φ. Thus, we
have that

min
rn+1∈∂Ω,

rj=rU

hj(rn+1) ≥ min
rn+1,rn∈∂Ω,

rj=rU

(1 − t)[ψ̂L
j (rn+1) − Φj ] + t[ψ̂E

j (rn+1) + ψ̂G(rn) − Φj ]

≥ (1 − t)[2η(2rL) − 2η(2rU )] + [η(rU ) + 4η(2rU ) − 2η(2rL) − Φj ] > 0,

max
rn+1∈∂Ω,

rj=rL

hj(rn+1) ≤ max
rn+1,rn∈∂Ω,

rj=rL

(1 − t)[ψ̂L
j (rn+1) − Φj ] + t[ψ̂E

j (rn+1) + ψ̂G(rn) − Φj ]

≤ (1 − t)[2η(2rU ) − 2η(2rL)] + [η(rL) + 4η(2rL) − 2η(2rU ) − Φj ] < 0.

Therefore, we have proven that h(r, t) satisfies the condition (4.10), that is, it does not vanish on ∂Ω × [0, 1].
We have now verified the hypotheses of Lemma 4.3 to conclude the existence of a unique solution rn+1 ∈ Ω to
the iteration equation (CE).

To prove that the mapping (CE) is a contraction, we suppose rn, rn+1, sn, sn+1 ∈ Ω satisfy

Ψ̂E(rn+1) + Ψ̂G(rn) = Φ,

Ψ̂E(sn+1) + Ψ̂G(sn) = Φ.

We then have that
Ψ̂E(rn+1) − Ψ̂E(sn+1) = Ψ̂G(sn) − Ψ̂G(rn). (5.6)

By the fundamental theorem of calculus, we have that

Ψ̂E(rn+1) − Ψ̂E(sn+1) = LE(rn+1, sn+1)(rn+1 − sn+1),

Ψ̂G(rn) − Ψ̂G(sn) = LG(rn, sn)(rn − sn), (5.7)
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where

LE(rn+1, sn+1) =
∫ 1

0

DΨ̂E
(
rn+1 + θ(sn+1 − rn+1)

)
dθ,

LG(rn, sn) =
∫ 1

0

DΨ̂G (rn + θ(sn − rn)) dθ.

We then have by (5.6) and (5.7) that

LE(rn+1, sn+1)(rn+1 − sn+1) = −LG(rn, sn)(rn − sn).

To show that LE(rn+1, sn+1) is nonsingular and estimate its inverse, we define the diagonal matrix,
LD(rn+1, sn+1), that contains the dominant nearest-neighbor terms of LE(rn+1, sn+1) by

(
LD(rn+1, sn+1)

)
ij

=
LD

ij(r
n+1, sn+1) where

LD
ij(r

n+1, sn+1) =
[∫ 1

0

η′
(
rn+1
i + θ(sn+1

i − rn+1
i )

)
dθ
]
δij .

Since r + θ(s− r) ∈ Ω = (rL, rU )2N+1 if r, s ∈ Ω and θ ∈ (0, 1), we can conclude from (4.13) and (4.14) that

||LD(rn+1, sn+1)−1||∞ ≤ 1
η′(rU )

,

||LE(rn+1, sn+1) − LD(rn+1, sn+1)||∞ ≤ 5|η′(2rL)|, (5.8)

where the matrix norm that is induced by the ||r||∞ vector norm is

‖L‖∞ = max
i=−N,...,N

N∑
j=−N

|Lij |.

We have that

LE(rn+1, sn+1) = LD(rn+1, sn+1)
[
I + LD(rn+1, sn+1)−1

(
LE(rn+1, sn+1) − LD(rn+1, sn+1)

)]
,

so it follows from (5.8) that LE(rn+1, sn+1) is nonsingular and we have the estimate

||LE(rn+1, sn+1)−1||∞ ≤ ||LD(rn+1, sn+1)−1||∞
1 − ||LD(rn+1, sn+1)−1||∞||LE(rn+1, sn+1) − LD(rn+1, sn+1)||∞ · (5.9)

Hence, can state that
rn+1 − sn+1 = − [LE(rn+1, sn+1)

]−1
LG(rn, sn)(rn − sn). (5.10)

From (5.2), we can obtain from (4.14) the estimate

||LG(rn, sn)||∞ ≤ 8|η′(2rL)|,

so we have from (5.10) and (5.9) that

||rn+1 − sn+1||∞ ≤ ||LE(rn+1, sn+1)−1LG(rn, sn)||∞||rn − sn||∞
≤ ||LE(rn+1, sn+1)−1||∞||LG(rn, sn)||∞||rn − sn||∞
≤ 8|η′(2rL)|
η′(rU ) − 5|η′(2rL)| ||r

n − sn||∞.
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We have from (5.3) that
8|η′(2rL)|

η′(rU ) − 5|η′(2rL)| < 1,

so the mapping rn → rn+1 is a contraction and

||rn+1 − sn+1||∞ ≤ 8|η′(2rL)|
η′(rU ) − 5|η′(2rL)| ||r

n − sn||∞. �

We can prove the following corollary of Theorem 5.1 for the ghost force iteration by an argument similar to
that used to derive Corollary 4.1 from Theorem 4.1.

Corollary 5.1. Suppose that the external forces, fj , are anti-symmetric (3.16), that rL and rU satisfy

r̂2
2
< rL < rU ,

η′(rU ) + 13η′(2rL) > 0, (5.11)

and that Φ satisfies

η(rL) + 4η(2rL) − 2η(2rU ) < Φj < η(rU ) + 4η(2rU ) − 2η(2rL), j = −N, . . . , N.

Then for every symmetric rn ∈ Ω = (rL, rU )2N+1 there is a unique symmetric rn+1 ∈ Ω such that

FQCE
j (rn+1) + FG

j (rn) + fj = 0, j = −N, . . . , N + 1. (E)

We also have that the induced mapping rn → rn+1 is a contraction and satisfies the inequality

||rn+1 − sn+1||∞ ≤ 8|η′(2rL)|
η′(rU ) − 5|η′(2rL)| ||r

n − sn||∞, (5.12)

where we have from (5.11) that
8|η′(2rL)|

η′(rU ) − 5|η′(2rL)| < 1.

The mapping rn → rn+1 converges to the unique symmetric r in Ω that satisfies the force-based quasicontinuum
equations

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1. (F)

We now apply Corollary 5.1 to the Lennard-Jones potential as in the previous section. This time, we not
only need to satisfy the basic inequality (5.3) on rL and rU , but we also need to verify that the contraction
constant in (5.12) is less than 1. So, we pick γ ∈ (0, 1) and solve for

8|η′(2rL)|
η′(rU ) − 5|η′(2rL)| < γ.

Using the same argument as in Corollary 4.2, for any rU ∈ (r̂2/2, a1), we choose

rL = max

(
r̃2
2
,

(
84(5 + 8/γ)
256η′(rU )

) 1
8
)
·

If the resulting rL is less than rU , we then have a region for symmetric Φ for which the iteration is well-defined
and a contraction.
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Using the above with contraction constant γ = 1
2 , we find that for any symmetric Φ ∈ (−2.56, 2.56)2N+1 and

symmetric rn ∈ (0.9706, 1.0771)2N+1 there is a unique symmetric rn+1 ∈ (0.9706, 1.0771)2N+1 that satisfies the
ghost force iteration equations

FQCE
j (rn+1) + FG

j (rn) + fj = 0, j = −N, . . . , N + 1.

We can finally obtain by taking sn = r, where r is the unique symmetric solution to the force-based quasicon-
tinuum equations,

FQCF
j (r) + fj = 0, j = −N, . . . , N + 1,

that
||rn+1 − r||∞ ≤ 1

2
||rn − r||∞.
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[18] C. Ortner and E. Süli, A priori analysis of the quasicontinuum method in one dimension. Technical report, Oxford Numerical

Analysis Group (2006).
[19] S. Prudhomme, P.T. Bauman and J.T. Oden, Error control for molecular statics problems. Int. J. Multiscale Comput. Eng. 4

(2006) 647–662.
[20] D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82

(1999) 1704–1707.

[21] D. Serre, Matrices: Theory and applications, Graduate Texts in Mathematics 216. Springer-Verlag, New York (2002). Trans-
lated from the 2001 French original.

[22] V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale
mechanics — the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611–642.

[23] T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of
the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104.

[24] E. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529–1563.


