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Abstract. In this paper, we study a postprocessing procedure for improving accuracy of the finite
volume element approximations of semilinear parabolic problems. The procedure amounts to solve a
source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time
evolution is finished. We derive error estimates in the L2 and H1 norms for the standard finite volume
element scheme and an improved error estimate in the H1 norm. Numerical results demonstrate the
accuracy and efficiency of the procedure.
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1. Introduction

We consider the following semilinear parabolic problem:

ut −∇ · (A∇u) = f(x, t, u), in Ω × (0, T ],

u = 0, on ∂Ω × (0, T ],

u = u0, in Ω × {0}, (1.1)

where Ω is a bounded polygonal domain in R
2, u0(x) a given smooth function and A(x) = (aij(x))2i,j=1,

(aij(x) ∈ W 1,∞(Ω)) a symmetric and positive definite matrix in Ω, i.e., there exists a positive constant a∗ such
that

0 < a∗|ζ|2 ≤ ζT A(x)ζ, ∀ζ ∈ R
2, x ∈ Ω.

We assume that f(x, t, u) is a real-valued function defined on Ω× (0, T ]× R satisfying the following condition:

|f(x, t, w) − f(x, t, v)| ≤ Cf |w − v|(1 + |w| + |v|)γ , ∀w, v ∈ R, a.e. (x, t) ∈ Ω × (0, T ]. (1.2)

Here Cf is a positive constant and 0 ≤ γ < ∞. For example, f(x, t, u) could be an arbitrary polynomial
of u. The condition (1.2) implies that f is locally Lipschitz continuous [21,30]. The problem (1.1) arises
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in many applications, e.g., combustion modeling, epidemic phenomena, and stochastic controls. As in [19,21,31],
we suppose that the initial data u0 is sufficiently smooth and compatible and the problem (1.1) admits a unique
solution satisfying

max
0≤t≤T

‖u(·, t)‖3,q + ‖ut(·, t)‖3,r ≤ M, (1.3)

where M is a positive constant and q, r > 1 are constants to be specified in Section 3. A detailed discussion on
the regularity of solutions of nonlinear evolution problems can be found in [20,28,29].

Finite volume element (FVE) methods are discretization tools widely used in engineering applications. The
methods possess the advantages of local modeling and simple structures and offer the flexibility to handle
complicated geometries. More importantly, the methods ensure local mass conservation, a highly desirable
property in many applications. We refer to the monographs [16,22] for general presentations of these methods,
and to the papers [2,4,5,11,17,27,32,33] (also the references therein) for more details.

To the best of our knowledge, little progress has been made on the FVE solution of problems of the form (1.1).
A reason for this might be that the analysis for the nonlinear term is often very involved. For the linear case,
a unified approach is presented in [10] to derive error estimates in the L2, H1, and L∞ norms by connecting
FVE methods with finite element (FE) methods. Error estimates and superconvergence results in the Lp norm
(2 ≤ p < ∞) are obtained in [11]. In [8], FVE methods for two-dimensional linear parabolic problems in convex
polygonal domains are studied and error estimates in the H1, L2, and L∞ norms under limited regularities of
exact solutions are established. In order to solve the discrete equations more efficiently, several symmetric FVE
schemes are developed in [23,25].

On the other hand, developing efficient algorithms for finite volume element methods is an interesting problem
and has been attracting many researchers’ attention. The convergence of a V-cycle multigrid algorithm for a FVE
method for variable coefficient elliptic problems is considered in [9]. Two-grid FVE methods are presented in [2]
for linear and nonlinear elliptic problems and error estimates are derived to justify efficiency of the algorithms.
Residual type a posteriori error estimates and an adaptive strategy for the finite volume approximation are
developed in [6] to treat two- and three- dimensional steady-state convection diffusion reaction problems. In [34],
a two-level additive Schwarz domain decomposition FVE method is studied and its convergence rates are shown
to be optimal and independent of the number of subregions.

The purpose of this paper is to formulate and analyze a postprocessing FVE procedure for the semilinear
parabolic initial boundary value problem (1.1). We first prove the optimal order error estimates in the H1 and
L2 norm for the standard FVE scheme under certain regularity assumptions on the solution. The main difficulty
for this part is to treat the locally Lipschitz continuous nonlinearity and prove the existence of the numerical
solution. Furthermore, we develop a postprocessing algorithm to improve efficiency of the methods. The post-
processing technique can be seen as a novel two-level or two-grid method, which involves an additional solution
on a finer grid after the time evolution is finished. Unlike the traditional two-grid or two-level approaches,
there is no communication from fine to coarse meshes until the end of time-marching [13,18,24]. This means
that the extra cost of the postprocessing is relatively negligible when compared with the cost of computations
from t = 0 to t = T on the coarser mesh. In [19], the postprocessed FE methods are proved to have a higher
rate of convergence in H1 and L2 norms than the standard ones when other than piecewise linear elements are
used. A postprocessing linear FE scheme is studied in [14] and the improved H1 convergence rate is observed.
The above analysis is extended to fully discrete case and both temporal and spatial estimates are obtained
in [31]. We want to point out that although postprocessing techniques have been studied extensively in the FE
framework, how to apply them to FVE methods is still not very well known. There are certain difficulties in
handling piecewise constant test functions and nonsymmetric bilinear forms.

The rest of this paper is organized as follows. In Section 2, we describe the FVE method for the semilin-
ear parabolic initial boundary value problem (1.1). In Section 3 we derive optimal order semidiscrete error
estimates for finite volume approximation in the H1 and L2 norms under certain regularity assumptions. The
postprocessing FVE procedure and the improved error estimate in H1 norm are established in Section 4. Finally
numerical experiments are presented in Section 5 to illustrate the theoretical analysis.
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Figure 1. Left : A sample region with dotted lines indicating the corresponding control vol-
ume Vz. Right : A triangle K partitioned into three quadrilaterals Kz.

Throughout this paper we use C and ε to denote a generic positive constant and a generic small positive
constant independent of discretization parameters.

2. Finite volume element scheme

2.1. Notations

We shall use the standard notations for the Sobolev space Wm
p (Ω) with the norm ‖ ·‖m,p,Ω and the seminorm

| · |m,p,Ω, see [1]. To simplify the notations, we denote Wm
2 (Ω) by Hm(Ω) and skip the index p = 2 and Ω, when

there is no ambiguity. That is, ‖u‖m,p = ‖u‖m,p,Ω, ‖u‖m = ‖u‖m,2,Ω. The same convention is adopted for the
seminorms as well. We denote by H1

0 (Ω) the subspace of H1(Ω) of functions vanishing on the boundary ∂Ω.
Let Th be a quasi-uniform triangulation of Ω with h = maxhK , where hK is the diameter of any triangle

K ∈ Th. For this primal triangulation, let Sh be the standard conforming finite element space of piecewise
linear functions,

Sh = {v ∈ C(Ω) : v|K linear, ∀K ∈ Th; v|∂Ω = 0}·

In order to describe the FVE method, we introduce a dual partition T ∗
h whose elements are called control

volumes. We construct the control volumes in the same way as in [7,15]. Let zK be the barycenter of any K ∈ Th.
We connect zK using line segments to the edge midpoints of K, and divide K into three quadrilaterals Kz,
z ∈ Zh(K), where Zh(K) is a set of the vertices of K, see Figure 1. For each vertex z ∈ Zh = ∪K∈Th

Zh(K), we
associate a control volume Vz , which consists of the union of the subregions Kz sharing the vertex z. Thus we
obtain a group of control volumes covering the domain Ω. This is the dual partition T ∗

h . We denote the set of
interior vertices of Zh by Z0

h.
A dual partition T ∗

h is regular or quasi-uniform, if there exists a positive constant C > 0 such that

C−1h2 ≤ meas(Vz) ≤ Ch2, ∀Vz ∈ T ∗
h .

We want to point out that a barycenter-type dual partition can be constructed for any finite element triangu-
lation Th and involves relatively simple calculations. In addition, if the primal triangulation Th is quasi-uniform,
then the dual partition T ∗

h is also quasi-uniform.
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2.2. Construction of FVE scheme

We formulate the FVE method for the problem (1.1). Given a vertex z ∈ Z0
h, we integrate (1.1) over the

associated control volume Vz and apply the Green’s formula to obtain∫
Vz

utdx −
∫

∂Vz

(A∇u) · nds =
∫

Vz

f(x, t, u)dx, (2.1)

where n denotes the unit outer normal vector to ∂Vz . It should be noted that the above formulation is a way
of stating that we have an integral conservation form on the control volume.

The integral relation (2.1) can be written in a variational form similar to that of the finite element method
with the help of an interpolation operator I∗h : Sh → S∗

h defined by

I∗hv =
∑

z∈Z0
h

v(z)Ψz,

where
S∗

h = {v ∈ L2(Ω) : v|Vz constant, ∀z ∈ Z0
h; v|Vz = 0, ∀z ∈ ∂Ω},

and Ψz is the characteristic function of the control volume Vz . It was shown in [11] that

‖vh − I∗hvh‖0,p ≤ Chs‖vh‖s,p, s = 0, 1, (2.2)

and in [7] that

‖I∗hvh‖0,p ≤ C‖vh‖0,p (2.3)

for all vh ∈ Sh and p > 1. Furthermore, (vh, I∗hwh) is symmetric and positive definite for any vh, wh ∈ Sh.
Therefore, it defines an inner product on Sh, and the corresponding discrete norm is equivalent to the L2 norm.
In other words, there exist two constants C∗ > 0 and C∗ > 0 independent of h such that

C∗‖vh‖0 ≤ ‖|vh‖|0 ≤ C∗‖vh‖0, ∀vh ∈ Sh, (2.4)

with ‖|vh‖|0 = (vh, I∗hvh)1/2.
For any I∗hvh, we multiply (2.1) by vh(z) and sum over all z ∈ Z0

h to obtain

(ut, I
∗
hvh) + ah(u, I∗hvh) = (f(x, t, u), I∗hvh), ∀vh ∈ Sh, (2.5)

where the bilinear form ah(·, I∗h ·) is defined as: for any u ∈ H1
0 (Ω), vh ∈ Sh,

ah(u, I∗hvh) = −
∑

z∈Z0
h

vh(z)
∫

∂Vz

(A∇u) · nds.

Our semidiscrete FVE method for problem (1.1) is to find uh(t) ∈ Sh for all 0 ≤ t ≤ T such that

(uh,t, I
∗
hvh) + ah(uh, I∗hvh) = (f(x, t, uh), I∗hvh), ∀vh ∈ Sh, (2.6)

with the initial approximation given by
uh(0) = Rhu0,

where Rh : H1
0 (Ω) → Sh denotes the elliptic projector satisfying

ah(Rhu, I∗hvh) = ah(u, I∗hvh), ∀vh ∈ Sh. (2.7)
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In [10,11,15], it was proved that

‖u − Rhu‖1 ≤ Ch‖u‖2, ∀u ∈ H2(Ω) ∩ H1
0 (Ω), (2.8)

‖u − Rhu‖0,p ≤ Ch2‖u‖3,q, ∀u ∈ W 3
q (Ω) ∩ H1

0 (Ω), (2.9)

where q > 1 if p = 2, and q = 2p/(p + 2) if p > 2.

Remark 2.1. Let {Φz : z ∈ Z0
h} be the standard basis functions of Sh, {Ψz : z ∈ Z0

h} be the associated
basis of S∗

h, and uh(t) =
∑

z∈Z0
h

αz(t)Φz . Then scheme (2.6) can be written as a system of ordinary differential
equations

Mα′(t) + Sα(t) = f̃(t, α(t)), 0 ≤ t ≤ T ; α(0) = β,

where M = ((Φz , Ψw))zw and S = (ah(Φz , Ψw))zw are the mass and stiffness matrices, respectively, and α(t)
and β vectors of the nodal values of uh(t) and Rhu0. Thus scheme (2.6) represents a non-autonomous system of
ordinary differential equations with a locally Lipschitz continuous right-hand side. From (2.4) and Lemma 3.1
below, we know that M is symmetric, and both M and S are positive definite. This implies that there exists
a unique local solution uh on a certain maximal subinterval [0, t∗∗) of [0, T ]. We will show in Lemma 3.4 that
t∗∗ = T for sufficiently small h.

3. Error analysis of the finite volume element scheme

We will frequently use the following Sobolev’s inequality [1]: for p ∈ [1,∞), there exists a constant C =
C(Ω, p) such that

‖v‖0,q ≤ C‖v‖s,p,
1
p
≥ 1

q
≥ 1

p
− s

2
, ∀v ∈ W s

p (Ω). (3.1)

Since Th is quasi-uniform, the following inverse estimate holds for all v ∈ Sh, see [3,12]:

‖v‖m,p ≤ Chl−m−2( 1
q −

1
p )‖v‖l,q, 0 ≤ l ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞. (3.2)

The following two lemmas have been proved in [10], where Lemma 3.1 indicates that the bilinear form
ah(·, I∗h·) is continuous and coercive on Sh, while Lemma 3.2 shows that ah(·, I∗h ·) is generally unsymmetric but
not too far away from being symmetric.

Lemma 3.1. For h sufficiently small, there exist two positive constants C∗ and C∗ independent of h such that

|ah(wh, I∗hvh)| ≤ C∗‖wh‖1‖vh‖1, ∀wh, vh ∈ Sh, (3.3)

ah(vh, I∗hvh) ≥ C∗‖vh‖2
1, ∀vh ∈ Sh. (3.4)

Lemma 3.2. For h sufficiently small, there exists a constant C > 0 such that

|ah(wh, I∗hvh) − ah(vh, I∗hwh)| ≤ Ch‖wh‖1‖vh‖1, ∀wh, vh ∈ Sh. (3.5)

In [21], the following result has been established regarding the local Lipschitz continuity of f as a mapping
from L2(γ+1)(Ω) to L2(Ω).

Lemma 3.3. Suppose that f satisfies the condition (1.2). Then there exists a positive constant C = C(γ, Cf , Ω)
such that

‖f(x, t, w) − f(x, t, v)‖0 ≤ C‖w − v‖0,2(γ+1)(1 + ‖w‖γ
0,2(γ+1) + ‖v‖γ

0,2(γ+1)) (3.6)

for all w, v ∈ L2(γ+1)(Ω) and a.e. (x, t) ∈ Ω × (0, T ].
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Now we state the first main result that estimates the H1 norm error between the elliptic projection of the
exact solution and the FVE approximation. It also asserts the existence of an approximation solution uh(t) in
the whole time period [0, T ].

Lemma 3.4. Let u and uh be the solutions of (1.1) and (2.6), respectively. Let Rhu be the elliptic projection of u
onto Sh defined in (2.7). Suppose that (1.2) and (1.3) hold. Then, there exists h0 > 0 and a positive constant
C = C(γ, Cf , Ω, M) independent of the discretization parameter, such that for all h ∈ (0, h0] and t ∈ [0, T ],

‖Rhu − uh‖1 ≤ Ch2. (3.7)

Proof. We decompose the error as uh − u = ξ − η, where ξ = uh − Rhu and η = u − Rhu. According to
Remark 2.1, there exists a maximal interval [0, t∗∗) ⊂ [0, T ] such that uh(t) exists for all t ∈ [0, t∗∗). Here either
t∗∗ = T or t∗∗ < T , and limt→t∗∗ |uh(t)| = +∞. We will show below that t∗∗ = T , if h is small enough.

From (2.5) and (2.6), we have the following error equation

(ξt, I
∗
hvh) + ah(ξ, I∗hvh) = (ηt, I

∗
hvh) + (f(x, t, uh) − f(x, t, u), I∗hvh), t ∈ (0, t∗∗). (3.8)

Taking vh = ξt in (3.8) leads to

‖|ξt‖|20 +
1
2

d
dt

ah(ξ, I∗hξ) =
1
2
[ah(ξt, I

∗
hξ) − ah(ξ, I∗hξt)] + (ηt, I

∗
hξt) + (f(x, t, uh) − f(x, t, u), I∗hξt).

It follows from Lemma 3.2 and the inverse estimate (3.2) that

|ah(ξt, I
∗
hξ) − ah(ξ, I∗hξt)| ≤ Ch‖ξ‖1‖ξt‖1 ≤ C‖ξ‖1‖ξt‖0 ≤ C‖ξ‖2

1 + ε‖ξt‖2
0.

By (2.3),

|(ηt, I
∗
hξt)| + |(f(x, t, uh) − f(x, t, u), I∗hξt)| ≤ ‖ηt‖0‖I∗hξt‖0 + ‖f(x, t, uh) − f(x, t, u)‖0‖I∗hξt‖0

≤ C(‖ηt‖2
0 + ‖f(x, t, uh) − f(x, t, u)‖2

0) + ε‖ξt‖2
0.

Thus, using (2.4) and choosing ε small enough, we obtain

d
dt

ah(ξ, I∗hξ) ≤ C(‖ηt‖2
0 + ‖f(x, t, uh) − f(x, t, u)‖2

0 + ‖ξ‖2
1)

≤ C(‖ηt‖2
0 + ‖f(x, t, uh) − f(x, t, Rhu)‖2

0 + ‖f(x, t, Rhu) − f(x, t, u)‖2
0 + ‖ξ‖2

1), (3.9)

for all t ∈ (0, t∗∗). By Lemma 3.3, the Sobolev’s inequality (3.1) and (2.8), we have

‖f(x, t, Rhu) − f(x, t, u)‖0 ≤ C‖η‖0,2(γ+1)(1 + ‖u‖γ
0,2(γ+1) + ‖Rhu‖γ

0,2(γ+1))

≤ C‖η‖0,2(γ+1)(1 + ‖u‖γ
1 + ‖Rhu‖γ

1)

≤ C‖η‖0,2(γ+1)(1 + ‖u‖γ
1 + (‖u‖1 + h‖u‖2)γ)

≤ C‖η‖0,2(γ+1). (3.10)

On the other hand, by a similar argument as above, we have

‖f(x, t, Rhu) − f(x, t, uh)‖0 ≤ C‖ξ‖1(1 + ‖ξ‖γ
1).

Note that ξ(0) = 0. By the continuity of ξ(t), we set t∗ ∈ (0, t∗∗] to be the largest time such that uh exists and
‖ξ(t)‖1 ≤ 1 for all t ∈ [0, t∗]. Next we shall show that t∗ = T , if h is small enough. That also means t∗∗ = T .
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Now for all t ∈ (0, t∗], we have

‖f(x, t, Rhu) − f(x, t, uh)‖0 ≤ C‖ξ‖1, (3.11)

where C > 0 is a constant depending on the norms of u over the time interval [0, t∗].
By (3.9)–(3.11), we get

d
dt

ah(ξ, I∗hξ) ≤ C(‖ηt‖2
0 + ‖η‖2

0,2(γ+1) + ‖ξ‖2
1), t ∈ (0, t∗]. (3.12)

Integrating (3.12) from 0 to t ≤ t∗, noting ξ(0) = 0, and using Lemma 3.1 (coercivity), we have

C∗‖ξ(t)‖2
1 ≤ ah(ξ(t), I∗hξ(t))

≤ C

∫ t

0

(‖ηt(s)‖2
0 + ‖η(s)‖2

0,2(γ+1) + ‖ξ(s)‖2
1)ds, t ∈ [0, t∗].

Then the Gronwall’s inequality and (2.9) imply that

‖ξ(t)‖2
1 ≤ C

∫ t

0

(‖η(s)‖2
0,2(γ+1) + ‖ηt(s)‖2

0)ds

≤ Ch4

∫ t

0

(‖u(s)‖2
3,q + ‖ut(s)‖2

3,r)ds, t ∈ [0, t∗],

where q > 1 if γ = 0, q = 2(γ + 1)/(γ + 2) if γ > 0, and r > 1. Hence,

‖ξ(t)‖1 ≤ Ch2, t ∈ [0, t∗]. (3.13)

Therefore, there exists a sufficiently small h0 such that for h ∈ (0, h0], ‖ξ(t)‖1 ≤ Ch2 < 1, t ∈ [0, t∗]. It
follows from the continuity of the function ‖ξ(t)‖1 that t∗ = t∗∗. Otherwise, by continuity there must be a t′∗,
t∗ < t′∗ ≤ t∗∗ such that ‖ξ(t)‖1 ≤ 1 for all t ∈ [0, t′∗]. But this contradicts the definition of t∗.

Now for h ∈ (0, h0], we have ‖ξ(t)‖1 ≤ Ch2 < 1, t ∈ [0, t∗∗]. We shall show that t∗∗ = T . Suppose that
t∗∗ < T . Then by the definition of t∗∗, we have limt→t∗∗ |uh(t)|∞ = +∞. But on the contrary, it follows from a
triangle inequality and (3.13) that

lim
t→t∗∗

|uh(t)|∞ ≤ lim
t→t∗∗

(|ξ(t)|∞ + |Rhu(t)|∞)

≤ lim
t→t∗∗

C| ln h|1/2‖ξ(t)‖1 + |Rhu(t∗∗)|∞

≤ C| ln h|1/2h2 + |Rhu(t∗∗)|∞ ≤ const.,

where we have used the asymptotic Sobolev’s inequality ‖vh‖0,∞ ≤ C| ln h|1/2‖vh‖1, vh ∈ Sh (see [26]). Thus it
must be t∗∗ = T , i.e., the FVE approximation uh exists on the whole of [0, T ]. From the argument above, we
have that for h ∈ (0, h0],

‖Rhu(t) − uh(t)‖1 = ‖ξ(t)‖1 ≤ Ch2, t ∈ [0, T ],

which gives the desired result. �
Remark 3.5. We can see from the above lemma that the presence of a locally Lipschitz nonlinearity, satisfying
a certain growth condition, leads to certain difficulties in the error analysis but will not degrade the convergence
rate observed in the linear case. Moreover, unlike the linear case, we have to prove the existence of an approx-
imate solution on the entire time interval. Some techniques such as using (asymptotic) Sobolev’s inequalities
and the bootstrap argument play a crucial role in the proof. A similar proof was presented in [17,21].
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By (2.8), (2.9), and Lemma 3.4, we can derive the following H1 and L2 error estimates for the finite volume
element scheme.

Theorem 3.6. Let u and uh be the solutions of (1.1) and (2.6), respectively. Assume the condition in Lemma 3.4
holds. Then for all h ∈ (0, h0] and t ∈ [0, T ], we have

‖u − uh‖0 + h‖u − uh‖1 ≤ Ch2, (3.14)

where C = C(γ, Cf , Ω, M) is independent of the discretization parameter.

4. Postprocessing and its error analysis

In this section, we present the postprocessing finite volume element algorithm for the semilinear parabolic
problem (1.1) based on two finite element spaces. There are two quasi-uniform triangulations TH and Th, with
two different mesh sizes H and h (H > h). The corresponding finite element spaces SH and Sh satisfy SH ⊂ Sh

and are called the coarser and the finer spaces, respectively.
Suppose that we are interested in the solution of (1.1) at time T . Then the idea of our postprocessing technique

is to solve the semilinear parabolic problem on a coarser grid TH from (0, T ] and then solve a symmetric linear
elliptic problem on a finer grid Th only once, at t = T .

In order to present the postprocessing FVE scheme, we introduce the following auxiliary bilinear form: for
any u ∈ H1

0 (Ω), vh ∈ Sh,

āh(u, I∗hvh) = −
∑

z∈Z0
h

vh(z)
∫

∂Vz

(Ā∇u) · nds, (4.1)

where Ā|K = AK , and

AK =
1

meas(K)

∫
K

A(x)dx, ∀K ∈ Th.

The following lemma has been proved in [10,15].

Lemma 4.1. For any wh, vh ∈ Sh, we have

āh(wh, I∗hvh) = a(wh, vh), (4.2)

where a(·, ·) is the bilinear form related to the finite element method, i.e.,

a(wh, vh) =
∫

Ω

A∇wh · ∇vhdx.

Our postprocessing FVE procedure reads as:

(1) Find uH(t) ∈ SH such that, for any vH ∈ SH ,

(uH,t, I
∗
HvH) + aH(uH , I∗HvH) = (f(x, t, uH), I∗HvH), t ∈ (0, T ]. (4.3)

We take uH(0) = RHu0 as an initial approximation.
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(2) Find uh ∈ Sh such that for any vh ∈ Sh,

āh(uh, I∗hvh) = −(uH,t, I
∗
hvh) + (f(x, t, uH), I∗hvh), t = T. (4.4)

We know from Lemma 3.2 that the matrix of ah(vh, I∗hwh) is generally nonsymmetric. This introduces some
difficulties in real implementations and the method suitable for symmetric linear systems cannot be used in
this case. From Lemma 4.1, we know that the coefficient matrix of the linear system in the second step of
the postprocessing procedure is symmetric and positive definite and hence easier to solve. For example, the
conjugate gradient methods can be applied effectively.

In [2], the following lemma reveals the difference between the bilinear form of FVE method and that of finite
element method.

Lemma 4.2. For any wh, vh ∈ Sh, w ∈ H2(Ω), p ≥ 1, 1/p + 1/q = 1, we have

|a(wh, vh) − ah(wh, I∗hvh)| ≤ Ch2(h−1|w − wh|1,p + ‖w‖2,p)‖vh‖1,q. (4.5)

Next we next state and prove three more technical lemmas to be used in the error analysis of the postpro-
cessing FVE scheme.

Lemma 4.3. Let u and uh be the solutions of (1.1) and (2.6), respectively. Suppose that (1.2) and (1.3) hold.
Then there exists a positive constant C = C(γ, Cf , Ω, M) such that

‖ut − uh,t‖0 ≤ Ch, t ∈ [0, T ]. (4.6)

Proof. Taking vh = ξt in (3.8), and using (2.3) and the inverse estimate (3.2), we obtain

‖|ξt‖|20 ≤ C‖ξ‖1‖ξt‖1 + ‖ηt‖0‖I∗hξt‖0 + ‖f(x, t, u) − f(x, t, uh)‖0‖I∗hξt‖0

≤ C‖ξt‖0(‖ξ‖1h
−1 + ‖ηt‖0 + ‖f(x, t, u) − f(x, t, uh)‖0). (4.7)

By Theorem 3.6,

‖uh‖1 ≤ ‖u‖1 + ‖u − uh‖1 ≤ const. (4.8)

Taking into account Lemma 3.3 and the Sobolev’s inequality, we have

‖f(x, t, u) − f(x, t, uh)‖0 ≤ C‖u − uh‖0,2(γ+1)(1 + ‖u‖γ
0,2(γ+1) + ‖uh‖γ

0,2(γ+1))

≤ C‖u − uh‖1(1 + ‖u‖γ
1 + ‖uh‖γ

1)

≤ C‖u − uh‖1. (4.9)

Combining (4.7) with (4.9), and using (2.4), (2.9), Lemma 3.4, and Theorem 3.6, we obtain

‖ξt‖0 ≤ C(‖ξ‖1h
−1 + ‖ηt‖0 + ‖u − uh‖1) ≤ C(h + h2).

Combined with (2.9), this finishes the proof. �
Lemma 4.4. Let u and uh be the solutions of (1.1) and (2.6), respectively. Suppose that (1.2) and (1.3) hold.
Then there exists a positive constant C = C(γ, Cf , Ω, M) such that

|(f(x, t, u) − f(x, t, uh), I∗hvh)| ≤ Ch2‖vh‖1, (4.10)

for any vh ∈ Sh and t ∈ [0, T ].
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Proof. Let 1/p + 1/q = 1/2 with p = 2(1 + γ). By (1.2), the Hölder’s inequality, and (2.3), we obtain

|(f(x, t, u) − f(x, t, uh), I∗hvh)| ≤ Cf

∫
Ω

|u − uh|(1 + |u| + |uh|)γ |I∗hvh|dx

≤ Cf‖u − uh‖0‖(1 + |u| + |uh|)γ‖0,q‖I∗hvh‖0,p

≤ C‖u − uh‖0‖(1 + |u| + |uh|)γ‖0,q‖vh‖0,p.

Since 1/q = (p − 2)/2p = γ/p, we have

‖(1 + |u| + |uh|)γ‖0,q = ‖1 + |u| + |uh|‖γ
0,p

≤ (1 + ‖u‖0,p + ‖uh‖0,p)γ .

Note that p ≥ 2. Using the above two estimates and the Sobolev’s inequality (3.1), we obtain

|(f(x, t, u) − f(x, t, uh), I∗hvh)| ≤ C‖u − uh‖0(1 + ‖u‖0,p + ‖uh‖0,p)γ‖vh‖0,p

≤ C‖u − uh‖0‖(1 + ‖u‖1 + ‖uh‖1)γ‖vh‖1.

Combining Theorem 3.6 and (4.8) leads to

|(f(x, t, u) − f(x, t, uh), I∗hvh)| ≤ C‖u − uh‖0‖vh‖1 ≤ Ch2‖vh‖1,

which gives the desired result. �

Lemma 4.5. Let u and uh be the solutions of (1.1) and (2.6), respectively. Suppose that (1.2) and (1.3) hold.
Then there exists a positive constant C = C(γ, Cf , Ω, M) such that

|(ut − uh,t, I
∗
hvh)| ≤ Ch2‖vh‖1, (4.11)

for any vh ∈ Sh and t ∈ (0, T ].

Proof. From (2.5), (2.6), and Lemma 3.1 (continuity), we have

|(ut − uh,t, I
∗
hvh)| = |ah(Rhu − uh, I∗hvh) + (f(x, t, uh) − f(x, t, u), I∗hvh)|

≤ |ah(Rhu − uh, I∗hvh)| + |(f(x, t, uh) − f(x, t, u), I∗hvh)|
≤ C∗‖Rhu − uh‖1‖vh‖1 + |(f(x, t, uh) − f(x, t, u), I∗hvh)|. (4.12)

Therefore, Lemmas 3.4 and 4.4 together with (4.12) yield the desired estimate. �

Now comes the main result of this section.

Theorem 4.6. Let u(T ) be the solution of (1.1) at time T and uh be the solution of (4.3) and (4.4). As-
sume that (1.2) and (1.3) hold. Then, there exists a positive constant C = C(γ, Cf , Ω, M) independent of the
discretization parameters such that

‖u(T )− uh‖1 ≤ C(h + H2). (4.13)
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Proof. We drop the explicit dependence on x and T for conciseness. From (2.5), (4.3), and (4.4), we have

āh(Rhu − uh, I∗hvh) = (āh(Rhu, I∗hvh) − ah(Rhu, I∗hvh)) + ah(Rhu, I∗hvh) − āh(uh, I∗hvh)

= (āh(Rhu, I∗hvh) − ah(Rhu, I∗hvh)) + ah(u, I∗hvh) − āh(uh, I∗hvh)

= (āh(Rhu, I∗hvh) − ah(Rhu, I∗hvh)) − (ut − uH,t, I
∗
hvh) + (f(u) − f(uH), I∗hvh)

= S1 − S2 + S3.

By Lemmas 4.1, 4.2, and (2.8), we have

|S1| = |āh(Rhu, I∗hvh) − ah(Rhu, I∗hvh)|
= |a(Rhu, vh) − ah(Rhu, I∗hvh)|
≤ Ch2(h−1‖u − Rhu‖1 + ‖u‖2)‖vh‖1

≤ Ch2‖u‖2‖vh‖1. (4.14)

To estimate S2, we rewrite S2 as follows

S2 = (ut − uH,t, I
∗
hvh)

= (ut − uH,t, I
∗
h(vh − IHvh)) + (ut − uH,t, I

∗
H(IHvh)) + (ut − uH,t, I

∗
h(IHvh) − I∗H(IHvh))

= S21 + S22 + S23,

where IH : C(Ω) → SH is the general linear interpolation operator satisfying (see, e.g., [3,12])

‖v − IHv‖m,p ≤ CHs−m‖v‖s,p (4.15)

for 0 ≤ m ≤ s ≤ 2 and v ∈ W s
p (Ω), 1 ≤ p ≤ ∞. It is easy to see that ‖IHv‖1 ≤ C‖v‖1. From (2.3), Lemma 4.3,

and (4.15), we have

|S21| = |(ut − uH,t, I
∗
h(vh − IHvh))|

≤ ‖ut − uH,t‖0‖I∗h(vh − IHvh)‖0

≤ CH‖vh − IHvh‖0

≤ CH2‖vh‖1.

Using Lemma 4.5, we obtain

|S22| = |(ut − uH,t, I
∗
H(IHvh))|

≤ CH2‖IHvh‖1 ≤ CH2‖vh‖1.

It follows from Lemma 4.3, a triangle inequality and (2.2) that

|S23| = |(ut − uH,t, I
∗
h(IHvh) − I∗H(IHvh))|

≤ ‖ut − uH,t‖0‖I∗h(IHvh) − I∗H(IHvh)‖0

≤ CH(‖I∗h(IHvh) − IHvh‖0 + ‖I∗H(IHvh) − IHvh‖0)

≤ CH(h‖IHvh‖1 + H‖IHvh‖1)

≤ CH(h + H)‖vh‖1.



968 M. YANG ET AL.

From the above inequalities, we obtain an estimate of S2:

|S2| ≤ CH(h + H)‖vh‖1 ≤ CH2‖vh‖1. (4.16)

Similarly, we have

|S3| = |(f(u) − f(uH), I∗hvh)|
≤ |(f(u) − f(uH), I∗h(vh − IHvh))| + |(f(u) − f(uH), I∗H(IHvh))|

+ |(f(u) − f(uH), I∗h(IHvh) − I∗H(IHvh))|
≤ CH‖f(u) − f(uH)‖0‖vh‖1 + CH2‖IHvh‖1

+ C(h + H)‖f(u) − f(uH)‖0‖vh‖1

≤ CH‖u − uH‖1‖vh‖1 + CH2‖vh‖1 + C(h + H)‖u − uH‖1‖vh‖1

≤ CH2‖vh‖1, (4.17)

where we have used (4.9), Lemma 4.4, and Theorem 3.6. Combining (4.14), (4.16) and (4.17), we have

|āh(Rhu − uh, I∗hvh)| ≤ CH2‖vh‖1.

Taking vh = Rhu − uh and using Lemma 3.1 (coercivity), we obtain

‖Rhu − uh‖1 ≤ CH2.

It follows from (2.8) and a triangle inequality that

‖u − uh‖1 ≤ ‖Rhu − uh‖1 + ‖u − Rhu‖1 ≤ C(H2 + h),

which yields the desired result. �

Remark 4.7. From Theorem 4.6, we see that if h = O(H2), then the highest possible convergence rate in
the H1 norm for the postprocessing FVE method is O(H2). Thus the postprocessing procedure improves the
convergence rate over the standard FVE method error estimate in the H1 norm, which is only O(H) (see
Thm. 3.6), by one order. Since the mesh refinement is performed only at the final time T , the method increases
the accuracy of the standard FVE approximation at low extra computational costs.

Remark 4.8. We consider the spatial discretization to focus on postprocessing. In practical computations, the
method should be combined with a time-stepping algorithm. Let N be a positive integer. Consider a temporal
discretization 0 = t0 < t1 < . . . < tN = T and set un = u(·, tn) (0 ≤ n ≤ N). Then an implicit backward Euler
postprocessing procedure is given by

(1) Find un
H ∈ SH such that for any vH ∈ SH ,

(
un

H − un−1
H

tn − tn−1
, I∗HvH

)
+ aH(un

H , I∗HvH) = (fn(x, un
H), I∗HvH), 1 ≤ n ≤ N

with u0
H = RHu0.
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Table 1. H1 and L2 errors and convergence rates on the coarser grid.

N H1-norm error Rate L2-norm error Rate
2 1.1909× 10−1 – 6.7219× 10−2 –
4 9.0843× 10−2 0.40 1.5746× 10−2 2.09
8 5.6665× 10−2 0.68 3.8616× 10−3 2.03
16 3.1461× 10−2 0.85 9.5043× 10−4 2.02
32 1.6556× 10−2 0.93 2.7318× 10−4 1.80
64 8.5047× 10−3 0.96 1.0567× 10−2 1.37

Table 2. Postprocessed H1 errors and convergence rates on the finer grids.

N h = 1/N2 Rate h = 1/(3N) Rate
2 9.0458× 10−2 – 7.0077× 10−2 –
4 3.1494× 10−2 1.52 4.0542× 10−2 0.79
8 8.5010× 10−3 1.89 2.1721× 10−2 0.90
16 2.2445× 10−3 1.92 1.1236× 10−2 0.95
32 5.7212× 10−4 1.97 5.7134× 10−3 0.98

(2) Find uh ∈ Sh such that for any vh ∈ Sh,

āh(uh, I∗hvh) = −
(

uN
H − uN−1

H

tN − tN−1
, I∗hvh

)
+ (fN (x, uN

H), I∗hvh).

Of course, higher order temporal discretization methods such as the Runge-Kutta methods or multistep methods
can also be used. On the other hand, from a practical point of view, we just need to choose h < H to obtain a
considerable error reduction in spite of the demanding requirement h = O(H2).

5. Numerical experiments

In this section, we present numerical experiments to illustrate the theoretical results presented in the previous
sections. In particular, our main interest is to verify Theorems 3.6 and 4.6. We consider the following parabolic
equation with a quadratic nonlinearity,

ut −∇ ·
(

1
1 + |x|2∇u

)
+ u2 = f(x, t), in Ω × (0, T ]

with a homogeneous Dirichlet boundary condition. The domain is Ω = [0, 1]2, the final time is T = 1, the exact
solution is u(x, y, t) = e−t/2 sin(πx) sin(πy), and the right hand side f(x, t) is computed accordingly.

The domain Ω is partitioned into N uniform pieces in each direction and then each rectangle is divided into
two triangles, resulting in a mesh with size H = 1/N . The finite element space SH is built on the coarser
grid TH with N = 2, 4, 8, 16, 32, 64. We use the backward Euler temporal formula with a relatively small
time step Δt = 10−3, so that the dominant error will be the spatial error. Table 1 lists the errors in the H1

and L2 norms and also the convergence rates at t = T , respectively. The results are in accordance with the
estimates obtained in Theorem 3.6 for N ≤ 32. It is not a surprise to see that the L2 error convergence rate
for N = 64 drops significantly. This is due to the fact that the expected L2 error for the backward Euler
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fully discrete scheme is of order O(Δt + H2) and the error is dominated by the temporal approximation as N
increases.

To illustrate the theoretical findings in Theorem 4.6, we compute the postprocessing FVE approximation
at T on two finer grids with h = H2 and h = H/3, respectively. Table 2 shows that, if h = H2, then the
H1 convergence rate is close to second order; but if h = H/3, the H1 convergence rate is nearly unchanged,
although the error is smaller when compared with the results in Table 1. We also find that the H1 errors in
Table 1 for N = 4, 16, 64 are approximately the same as those in Table 2 for N = 2, 4, 8, when h = H2 is used.
This means that one step postprocessing on a finer grid can yield the same accuracy as a standard all-time-level
FVE computation on the same grid. Therefore, these results confirm Theorem 4.6 and Remark 4.7.
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valuable comments and suggestions.
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