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SPARSE ADAPTIVE TAYLOR APPROXIMATION ALGORITHMS
FOR PARAMETRIC AND STOCHASTIC ELLIPTIC PDES ∗
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and Christoph Schwab4

Abstract. The numerical approximation of parametric partial differential equations is a computational
challenge, in particular when the number of involved parameter is large. This paper considers a model
class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients
depending on the parameters in an affine manner. For such models, it was shown in [9,10] that under
very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations can
be simultaneously approximated in the Hilbert space V = H1

0 (D) by multivariate sparse polynomials in
the parameter vector y with a controlled number N of terms. The convergence rate in terms of N does
not depend on the number of parameters in V , which may be arbitrarily large or countably infinite,
thereby breaking the curse of dimensionality. However, these approximation results do not describe
the concrete construction of these polynomial expansions, and should therefore rather be viewed as
benchmark for the convergence analysis of numerical methods. The present paper presents an adaptive
numerical algorithm for constructing a sequence of sparse polynomials that is proved to converge toward
the solution with the optimal benchmark rate. Numerical experiments are presented in large parameter
dimension, which confirm the effectiveness of the adaptive approach.

Mathematics Subject Classification. 65N35, 65L10, 35J25.

Received June 25, 2011. Revised February 27, 2012.
Published online November 29, 2012.

Keywords and phrases. Parametric and stochastic PDE’s, sparse polynomial approximation, high dimensional problems, adaptive
algorithms.

∗ This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107,
the AFOSR Contract FA95500910500, the ARO/DoD Contracts W911NF-05-1-0227 and W911NF-07-1-0185, the National
Science Foundation Grant DMS 0915231; the excellency chair of the Foundation “Science Mathématiques de Paris” awarded
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1. Introduction

We consider parametric partial differential equations of the general form

D(u, y) = 0

where u �→ D(u, y) is a partial differential operator that depends on a vector of parameters y, and therefore
so does the solution u = u(y). Parametric problems of this type arise in modeling complex systems in various
contexts:

– Stochastic modelling: the parameters y are realizations of random variables which reflects the fact that
the diffusion coefficient is not known exactly and is therefore modelled as a random field. The user is
interested in the resulting statistical properties of the solution u. This is the point of view adopted for
example in [1,2,13,15,19,22,23]. Here, the parameter y is generally infinite dimensional and any numerically
viable approximation must necessarily address the issue of dimensional reduction, in addition to that of
discretization.

– Deterministic modelling: the parameters y are known or controlled by the user, who is interested in studying
the dependence of u with respect to these parameters for various purposes (for example, optimizing an
output of the equation with respect to y). This is the point of view adopted for example in [5, 20].

In both of these settings, the main computational challenge is to simultaneously solve the entire parametric
family of equations up to a prescribed accuracy ε, with reasonable computation cost. This task is particularly
difficult when the number of involved parameters is finite, but large, and more so if there are even countably
many parameters, i.e. when the dimension of the parameter domain is inifinite; this is the problem analyzed in
the present paper.

To avoid unnecessary technicalities, we present our algorithms for the model parametric elliptic boundary
value problem

−div(a∇u) = f in D ⊂ Rm, u = 0 on ∂D, (1.1)

where f ∈ H−1(D) and

a(x, y) := ā(x) +
d∑

j=1

yjψj(x),

for y = (yj)j=1,...,d ∈ U := [−1, 1]d. Here, ā and the ψj are functions in L∞(D).
We are interested in algorithms that can be applied for a large number d of parameters and whose performance

is independent of d. It is also of mathematical interest to allow the possibility of a countably infinite number,
d = ∞, of parameters. This corresponds to an infinite parameter sequence y = (yj)j≥1 ∈ U := [−1, 1]N.

Note that we may view the finite dimensional setting as a particular case of the latter one with ψj = 0 for
j > d. Having this in mind, and since we are interested in deriving numerical results that are robust with respect
to the parameter dimension d, we place ourselves in the infinite dimensional setting

a(x, y) := ā(x) +
∑
j≥1

yjψj(x),

throughout this paper and understand sums and products over j ≥ 1 to be either over the finite range j = 1, . . . , d
or over all j ∈ N. Here and throughout, we denote by N = {1, 2, 3, . . .} the set of natural numbers and by
N0 = N ∪ {0}. In the stochastic context, an infinite series ā +

∑
j≥1 yjψj could result, for example, from a

Karhúnen-Loève expansion of a random field a(x, ω), see, for example, [25].
We assume at a minimum that the sequence (‖ψj‖L∞(D))j≥1 is bounded. By rearranging indices, if necessary,

we may assume without loss of generality that ‖ψj‖L∞(D), j = 1, 2, . . . , is a non-increasing sequence. We work
under the (minimal) uniform ellipticity assumption UEA(r,R) for some 0 < r ≤ R <∞:

0 < r ≤ ā(x) +
∑
j≥1

yjψj(x) ≤ R, x ∈ D, y ∈ U. (1.2)
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Observe that the lower inequality in this assumption is equivalent to
∑
j≥1

|ψj(x)| ≤ ā(x) − r, x ∈ D. (1.3)

Assumption UEA(r,R) ensures existence and uniqueness of the solution u(y) in V = H1
0 (D), for all y ∈ U ,

with the a priori estimate

‖u(y)‖V ≤ C0 :=
‖f‖V ∗

r
,

where ‖v‖V := ‖∇v‖L2(D). We also introduce the average energy norm

‖v‖ā :=

⎛
⎝∫

D

ā|∇v|2
⎞
⎠

1/2

,

which, under UEA(r,R), is equivalent to the H1
0 (D) norm ‖ · ‖V in the sense that

√
r‖v‖V ≤ ‖v‖ā ≤

√
R‖v‖V , v ∈ V.

We are interested in approximating the map y �→ u(y) by multivariate polynomials in y with coefficients in
V . One way to obtain such an approximation is by truncating in some way the Taylor expansion of u at y = 0.
This expansion has the general form

∑
ν∈F tνy

ν , with the notation

yν :=
∏
j≥1

y
νj

j and tν :=
1
ν!
∂νu(0) ∈ V with ν! :=

∏
j≥1

νj ! and 0! := 1,

for ν = (νj)j≥1 ∈ F . In the finite dimensional setting d < ∞, the index set F coincides with Nd
0 = {0, 1, . . .}d.

In the infinite dimensional setting, F denotes the (countable) set of all sequences of nonnegative integers which
are finitely supported (i.e. those sequence for which only finitely many terms are nonzero).

We are thus interested in the summability properties in V of partial sums of the Taylor series
∑

ν∈F tνy
ν .

The following result was proved in [10] (Thm. 1.2).

Theorem 1.1. If (‖ψj‖L∞(D))j≥1 ∈ �p(N) for some 0 < p < 1 and if UEA(r,R) holds, then

u(y) =
∑
ν∈F

tνy
ν , (1.4)

in the sense of unconditional convergence in L∞(U, V ) and (‖tν‖V )ν∈F ∈ �p(F).

Analogous results for other types of partial differential equations are available in [17,18]. Theorems such as 1.1
have important implications concerning the efficient numerical approximation of the parametric solution map
y �→ u(y) which, in turn, opens a perspective for novel computational approaches in parameter identification
problems [24]. To describe these, for any sequence (aν)ν∈F of real numbers indexed by the countable set F
and any k ≥ 1, we define the sets Λ∗

k := Λ∗
k((aν)ν∈F ) of k largest elements in absolute value. The sets Λ∗

k are
generally not unique because of possible ties in the size of the |aν |. However, if (aν)ν∈F ∈ �p(F) and if Λ∗

k is
any of these sets, then for any q > p

⎛
⎝ ∑

ν /∈Λ∗
k

|aν |q
⎞
⎠

1/q

≤ ‖(aν)‖�p(F)(k + 1)−
1
p + 1

q . (1.5)



256 A. CHKIFA ET AL.

This elementary fact is proved (see [11]) by introducing the decreasing rearrangement (a∗j )j>0 of the sequence
(|aν |)ν∈F and by combining the two observations

⎛
⎝ ∑

ν /∈Λ∗
k

|aν |q
⎞
⎠

1/q

=

⎛
⎝∑

j>k

(a∗j )
q

⎞
⎠

1/q

≤
⎛
⎝∑

j>k

(a∗k+1)
q−p(a∗j )

p

⎞
⎠

1/q

≤ (a∗k+1)
1−p/q‖(aν)‖p/q

�p(F),

and
(k + 1)(a∗k+1)

p ≤
∑

j≤k+1

(a∗j )
p ≤ ‖(aν)‖p

�p(F).

Working under the assumptions of the above theorem, for each k = 1, 2, . . . , we denote by Λ∗
k ⊂ F the

set of indices ν ∈ F corresponding to the k largest values of the ‖tν‖V , with ties broken in an arbitrary (but
consistent) way. We then have

sup
y∈U

‖u(y) −
∑

ν∈Λ∗
k

tνy
ν‖V ≤

∑
ν /∈Λ∗

k

‖tν‖V ≤ ‖(‖tν‖V )‖�p(F)(k + 1)−s, s :=
1
p
− 1. (1.6)

The sparse polynomials
∑

ν∈Λ∗
k
tνy

ν therefore provide a simultaneous approximation of the family {u(y) ; y ∈ U}
at the cost of computing k functions tν ∈ V . Quite remarkably the rate k−s and the constant in (1.6) is
independent of the number of parameters yj which may be countably infinite. Thus, (1.6) implies that one can
in principle overcome the curse of dimensionality in the approximation of u(y).

In computation, however, the sets Λ∗
k in (1.6) are not known to us and to find them we would ostensibly have

to compute all of the tν which is infeasible. To obtain computable sequences of index sets, we shall not insist
on optimality: we shall say that a nested sequence (Λn)n≥0 of finite subsets Λn ⊂ F is near optimal if there
is a constant C ≥ 1 such that for s as in (1.6) and for every n ≥ 0

∑
ν /∈Λn

‖tν‖V ≤ C‖(‖tν‖V )‖�p(F)(#(Λn))−s. (1.7)

The goal of the present paper is to give a concrete algorithm that adaptively builds a near optimal sequence
(Λn)n≥0 and corresponding Taylor coefficients (tν)ν∈Λn at a cost that scales linearly in #(Λn). We should
point out that a similar program was developed when solving a single PDE by either adaptive wavelet
methods [7,8,14] or by adaptive finite element methods [4,12,21,26]. In these papers, it was proved that certain
iterative refinement algorithms based on a posteriori analysis generate adaptive wavelet sets or adaptive meshes
such that the approximate solution converges with the optimal rate allowed by the exact solution. A common
point between these algorithms and the one that we study in this paper is the use of a bulk chasing procedure
in order to build the set Λn+1 from the set Λn. However, our present setting is significantly different, since the
index sets Λn are picked from the infinite dimensional lattice F and the coefficients associated to each ν ∈ Λn

are functions in V instead of numbers.

Our paper is organized as follows. In Section 2, we show that the sets Λn may be picked from a restricted
class called monotone sets while retaining the optimal rate.

We show in Section 3 how the Taylor coefficients associated to a monotone set may be recursively computed
by solving one elliptic boundary value problem at a time per coefficient, and we establish a useful estimate for
the energy of the Taylor coefficients outside a monotone set.

A first adaptive algorithm is proposed in Section 4 and proved to converge with the optimal rate in the sense
that the sets Λn generated by the algorithm satisfy (1.7). A defect of this algorithm is that the bulk chasing
procedure at step n requires the computation of the ‖tν‖ā for ν in a neighbourhood of Λn which has infinite
cardinality and is therefore not practical.
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We remedy this defect in Section 5 by introducing a second algorithm which operates the bulk search on a
finite set, and which is also proved to converge with the optimal rate s in (1.6).

We study in Section 6 the additional error which is induced on the approximation of the map y �→ u(y)
by the spatial discretization when solving the boundary value problems that give the Taylor coefficients, for
example by a finite element method on D. We prove that the additional error introduced by the finite element
discretization of the coefficients is independent of the number of computed Taylor coefficients.

Finally, numerical experiments are presented in Section 7, for finite but high dimensional test cases (y ∈
[−1, 1]d with d up to 255), and using finite element for the spatial discretization. We test the adaptive bulk
search strategy, and compare it with non-adaptive strategies based on a priori choices of the sets Λn. These
experiments confirm that, without any information based on a priori analysis, the adaptive approach produces
near-optimal sets of active indices in terms of convergence rate. We also propose alternate adaptive strategies
which are computationally much cheaper than the bulk search and exhibit, in our numerical examples, the same
convergence rate as the approximations obtained by bulk search yet without complete theoretical justification.
In the practically relevant case where the goal of computation is to compute an average in y of the solution
(corresponding to an expectation of the random solution) we show that the results based on our adaptive
algorithm strongly outperform those using the Monte-Carlo method

2. Monotone sets

In this section, we give a finer description of the approximation properties of the Taylor series by introducing
the notion of monotonicity. This notion is based on the following ordering of F : for μ, ν ∈ F , μ ≤ ν if and only
if μj ≤ νj for all j ≥ 1. We will also say that μ < ν if and only if μ ≤ ν and μj < νj for at least one value of j.

Definition 2.1. A sequence (aν)ν∈F of nonnegative real numbers is said to be monotone decreasing if and only
if for all μ, ν ∈ F

μ ≤ ν ⇒ aν ≤ aμ.

A non empty set Λ ⊂ F is called monotone if and only if ν ∈ Λ and μ ≤ ν ⇒ μ ∈ Λ. For a monotone set
Λ ⊂ F , we define its margin M = M(Λ) as follows:

M(Λ) := {ν /∈ Λ ; ∃j > 0 : ν − ej ∈ Λ}, (2.1)

where ej ∈ F is the Kronecker sequence: (ej)i = δij for i, j ∈ N.

Notice that the margin M(Λ) is an infinite set even when Λ is finite since there are infinitely many variables.
In the finite dimensional setting d < ∞, the margin is a finite set. Any nonempty monotone set contains the
null index (0, 0, . . .), which we will denote in what follows with slight abuse of notation by 0. Intersections and
unions of monotone sets are also monotone. Also, note that Λ ∪M(Λ) is a monotone set.

For any ν ∈ F , we let |ν| :=
∑

i≥1 νi. We say that ν is maximal in a set Λ ⊂ F if and only if there exists no
μ > ν in Λ. If Λ ⊂ F satisfies N := N(Λ) := maxν∈Λ |ν| < ∞, then any ν ∈ Λ for which |ν| = N is a maximal
element. In particular, any finite set Λ has at least one maximal element. If Λ is monotone and if ν is maximal
in Λ, then Λ− {ν} is monotone.

Remark 2.2. If (aν)ν∈F is a monotone sequence, the set Λ∗
k = Λ∗

k((aν)ν∈F ) of indices corresponding to the
k-largest aν in absolute value is always a monotone set whenever it is unique: it is then equivalently given by
Λ∗

k = {ν ∈ F : aν ≥ η} for some threshold η which depends on k. In the case of non-uniqueness, there exists
at least one realization of a Λ∗

k which is monotone. We refer to such a set as a monotone realization of Λ∗
k.

Such a realization may be constructed as follows: consider the largest threshold η such that the monotone set
{ν ∈ F : aν ≥ η} has more than k elements, and trim this set by removing iteratively a maximal ν until it has
exactly k elements.
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Remark 2.3. We localize the notion of monotone sequences and monotone sets as follows: if F0 ⊂ F is any
subset, we say that the sequence (aν)ν∈F is monotone on F0 (or that (aν)ν∈F0 is monotone) if and only if

μ, ν ∈ F0 and μ ≤ ν ⇒ aν ≤ aμ.

Clearly, a monotone sequence is monotone on any set F0. Likewise we say that a subset F1 ⊂ F0 is monotone
in F0 if and only if

ν ∈ F1, μ ∈ F0 and μ ≤ ν ⇒ μ ∈ F1.

In the case where F0 is monotone, this is equivalent to saying that F1 is monotone. If (aν) is monotone on F0,
a set of indices corresponding to the k-largest aν in absolute value with ν ∈ F0 is monotone in F0 whenever it
is unique. If it is not unique, there exists at least one realization of such a set which is monotone. This set may
be obtained by the same trimming procedure as in Remark 2.2.

The monotone majorant of a bounded sequence (aν)ν∈F is the sequence

aν := max
μ≥ν

|aμ|, ν ∈ F .

We define �pm(F) as the set of all sequences which have their monotone majorant in �p(F). Clearly, �pm(F) is a
linear space with respect to addition of sequences and scalar multiplication. We equip this space with the norm

‖(aν)‖�p
m(F) := ‖(aν)‖�p(F).

Now, if (aν)ν∈F ∈ �pm(F), 0 < p < 1, and Λk is any monotone realization of Λ∗
k((aν)ν∈F ), then the sets Λk are

monotone and satisfy ∑
ν /∈Λk

|aν | ≤
∑

ν /∈Λk

aν ≤ ‖(aν)‖�p
m(F)(k + 1)−s, s :=

1
p
− 1. (2.2)

Theorem 2.4. Under the assumptions of Theorem 1.1, the sequence (‖tν‖V )ν∈F belongs to �pm(F).

Proof. The result will follow from the estimates that underpin the Proof of Theorem 1.1 given in [10]. A sequence
ρ = (ρj)j≥1 is said to be admissible of order δ if∑

j≥1

ρj |ψj(x)| ≤ ā(x) − δ, x ∈ D.

We denote by Aδ the set of all δ-admissible sequences ρ for which ρj ≥ 1, for all j. It was shown in [10] that for
any 0 < δ < r

‖tν‖V ≤ ‖f‖V ∗

δ
inf

ρ∈Aδ

ρ−ν . (2.3)

In particular, taking δ = r
2 ,

‖tν‖V ≤ bν := 2C0 inf
ρ∈A r

2

ρ−ν . (2.4)

It was moreover shown that under the assumptions of Theorem 1.1 the sequence (bν)ν∈F belongs to �p(F)
which thus leads to the Proof of Theorem 1.1. We now observe that the sequence bν is monotone because for
any ρ ∈ A r

2

μ ≤ ν ⇒ ρ−ν ≤ ρ−μ,

and thus
μ ≤ ν ⇒ bν ≤ bμ.

Therefore, if (aν) denotes the monotone majorant of the sequence (‖tν‖V ), we also find that

aν ≤ bν.

It follows that ‖(‖tν‖V )‖�p
m(F) ≤ ‖(bν)‖�p(F) <∞. �
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3. Recursive estimates

It was shown in [9] that the Taylor coefficients satisfy a recursion relation obtained by differentiating the
variational formulation ∫

D

a(x, y)∇u(x, y)∇v(x)dx =
∫
D

f(x)v(x)dx v ∈ V,

at y = 0. Namely, we obtain by induction that tν ∈ V is the solution to the elliptic boundary value problem
given in weak form by (see Eqs. (4.6) and (4.10) of [9])∫

D

ā∇tν∇v = −
∑

j s.t. νj �=0

∫
D

ψj∇tν−ej∇v, v ∈ V. (3.1)

This recurrence allows one to compute all Taylor coefficients from the first coefficient t0 = u(0) corresponding
to ν = 0 which satisfies ∫

D

ā∇t0∇v =
∫
D

fv, v ∈ V. (3.2)

In practice, these boundary value problems can only be solved approximately by space discretization, for example
by the finite element method. We shall deal with this issue in §6 and assume for the moment that they can
be solved exactly. For any monotone set of indices Λ, the recursion (3.1) determines the Taylor coefficients
{tν ∈ V : ν ∈ Λ} uniquely; determining them requires the successive numerical solution of the “nominal” elliptic
problems (3.2) with #(Λ) many right hand sides. In particular, then, for computing numerical approximations
of the (tν)ν∈Λ, a discretized single, parameter-independent “nominal” elliptic problem (3.2) in the domain D
must be solved with #(Λ) many load cases. Since our adaptive algorithms will be based on the norms ‖tν‖ā of
Taylor coefficients through the recursion (3.1), we introduce the abbreviated notation

t̄ν := ‖tν‖ā, ν ∈ F ,
and the following quantities for bounding for the right hand side of (3.1)

dμ,j :=
∫
D

|ψj ||∇tμ|2, μ ∈ F , j ≥ 1.

We observe that UEA(r,R) implies for almost every x ∈ D∑
j≥1

|ψj(x)| ≤ γā(x) (3.3)

with
γ = 1 − r

R
< 1. (3.4)

It follows that for any μ ∈ F , we have ∑
j≥1

dμ,j ≤ γt̄2μ. (3.5)

Lemma 3.1. Under assumption UEA (r,R), we have for any ν ∈ F ,

t̄2ν ≤ α
∑

j s.t. νj �=0

dν−ej ,j , (3.6)

with
α :=

R

R+ r
< 1. (3.7)
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Proof. Taking v = tν in (3.1), we find that

t̄2ν = −
∑

j s.t. νj �=0

∫
D

ψj∇tν−ej∇tν , (3.8)

and therefore

t̄2ν ≤ 1
2

∑
j s.t. νj �=0

∫
D

|ψj | |∇tν−ej |2 +
1
2

∑
j s.t. νj �=0

∫
D

|ψj | |∇tν |2 . (3.9)

Using (3.3) in the second term of (3.9) gives

(1 − γ/2)t̄2ν ≤ 1
2

∑
j s.t. νj �=0

∫
D

|ψj | |∇tν−ej |2,

from which we derive (3.6). �

For any set Λ ⊂ F , we introduce

e(Λ) :=
∑
ν∈Λ

t̄2ν , σ(Λ) :=
∑

ν∈F\Λ

t̄2ν , (3.10)

which is a measure of the energy of the Taylor coefficients on Λ and the energy on its complement respectively.
Our next lemma shows that if Λ is a monotone set, the energy outside Λ is controlled by the energy on the
margin M = M(Λ).

Lemma 3.2. Under assumption (UEA)(r,R), we have for any monotone set Λ and its margin M,

σ(Λ) ≤ 1
1 − δ

e(M), (3.11)

with

δ =
R− r

R+ r
< 1. (3.12)

Proof. We first note that
σ(Λ) = e(M) + σ(Λ̃), (3.13)

where we have set Λ̃ := Λ ∪M. According to Lemma 3.1, we may write

σ(Λ̃) ≤ α
∑

ν∈F\Λ̃

⎛
⎝ ∑

j s.t. νj �=0

dν−ej ,j

⎞
⎠ ≤ A+B, (3.14)

where

A := α
∑

ν∈F\Λ̃

⎛
⎝ ∑

j s.t. ν−ej∈F\Λ̃

dν−ej ,j

⎞
⎠ = α

∑
μ∈F\Λ̃

⎛
⎝ ∑

j s.t. μ+ej∈F\Λ̃

dμ,j

⎞
⎠ ,

and

B := α
∑

ν∈F\Λ̃

⎛
⎝ ∑

j s.t. ν−ej∈Λ̃

dν−ej ,j

⎞
⎠ = α

∑
μ∈M

⎛
⎝ ∑

j s.t. μ+ej∈F\Λ̃

dμ,j

⎞
⎠ .
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In this splitting, we have used the fact that if ν ∈ F \ Λ̃ and νj �= 0, we have either ν−ej ∈ F \ Λ̃ or ν−ej ∈ M.
Using (3.5), we may control the first term A by

A ≤ αγ
∑

μ∈F\Λ̃

t̄2μ = αγσ(Λ̃),

and by the same argument we obtain
B ≤ αγe(M).

Combining these estimates with (3.14), it follows that

(1 − αγ)σ(Λ̃) ≤ αγe(M),

and thus by (3.13)

σ(Λ) ≤
(

1 +
αγ

1 − αγ

)
e(M),

which gives the final result. �

4. A bulk chasing algorithm

In this section, we introduce the notion of bulk chasing and show how this idea can be used to build an
adaptive algorithm for generating a near optimal sequence of sets (Λn) in the sense of (1.7). We shall see that
this algorithm is not numerically feasible but nevertheless will guide us in the construction of more practical
algorithms in the sections that follow.

To begin the discussion, let us assume that we have a finite monotone set Λ with margin M = M(Λ), for
which we have already computed tν , ν ∈ Λ. From this knowledge we can directly compute certain tν , ν ∈ M
from the recurrence (3.1). Namely, if I1(M) is the set of ν ∈ M such that each ν − ej ∈ Λ whenever νj ≥ 1,
then we can compute tν for all ν ∈ I1(M) since we already know each of the tν−ej that occur in (3.1). We
can then repeat this process and compute tν for any ν ∈ I2(M) where I2(M) is the set of all ν ∈ M \ I1(M)
such that ν − ej ∈ Λ ∪ I1(M) whenever νj > 0. Continuing in this way, we can compute all of the tν ∈ M.
Notice that one only needs a finite number of the sets Ij(M) to exhaust M since Λ is finite.

For a fixed 0 < θ < 1, we consider the following (not yet practical) algorithm:

Algorithm 1. Define Λ0 := {0} and compute t0 := u(0) and t̄0 := ‖t0‖ā. For n = 0, 1, . . . do the
following:

• given that Λn has been defined and (tν)ν∈Λn have been computed, we define Mn = M(Λn) and compute
tν , ν ∈ Mn, by using the recursion (3.1);

• compute t̄ν for ν ∈ Mn and their monotone envelope inside Mn defined by

t̄ν(Mn) := sup{t̄μ : μ ≥ ν and μ ∈ Mn};

• enrich Λn by the indices ν ∈ Mn correponding to the k largest t̄ν(Mn) for k = 1, 2, . . . , until the obtained
monotone set Λn+1 ⊂ Λn ∪Mn satisfies e(Λn+1 ∩Mn) ≥ θe(Mn);

• go to step n+ 1.

Remark 4.1. Since its construction is based on sorting the quantities t̄ν(Mn), similar to the trimming proce-
dure of Remark 2.2, the new set Λn+1 can be made monotone. Another option would be to define Λn+1 as the
smallest monotone set such that Λn ⊂ Λn+1 ⊂ Λn ∪Mn and such that e(Λn+1 ∩Mn) ≥ θe(Mn). The Proof of
Theorem 4.2 below also applies in this case. However, we do not currently know how to efficiently implement
the search for such a minimal monotone set.
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Algorithm 1 is not satisfactory for several reasons. A first problem is that we can only solve the boundary
value problems (3.1) approximately, for example using a finite element discretization. We analyze the additional
error induced by this discretization in Section 6. Another problem is that, in our infinite dimensional setting the
margin Mn has infinite cardinality, and therefore there are infinitely many t̄ν to be computed which requires
in principle solving infinitely many boundary value problems for the corresponding tν . Although this problem
does not occur in the finite dimensional setting d < ∞, it is still reflected by the fact that the size of Mn is
potentially much larger than that of Λn as d gets large and therefore solving the boundary value problems for
all ν ∈ Mn becomes the main source of computational complexity. We propose a solution to this problem in
the next section Section 5.

For the present, we remain with the above algorithm and prove its optimality. We first establish the following
result on the decay of the energy of Taylor coefficients.

Theorem 4.2. Under the assumptions of Theorem 1.1, we have (t̄ν)ν∈F ∈ �pm(F) and the sets Λn satisfy

σ(Λn) ≤ C1‖(t̄ν)‖2
�p

m(F)(#(Λn))−2t, t :=
1
p
− 1

2
, (4.1)

where C1 only depends on (r,R, θ, t).

Proof. We have shown in Theorem 2.4 that (‖tν‖V )ν∈F ∈ �pm. Since t̄ν ≤ √
R‖tν‖V for all ν ∈ F , it follows that

(t̄ν)ν∈F ∈ �pm(F) as stated.
To prove (4.1), we first control the cardinality of the updated set Λn+1 ∩Mn. Recall that Λn+1 was obtained

by a iterative enrichment of Λn according to the largest t̄ν(Mn). Let Λ̃n+1 ⊂ Λn+1 be the set corresponding to
the last step of this enrichment before Λn+1 has been reached. We define Sn := Λ̃n+1 ∩Mn, so that

#(Λn+1 ∩Mn) = 1 + #(Sn),

and
e(Sn) < θe(Mn).

We thus have
(1 − θ)e(Mn) ≤ e(Mn) − e(Sn)

=
∑

ν∈Mn\Sn

|t̄ν |2

≤
∑

ν∈Mn\Sn

|̄tν(Mn)|2

≤ ‖(t̄ν)‖2
�p

m(F)(#(Sn) + 1)−2t,

where for the last line we have used (1.5) with q = 2, applied to the sequence (̄tν(Mn))ν∈Mn and the fact that
t̄ν(Mn) ≤ t̄ν where (̄tν)ν∈F is the monotone envelope of (t̄ν)ν∈F . It follows that

#(Λn+1 ∩Mn) ≤ (1 − θ)−1/2t‖(t̄ν)‖1/t

�p
m(F)

e(Mn)−1/2t,

and therefore, using (3.11),

#(Λn+1 ∩Mn) ≤ [(1 − δ)(1 − θ)]−1/2t‖(t̄ν)‖1/t

�p
m(F)

σ(Λn)−1/2t . (4.2)

We next observe that σ(Λn) decreases geometrically. Indeed, we can write

σ(Λn+1) = σ(Λn) − e(Λn+1 ∩Mn) ≤ σ(Λn) − θe(Mn).

Since by (3.11), we have e(Mn) ≥ (1 − δ)σ(Λn), we obtain

σ(Λn+1) ≤ κσ(Λn), (4.3)
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with κ := 1 − θ(1 − δ) = 1 − 2θr
R+r < 1. Iterating (4.3), we obtain

σ(Λk) ≥ κn−kσ(Λn).

Combining this with (4.2), we may now estimate the global cardinality of #(Λn) by

#(Λn) ≤ #(Λ0) +
n−1∑
k=0

#(Λk+1 ∩Mk)

≤ 1 + [(1 − δ)(1 − θ)]−1/2t‖(t̄ν)‖1/t

�p
m(F)

n−1∑
k=0

σ(Λk)−1/2t

≤ 1 + [(1 − δ)(1 − θ)]−1/2t‖(t̄ν)‖1/t

�p
m(F)

σ(Λn)−1/2t
n−1∑
k=0

κ(n−k)/2t

≤ 1 + C‖(t̄ν)‖1/t

�p
m(F)

σ(Λn)−1/2t

where C := ( κ
(1−δ)(1−θ)

)1/2t

(1 − κ1/2t)−1. This last inequality can be rewritten as

σ(Λn) ≤ C2t‖(t̄ν)‖2
�p

m(F)(#(Λn) − 1)−2t.

If #(Λn) > 1, we have established (4.1) with C1 := (2C)2t. If #(Λn) = 1 then

σ(Λn) ≤ ‖(t̄ν)‖2
�2(F) ≤ ‖(t̄ν)‖2

�p(F) ≤ ‖(t̄ν)‖2
�p

m(F),

and (4.1) also holds, with the constant C1 only depending on r,R, θ and t. �

As a corollary, we also obtain the optimal decay of the �1 tail of the t̄ν and therefore of the error between u
and its partial Taylor sum.

Corollary 4.3. Under the assumptions of Theorem 1.1, we have (t̄ν)ν∈F ∈ �pm(F) and the sets Λn satisfy

∑
ν∈F\Λn

t̄ν ≤ C2‖(t̄ν)‖�p
m(F)(#(Λn))−s, s :=

1
p
− 1, (4.4)

where C2 := 1 +
√
C1 with C1 the constant in (4.1). Consequently we have

sup
y∈U

‖u(y) −
∑

ν∈Λn

tνy
ν‖V ≤

∑
ν /∈Λn

‖tν‖V ≤ 1√
r

∑
ν /∈Λn

t̄ν ≤ C1√
r
‖(t̄ν)‖�p

m(F)(#(Λn))−s. (4.5)

Proof. Let m := #(Λn) ≥ 1 and consider the set Λ∗
m ⊂ F corresponding to the m largest t̄ν , we have

∑
ν /∈Λn

t̄ν =
∑

ν /∈Λ∗
m

t̄ν +
∑

ν∈Λ∗
m\Λn

t̄ν −
∑

ν∈Λn\Λ∗
m

t̄ν

≤
∑

ν /∈Λ∗
m

t̄ν +
∑

ν∈Λ∗
m\Λn

t̄ν

≤ ‖(t̄ν)‖�p(F)(m+ 1)−s +m1/2e(Λ∗
m \ Λn)1/2

≤ (‖(t̄ν)‖�p(F) +
√
C1‖(t̄ν)‖�p

m(F))(#(Λn))−s

≤ (1 +
√
C1)‖(t̄ν)‖�p

m(F)(#(Λn))−s ,

where we have used both (1.5) and (4.1). This establishes (4.4), which implies (4.5) since ‖ · ‖V ≤ 1√
r
‖ · ‖ā. �
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5. A second algorithm

We now want to modify Algorithm 1 in order to restrict the computation of the tν to a finite subset of Mn.
In the modified algorithm, we set a target accuracy ε > 0 and design the procedure in such a way that the
algorithm terminates when σ(Λn) ≤ ε. As explained in the next section, an additional error occurs due to finite
element spatial discretization, and therefore a relevant choice for ε is an estimated value of this additional error,
such as given by standard residual-based finite element error estimator.

In order to restrict the margin Mn to a finite subset, we introduce a procedure SPARSE that has the following
properties: if Λ is a finite monotone set and M is its infinite margin, and if (t̄ν)ν∈Λ are known, then for any
η > 0,

N := SPARSE(Λ, (t̄ν)ν∈Λ, η),

is a finite subset of M which is monotone in M and such that e(M\N ) ≤ η.
There are several possible concrete realizations of this procedure. Here is a simple one. We define

ψ̄j :=
ψj

ā
,

and choose an integer J > 0 large enough such that∥∥∥∥∥∥
∑
j>J

|ψ̄j |
∥∥∥∥∥∥

L∞(D)

≤
(
αe(Λ)
1 − αγ

)−1

η, (5.1)

where α and γ are given by (3.4) and (3.7), and we define

N := SPARSE(Λ, (t̄ν)ν∈Λ, η) := {ν ∈ M ; ν − ej ∈ Λ⇒ j ≤ J}.
Clearly N is finite with #(N ) ≤ J#(Λ).

Lemma 5.1. With the above definition of N , one has

e(M\N ) =
∑

ν∈M\N
t̄2ν ≤ η. (5.2)

Proof. We proceed in a similar way to the Proof of Lemma 3.2, by first writing

e(M\N ) ≤ α
∑

ν∈M\N

⎛
⎝ ∑

j s.t. νj �=0

dν−ej ,j

⎞
⎠ ≤ A+B, (5.3)

where now

A := α
∑

ν∈M\N

⎛
⎝ ∑

j s.t. ν−ej∈M\N
dν−ej ,j

⎞
⎠ = α

∑
μ∈M\N

⎛
⎝ ∑

j s.t. μ+ej∈M\N
dμ,j

⎞
⎠ ,

and

B := α
∑

ν∈M\N

⎛
⎝ ∑

j s.t. ν−ej /∈M\N
dν−ej ,j

⎞
⎠ = α

∑
μ∈Λ∪N

⎛
⎝ ∑

j s.t. μ+ej∈M\N
dμ,j

⎞
⎠ .

In this splitting, we have used the fact that if ν ∈ M \ N and νj �= 0, we have either ν − ej ∈ M \ N or
ν − ej ∈ Λ ∪ N . Using (3.5), we can bound A by

A ≤ αγ
∑

μ∈M\N
t̄2μ = αγe(M\N ).
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To bound B, we first claim that for any μ ∈ Λ∪N such that μ+ej ∈ M\N , we must have μ ∈ Λ and j > J .
Indeed, since μ+ ej ∈ M \ N , the definition of N guarantees that μ+ ej = ν̃ + ek for some ν̃ ∈ Λ and k > J .
If j = k we have our claim. If j �= k then necessarily ν̃ − ej ∈ Λ because of the monotonicity of Λ and therefore
μ can be written as the sum of ν̃ − ej ∈ Λ and ek, which means that μ is not in N . Thus, we have verified our
claim. From the claim, it follows that the only j’s that may contribute in the summation inside B are such that
j > J and ν − ej ∈ Λ. Hence,

B ≤ α
∑
μ∈Λ

∑
j>J

dμ,j

= α
∑
μ∈Λ

∫
D

⎛
⎝∑

j>J

|ψj |
⎞
⎠ |∇tν |2

= α
∑
μ∈Λ

∫
D

⎛
⎝∑

j>J

|ψ̄j |
⎞
⎠ ā|∇tν |2

≤ α

∥∥∥∥∥
∑
j>J

|ψ̄j |
∥∥∥∥∥

L∞

e (Λ) ≤ (1 − αγ) η.

Combining the bounds for A and B with (5.3), we obtain

e(M\N ) ≤ B

1 − αγ
≤ η,

as desired. �

For a fixed 0 < θ < 1 and target accuracy ε > 0, we now consider the following algorithm:

Algorithm 2. Define Λ0 := {0}, compute t0 := u(0) and set η0 := t̄0 = ‖t0‖ā; for n = 0, 1, . . .

• Given Λn and (tν)ν∈Λn , define Mn := M(Λn).
• For j = 0, 1, . . .

– Define ηn,j := 2−jηn and Mn,j := SPARSE(Λn, (t̄ν)ν∈Λn , ηn,j);
– compute t̄ν for ν ∈ Mn,j and compute e(Mn,j);
– if e(Mn,j) + ηn,j ≤ (1 − δ)ε, with δ as in (3.12), then terminate the Algorithm and output the set
Λ(ε) := Λn;

– else if e(Mn,j) < 4−2θ
1−θ ηn,j , then go directly to step j + 1;

– else if e(Mn,j) ≥ 4−2θ
1−θ ηn,j , then terminate the inner loop in j, and define ηn+1 := ηn,j . Compute tν for

ν ∈ Mn,j using (3.1) and define

t̄ν(Mn,j) := sup{t̄μ : μ ≥ ν and μ ∈ Mn,j}.

Enrich Λn by the indices ν ∈ Mn,j correponding to the k largest t̄ν(Mn,j) for k = 1, 2, . . . , until the
obtained monotone set Λn+1 ⊂ Λn ∪Mn,j satisfies

e(Λn+1 ∩Mn,j) ≥ θe(Mn,j) + (2 − θ)ηn,j .

• Go to step n+ 1.

Theorem 5.2. Under the assumptions of Theorem 1.1 with p ≤ 1, Algorithm 2 terminates for a finite value
n∗ and outputs a set Λ := Λ(ε) := Λn∗ which satisfies

σ(Λ) ≤ ε. (5.4)
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Moreover, one has

σ(Λ) ≤ C̄1‖(t̄ν)‖2
�p

m(F)(#(Λ))−2t, t :=
1
p
− 1

2
, (5.5)

and
sup
y∈U

‖u(y) −
∑
ν∈Λ

tνy
ν‖V ≤ C̄2‖(t̄ν)‖�p

m(F)(#(Λ))−s, s :=
1
p
− 1, (5.6)

where the constants C̄1 and C̄2 := 1+
√

C̄1√
r

only depend on (r,R, θ, t).

Proof. We first claim that for each n the inner j loop terminates for some j. To see this, we note that this loop
advances j only when e(Mn,j) < 4−2θ

1−θ ηn,j and e(Mn,j) > (1 − δ)ε− ηn,j. This cannot happen when j is large
because the ηn,j tend to zero with increasing j.

Next, we need to check that for the output j of the inner loop, we are able to determine the index set Λn+1

satisfying the bulk criterion. To see this, we note that for the output j of the inner loop, we must have
e(Mn,j) > 4−2θ

1−θ ηn,j and therefore

(1 − θ)e(Mn,j) − (2 − θ)ηn,j > (2 − θ)ηn,j > 0.

or equivalently
e(Mn,j) > θe(Mn,j) + (2 − θ)ηn,j .

This shows that Λn+1 exists since the choice Λn ∪Mn,j satisfies the bulk criterion. Since e(Mn \Mn,j) ≤ ηn,j ,
it follows that

e(Λn+1 ∩Mn,j) ≥ θe(Mn,j) + (2 − θ)ηn,j ≥ θe(Mn) + (2 − 2θ)ηn,j ,

and thus since θ < 1
e(Λn+1 ∩Mn,j) ≥ θe(Mn). (5.7)

Next we have to check that the outer n loop terminates. To see this we note that from (5.7) and the same
reasoning as in the Proof of Theorem 4.2, the contraction property

σ(Λn+1) ≤ κσ(Λn), (5.8)

holds whenever the set Λn+1 is created by the algorithm and 0 < κ < 1 is the constant of (4.3). Obviously, this
contraction property shows that for any given c > 0, if the algorithm did not terminate for n large enough we
must have e(Mn) ≤ c because e(Mn) ≤ σ(Λn). Here we take c = (4−2θ)(1−δ)ε

5−3θ . If such a value of n has been
reached by the algorithm and if Λn is not selected during the inner loop, this means that for the last value of j
in this inner loop, we have

ηn,j ≤ 1 − θ

4 − 2θ
e(Mn,j),

and thus

e(Mn,j) + ηn,j ≤ 5 − 3θ
4 − 2θ

e(Mn,j) ≤ 5 − 3θ
4 − 2θ

e(Mn) ≤ (1 − δ)ε.

Therefore, the algorithm terminates.
Let n∗ be the terminal value of n and let j∗ be the terminal value of j for the inner j loop applied to this

value n = n∗. We have e(Mn∗,j∗) + ηn∗,j∗ ≤ (1 − δ)ε and thus

σ(Λn∗) ≤ (1 − δ)−1e(Mn∗) ≤ (1 − δ)−1(e(Mn∗,j∗) + ηn∗,j∗) ≤ ε.

Therefore, (5.4) holds for the generated set Λ = Λn∗ .
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We shall next prove (5.5) by using an argument similar to that used in the Proof of Theorem 4.2. For any
n < n∗, we bound the cardinality of the update set Λn+1 ∩Mn,j where j = j(n) is the terminal value of j for
this n. By the same argument as in the Proof of Theorem 4.2, we obtain

(1 − θ)e(Mn,j) − (2 − θ)ηn,j ≤ ‖(t̄ν)‖2
�p

m(F)#(Λn+1 ∩Mn,j)−2t.

We next observe that

(1 − θ)e(Mn,j) − (2 − θ)ηn,j =
1
3
(1 − θ)e(Mn,j) +

2
3
(1 − θ)e(Mn,j) − (2 − θ)ηn,j

≥ 1
3
(1 − θ)e(Mn,j) +

2
3
(4 − 2θ)ηn,j − (2 − θ)ηn,j

=
1
3
(1 − θ)e(Mn,j) +

1
3
(2 − θ)ηn,j

≥ 1 − θ

3
(e(Mn,j) + ηn,j)

≥ 1 − θ

3
e(Mn) ≥ (1 − δ)

(
1 − θ

3

)
σ(Λn) =: C̄−1

2 σ(Λn).

Here the last inequality follows from Lemma 3.2 and the next to last inequality follows from the fact that
e(Mn \Mn,j) ≤ ηn,j by virtue of (5.2). Therefore

#(Λ) = 1 +
n∗−1∑
n=0

#(Λn+1 ∩Mn,j(n))

≤ 1 + C̄
1/t
2 ‖(t̄ν)‖1/t

�p
m(F)

n∗−1∑
n=0

σ(Λn)−1/2t

≤ 1 + C̄
1/t
2 ‖(t̄ν)‖1/t

�p
m(F)

σ(Λ)−1/2t
n∗−1∑
k=0

κ(n∗−k)/2t

≤ 1 + C‖(t̄ν)‖1/t

�p
m
σ(Λ)−1/2t,

where C := C̄t
2(1 − κ1/2t)−1. This last inequality can be rewritten as

σ(Λ) ≤ C̄1‖(t̄ν)‖2
�p

m(F)(#(Λ))−2t,

in the same way we argued to complete the Proof of Theorem 4.2. Hence, we have proved (5.5). Finally, (5.6)
follows from (5.5) in the same way we have derived Corollary 4.3 from Theorem 4.2. �

Although Algorithm 2 algorithm meets the benchmark of the optimal rate (1.7) under the minimal assump-
tions of Theorem 1.1, a closer inspection shows that it is not completely optimal from a computational point
of view. Indeed, consider the number B = B(ε) = Bn∗ of boundary value problems which have actually been
solved in order to compute the functions tν for ν in the final set Λ = Λ(ε) = Λn∗ . Ideally, we would hope that
this number is not much larger than the cardinality of Λ, so that we may actually retrieve the convergence
estimates (5.5) and (5.6) in terms of B instead of #(Λ).

However, the number B involves the size of the restricted margin which is produced by the procedure SPARSE,
and which might in principle be substantially larger than the set that is finally selected by the bulk search.
Retrieving the same convergence rate in terms of B would actually require that when the accuracy η prescribed
in SPARSE is of the same order as the current accuracy e(Λ), then the cardinality of the produced set N should
be bounded by the optimal rate

#(N ) ≤ C‖(t̄ν)‖1/t

�p
m(F)

η−1/2t. (5.9)
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A brief inspection seems to indicate that only a lower rate is achieved by our SPARSE procedure: on the one
hand we know that

#(N ) ≤ J#(Λ),

and that the set Λ has its cardinality optimally controlled by η−1/2t, and on the other hand the number J that
ensures (5.1) is of the order η−1/s where s = 1

p − 1 = t− 1
2 . Therefore η−1/2t in (5.9) is a priori replaced by the

non-optimal rate η−1/(2t2−t)

In order to remedy this defect, one would need to design more elaborate realizations of SPARSE in order
to obtain a set N of smaller, hopefully optimal, cardinality. One option that could lead to such a SPARSE
procedure would be to make use of the available a priori bounds on the ‖tν‖V such as such as (2.3) and (2.4)
in order to control the energy outside of the set N . We do not embark in this direction here. Another option
for lowering the CPU cost, which appears to work quite well in practice yet without a complete theoretical
justification, will be proposed in Section 7.

6. Space discretization

The boundary value problems that recursively give the coefficients tν cannot be solved exactly. Instead, we
would use a Galerkin method in a finite dimensional space Vh ⊂ V , typically a finite element space although
this is not crucial in the present analysis which would also apply to spectral or wavelet discretization. We shall
show in this section that it is possible to choose the same space Vh to approximate all tν and still retain the
performance of Algorithms 1 and 2.

For the purpose of simplicity, we consider here the situation where the same Êspatial discretization is used
for all ν. Yet, the analysis in Section 8 of [9] reveals that substantial computational gain may be expected if
the spatial discretization is allowed to vary with ν (typically, coarser discretizations should be used for the
computation of smaller Taylor coefficients). The possibility of adaptively choosing the approximation space
parameter h depending on ν should also be explored but requires a more involved analysis. A future objective
is therefore to design a solution algorithm that adaptively monitors the spatial resolution as new coefficients
are being computed.

We define the finite element approximation uh(y) ∈ Vh as the solution to∫
D

a(x, y)∇uh(y)∇vh =
∫
D

fvh ∀vh ∈ Vh . (6.1)

By assumption UEA(r,R), for any closed subspace Vh ⊂ V the Finite Element approximation is uniquely
defined and the analysis in [9, 10] and all results of the present paper also apply to the discretized problem.

In particular, for every h > 0, the finite element approximation uh(y) ∈ Vh can be represented as a convergent
Taylor expansion about y = 0 i.e., uh(y) =

∑
ν∈F tν,hy

ν , where

tν,h :=
1
ν!
∂νuh(0) ∈ Vh .

Moreover, the ‖tν,h‖V can be estimated by the same bound bν := 2C0 infρ∈Ar ρ
−ν as the ‖tν‖V , leading to a

result similar to Theorem 2.4.

Theorem 6.1. Under the assumptions of Theorem 1.1, the sequence (‖tν,h‖V )ν∈F belongs to �pm(F). Moreover
‖(‖tν,h‖V )‖�p(F) is bounded independent of h.

The coefficients tν,h can be computed recursively by solving linear systems corresponding to the space-
discretized boundary value problems∫

D

ā∇tν,h∇vh = −
∑

j s.t. νj �=0

∫
D

ψj∇tν−ej ,h∇vh ∀vh ∈ Vh. (6.2)
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For the approximate Taylor coefficients, we introduce once more their energies as t̄ν,h := ‖tν,h‖ā. We may
define eh(Λ) and σh(Λ) and apply Algorithms 1 or 2 in a similar way, by simply replacing tν and t̄ν by tν,h

and t̄ν,h. For these algorithms, we obtain convergence results by the exact same approach as without space
discretization.

Theorem 6.2. Under the assumptions of Theorem 1.1 with p < 1, the application of each of the Algorithms 1
or 2 in the space discretized setting yields a sequence of sets (Λn) such that

σh(Λn) ≤ C1‖(t̄ν,h)‖�p
m(F)(#(Λn))−2t, t :=

1
p
− 1

2
, (6.3)

and ∑
ν /∈Λn

eν,h ≤ C2‖(t̄ν,h)‖�p
m

(#(Λn))−s, s :=
1
p
− 1, (6.4)

where C1 and C2 are as in the continuous setting (depending on r, R, θ and on t, but being independent of h).
Consequently we have

sup
y∈U

‖uh(y) −
∑

ν∈Λn

tν,hy
ν‖V ≤

∑
ν /∈Λn

‖tν,h‖V ≤ C1√
r
‖(t̄ν,h)‖�p

m
(#(Λn))−s. (6.5)

We finally quantify the space discretization error. The well-known theory of finite elements tells us that the rate
of convergence of ‖u(y) − uh(y)‖V in terms of the decay of h is controlled by the smoothness of u in the scale
of the Hs Sobolev space and the order of the finite element spaces Vh which are employed. For example, when
using Lagrange finite elements of order k, we have

sup
y∈U

‖u(y) − uh(h)‖V ≤ C3h
r sup

y∈U
‖u(y)‖H1+r(D), (6.6)

for all r ≤ k. This leads to the following result.

Corollary 6.3. Under the assumptions of Theorem 1.1 and assuming that supy∈U |u(y)|H1+r <∞ and that we
use Lagrange finite elements of order k ≥ r, then applying Algorithms 1 or 2 in the space discretized setting, we
obtain

sup
y∈U

‖u(y) −
∑

ν∈Λn

tν,hy
ν‖V ≤ C3h

r sup
y∈U

‖u(y)‖H1+r(D) +
C1√
r
‖(t̄ν,h)‖�p

m(F)(#(Λn))−s. (6.7)

The largest value of r for which supy∈U |u(y)|H1+r <∞ is determined by:

• the smoothness of the right hand side f ;
• the smoothness of the diffusion coefficient a;
• the smoothness of the boundary of D.

As an example, for f ∈ L2(D) and coefficients a(x, y) which satisfy

sup
y∈U

‖a(·, y)‖W 1,∞(D) <∞, (6.8)

we note that (1.1) implies that the solution u(y) satisfies the Poisson equation

−Δu(y) =
1
a
[f −∇a · ∇u(y)] in D, u(y)|∂D = 0. (6.9)

Therefore, for every y ∈ U the solution u(y) belongs to the space

W =
{
v ∈ V : Δv ∈ L2(D)

}
.
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If the domain D is convex, it is well known W = H2(D) ∩ H1
0 (D). For more general Lipschitz domains, it is

also known that W = H1+r(D)∩H1
0 (D) for some 1

2 ≤ r ≤ 1. We refer to [16] for a general treatment of elliptic
problems on non-smooth domains.

In the numerical experiment that follow, we actually deal with coefficients a(x, y) which are piecewise con-
stant on a partition of D = [0, 1]2 into fixed sub-squares independent of y. Such coefficients obviously do not
satisfy (6.8), however regularity results are also known in this setting and give that the solution u(y) belong to
H1+r(D) ∩H1

0 (D) for some 0 < r< 1
2 that depends on the maximal contrast R/r, see for example [3].

7. Numerical experiments

7.1. Numerical tests and strategies

In this section, we study the numerical performance of the algorithm proposed in this paper. In this algorithm,
the choice of Λn is made adaptively and it is based on a bulk search procedure. In particular, we want to compare
this choice of Λn, with non-adaptive choices. We also study some variants using other adaptive strategies.

The algorithms that we analyzed in the previous sections were formulated regardless of wether the dimension
of y is finite or infinite. In the present numerical tests, we use a parameter vector y = (yj)j=1,...,d, of dimension d
that ranges up to 255. More precisely, we consider the following problem on the unit square D := [0, 1]× [0, 1]:

−div(a∇u) = f in D, u = 0 on ∂D,

where for illustration purposes we take f(x) = f(x1, x2) := x1x2. As to the diffusion coefficient a(x, y) and the
choice of the ψj we consider two different test cases.

Test 1. Characteristic functions
We partition D into d = 64 squares Dj of equal shape and consider a diffusion coefficient that is piecewise

constant on each subdomain:

a(x, y) = ā(x) +
64∑

j=1

yjψj(x), ā = 1 and ψj = αjχDj
. (7.1)

Since in this case the ψj have disjoint supports, the uniform ellipticity assumption simply means that the weights
αj = ‖ψj‖L∞(D) are all strictly less than 1. To study the consistency of the numerical results with our theory,
we also need that the sequence αj has some decay, since in the case of an infinite sequence we require that
(‖ψj‖L∞(D))j≥1 is summable. In our numerical test we take in (7.1)

αj =
0.9
j3

· (7.2)

The uniform ellipticity assumption UEA(r,R) therefore holds with r = 0.1 and R = 1.9. This test is not
physically realistic: it corresponds to a diffusion which is uncorrelated between the different subdomains and
with variability that strongly differs between subdomains labelled by small and large values of j. Its main
purpose is to compare adaptive strategies with a non-adaptive one based on the estimates (2.3) and (2.4)
for ‖tν‖V , since these estimates can be explicitely computed for this test case as we explain further.

Test 2. Haar wavelets
For the same domain D = [0, 1]2, we consider the bidimensional, isotropic Haar wavelet basis

hi
l,k(x) = hi(2lx− k), l ∈ EN, k = (k1, k2) ∈ {0, . . . , 2l − 1}2, i = 1, 2, 3,

where the generating wavelets hi are defined by h1(x1, x2) := ϕ(x1)h(x2), h2(x1, x2) := h(x1)ϕ(x2) and
h3(x1, x2) := h(x1)h(x2), with ϕ := χ[0,1] and h := χ[0,1/2[ − χ[1/2,1[. Any function in L2(D) has a unique
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expansion into the orthogonal basis composed of all the above wavelets together with χD. We refer to [6] for a
detailed treatment of wavelets. We consider parametric diffusion coefficients of the form

a(x, y) := ā(x) +
L∑

l=0

βl

3∑
i=1

∑
k∈{0,...,2l−1}2

yl,k,ih
i
l,k(x), ā = 1, (7.3)

where L is a fixed integer representing the finest scale level, (βl)l=0,...,L a positive sequence and yl,k,i are the
parametric variables ranging over [−1, 1].

With the above normalization ‖hi
l,k‖L∞(D) = 1, it is known that the wavelet coefficients of a Hölder-continuous

function in C0,γ(D) with 0 < γ ≤ 1 decay like O(2−γl) as the scale level l grows. The rate of decay of
the sequence βl therefore reflects the amount smoothness (or correlation in the stochastic context) in a. We
consider the general form

βl := c2−γl c := 0.3
1 − 2−γ

1 − 2−(L+1)γ
= 0.3

2γ − 1
2γ − 2−Lγ

, (7.4)

which ensures that the uniform ellipticity assumption UEA(r,R) holds with r = 0.1 and R = 1.9. In the
numerical tests, we consider the two particular values

γ = 0.5 and γ = 3,

in order to compare the effect of low smoothness (short range correlation) and of high smoothness (long range
correlation) on the behaviour of our algorithms. Using the relabelling

ψj := βlh
i
l,k and yj := yl,k,i, when j = 22l + 3(2lk1 + k2) + i− 1,

we may rewrite the above expansion (7.3) in the form a(x, y) := ā(x) +
∑d

j=1 yjψj(x) adopted in this paper,
with

d := 22(L+1) − 1.

In order to study the robustness of the method to the dimensionality, we consider different values L = 1, 2, 3 for
the maximal scale, which corresponds to taking d = 15, 63, 255. Note that after this relabelling, the sequence
(‖ψj‖L∞(D))j≥1 decays like O(j−γ/2), and therefore like O(j−1/4) and O(j−3/2) for γ = 0.5 and γ = 3
respectively.

As in Section 6, we use one fixed finite element space for the spatial discretization of all active Taylor
coefficients. Therefore, for the different strategies of building the coefficient sets Λn, we actually study the decay
of the Taylor expansion error for the finite element solution

sup
y∈U

‖uh(y) −
∑

ν∈Λn

tν,hy
ν‖V , (7.5)

as #(Λn) grows, bearing in mind that the finite element discretization induces an additional discretization error
supy∈U ‖u(y) − uh(y)‖V which can be bounded according to (6.6).

For the generation of the sets Λn of “active” Taylor coefficients, we compare three non-adaptive strategies
that are based on a priori choices of the sets Λn, and three adaptive strategies (in particular Algorithm 1) that
exploit the results of earlier computations. For the sake of notational simplicity, we describe these algorithms
without the additional finite element discretization, therefore using the notation tν instead of tν,h. Their
adaptation in the finite element setting is of course straightforward.

Non-adaptive strategies:

• Algorithm QN: for n ≥ 0, we take Λn = {ν ∈ F , s.t max(νj) ≤ n}. Therefore Span{y �→ yν : ν ∈ Λn} is
the space Qn of polynomials of degree at most n in each variable. The dimension of this space #Λn = (n+1)d

grows exponentially with the dimension d of y, reflecting the curse of dimensionality.
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• Algorithm PN: for n ≥ 0, we take Λn = {ν ∈ F , s.t |ν| ≤ n}. Therefore Span{y �→ yν : ν ∈ Λn} is the
space Pn of polynomials of total degree at most n in d variables. The dimension of this space #Λn =

(
n+d

n

)
,

although smaller than that of Qn by an order d! still grows exponentially with d.
• Algorithm LE (largest estimates): as explained in the Proof of Theorem 2.4, there are available estimates

such as (2.3) and (2.4) for ‖tν‖V . It is therefore natural to choose for Λn the set of indices corresponding to
the n largest of these estimates, for example the n largest

eν :=
‖f‖V ∗

δ
inf

ρ∈Aδ

ρ−ν ,

for some given 0 < δ < r. As already explained, such sets are monotone by construction. In practice, it is
not always simple to compute the exact value of the infimum in the above definition of eν . However, this
problem has a simple solution in the case where the ψj ’s have disjoint supports since all ρj can be optimized
separately. For the diffusion coefficient considered in Test 1 this easily leads to the solution

ρ∗j =
1 − δ

αj
,

and therefore

eν :=
‖f‖V ∗

δ

∏
j≥1

(
αj

1 − δ

)νj

·

The set Λn may also be viewed as the set of those ν such that eν exceeds a certain threshold t = t(n) > 0
that decreases with n, and are therefore of the form

Λn :=

⎧⎨
⎩ν :

∑
j≥1

ajνj ≤ Θ(n)

⎫⎬
⎭ with aj := − log

(
αj

1 − δ

)
and Θ(n) = − log

(
t(n)δ
‖f‖V ∗

)
·

Note that if all αj (and therefore aj) were equal, then this would give the same a priori choice as the
previously described Algorithm PN. In our case, the weight factors aj decrease with j, resulting in some
anisotropy in the sets Λn: higher polynomial degrees are expected for small values of j which represent the
most “active” variables. A similar choice of polynomial space was studied in [23] for collocation methods.

In our numerical tests, we have used the value δ = r
2 = 0.05. One could use an even sharper a priori

estimate on the ‖tν‖V by taking the infimum of eν also over all δ ∈]0, r[. This leads to a similar estimate
but now with δ depending on ν according to δ = min(r, 1

1+|ν| ).
In contrast, the exact value of eν is not easily computable for the diffusion coefficient considered in Test 2,

and we need to rely on less sharp estimates for the ‖tν‖V , based on specific choices for the sequence ρ as
explained further.

Adaptive strategies:

• Algorithm BS (bulk search): this is simply Algorithm 1 based on the bulk search procedure as proposed
in Section 4, and applied under the given finite element discretization. Since we work in finite dimension,
it is in theory possible to apply this algorithm without the need to restrict the margin as it is done in
Algorithm 2. In our numerical test, we have used the value θ = 0.2 for the bulk parameter (we observed that
the error curves are almost identical when θ ranges in [0.05, 0.95]).

• Algorithm LN (largest neighbor): although Algorithm 1 may be performed in the finite dimensional
context, the size of the current margin Mn relative to the size of the current set Λn becomes a source of
computational slow-down as d grows. An alternate strategy is to only consider the reduced margin

I1(Λn) := {ν /∈ Λn : νj �= 0 ⇒ ν − ej ∈ Λn},
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which are the indices in Mn for which the Taylor coefficients tν can directly be computed from those indexed
by Λn. We then define

Λn+1 = Λn ∪ {ν∗},
where

ν∗ := Argmaxν∈I1(Λn)t̄ν .

The intuition for considering such a strategy is that if the sequence (t̄ν)ν∈F were monotone, then this would
select the t̄ν in decreasing order. The potential pay-off is that the reduced margin is much smaller than Mn

(in particular, it is easy to check that at most d boundary value problems need to be solved at each iteration).
As we shall see, this strategy gives excellent results, although we have no proof similar to Algorithm 1 that
it performs optimally in the sense of convergence rates.

• Algorithm LNE (largest neighbor estimate): in order to save further computational cost, we can use
majorants of t̄ν in order to decide on the new set Λn+1. From (3.7), one straightforward upper estimate
for t̄ν is

t̄ν ≤ Nν :=

⎛
⎝α ∑

j s.t. νj �=0

‖ψ̄j‖L∞(D) t̄
2
ν−ej

⎞
⎠

1
2

. (7.6)

One can then construct the new set Λn+1 as in the previous Algorithm LN, by using Nν instead of t̄ν . The
saving comes from the fact that computing Nν is much cheaper than computing tν .

7.2. Numerical results for Test 1

We have compared the various strategies using 4 choices of finite element spaces based on uniform triangu-
lations of D obtained by splitting each element of a square mesh into two triangles: (i) 8 × 8 squares and P1

finite elements (dim(Vh) = 49), (ii) 16× 16 squares and P1 finite elements (dim(Vh) = 225) (iii) 16× 16 squares
and P2 finite elements (dim(Vh) = 961), (iv) 32×32 squares and P1 finite elements (dim(Vh) = 961). We display
in Figure 1 the error curves for the six strategies described above for the generation of the sets Λn. These error
curves represent the supremum error (7.5) (estimated by taking the supremum over a random choice of 100 val-
ues of y) as a function of #(Λn)). Note that for certain strategies, such as PN, QN and BS, the number #(Λn)
does not grow by 1 at each iteration and therefore only takes a few integer values. In such cases, we obtain all
intermediate values for the error curves by filling the intermediates indices in Λn+1 \Λn by lexicographic order.

We also indicate for each choice of finite element space an estimate of the FE error supy∈U ‖u(y)− uh(y)‖V .
This estimate is done by replacing u(y) by a finite element solution on a very fine mesh obtained from 256 ×
256 squares and taking the supremum over the same random choice of 100 values of y.

We record three major observations about the error curves.

• First, not much difference in the error curves is observed as we modify the spatial discretization, once it is
finer than 8 × 8. In fact, a closer inspection also show that the sets Λn selected by the adaptive algorithms
change very little as we modify the spatial discretization. This suggest that the same sets and error curves
would be obtained if there there were no spatial discretization at all, i.e. if we were computing the tν by
exactly solving the boundary value problems (3.1). In particular, the portion of the error curves which is
below the value of the finite element error is still relevant to us, since this portion does not seem to change
as this error is diminished.

• Second, we observe that the adaptive strategies BS and LN outperform all non adaptive strategies. They
give almost identical error curves, which indicates that the LN strategy is preferable since it is has lower
computational cost. In contrast, a loss in performance is observed if we instead use LNE. As to the non-
adaptive strategies, LE outperforms PN and QN which do not produce any anisotropy in the coefficient sets.
It is interesting to note that with 100 coefficients, the Taylor approximation error of the adaptive strategies
is dominated by the finite element error, while it is still above it with 104 coefficients when using PN and QN.
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Figure 1. Comparison the different strategies for finite element spaces (i) (upper left), (ii)
(upper right), (iii) (lower left) and (iv) (lower right).

• Finally, we observe a stagnation of order 10−9 in the supremum error. We interpret this by the fact that
our algorithm computes once and for all the Taylor coefficients and that small numerical error resulting
from linear system inversion accumulate in such computations. In turn the computed Taylor development
converges towards a limit which slightly differs from uh(y).

In order to obtain a fair comparison between the different algorithms, we also show in Figure 2 their error curves
in terms of the total number of boundary value problems which have been solved, and which is a better reflection
of the CPU time (here we only consider the spatial discretization by 16 × 16 squares P1 finite elements). For
non-adaptive strategies and for LNE, this number is the same as #(Λ), but it exceeds it moderately for LN and
more strongly for BS. In this new comparison, we observe that the algorithm LN gives the best performance,
followed by LNE and LE.

Remark 7.1. Since we have observed that the error curves and selected adaptive sets do not depend much on
the finite element space discretization, an interesting perspective for gaining CPU time is to first use a coarse grid
finite element space to find the adaptive coefficients sets Λn. One may then use a finer grid for the computation
of the coefficients in such sets, therefore avoiding the overhead caused by solving more boundary value problems
than #(Λn) with the fine discretization. We may also use the coarse grid error curves to estimate the number of
Taylor coefficients that we need to compute with the fine discretization in order to reach a prescribed accuracy.
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Figure 2. Comparison of the different strategies in term of total number of solved bvp.

Remark 7.2. Our analysis shows that we can set a stopping criterion for our adaptive algorithm based on the
accuracy of the Taylor approximation to uh(y): the algorithm terminates at some step n such that

sup
y∈U

‖uh(y) −
∑

ν∈Λn

tν,hy
ν‖V ≤ ε,

where ε > 0 is a prescribed tolerance. A natural choice is to choose ε of the same order as the finite element
error

sup
y∈U

‖uh(y) − u(y)‖V .

While this last quantity is not exactly known to us, it can be bounded by above according to a priori esti-
mate (6.6) based on our knowledge of the maximal Sobolev smoothness of u(y), or estimated in a finer way
based on a posteriori analysis.

Remark 7.3. In all three adaptive approaches, the specific choice of numbering coordinates yj might influence
the selection of the approximations once ties in certain quantities occur. In the present numerical experiments,
the 64 coordinates were enumerated in lexicographic order according to the location of the support of the ψj

in D. We performed the same experiments with several random reshufflings of the indexation (so that the
most significant parameter yj does not appear as first coordinate) which rendered indistinguishable results from
the ones reported here; although this finding is, to some extent, implementation dependent, it strong suggests
that the presented algorithms will perform well also for more general parameter dependences, where the most
significant coordinate appears only in high dimension.

We also have investigated the convergence of the mean value solution ū = E(u) when the yj are i.i.d.
random variables which are uniformly distributed in [−1, 1]. Given a Taylor approximation uΛ(y) :=

∑
ν∈Λ tνy

ν

computed for a certain set Λ by one of the proposed strategies, this mean value may thus be approximated by

ūΛ :=
∑
ν∈Λ

tνE(yν),
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Figure 3. Comparison of the different strategies with Monte Carlo method.

with

E(yν) =
∏
j≥1

E(yνj

j ) =
∏
j≥1

⎛
⎝

1∫
−1

tνj
dt
2

⎞
⎠ =

∏
j≥1

1 + (−1)νj

2 + 2νj
·

We are ensured that the difference between the averages ū and ūΛ does not exceed the supremum error in y
between u(y) and uΛ(y) which was previously estimated for the various methods. Since we do not know the
exact value of ū for the computation of the error, we replace it by the value ūΛ obtained with BS algorithm when
#(Λ) = 10 000, which is thus accurate up to an error of order 10−10. This allows us to make the comparison
between performance of the various strategies for approximating ū by the error curves in terms of the number
of coefficients. In addition we may compare this with the accuracy of the Monte-Carlo method, which consists
in computing the empirical average

ūn :=
1
n

n∑
i=1

u(yi),

where y1, · · · , yn are independent random draws of the vector y. Since the MC method requires solving n
boundary value problems, we compare its performance to the previous methods when the total number of
solved boundary value problem is n, as n varies. The results are displayed in Figure 3. For the MC method, we
display the average of the error curves for 6 independant realizations in order to illustrate the expected error
E(‖ū− ūn‖V ) rather than the error ‖ū− ūn‖V for a particular realization (which is more oscillatory). The n−1/2

rate of decay of the MC method is clearly outperformed by the Taylor approximation methods based on the
adaptive selection of Λ, which is rather striking in view of the large dimension d = 64. Note however, that in
contrast to the Taylor approximation method, the MC approach allows us to solve all boundary value problems
in parallel, however with a different stiffness matrix for each problem.
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Figure 4. Comparison the different strategies for for γ = 0.5 (left) and γ = 3 (right), and
different dimensionalities d = 15 (up), d = 63 (middle) and d = 255 (bottom).

7.3. Numerical results for Test 2

For this test, we only display the comparison between Algorithms PN, QN, LE, BS and LN, since we observed
that the LNE algorithm does not perform as good as LN, similar to Test 1.

In contrast to Test 1, we cannot use the a priori bound

eν :=
‖f‖V ∗

δ
inf

ρ∈Aδ

ρ−ν ,
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Figure 5. Comparison the index sets Λ with #(Λ) = 10 000 projected on the components
(1, 5) for Algorithms QN (upper left), PN (upper right), LE (lower left) and LN (lower right).

with δ = r/2 = 0.05 to derive the choice of the active indices in Algorithm LE, since this optimization problem
has no simply computable solution. We therefore rely on sub-optimal bounds of the form

eν ≤ ẽν :=
‖f‖V ∗

δ
ρ−ν ,

where ρ = ρ(ν) is a particular sequence in Aδ, which is chosen depending on ν, in contrast to Test 1. The best
results were obtained with the following choice for ρ(ν):

ρj(ν) =
A(ν)

‖ψj‖L∞(D)
,

if νj �= 0 and ρj(ν) = 0 if νj = 0, where A(ν) is the largest positive number such that the result ρ(ν) is in Aδ.
This number is thus defined in such a way that

∥∥∥∥∥
∑

j s.t. νj �=0

ρj(ν)|ψj |
∥∥∥∥∥

L∞(D)

= 1 − δ = 0.95 .

The sets Λn chosen in Algorithm LE now correspond to the n largest ẽν .
Figure 4 displays the errror curves in terms of the number of solved boundary value problems, similar to

Figure 2 for Test 1, for the two values γ = 0.5 and γ = 3, and for different maximal scale level L = 1, 2, 3,
corresponding to dimension d = 15, 63, 255. We record several observations about the error curves:

• In the low smoothness/short range correlation case γ = 0.5, Algorithms BS, LE and LN do not perform
significantly better than Algorithm PN which corresponds to the standard choice of polynomials of fixed
total degree. This can be explained by the fact that, in this case, all ‖ψj‖L∞(D) have roughly the same range
of magnitude so that all variables yj are equally important. In turn, in this example the active index sets
selected by BS, LE and LN are not highly anisotropic, and perform similar than those of PN. In contrast,
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the high smoothness/long range correlation case γ = 3 highly benefits from an anisotropic selection (higher
degree tends to be allocated to the variables associated to coarse scale wavelets), and in turn Algorithms
BS, LE and LN significantly outperform PN and QN.

• In the low smoothness/correlation case γ = 0.5, all algorithms are subject to the curse of dimensionality in
the sense that the error curves deteriorate as d increases. This includes the adaptive algorithms, which is
not in contradiction with our theoretical results. Indeed, this value of γ corresponds to a decay in O(j−1/4)
for the sequence (‖ψj‖L∞(D))j≥1, which is therefore not �p-summable for any exponent p < 1. In contrast,
the high smoothness/ long range correlation case γ = 3 is not subject to the curse of dimensionality when
Algorithms LE and LN are being used. Note that this value of γ corresponds to a decay in O(j−3/2) for the
sequence (‖ψj‖L∞(D))j≥1, which is therefore �p summable for p > 2/3.

• For both values of γ, Algorithms LN and LE gives the best performances, and Algorithm BS is subject to the
curse of dimensionality due to the cost of solving boundary value problems for all indices in the margin Mn.

• The error curves for Algorithm LN and BS start decreasing only after a certain number of boundary value
problems has been solved. This is simply due to the fact that at the very first step, d boundary value
problems have to be solved, corresponding to the cardinality of the margin M0 of Λ0 = {0} (which at this
stage is the same as the reduced margin).

• Generally speaking, Algorithm LN seems to be the one that performs best.
In order to have an idea of the geometry of the coefficients sets Λ produced by the different strategies, consider
the projection on two variables j = 1, 5, associated to the first and second scale level l = 0, 1, i.e. the sets

{(ν1, ν5) : ν ∈ Λ}.
We compare these sets in Figure 5, when #(Λ) = 10 000 for the strategies QN, PN, LE and LN in the case
γ = 3 and d = 63. As expected, the sets obtained for the non-adaptive choices QN and PN do not reach a
high degree due to the curse of dimensionality: when d = 63 the dimension of the spaces Q1 and P3 clearly
exceeds 10 000 and therefore no degree higher than 1 and 3 can be reached for any variable when using these
two methods respectively. In contrast, the adaptive strategies capture the anisotropic feature of the problem
and reach a higher polynomial degrees in the most active variable y1. We did not plot the sets generated by BS
which are quite similar to LN. Note however that their geometry differs from that of the set generated by LE
based on the a priori estimates ẽν .

8. Conclusion

In this paper, we have introduced an adaptive algorithm for sparse Taylor approximation of parametric and
stochastic PDEs. This algorithm has several remarkable features, in particular:
(i) It builds the polynomial expansion by a solving a sequence of boundary value problems (3.1) which all have

the same stiffness matrix.
(ii) From a theoretical point of view, its convergence with respect to the polynomial dimension can be proved

to be near optimal.
This second property is reflected in the numerical tests. In contrast to other approaches for selecting the active
index sets, the algorithm does not uses any information based on a priori analysis, and yet performs at least
as good as when using such a priori choices.

It is worth mentioning that this computational approach can be applied verbatim to other models, such as a
parabolic equation of the form

∂tu− div(a∇u) = f, t ∈ [0, T ], x ∈ D, u(x, 0) = u0(x), u(x, t) = 0, x ∈ ∂D,

with a of the same parametric form as in this paper and the functions ψj = ψj(x, t) satisfying a similar condition
as (UEA). In that case, the solution space is V = L2([0, T ], H1

0 (D)). However, let us stress that our approach is
strongly tied to the affine structure of a with respect to the parameter vector y, in contrast to other methods
such as collocation.
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