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Abstract. This work studies the heat equation in a two-phase material with spherical inclusions.
Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we
derive a coupled system of partial differential equations governing the evolution of the temperature of
each phase at a macroscopic level of description. The coupling terms describing the exchange of heat
between the phases are obtained by using homogenization techniques originating from [D. Cioranescu,
F. Murat, Collège de France Seminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman,
Boston, London (1982) 98–138].
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1. Description of the problem

1.1. The homogenized two-temperature model

The purpose of this paper is to derive a model governing the exchange of heat in a composite medium
consisting of a background material with very small spherical inclusions of another material with large thermal
conductivity. Specifically, we assume that the volume fraction of the inclusions is negligible, while the heat
capacity of each inclusion is large.

Under some appropriate scaling assumptions on the size, volume fraction and heat capacity of the inclusions,
the temperature field T ≡ T (t, x) of the background material and the temperature field θ ≡ θ(t, x) of the
dispersed phase (i.e. the inclusions) satisfy⎧⎪⎨

⎪⎩
∂tT − dΔxT + 4π�d(T − θ) = 0,

d

d′
∂tθ + 4π�d(θ − T ) = 0,

(1.1)
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where � ≡ �(x) is the number density of inclusions while d and d′ are the heat diffusion coefficients (i.e. the
ratio of the heat conductivity to the volumetric heat capacity) of the background material and the inclusions,
respectively.

Our work is motivated by a class of models used in the theory of multiphase flows, especially of multiphase
flows in porous media. In such flows, each phase can have its own temperature (in which case the flow is said
to be in thermal local non-equilibrium). Averaged equations for those temperatures similar to (1.1) have been
proposed in [6, 10, 15] on the basis of arguments at a macroscopic level of description. While these references
address the case of complex realistic flows, our setting is purposedly chosen as simple as possible. Neither
convection nor phase changes are taken into account in our model. Besides we only consider two phase flows,
with only one phase having a positive diffusion rate. The case of positive diffusion rates is considered in ([15],
Eqs. (13)–(15) on p. 242) and in ([10], on p. 2151), while the case of phases with zero diffusion rate is considered
in ([6], Eqs. (1.63) and (1.74) on p. 39).

We give a rigorous derivation of the coupled system above from a model where the heat conductivity of the
dispersed phase is assumed to be infinite from the outset. Our derivation is based on homogenization arguments
following our earlier work in [9], inspired from [8,11]. The homogenization of the infinite conductivity problem in
the case of a random distribution of inclusions has been obtained earlier in [14], assuming that the distribution of
ball centers is given by an ergodic, stationary random process. The present work assumes very little information
on the distribution of ball centers – apart from the separation hypothesis see (2.17) and (2.18) below.

For the sake of being complete, we also give a rigorous derivation of the infinite conductivity model from the
classical heat diffusion equation. In the next two sections, we briefly describe the heat diffusion problem in a
binary composite material, and the infinite conductivity model that is our starting point for the homogenization
process.

Finally, we mention an earlier derivation [2] of the coupled system (1.1) as a homogenization limit – see
also [13]. At variance with the present work, the reference [2] assumes a periodic distribution of inclusions with
finite heat conductivity scaled to infinity in the homogenization limit. The periodicity assumption is not always
relevant in the context of multiphase flows, and is systematically avoided in our work. In addition, the model
with infinite heat conductivity considered as the starting point in our analysis cannot be reduced to a parabolic
problem with discontinuous coefficients as in [2]. Together with the nonperiodic microstructure of the material,
the particular nature of the transmission condition at the surface of inclusions with infinite heat conductivity
accounts for significant differences with the analysis in [2]. The analysis in [2] has been extended in [3] to the
case of inclusions of arbitrary shape, and to the wave equation of linear elasticity. We also mention [4], where
the techniques used in [3] have been recently adapted to treat one case of nonperiodic fibered microstructures
in a nonlinear elliptic model.

1.2. The model with finite conductivity

Consider a bounded open set Ω ⊂ R3, let A be an open subset of Ω and let B = Ω \ A be closed in R3.
Assume that ∂Ω and ∂B are submanifolds of R3 of class C2, and that B ∩ ∂Ω = ∅. The unit normal field on
the boundary of B is oriented towards A.

The set A is occupied by a material A with heat conductivity κA, density ρA and specific heat capacity CA,
while the set B is occupied by a material B with heat conductivity κB, density ρB and specific heat capacity
CB . It will be assumed that ρA, CA, κA, ρB, CB , κB are continuous positive functions on A and B, respectively.
Denote by TA := TA(t, x) > 0 and TB := TB(t, x) > 0 the temperatures of A and B at time t > 0 and point
x ∈ A (x ∈ B, respectively).

Assuming that Fourier’s law holds in both materials and that TA and TB are smooth (at least of class C2)
one has

ρA(x)CA(x)∂tTA(t, x) = divx(κA(x)∇xTA(t, x)), x ∈ A, t > 0,

ρB(x)CB(x)∂tTB(t, x) = divx(κB(x)∇xTB(t, x)), x ∈ B̊, t > 0.
(1.2)
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If there is no heat source concentrated on the interface ∂B, then the temperature varies continuously across
the interface between material A and material B and there is no net heat flux across that same interface. In
other words, assuming that TA and TB are smooth up to the interface ∂B between both materials⎧⎪⎨

⎪⎩
TA(t, x) = TB(t, x), x ∈ ∂B, t > 0,

κA(x)
∂TA

∂n
(t, x) = κB(x)

∂TB

∂n
(t, x), x ∈ ∂B, t > 0.

(1.3)

Define

ρ(x) :=

{
ρA(x) x ∈ A

ρB(x) x ∈ B
C(x) :=

{
CA(x) x ∈ A

CB(x) x ∈ B
(1.4)

together with

κ(x) :=

{
κA(x) x ∈ A

κB(x) x ∈ B
(1.5)

and

T (t, x) :=

{
TA(t, x) x ∈ A

TB(t, x) x ∈ B
(1.6)

Assume that {
TA ∈ C([0, τ ];L2(A)) ∩ L2(0, τ ;H1(A)),

TB ∈ C([0, τ ];L2(B)) ∩ L2(0, τ ;H1(B)).
(1.7)

In that case the functions TA and TB have traces on ∂B denoted TA

∣∣
∂B

and TB

∣∣
∂B

belonging to
L2(0, τ ;H1/2(∂B)).

Moreover, if TA and TB satisfy (1.2), the vector fields

(ρACATA,−κA∇xTA) and (ρBCBTB,−κB∇xTB)

are divergence free in (0, τ)×A and (0, τ)× B̊, respectively. By statement (a) in Lemma A.3, both sides of the
second equality in (1.3) are well defined elements of H1/2

00 ((0, τ)×∂B)′. (We recall that H1/2
00 ((0, τ)×∂B) is the

Lions-Magenes subspace of functions in H1/2((0, τ) × ∂B) whose extension by 0 to R× ∂B defines an element
of H1/2(R × ∂B); the notation H1/2

00 ((0, τ) × ∂B)′ designates the dual of that space.)

Lemma 1.1. Assume that TA and TB satisfy assumptions (1.7). Let ρ, C, κ and T be defined as in (1.4), (1.5)
and (1.6). Then

T ∈ C([0, τ ];L2(Ω)) ∩ L2(0, τ ;H1(Ω))

and
ρ(x)C(x)∂tT (t, x) = divx(κ(x)∇xT (t, x)) x ∈ Ω, t > 0 (1.8)

holds in the sense of distributions in (0, τ)×Ω if and only if both (1.2) and (1.3) hold in the sense of distributions.

Proof. Under the assumption (1.7), the function T defined by (1.6) belongs to the space L2((0, τ);H1(Ω)) if
and only if the boundary traces of TA and TB coincide, i.e.

TA(t, ·)∣∣
∂B

= TB(t, ·)∣∣
∂B

for a.e. t ∈ [0, τ ].

If (1.8) holds in the sense of distributions on (0, τ) × Ω, then (1.2) hold in the sense of distributions on
(0, τ) ×A and (0, τ) ×B, respectively.
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For φ ∈ C∞
c (Ω), one has

d
dt

∫
Ω

ρ(x)C(x)T (t, x)φ(x)dx +
∫

Ω

κ(x)∇xT (t, x) · ∇φ(x)dx

=
d
dt

∫
A

ρA(x)CA(x)TA(t, x)φ(x)dx +
∫

A

κA(x)∇xTA(t, x) · ∇φ(x)dx

+
d
dt

∫
B

ρB(x)CB(x)TB(t, x)φ(x)dx +
∫

B

κB(x)∇xTB(t, x) · ∇φ(x)dx

= −
〈
κA

∂TA

∂n
, φ

〉
H−1/2(∂B),H1/2(∂B)

+
〈
κB

∂TB

∂n
, φ

〉
H−1/2(∂B),H1/2(∂B)

provided that TA and TB satisfy (1.2), by statement (b) in Lemma A.3.
Thus, if T satisfies (1.8) in the sense of distributions on (0, τ)×Ω, then TA and TB satisfy (1.2) on (0, τ)×A

and (0, τ) × B̊, respectively. Therefore the identity above holds with left hand side equal to 0 in the sense of
distributions on (0, τ), so that〈

κA
∂TA

∂n
− κB

∂TB

∂n
, φ

〉
H−1/2(∂B),H1/2(∂B)

= 0 in D′((0, τ)).

This implies in turn the second equality in (1.3).
Conversely, if TA and TB satisfy (1.2), the above identity holds with right hand side equal to 0 by the second

equality in (1.3). Therefore

d
dt

∫
Ω

ρ(x)C(x)T (t, x)φ(x)dx +
∫

Ω

κ(x)∇xT (t, x) · ∇φ(x)dx = 0

for all φ ∈ C∞
c (Ω), which implies that (1.8) holds in the sense of distributions on (0, τ)×Ω by a classical density

argument. �

Therefore, we start from the heat equation (1.8) with ρ, C, κ as in (1.4), (1.5) and we assume that there is
no heat flux across ∂Ω, in other words that T satisfies the Neumann boundary condition

∂T

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0. (1.9)

1.3. The model with infinite conductivity

In this section we assume that B has N connected components denoted Bi for i = 1, . . . , N .
Our first task is to derive the governing equation for the temperature field T in Ω when the material B filling

B has infinite heat conductivity. In that case the temperature T instantaneously reaches equilibrium in each
connected component Bi of B, so that

T (t, x) = Ti(t), x ∈ Bi, t > 0, (1.10)

for each i = 1, . . . , N . Therefore, the unknown for the problem with infinite conductivity is
(TA(t, x), T1(t), . . . , TN(t)), where⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρA(x)CA(x)∂tTA(t, x) = divx(κA(x)∇xTA(t, x)), x ∈ A, t > 0,

∂TA

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0

TA(t, x) = Ti(t), x ∈ ∂Bi, t > 0

(1.11)
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This is obviously not enough to determine the evolution of TA and of Ti for all i = 1, . . . , N .
For finite κB, the vector field

(t, x) �→ (ρB(x)CB(x)TB(t, x),−κB(x)∇xTB(t, x))

is divergence free in (0, τ) ×Bi for each i = 1, . . . , N . By statement (b) in Lemma A.3 and the second equality
in (1.3)

d
dt

∫
Bi

ρB(x)CB(x)TB(t, x)dx =
〈
κB(x)

∂TB

∂n
(t, ·), 1

〉
H−1/2(∂Bi),H1/2(∂Bi)

=
〈
κA(x)

∂TA

∂n
(t, ·), 1

〉
H−1/2(∂Bi),H1/2(∂Bi)

.

Letting κB → ∞ and abusing the integral notation to designate the last duality bracket above, one uses (1.10)
to conclude that

Ṫi(t) =
1
βi

∫
∂Bi

κA(x)
∂TA

∂n
(t, x)dS(x) (1.12)

where
βi :=

∫
Bi

ρB(x)CB(x)dx. (1.13)

The argument above suggests that the governing equations for the infinite conductivity problem with un-
knowns (TA(t, x), T1(t), . . . , TN(t)) is the system consisting of (1.11) with (1.12) for i = 1, . . . , N . This model
is analogous to the system obtained by Bal in the context of the diffusion approximation for the transport
equation with nondiffusive inclusions (see Eqs. (3.2)–(3.4) in [1]).

2. Main results

2.1. Existence and uniqueness theory for the heat equation with discontinuous coefficients

Since our starting point is (1.2) with interface condition (1.3), or equivalently the heat equation (1.8) with
discontinuous coefficients (see Lem. 1.1), we first recall the existence and uniqueness theory for (1.8) with
Neumann boundary condition (1.9). Except for the possibly non smooth factor ρ(x)C(x), this is a classical
result. This factor can be handled with appropriate weighted Sobolev spaces; for the sake of being complete, we
sketch the (elementary) argument below.

Proposition 2.1. Let κ ≡ κ(x), ρ ≡ ρ(x) and C ≡ C(x) be measurable functions on Ω satisfying

κm ≤ κ(x) ≤ κM , ρm ≤ ρ(x) ≤ ρM , Cm ≤ C(x) ≤ CM

for a.e. x ∈ Ω, where κm, κM , ρm, ρM , Cm, CM > 0, and let T in ∈ L2(Ω). There exists a unique

T ∈ Cb([0,+∞);L2(Ω)) ∩ L2(0, τ ;H1(Ω))

for each τ > 0 that is a weak solution to the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ(x)C(x)∂tT (t, x) = divx(κ(x)∇xT (t, x)), x ∈ Ω, t > 0,

∂T

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0,

T (0, x) = T in(x), x ∈ Ω.

(2.1)

This solution satisfies
ρC∂tT ∈ L2(0, τ ;H1(Ω)′),
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for each τ > 0, together with the “energy” identity

1
2

∫
Ω

ρ(x)C(x)T (t, x)2dx+
∫ t

0

∫
Ω

κ(x)|∇xT (t, x)|2dxdt =
1
2

∫
Ω

ρ(x)C(x)T in(x)2dx

for each t > 0.

We recall the weak formulation of (2.1): for each w ∈ H1(Ω)

〈ρC∂tT (t, ·), w〉H1(Ω)′,H1(Ω) +
∫

Ω

κ(x)∇xT (t, x) · ∇w(x)dx = 0 for a.e. t ≥ 0.

The Neumann condition in (2.1) is contained in the choice of L2([0,+∞);H1(Ω)) as the set of test functions in
the weak formulation above, while there is no difficulty with initial condition since T ∈ C([0,+∞);L2(Ω)).

2.2. The infinite conductivity limit

2.2.1. Variational formulation of the infinite conductivity problem

Assume as in Section 1.3 that B has N connected components denoted Bi for i = 1, . . . , N . The heat diffusion
problem with infinite heat conductivity in B is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρACA∂tT (t, x) = divx(κA∇xT (t, x)), x ∈ A, t > 0,

∂T

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0,

T (t, x) = Ti(t), x ∈ ∂Bi, t > 0, 1 ≤ i ≤ N,

βiṪi(t) =
∫

∂Bi

κA
∂T

∂n
(t, x)dS(x), t > 0, 1 ≤ i ≤ N,

T (0, x) = T in(x), x ∈ Ω,

(2.2)

where we recall that the outward unit normal field n on ∂B is directed toward A. Its variational formulation is
as follows.

Let HN be the closed subspace of L2(Ω) defined as

HN :=
{
u ∈ L2(Ω) s.t. u(x) =

1
|Bi|

∫
Bi

u(y)dy for a.e. x ∈ Bi, i = 1, . . . , N
}

and equipped with the inner product

(u|v)HN =
∫

Ω

u(x)v(x)ρ(x)C(x)dx.

Define
VN := HN ∩H1(Ω)

with the inner product

(u|v)VN = (u|v)HN +
∫

A

∇u(x) · ∇v(x)ρA(x)CA(x)dx.

Obviously VN is a separable Hilbert space, the inclusion VN ⊂ HN is continuous and VN is a dense subspace of
HN . Besides, the map HN � u �→ Lu ∈ V ′

N , where Lu is the linear functional v �→ (u|v)HN , identifies HN with
a dense subspace of V ′

N .
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The variational formulation of the infinite conductivity problem is as follows: a weak solution to (2.2) is a
function

T ∈ C([0, τ ];HN ) ∩ L2(0, τ ;VN ) such that ρC∂tT ∈ L2(0, τ ;V ′
N ) (2.3)

satisfying the initial condition and⎧⎪⎨
⎪⎩
∂t(T (t, ·)|w)HN +

∫
A

κA(x)∇xT (t, x) · ∇w(x)dx = 0 for a.e. t ∈ [0, τ ]

for each test function w ∈ VN .

(2.4)

This variational formulation is justified by the following observation.

Proposition 2.2. Let T satisfy (2.3) and the initial condition in (2.2).
If T satisfies the variational condition (2.4), then

ρACA∂tT = divx(κA∇xT ) in D′((0, τ) ×A) (2.5)

and

κA
∂T

∂n

∣∣∣∣∣
(0,τ)×∂Ω

= 0 in H
1/2
00 ((0, τ) × ∂Ω)′ (2.6)

while

βiṪi =
〈
κA

∂T

∂n

∣∣∣∣∣
∂Bi

, 1
〉

H−1/2(∂Bi),H1/2(∂Bi)

in H−1((0, τ)) (2.7)

for each i = 1, . . . , N , where

Ti(t) :=
1

|Bi|
∫

Bi

T (t, x)dx.

Conversely, if T satisfies both (2.5), (2.6) and (2.7), it must satisfy the variational formulation (2.4).

The existence and uniqueness of a weak solution to the infinite heat conductivity problem is given in the next
proposition.

Proposition 2.3. Assume that κA is a measurable function defined a.e. on A satisfying

κm ≤ κA(x) ≤ κM , for a.e. x ∈ A, (2.8)

where κm and κM are positive numbers, while ρ and C satisfy the same assumptions as in Proposition 2.1. Then
for each T in ∈ HN , there exists a unique weak solution T to (2.2) defined for all t ∈ [0,+∞). This solution
satisfies

ρC∂tT ∈ L2(0, τ ;V ′
N ),

for all τ > 0, together with the “energy” identity

1
2

∫
A

ρA(x)CA(x)T (t, x)2dx+
1
2

N∑
i=1

βiTi(t)2 +
∫ t

0

∫
A

κA(x)|∇xT (t, x)|2dxdt

=
1
2

∫
A

ρA(x)CA(x)T in(x)2dx+
1
2

N∑
i=1

βi|T in
i |2

for each t > 0, where

Ti(t) :=
1

|Bi|
∫

Bi

T (t, y)dy and T in
i :=

1
|Bi|

∫
Bi

T in(y)dy.
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Notice that this existence and uniqueness result assumes that the initial temperature field T in is a constant
in each connected component of B. This assumption is implied by the requirement that T in ∈ HN . While
this restriction may seem questionable, it is very natural from the mathematical viewpoint. For general initial
temperature fields T in, the solution to (2.2) would include an initial layer corresponding with the relaxation
to thermal equilibrium in each connected component of B. Such initial layers involve fast variations of the
temperature field that are incompatible with the condition ρC∂tT ∈ L2(0, τ ;V ′

N ) in the infinite conductivity
limit.

2.2.2. Convergence to the infinite conductivity model

For each η > 0, let κη be defined as follows:

κη(x) :=
{
κA(x) x ∈ A

κB(x)/η x ∈ B
(2.9)

where κA and κB are measurable functions on A and B, respectively, satisfying

κm ≤ κA(x) ≤ κM and κm ≤ κB(y) ≤ κM , for a.e. x ∈ A and y ∈ B, (2.10)

κM and κm being two positive constants.

Theorem 2.4. Assume that ρ and C satisfy the same assumptions as in Proposition 2.1, while κA and κB

satisfy (2.10). Let T in ∈ HN . For each η > 0, let Tη ∈ Cb([0,+∞);L2(Ω)) ∩ L2(0, τ ;H1(Ω)) for all τ > 0 be
the weak solution to (2.1) with heat conductivity κη defined as in (2.9) and initial data T in. Then

Tη → T in L2(0, τ ;H1(Ω))

as η → 0 for all τ > 0, where T ∈ Cb([0,+∞);HN) ∩ L2(0, τ ;VN ) for all τ > 0 is the weak solution to the
infinite conductivity problem (2.2).

2.3. The homogenized system

Let σ, σ′ > 0 and let � ∈ Cb(Ω) be a probability density on Ω such that 1/� is bounded on Ω. Let T in, ϑin ∈
L2(Ω). Consider the system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∂t − σΔx)T (t, x) + 4πσ(�(x)T (t, x) − ϑ(t, x)) = 0, x ∈ Ω, t > 0,
∂tϑ(t, x) + 4πσ′(ϑ(t, x) − �(x)T (t, x)) = 0, x ∈ Ω, t > 0,
∂T

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0,

T (0, x) = T in(x), ϑ(0, x) = ϑin(x), x ∈ Ω.

(2.11)

A weak solution to (2.11) is a pair (T, ϑ) such that

T ∈ L∞([0,+∞);L2(Ω)) ∩ L2(0, τ ;H1(Ω)) and ϑ ∈ L∞([0,+∞);L2(Ω)),

for all τ > 0, and
d
dt

∫
Ω

T (t, x)φ(x)dx + σ

∫
Ω

∇xT (t, x) · ∇φ(x)dx

+ 4πσ
∫

Ω

(�(x)T (t, x) − ϑ(t, x))φ(x)dx = 0,

d
dt

∫
Ω

ϑ(t, x)ψ(x)dx + 4πσ′
∫

Ω

(ϑ(t, x) − �(x)T (t, x))ψ(x)dx = 0,
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in the sense of distributions on (0,+∞) for each φ ∈ H1(Ω) and ψ ∈ L2(Ω), together with the initial condition.
Observe that the identities above imply that

d
dt

∫
Ω

T (t, x)φ(x)dx and
d
dt

∫
Ω

ϑ(t, x)ψ(x)dx ∈ L2([0, τ ])

for each τ > 0, so that the functions

t �→
∫

Ω

T (t, x)φ(x)dx and t �→
∫

Ω

ϑ(t, x)ψ(x)dx

are continuous on [0,+∞). Therefore the initial condition, interpreted as∫
Ω

T (0, x)φ(x)dx =
∫

Ω

T in(x)φ(x)dx,
∫

Ω

ϑ(0, x)ψ(x)dx =
∫

Ω

ϑin(x)ψ(x)dx

for all φ ∈ H1(Ω) and all ψ ∈ L2(Ω), makes perfect sense.
In the next proposition, we state the basic results concerning the existence and uniqueness of a weak solution

to the initial-boundary value problem for the homogenized system. In fact, one can say more about the continuity
in time of (T, ϑ), as explained below.

Proposition 2.5. Under the assumptions above, any weak solution to (2.11) satisfies

∂tT ∈ L2(0, τ ;H1(Ω)′) and ∂tϑ ∈ L2(0, τ ;L2(Ω)),

and (up to modification on some negligible t-set)

T, ϑ ∈ Cb([0,+∞);L2(Ω)).

Moreover, there exists a unique weak solution to the system (2.11). It is a solution to the partial differential
equations {

∂tT − σΔxT + 4πσ(�T − ϑ) = 0,
∂tϑ+ 4πσ′(ϑ− �T ) = 0,

in the sense of distributions on (0,+∞) ×Ω, and satisfies the Neumann condition

∂T

∂n

∣∣∣∣∣
(0,τ)×∂Ω

= 0

in H
1/2
00 ((0, τ) × ∂Ω)′ for each τ > 0.

In fact, the existence of the solution to (2.11) follows from Theorem 2.6

2.4. The homogenization limit

Henceforth we assume that the material B occupies N identical spherical inclusions with radius ε:

Bε =
N⋃

i=1

Bi where Bi := B(xi, ε), i = 1, . . . , N (2.12)

and henceforth denote
Aε = Ω \Bε. (2.13)
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The number of inclusions N is assumed to scale as

N = 1/ε. (2.14)

The inclusion centers xi are distributed so that their empirical distribution satisfies

1
N

N∑
i=1

δxi → �L 3 (2.15)

in the weak topology of probability measures, where L 3 designates the 3-dimensional Lebesgue measure and

� and 1/� ∈ Cb(Ω),
∫

Ω

�(x)dx = 1. (2.16)

Finally, we denote
rε = ε1/3 (2.17)

and assume that the inclusion centers are chosen so that

|xi − xj | > 2rε for all i �= j with i, j = 1, . . . , N. (2.18)

For simplicity we assume that ρA, CA and κA are constants, and define

σ = κA/ρACA. (2.19)

We further assume that ρB and CB are scaled with ε so that ρBCB ∼ Const./ε2, and introduce the constant

σ′ = 3κA/4πρBCBε
2. (2.20)

The scaled infinite heat conductivity problem takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tTε(t, x) = σΔxTε(t, x), x ∈ Aε, t > 0,
∂Tε

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0,

Tε(t, x) = Ti,ε(t), x ∈ ∂B(xi, ε), t > 0, 1 ≤ i ≤ N,

Ṫi,ε(t) =
σ′

ε

∫
∂B(xi,ε)

∂Tε

∂n
(t, x)dS(x), t > 0, 1 ≤ i ≤ N,

Tε(0, x) = T in
ε (x), x ∈ Ω.

(2.21)

The initial data T in
ε ∈ HN , so that T in

ε is a.e. a constant in B(xi, ε):

T in
i,ε :=

3
4πε3

∫
B(xi,ε)

T in(x)dx. (2.22)

Then

|T in
ε |2HN

= ρACA

∫
Aε

T in
ε (x)2dx+

N∑
i=1

4π
3
ρBCBε

3|T in
i,ε |2

= ρACA

(∫
Aε

T in
ε (x)2dx+

σ

σ′ ε
N∑

i=1

|T in
i,ε |2

)
.

We shall henceforth assume that the initial data satisfies

|T in
ε |2HN

= O(1)
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i.e. that there exists a positive constant, taken equal to Cin for notational simplicity, such that

∫
Aε

T in
ε (x)2dx+

σ

σ′ ε
N∑

i=1

|T in
i,ε |2 ≤ Cin for all ε > 0. (2.23)

Theorem 2.6. Assume that (2.14) holds, that the distribution of inclusion centers satisfies (2.15) and (8.1),
that the volumetric heat capacity of the material in the inclusions scales as prescribed in (2.20), and that the
initial data T in

ε ∈ HN satisfy the bound (2.23). Assume further that

T in
ε → T in in L2(Ω) weak as ε→ 0

while4

1
N

N∑
i=1

T in
i,εδxi → ϑin in Mb(Ω) weak-* as ε→ 0.

Let Tε ∈ C([0,+∞);HN )∩L2(0, τ,VN) for all τ > 0 be the weak solution to the scaled infinite heat conductivity
problem (2.21). Then, in the limit as ε→ 0,

Tε → T

{
in L2(0, τ ;H1(Ω)) weak for all τ > 0
and in L∞([0,+∞);L2(Ω)) weak-*,

and

ϑε :=
1
N

N∑
i=1

Ti,εδxi → ϑ in L∞([0,+∞);Mb(Ω)) weak-*

where
Ti,ε :=

3
4πε3

∫
B(xi,ε)

Tε(t, x)dx.

Besides
T ∈ Cb([0,+∞);L2(Ω)) × L2(0, τ ;H1(Ω)) for each τ > 0

while
ϑ ∈ Cb([0,+∞);L2(Ω)).

Finally, the pair (T, ϑ) is the unique weak solution to the homogenized system (2.11) with initial condition

T
∣∣
t=0

= T in, ϑ
∣∣
t=0

= ϑin.

3. Proofs of Propositions 2.1, 2.2 and 2.3

Proof of Proposition 2.1. Consider the Hilbert spaces H = L2(Ω) and V = H1(Ω) equipped with the inner
products

(u|v)H :=
∫

Ω

u(x)v(x)ρ(x)C(x)dx,

(u|v)V :=
∫

Ω

(u(x)v(x) + ∇u(x) · ∇v(x))ρ(x)C(x)dx.

Let a be the bilinear form defined on V × V by

a(u, v) =
∫

Ω

κ(x)∇xu(x) · ∇xv(x)dx ;

4The notation Mb(Ω) designates the set of bounded (signed) Radon measures on Ω.
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observe that
|a(u, v)| ≤ κM

ρmCm
(u|u)1/2

V (v|v)1/2
V

while
a(u, u) ≥ κm

ρMCM
((u|u)V − (u|u)H).

By Theorem X.9 in [7] (see also Chap. 3, Sect. 4 in [12], Thm. 7.2.1 in [16] or Thm. 26.1 in [17]), there
exists a unique T ∈ L2(0, τ ;V)∩Cb([0, τ ];H) such that ρC∂tT ∈ L2(0, τ ;V ′) for each τ > 0 such that the linear
functional

L(t) : w �→ ∂t(T (t, ·)|w)H + a(T (t, ·), w) = 〈ρC∂tT (t, ·), w〉V′,V + a(T (t, ·), w)

satisfies
〈L(t), w〉V′,V = 0 for a.e. t ∈ [0,+∞)

for all w ∈ V . Equivalently, T is the unique weak solution to (2.1).
By Lemma A.2, this linear functional satisfies L(t) = 0 for a.e. t ∈ [0,+∞). In particular

0 = 〈L(s), T (s, ·)〉V′,V = 〈ρC∂tT (s, ·), T (s, ·)〉V′,V + a(T (s, ·), T (s, ·))
for a.e. s ∈ [0,+∞). Integrating in s ∈ [0, t] and applying statement (b) of Lemma A.1 give the “energy
identity”. �

Proof of Proposition 2.2. Specializing (2.4) to the case where w ∈ C∞
c (A) implies (2.5). In particular, the vector

field
(0, τ) ×A � (t, x) �→ (ρA(x)CA(x)T (t, x),−κA(x)∇xT (t, x))

is divergence free in (0, τ) ×A. Applying statement (b) in Lemma A.3 shows that, for each w ∈ VN , one has

0 =
d
dt

∫
Ω

ρ(x)C(x)T (t, x)w(x)dx +
∫

A

κA(x)∇xT (t, x) · ∇w(x)dx

=
d
dt

∫
A

ρA(x)CA(x)T (t, x)w(x)dx +
N∑

i=1

βiwiṪi(t) +
∫

A

κA(x)∇xT (t, x) · ∇w(x)dx

=
N∑

i=1

wi

(
βiṪi(t) −

〈
κA

∂T

∂n
(t, ·)

∣∣∣∣∣
∂Bi

, 1
〉

H−1/2(∂Bi),H1/2(∂Bi)

)

+
〈
κA

∂T

∂n
(t, ·)

∣∣∣∣∣
∂Ω

, w
∣∣
∂Ω

〉
H−1/2(∂Ω),H1/2(∂Ω)

,

where
wi :=

1
|Bi|

∫
Bi

w(y)dy, i = 1, . . . , N.

Since this is true for all w ∈ VN , and therefore for all (w1, . . . , wN ) ∈ RN , one concludes that

βiṪi −
〈
κA

∂T

∂n

∣∣∣∣∣
∂Bi

, 1
〉

H−1/2(∂Bi),H1/2(∂Bi)

= 0

in H−1((0, τ)) for all i = 1, . . . , N , and

κA
∂T

∂n

∣∣∣∣∣
∂Ω

= 0

in H1/2
00 ((0, τ) × ∂Ω)′.

Conversely, if T satisfies (2.5), (2.6) and (2.7), the equality above shows that (2.4) holds. �
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Proof of Proposition 2.3. Let b be the bilinear form defined on VN × VN by

b(u, v) =
∫

A

κA(x)∇xu(x) · ∇xv(x)dx ;

observe that
|b(u, v)| ≤ κM

ρmCm
(u|u)1/2

VN
(v|v)1/2

VN

while
b(u, u) ≥ κm

ρMCM
((u|u)VN − (u|u)HN ).

By the same argument as in the proof of Proposition 2.1, for each T in ∈ HN , there exists a unique weak
solution to (2.2), and this solution satisfies the energy identity in the statement of Proposition 2.3. �

4. Proof of Theorem 2.4

We keep the notation used in the proof of Proposition 2.1, especially with the same definitions of a, b,H
and V .

For each η > 0, the weak solution Tη to (2.1) satisfies the energy identity

1
2

∫
Ω

ρ(x)C(x)Tη(t, x)2dx+
∫ t

0

∫
A

κA(x)|∇xTη(s, x)|2dxds+
1
η

∫ t

0

∫
B

κB(x)|∇xTη(s, x)|2dxds

=
1
2

∫
Ω

ρ(x)C(x)T in(x)2dx.

Hence, for η ∈ (0, 1), one has

|Tη(t, ·)|2H ≤ |T in|2H and
∫ ∞

0

|∇xTη(t, ·)|2Hdt ≤ ρMCM

2κm
|T in|2H.

Applying the Banach–Alaoglu theorem shows that the family Tη is relatively compact in L∞([0,+∞);H) weak-*
and in L2([0, τ ];V) weak for each τ > 0. Let T be a limit point of Tη; passing to the limit in the energy identity
above shows that, by convexity and weak limit,∫ ∞

0

∫
B

|∇xT (t, x)|2dxdt = 0.

Thus the function x �→ T (t, x) is constant on Bi for i = 1, . . . , N for a.e. t ≥ 0 and T ∈ L∞([0,+∞);HN) ∩
L2(0, τ ;VN ).

Write the variational formulation of (2.1) for a test function w ∈ VN ⊂ V :

d
dt

(Tη|w)H + a(Tη, w) = 0 in L2([0, τ ]) for all τ > 0.

Passing to the limit in a subsequence of Tη converging to T in L∞([0,+∞);H) weak-* and in L2(0, τ ;V) weak,
one finds that

a(Tη, w) =
∫

A

κA(x)∇xTη(t, x) · ∇w(x)dx +
1
η

∫
B

κB(x)∇xTη(t, x) · ∇w(x)dx

=
∫

A

κA(x)∇xTη(t, x) · ∇w(x)dx

→
∫

A

κA(x)∇xT (t, x) · ∇w(x)dx = b(T,w) weakly in L2([0, τ ])
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since ∇xTη → ∇xT weakly in L2([0, τ ] × Ω). (The second equality above comes from the fact that ∇w = 0 on
B since w ∈ VN .) On the other hand, for each w ∈ VN∫ τ

0

∣∣∣∣ d
dt

(Tη(t, ·)|w)H

∣∣∣∣
2

dt =
∫ τ

0

|a(Tη(t, ·), w)|2dt

=
∫ τ

0

∣∣∣∣
∫

A

κA(x)∇xTη(t, x) · ∇w(x)dx
∣∣∣∣
2

dt

≤
∫ τ

0

∫
A

κA(x)|∇xTη(t, x)|2dxdt
∫

A

κA(x)|∇w(x)|2dx

≤ κM

2ρmCm
|T in|2H|w|2V

while
(Tη|w)H → (T |w)H in L∞([0,+∞)) weak-*.

Therefore, for each w ∈ VN , one has

d
dt

(T |w)H + b(T,w) = 0 in L2([0, τ ]) for all τ > 0,

which implies in particular that
ρC∂tT ∈ L2(0, τ ;V ′

N ),

and therefore T ∈ Cb([0,+∞);HN) by statement (a) of Lemma A.1. Besides, by the Ascoli–Arzela theorem,

(Tη(t, ·)|w)H → (T (t, ·)|w)H uniformly in t ∈ [0, τ ] for all τ > 0.

In particular
(Tη(0, ·)|w)H = (T in|w)H → (T (0, ·)|w)H

so that
T (0, ·) = T in.

In other words T is the weak solution to (2.2) with initial data T in – the uniqueness of the weak solution
following from Proposition 2.3. By compactness of the family Tη and uniqueness of the limit point, we conclude
that

Tη → T in L∞([0,+∞);H) weak-* and in L2(0, τ ;V) weak

as η → 0.
The energy identities in Propositions 2.1 and 2.3 are recast in the form

1
2

∫
Ω

ρ(x)C(x)Tη(t, x)2dx+
∫ t

0

∫
A

κA(x)|∇xTη(s, x)|2dxds+
1
η

∫ t

0

∫
B

κB(x)|∇xTη(s, x)|2dxds

=
1
2

∫
Ω

ρ(x)C(x)T in(x)2dx,

and
1
2

∫
Ω

ρ(x)C(x)T (t, x)2dx+
∫ t

0

∫
A

κA(x)|∇xT (s, x)|2dxds =
1
2

∫
Ω

ρ(x)C(x)T in(x)2dx.

(Notice that the condition T in ∈ HN is essential in order that

1
2

∫
Ω

ρ(x)C(x)T in(x)2dx =
1
2

∫
A

ρA(x)CA(x)T in(x)2dx+
1
2

N∑
i=1

βi|T in
i |2 ;
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likewise
1
2

∫
Ω

ρ(x)C(x)T (t, x)2dx =
1
2

∫
A

ρA(x)CA(x)T (t, x)2dx+
1
2

N∑
i=1

βiTi(t)2

since T (t, ·) ∈ HN for all t > 0.)
On the other hand, by convexity and weak convergence

1
2

∫
Ω

ρ(x)C(x)T (t, x)2dx ≤ lim
η→0+

1
2

∫
Ω

ρ(x)C(x)Tη(t, x)2dx for all t > 0,

and ∫ t

0

∫
A

κA(x)|∇xT (s, x)|2dxds ≤ lim
η→0+

∫ t

0

∫
A

κA(x)|∇xTη(s, x)|2dxds.

We conclude from the energy identities recalled above that

1
2

∫
Ω

ρ(x)C(x)Tη(t, x)2dx→ 1
2

∫
Ω

ρ(x)C(x)T (t, x)2dx for all t > 0,

while ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t

0

∫
A

κA(x)|∇xTη(s, x)|2dxds→
∫ t

0

∫
A

κA(x)|∇xT (s, x)|2dxds,

1
η

∫ t

0

∫
B

κB(x)|∇xTη(s, x)|2dxds → 0,

for all t > 0.
Therefore

Tη → T and ∇xTη → ∇xT strongly in L2([0, τ ] ×Ω)

as η → 0.

5. Proof of Proposition 2.5

Since

d
dt

∫
Ω

T (t, x)φ(x)dx + σ

∫
Ω

∇xT (t, x) · ∇φ(x)dx + 4πσ
∫

Ω

(�(x)T (t, x) − ϑ(t, x))φ(x)dx = 0,

d
dt

∫
Ω

ϑ(t, x)ψ(x)dx + 4πσ′
∫

Ω

(ϑ(t, x) − �(x)T (t, x))ψ(x)dx = 0,

with
T ∈ L2(0, τ ;H1(Ω)) and ϑ ∈ L2(0, τ ;L2(Ω)),

one has ∣∣∣∣ d
dt

∫
Ω

T (t, x)φ(x)dx
∣∣∣∣ ≤ (4π + 1)σ(‖�‖L∞‖T (t, ·)‖H1(Ω) + ‖ϑ‖L2(Ω))‖φ‖H1(Ω)

and ∣∣∣∣ d
dt

∫
Ω

ϑ(t, x)ψ(x)dx
∣∣∣∣ ≤ 4πσ′(‖�‖L∞‖T (t, ·)‖L2(Ω) + ‖ϑ‖L2(Ω))‖ψ‖L2(Ω),

so that the linear functionals

φ �→ d
dt

∫
Ω

T (t, x)φ(x)dx and ψ �→ d
dt

∫
Ω

ϑ(t, x)ψ(x)dx
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are continuous on H1(Ω) and on L2(Ω), respectively with values in L2([0, τ ]). Therefore

∂tT ∈ L2(0, τ ;H1(Ω)′) and ∂tϑ ∈ L2([0, τ ] ×Ω)

for each τ > 0. Since T ∈ L2(0, τ ;H1(Ω)) and ϑ ∈ L2(0, τ ;L2(Ω)), this implies that

T and ϑ ∈ Cb(R+;L2(Ω)).

Since the system (2.11) is linear, proving uniqueness reduces to proving that the only weak solution to (2.11)
satisfying the initial condition T in = ϑin = 0 is the trivial solution T = ϑ = 0.

By Lemma A.2, taking φ(x) = T (t, x) and ψ(x) = σ
σ′ϑ(t, x)/�(x), one has

〈∂tT (t, ·), T (t, ·)〉H1(Ω)′,H1(Ω) + σ

∫
Ω

|∇xT (t, x)|2dx+ 4πσ
∫

Ω

(�(x)T (t, x) − ϑ(t, x))T (t, x)dx = 0,

σ

σ′

∫
Ω

1
�(x)

ϑ(t, x)∂tϑ(t, x)dx + 4πσ
∫

Ω

(ϑ(t, x) − �(x)T (t, x))
ϑ(t, x)
�(x)

dx = 0.

Adding both sides of the identities above, one finds that

〈∂tT (t, ·), T (t, ·)〉H1(Ω)′,H1(Ω) +
σ

σ′

∫
Ω

1
�(x)

ϑ(t, x)∂tϑ(t, x)dx + σ

∫
Ω

|∇xT (t, x)|2dx = 0.

Integrating both sides of the identity above on [0, t] and applying Lemma A.1 leads to

1
2

∫
Ω

T (t, x)2dx+
σ

σ′

∫
Ω

1
�(x)

ϑ(t, x)2dx+ σ

∫ t

0

∫
Ω

|∇xT (s, x)|2dxds = 0

so that T = ϑ = 0.
Specializing the variational formulation to φ, ψ ∈ C∞

c (Ω) shows that T and ϑ satisfy{
∂tT − σΔxT + 4πσ(�T − ϑ) = 0,

∂tϑ+ 4πσ′(ϑ− �T ) = 0,

in the sense of distributions on (0,+∞) ×Ω.
Finally, we apply Lemma A.3 to the vector field

(t, x) �→
((
T (t, x) +

σ

σ′ ϑ(t, x)
)
,−σ∇xT (t, x)

)
.

Indeed,
T +

σ

σ′ ϑ ∈ Cb

(
[0,+∞];L2(Ω)

)
and ∇xT ∈ L2([0, τ ] ×Ω)

for each τ > 0. By linear combination of the two partial differential equations in (2.11), one has

∂t

(
T +

σ

σ′ ϑ
)

+ divx(−σ∇xT ) = 0

in the sense of distributions on (0,+∞) ×Ω, while

d
dt

∫
Ω

(T (t, x) +
σ

σ′ ϑ(t, x))φ(x)dx − σ

∫
Ω

∇xT (t, x) · ∇φ(x)dx = 0

for each φ ∈ H1(Ω). Therefore
∂T

∂n

∣∣∣∣∣
(0,τ)×∂Ω

= 0

in H1/2
00 ((0, τ) × ∂Ω)′ for each τ > 0.
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6. Proof of the homogenization limit

Proof of Theorem 2.6. The proof is decomposed in several steps and involves several auxiliary lemmas whose
proofs belong to the next section.

Step 1: Uniform bounds.
The energy identity for the scaled infinite conductivity problem is

1
2

∫
Aε

Tε(t, x)2dx+
1
2
ε

N∑
i=1

σ

σ′Ti,ε(t)2 + σ

∫ t

0

∫
Aε

|∇xTε(s, x)|2dxds =
1
2

∫
Aε

T in
ε (x)2dx+

1
2
ε

N∑
i=1

σ

σ′ |T in
i,ε |2

for all t ≥ 0 and ε > 0.
As a first consequence of this energy identity, the function Tε ∈ Cb([0,+∞);HN ) satisfies the bounds

‖Tε(t, ·)‖2
HN

=
∫

Ω

ρ(x)C(x)Tε(t, x)2dx

= ρACA

∫
Aε

Tε(t, x)2dx+
4π
3
ε3ρBCB

N∑
i=1

Ti,ε(t)2

≤ ρACA

(∫
Aε

T in
ε (x)2dx+ ε

N∑
i=1

σ

σ′ |T in
i,ε |2

)
≤ ρACAC

in

and

σ

∫ t

0

∫
Aε

|∇xTε(s, x)|2dxds ≤ 1
2

∫
Aε

T in
ε (x)2dx+

1
2
ε

N∑
i=1

σ

σ′ |T in
i,ε |2 ≤ 1

2
Cin

since Tε(t, x) = Ti,ε(t) for a.e. x ∈ B(xi, ε) and all i = 1, . . . , N .
A second consequence of the same energy identity is that

ε

N∑
i=1

σ

σ′ Ti,ε(t)2 ≤
∫

Aε

T in
ε (x)2dx+ ε

N∑
i=1

σ

σ′ |T in
i,ε |2 ≤ Cin

for all t ∈ [0,+∞) and ε > 0. To the weak solution Tε to the scaled infinite conductivity problem we associate
the empirical measure

με(t, dxdθ) :=
1
N

N∑
i=1

δxi ⊗ δTi,ε(t), N = 1/ε.

Accordingly, we denote

μin
ε (dxdθ) :=

1
N

N∑
i=1

δxi ⊗ δT in
i,ε
.

The estimate above is recast as

∫∫
Ω×R

θ2με(t, dxdθ) = ε

N∑
i=1

Ti,ε(t)2 ≤ σ′

σ
Cin.

Step 2: Compactness properties.
These uniform bounds obviously imply that the family Tε is relatively compact in L∞([0,+∞);L2(Ω))
weak-* and in L2(0, τ ;H1(Ω)) weak for all τ > 0. Likewise the family (1 + θ2)με is relatively compact in
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L∞([0,+∞);Mb(Ω ×R)) viewed as the dual of the Banach space5 L1([0,+∞);C0(Ω ×R)) equipped with the
weak-* topology.

Henceforth, we denote by (T, μ) a limit point of the family (Tε, με) as ε→ 0. Define

ϑ(t, ·) :=
∫
R

θμ(t, ·, dθ)

and observe that
� :=

∫
R

μ(t, ·, dθ).

(Notice in particular that this equality shows that the integral on the right hand side is independent of the
time variable t.) We already know from (2.16) that � ∈ Cb(Ω) is a positive probability density, and we shall see
shortly that ϑ ∈ L∞(R+;L2(Ω)).

Next we return to the energy identity in Step 1 recast as follows

1
2

∫
Ω

Tε(t, x)2dx+
(
σ

σ′ −
4
3
πε2
)∫∫

Ω×R

1
2
θ2με(t, dxdθ) + σ

∫ t

0

∫
Aε

|∇xTε(s, x)|2dxds

=
1
2

∫
Aε

T in
ε (x)2dx+

1
2
ε

N∑
i=1

σ

σ′ |T in
i,ε |2, (6.1)

so that (
σ

σ′ −
4
3
πε2
)∫∫

Ω×R

θ2με(t, dxdθ) ≤ Cin.

Thus, for each R > 0, using (x, θ) �→ min(θ2, R) as test function and the weak-* convergence of the family of
measures (1 + |x|2 + θ2)με, passing to the limit in each side of the inequality above, we get

σ

σ′

∫∫
Ω×R

min(θ2, R)μ(t, dxdθ) ≤ Cin.

Letting R → +∞, by monotone convergence

σ

σ′

∫∫
Ω×R

θ2μ(t, dxdθ) ≤ Cin.

By the Cauchy−Schwarz inequality

ϑ(t, ·)2 =
(∫

R

θμ(t, ·, dθ)
)2

≤
∫
R

μ(t, ·, dθ)
∫
R

θ2μ(t, ·, dθ) = �

∫
R

θ2μ(t, ·, dθ)

so that ∫
Ω

ϑ(t, x)2dx ≤
∫

Ω

�(x)
∫
R

θ2μ(t, dxdθ) ≤ σ′

σ
Cin‖�‖L∞(Ω),

by (2.16). This implies in particular that ϑ ∈ L∞(R+;L2(Ω)) as announced.
Thus, going back to (6.1), we conclude that, for each τ > 0,

T ∈ L∞([0,+∞);L2(Ω)) ∩ L2(0, τ ;H1(Ω)) and ϑ ∈ L∞([0,+∞);L2(Ω)).

5If X is a locally compact space, the notation C0(X) designates the set of real-valued continuous functions f defined on X such
that f converges to 0 at infinity. This is a Banach space for the norm ‖f‖ = supx∈X |f(x)|.
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Step 3: Passing to the limit in the variational formulation.
Start from the variational formulation of the scaled infinite conductivity problem: for each Φε ∈ VN

d
dt

(∫
Aε

Tε(t, x)Φε(x)dx +
3σ

4πσ′
1
ε2

∫
Bε

Tε(t, x)Φε(x)dx
)

+ σ

∫
Aε

∇xTε(t, x) · ∇Φε(x)dx = 0

for a.e. t ∈ [0,+∞).
Since Tε(t, ·) ∈ VN , assuming that Φε ∈ VN ∩ Cb(Ω),

3σ
4πσ′

1
ε2

∫
Bε

Tε(t, x)Φε(x)dx =
σ

σ′ ε
N∑

i=1

Ti,ε(t)Φi,ε =
σ

σ′

∫∫
Ω×R

Φε(x)θμε(t, dxdθ).

On the other hand∫
Aε

Tε(t, x)Φε(x)dx =
∫

Ω

Tε(t, x)Φε(x)dx −
∫

Bε

Tε(t, x)Φε(x)dx

=
∫

Ω

Tε(t, x)Φε(x)dx − 4π
3
ε3

N∑
i=1

Ti,ε(t)Φi,ε(t)

=
∫

Ω

Tε(t, x)Φε(x)dx − 4π
3
ε2
∫∫

Ω×R

Φε(x)θμε(t, dxdθ)

so that ∣∣∣∣
∫

Ω

Tε(t, x)Φε(x)dx −
∫

Aε

Tε(t, x)Φε(x)dx
∣∣∣∣ ≤ 2π

3
ε2‖Φε‖L∞(Ω)

∫∫
Ω×R

(
1 + θ2

)
με(t, dxdθ)

≤ 2π
3
ε2‖Φε‖L∞(Ω)

(
1 +

σ′

σ
Cin

)
·

Finally ∫
Aε

∇xTε(t, x) · ∇Φε(x)dx =
∫

Ω

∇xTε(t, x) · ∇Φε(x)dx.

We shall pass to the limit in the variational formulation above for two different classes of test functions Φε.

Step 4: First class of test functions.
Let φ ∈ C1

c (Ω). By the mean value theorem

|φ(x) − φ(xi)| ≤ ε‖Dφ‖L∞ for all x ∈ B(xi, ε),

so that φ “almost” belongs to VN – but in general does not belong to VN . This difficulty is fixed by the following
procedure.

For each ψ ∈ C(B(0, ε)), define χ[ψ] to be the solution of⎧⎪⎪⎨
⎪⎪⎩
Δχ[ψ](z) = 0, ε < |z| < rε,

χ[ψ](z) = ψ(z), |z| ≤ ε,

χ[ψ](z) = 0, |z| = rε.

(6.2)

Define

Qε(x) :=
N∑

i=1

χ[φ(xi + ·) − φ(xi)](x− xi),

where the notation φ(xi + ·) designates the function y �→ φ(xi + y), and let

Φε(x) := φ(x) −Qε(x).
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Lemma 6.1. For each ε > 0, one has

‖Qε‖L∞(Ω) ≤ 2‖φ‖L∞(Ω).

Besides
Qε → 0 in H1(Ω) strong

as ε→ 0.

The proof of this lemma is postponed to the end of this section. Taking this for granted, one has

Φε → φ in H1(Ω) strong

as ε→ 0. Therefore∫
Aε

∇xTε(t, x) · ∇Φε(x)dx =
∫

Ω

∇xTε(t, x) · ∇Φε(x)dx

→
∫

Ω

∇xT (t, x) · ∇φ(x)dx weakly in L2([0,+∞))

as ε→ 0.
On the other hand ∫

Ω

Tε(t, x)Φε(x)dx =
∫

Ω

Tε(t, x)φ(x)dx −
∫

Ω

Tε(t, x)Qε(x)dx

→
∫

Ω

T (t, x)φ(x)dx in L∞([0,+∞)) weak-*

as ε→ 0 since ∣∣∣∣
∫

Ω

Tε(t, x)Qε(x)dx
∣∣∣∣ ≤ ‖Tε(t, ·)‖L2‖Qε‖L2.

Indeed
sup
t≥0

‖Tε(t, ·)‖L2 <∞, while ‖Qε‖L2 → 0 as ε→ 0

by Lemma 6.1.
Finally ∫∫

Ω×R

Φε(x)θμε(t, dxdθ) =
∫∫

Ω×R

φ(x)θμε(t, dxdθ)

since φ(xi) = Φε(xi) for i = 1, . . . , N , so that∫∫
Ω×R

Φε(x)θμε(t, dxdθ) →
∫∫

Ω×R

φ(x)θμ(t, dxdθ) in L∞([0,+∞)) weak-*

as ε→ 0.
By construction Φε ∈ VN , so that Φε can be used as a test function in the variational formulation. Passing

to the limit in the variational formulation of the scaled infinite heat conductivity problem in the sense of
distributions gives

d
dt

(∫
Ω

T (t, x)φ(x)dx +
σ

σ′

∫∫
Ω×R

φ(x)θμ(t, dxdθ)
)

+ σ

∫
Ω

∇xT (t, x) · ∇φ(x)dx = 0

in L2
loc([0,+∞)) for each φ ∈ C1

c (Ω).
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Step 5: Second class of test functions
In this step, we shall use a class of test functions Ψε ∈ H1(Ω) such that Ψε

∣∣
B(xi,ε)

= 0 for all i = 1, . . . , N . Given

φ ∈ C1
c (Ω), define Ψε as follows:

Ψε(x) := φ(x) − Pε(x)

where

Pε(x) :=
N∑

i=1

χ[φ(xi + ·)](x− xi).

We shall further decompose Pε as follows:

Pε(x) =
N∑

i=1

χ[φ(xi + ·) − φ(xi)](x − xi) +
N∑

i=1

χ[φ(xi)](x − xi)

= Qε(x) + Rε(x).

Likewise, one associates to the solution Tε to the scaled infinite heat conductivity problem

Θε(t, x) := Tε(t, x) − Sε(t, x)

where

Sε(t, x) :=
N∑

i=1

χ[Ti,ε(t)](x − xi).

The variational formulation for the test function Ψε becomes

d
dt

∫
Ω

Tε(t, x)Ψε(x)dx + σ

∫
Ω

∇xTε(t, x) · ∇Ψε(x)dx = 0

in L2
loc([0,+∞)), since Ψε = 0 on B(xi, ε) for all i = 1, . . . , N .

Lemma 6.2. One has
Rε → 0 in H1(Ω) weak,

so that
Pε → 0 in H1(Ω)weak,

while
Sε → 0 in L∞ ([0,+∞];H1(Ω)

)
weak-*

as ε→ 0.

Taking this lemma for granted, and observing that

supp(Pε) ⊂ supp(φ) +B(0, rε),

the Rellich compactness theorem implies that

Pε → 0 in L2(Ω) strong

as ε→ 0, so that ∫
Ω

Tε(t, x)Ψε(x)dx →
∫

Ω

T (t, x)φ(x)dx in L∞([0,+∞)) weak-*

as ε→ 0.
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Next, decompose ∫
Ω

∇xTε(t, x) · ∇Ψε(x)dx =
∫

Ω

∇xΘε(t, x) · ∇φ(x)dx

−
∫

Ω

∇xΘε(t, x) · ∇Pε(x)dx

+
∫

Ω

∇xSε(t, x) · ∇Ψε(x)dx.

Since Sε → 0 in L2(0, τ ;H1
0 (Ω)) weak as ε→ 0, one has

∇xΘε = ∇xTε −∇xSε → ∇xT in L2([0, τ ] ×Ω) weak

as ε→ 0, so that ∫
Ω

∇xΘε(t, x) · ∇φ(x)dx →
∫

Ω

∇xT (t, x) · ∇φ(x)dx in L2([0, τ ]) weak

as ε→ 0.
Furthermore, one has∫

Ω

∇xSε(t, x) · ∇Ψε(x)dx =
∫

Ω

∇xSε(t, x) · ∇φ(x)dx −
∫

Ω

∇xSε(t, x) · ∇Qε(x)dx

−
N∑

i=1

∫
B(xi,rε)\B(xi,ε)

∇χ[Ti,ε(t)](z) · ∇χ[φ(xi)](z)dz.

As noticed above, ∇xSε → 0 weakly in L2([0, τ ] ×Ω) for all τ > 0 as ε→ 0, and therefore∫
Ω

∇xSε(t, x) · ∇φ(x)dx → 0 in L2([0, τ ]) weak

for all τ > 0 as ε→ 0, while ∫
Ω

∇xSε(t, x) · ∇Qε(x)dx → 0 in L2([0, τ ]) strong

for all τ > 0 as ε→ 0 by Lemma 6.1.
The third term on the right hand side of the last equality is handled with the following lemma.

Lemma 6.3. One has

N∑
i=1

∫
B(0,rε)\B(0,ε)

∇χ[Ti,ε(t)](z) · ∇χ[φ(xi)](z)dz → 4π
∫

Ω×R

φ(x)θμ(t, dxdθ)

in L∞(R+) weak-*.

Therefore ∫
Ω

∇xSε(t, x) · ∇Ψε(x)dx→ −4π
∫∫

Ω×R

φ(x)θμ(t, dxdθ) (6.3)

in L2([0, τ ]) weak as ε→ 0.
It remains to treat the term∫

Ω

∇xΘε(t, x) · ∇Pε(x)dx =
∫

Ω

∇xΘε(t, x) · ∇Qε(x)dx +
N∑

i=1

∫
B(xi,rε)\B(xi,ε)

∇xΘε(t, z) · ∇χ[φ(xi)](z)dz.
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By Lemma 6.1, Qε → 0 in H1(Ω) strong; by the second convergence in Lemma 6.2, the family ∇xSε is bounded
in L2([0, τ ] ×Ω) for each τ > 0, while ∇xTε is bounded in L2([0, τ ] ×Ω) as explained in Step 1. Thus ∇xΘε is
bounded in L2([0, τ ] ×Ω) for all τ > 0, so that∫

Ω

∇xΘε(t, x) · ∇Qε(x)dx → 0 in L2([0, τ ]) strong

for each τ > 0 as ε→ 0.
Next, by Green’s formula∫

B(xi,rε)\B(xi,ε)

∇xΘε(t, z) · ∇χ[φ(xi)](z)dz =
∫

∂B(xi,rε)

Θε(t, z)
∂χ[φ(xi)]

∂n
(z)dz

since χ[φ(xi)] is harmonic on B(xi, rε) \B(xi, ε) and Θε

∣∣
∂B(xi,ε)

= 0.

Lemma 6.4. For each φ ∈ Cb(R3), one has

N∑
i=1

∂

∂n
(χ[φ(xi)](x − xi)) δ∂B(xi,rε) = − εrε

r2ε (rε − ε)

N∑
i=1

φ(xi)δ∂B(xi,rε) → −4π�φ

in H−1(R3). We recall that � ∈ Cb(Ω) is defined as follows:

1
N

N∑
i=1

δxi → �L 3

weakly in the sense of probability measures on Ω, where L 3 designates the 3-dimensional Lebesgue measure.

Taking this lemma for granted, we see that∫
Ω

∇xΘε(t, x) · ∇Rε(x)dx → −4π
∫

Ω

�(x)T (t, x)φ(x)dx in L2([0, τ ]) weak (6.4)

for each τ > 0 as ε→ 0.
Summarizing the various limits established in this step, we conclude that, for each φ ∈ C1

c (Ω)

d
dt

∫
Ω

T (t, x)φ(x)dx+σ
∫

Ω

∇xT (t, x) · ∇φ(x)dx+4πσ
∫

Ω

�(x)T (t, x)φ(x)dx−4πσ
∫∫

Ω×R

φ(x)θμ(t, dxdθ) = 0

in L2
loc([0,+∞)).

Step 6: Initial conditions
As explained in Steps 3-4, for each φ ∈ C1

c (Ω), defining

Φε = φ−Qε ∈ VN

one has∫
Aε

Tε(t, x)Φε(x)dx +
σ

σ′

∫∫
Ω×R

Φε(x)θμε(t, dxdθ) →
∫

Ω

T (t, x)φ(x)dx +
σ

σ′

∫∫
Ω×R

φ(x)θμ(t, dxdθ) (6.5)

in L2([0, τ ]) weak as ε→ 0, while∫ ∞

0

∣∣∣∣ d
dt

(∫
Aε

Tε(t, x)Φε(x)dx +
σ

σ′

∫∫
Ω×R

Φε(x)θμε(t, dxdθ)
)∣∣∣∣

2

dt ≤ σ2‖∇Φε‖2
L2(Ω)

∫ ∞

0

‖∇xTε(t, ·)‖2
L2(Ω)dt

≤ Cinσ(‖∇φ‖L2(Ω) + o(1))2.
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By Ascoli–Arzela’s theorem, the convergence in (6.5) is uniform on [0, τ ] for each τ . In particular∫
Aε

T in
ε (x)Φε(x)dx +

σ

σ′

∫∫
Ω×R

Φε(x)θμin
ε (dxdθ) →

∫
Ω

T in(x)φ(x)dx +
σ

σ′

∫∫
Ω×R

φ(x)θμin(dxdθ)

=
∫

Ω

T (0, x)φ(x)dx +
σ

σ′

∫∫
Ω×R

φ(x)θμ(0, dxdθ)

for each φ ∈ C1
c (Ω), so that

T (0, ·) +
σ′

σ

∫
R

θμ(0, ·, dθ) = T in +
σ′

σ

∫
R

θμin(·, dθ).

Likewise, we have seen in Step 5 that, for each φ ∈ C1
c (Ω), defining Ψε as

Ψε = φ− Pε,

one has ∫
Ω

Tε(t, x)Ψε(x)dx →
∫

Ω

T (t, x)φ(x)dx in L∞([0,+∞)) weak-* (6.6)

as ε→ 0. Besides ∫ ∞

0

∣∣∣∣ d
dt

∫
Ω

Tε(t, x)Ψε(x)dx
∣∣∣∣
2

dt ≤ σ2‖∇Ψε‖2
L2(Ω)

∫ ∞

0

∫
Ω

|∇xTε(t, x)|2dxdt

≤ Cinσ(‖∇φ‖L2(Ω) + o(1))2.

By the Ascoli–Arzela theorem, the convergence in (6.6) is uniform in [0, τ ] for each τ > 0. In particular∫
Ω

T in
ε (x)Ψε(x)dx→

∫
Ω

T in(x)φ(x)dx =
∫

Ω

T (0, x)φ(x)dx

so that
T (0, ·) = T in.

Step 7: Identification of the limiting system
In Steps 4 and 5, we have proved that

d
dt

∫
Ω

T (t, x)Φ(x)dx + σ

∫
Ω

∇xT (t, x) · ∇Φ(x)dx + 4πσ
∫

Ω

(�(x)T (t, x) − ϑ(t, x))Φ(x)dx = 0

and
d
dt

(∫
Ω

T (t, x)Φ(x)dx +
σ

σ′

∫
Ω

ϑ(t, x)Φ(x)dx
)

+ σ

∫
Ω

∇xT (t, x) · ∇Φ(x)dx = 0

for each Φ ∈ C1
c (Ω). By linear combination, one finds that

d
dt

∫
Ω

T (t, x)φ(x)dx + σ

∫
Ω

∇xT (t, x) · ∇φ(x)dx + 4πσ
∫

Ω

(�(x)T (t, x) − ϑ(t, x))φ(x)dx = 0,

d
dt

∫
Ω

ϑ(t, x)ψ(x)dx + 4πσ′
∫

Ω

(ϑ(t, x) − �(x)T (t, x))ψ(x)dx = 0,

for all φ, ψ ∈ C1
c (Ω). Since T, ϑ ∈ Cb([0,+∞);L2(Ω)) and T ∈ L2(0, τ ;H1(Ω)) for each τ > 0, the identities

above hold for all φ, ψ ∈ H1(Ω) by a straightforward density argument.
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Thus (T, ϑ) is the unique weak solution to (2.11) with initial data (T in, ϑin).
By compactness, this implies that

Tε → T in L∞([0,+∞);L2(Ω)) weak-* and in L2(0, τ ;H1(Ω)) weak,

while
ϑε → ϑ in L∞([0,+∞);L2(Ω)) weak-*

without extracting subsequences. �

7. Proof of Lemmas 6.1, 6.2, 6.3 and 6.4

When ψ = 1, the solution to the boundary value problem (6.2) is given by

χ[1](z) =
εrε
rε − ε

(
1
|z| −

1
rε

)
1B(0,rε)\B(0,ε)(z) + 1B(0,ε)(z)

for all z ∈ R3. In that case

‖χ[1]‖2
L2(R3) =

4π
3
ε2rε, ‖∇χ[1]‖2

L2(R3) = 4π
εrε
rε − ε

∼ 4πε as ε→ 0.

Proof of Lemma 6.1. First, by the maximum principle and the mean value theorem, one has

‖χ[φ(xi + ·) − φ(xi)]‖L∞(R3) ≤ ‖φ(xi + ·) − φ(xi)‖L∞(R3)

≤ min(2‖φ‖L∞(R3), ‖∇φ‖L∞(R3)ε).

Since the functions x �→ χ[φ(xi + ·) − φ(xi)](x− xi) have disjoint supports by (2.18), one has both

‖Qε‖L∞(Ω) ≤ sup
1≤i≤N

‖χ[φ(xi + ·) − φ(xi)]‖L∞(R3) ≤ 2‖φ‖L∞(R3),

and

‖Qε‖2
L2(Ω) ≤

N∑
i=1

‖χ[φ(xi + ·) − φ(xi)]‖2
L2(R3)

≤ N |B(0, rε)|‖χ[φ(xi + ·) − φ(xi)]‖2
L∞(R3)

≤ N · 4
3
πr3ε ‖∇φ‖2

L∞(R3)ε
2 =

4
3
π‖∇φ‖2

L∞(R3)ε
2 → 0

as ε→ 0. Next

‖∇χ[φ(xi + ·) − φ(xi)]‖2
L2(R3) = ‖∇χ[φ(xi + ·) − φ(xi)]‖2

L2(B(0,ε))

+ ‖∇χ[φ(xi + ·) − φ(xi)]‖2
L2(B(0,rε)\B(0,ε)).

First
‖∇χ[φ(xi + ·) − φ(xi)]‖2

L2(B(0,ε)) ≤
4
3
πε3‖∇χ[φ(xi + ·) − φ(xi)]‖2

L∞(B(0,ε))

=
4
3
πε3‖∇φ‖2

L∞(B(0,ε)).

Since χ[φ(xi + ·)− φ(xi)] is a harmonic function on B(0, rε) \B(0, ε), it minimizes the Dirichlet integral among
functions with the same boundary values. Thus

‖∇χ[φ(xi + ·) − φ(xi)]‖2
L2(B(0,rε)\B(0,ε)) ≤ ‖∇χi,ε‖2

L2(B(0,rε)\B(0,ε))
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where

χi,ε(z) =
(
φ

(
xi + ε

z

|z|
)
− φ(xi)

)
rε − |z|
rε − ε

·

Straightforward computations show that

∇χi,ε(z) =
(
I − z ⊗ z

|z|2
)
∇φ

(
xi + ε

z

|z|
)

ε

|z|
rε − |z|
rε − ε

−
(
φ

(
xi + ε

z

|z|
)
− φ(xi)

)
1

rε − ε

z

|z| ,

so that

|∇χi,ε(z)|2 ≤
∣∣∣∣∇φ

(
xi + ε

z

|z|
)∣∣∣∣

2
ε2

|z|2
(rε − |z|)2
(rε − ε)2

+
(
φ

(
xi + ε

z

|z|
)
− φ(xi)

)2 1
(rε − ε)2

·

Thus
‖∇χi,ε‖2

L2(B(0,rε)\B(0,ε)) ≤
8π
3
‖∇φ‖2

L∞(R3)ε
2rε +O(ε3rε),

so that

‖∇Qε‖2
L2(Ω) ≤

N∑
i=1

‖∇χ[φ(xi + ·) − φ(xi)]‖2
L2(R3)

≤ 4π
3
‖∇φ‖2

L∞(R3)N(ε3 + 2ε2rε)

=
4π
3
‖∇φ‖2

L∞(R3)(ε
2 + 2εrε) → 0

as ε→ 0. Hence Qε → 0 in H1(Ω) strong as ε→ 0. �

Proof of Lemma 6.2. Assume that 0 < ε < 1
8 . Since the functions x �→ χ[1](x − xi) have disjoint supports

by (2.18), one has

‖Sε(t, ·)|2L2(Ω) ≤
N∑

i=1

Ti,ε(t)2‖χ[1]‖2
L2(R3)

‖∇Sε(t, ·)‖2
L2(Ω) ≤

N∑
i=1

Ti,ε(t)2‖∇χ[1]‖2
L2(R3).

Thus

‖Sε(t, ·)‖2
L2(Ω) ≤

4π
3
ε2rε

N∑
i=1

Ti,ε(t)2 ≤ 4π
3
σ′

σ
Cinεrε → 0

as ε→ 0, while

‖∇Sε(t, ·)‖2
L2(Ω) ≤ 4π

εrε
rε − ε

N∑
i=1

Ti,ε(t)2

≤ 8πε
N∑

i=1

Ti,ε(t)2 ≤ 8π
σ′

σ
Cin.

Hence Sε(t, ·) → 0 in H1(Ω) weak, uniformly in t ≥ 0 as ε→ 0.
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Now for Rε. First

‖Rε‖2
L2(Ω) =

N∑
i=1

‖χ[φ(xi)]‖2
L2(R3)

≤
N∑

i=1

4
3
πφ(xi)2ε2rε ≤ 4

3
π‖φ‖2

L∞(R3)εrε → 0

as ε→ 0, because the functions x �→ χ[1](x− xi) have disjoint supports by (2.18). By the same token

‖∇Rε‖2
L2(Ω) =

N∑
i=1

‖∇χ[φ(xi)]‖2
L2(R3)

≤
N∑

i=1

4πφ(xi)2
εrε
rε − ε

≤ 4π‖φ‖2
L∞(R3)

Nεrε
rε − ε

= O(1)

as ε→ 0. Thus Rε → 0 in H1(Ω) weak as ε→ 0. �

Proof of Lemma 6.3. One has

N∑
i=1

∫
B(0,rε)\B(0,ε)

∇χ[Ti,ε(t)](z) · ∇χ[φ(xi)](z)dz = ‖∇χ[1]‖2
L2(RN )

N∑
i=1

Ti,ε(t)φ(xi)

= 4π
εrε
rε − ε

N∑
i=1

Ti,ε(t)φ(xi)

= 4π
rε

rε − ε

∫∫
Ω×R

φ(x)θμε(t, dxdθ)

→ 4π
∫∫

Ω×R

φ(x)θμ(t, dxdθ) = 4π
∫

Ω

φ(x)ϑ(t, x)dx

as ε→ 0. �

Proof of Lemma 6.4. First

N∑
i=1

∂

∂n
(χ[φ(xi)](x− xi)) δ∂B(xi,rε) =

N∑
i=1

φ(xi)
x− xi

|x− xi| · ∇χ[1](x− xi)δ∂B(xi,rε)

= −
N∑

i=1

φ(xi)
εrε
rε − ε

1
|x− xi|2 δ∂B(xi,rε)

= − εrε
r2ε (rε − ε)

N∑
i=1

φ(xi)δ∂B(xi,rε).

Next we recall that
N∑

i=1

φ(xi)rεδ∂B(xi,rε) → 4π�φ strongly in H−1
(
R3
)

as ε→ 0. This result has been proved by Cioranescu–Murat [8] in the case where xi are distributed periodically;
see formula (64) and Appendix 1 in [9] for a proof adapted to the setting of the present paper.

With the explicit formula above and the fact that ε
r2

ε (rε−ε) → 1 as ε → 0, this concludes the Proof of
Lemma 6.4. �
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8. Conclusion

We have established the homogenization limit for the heat equation in a composite material consisting of
a background medium with small spherical inclusions of another material with infinite thermal conductivity.
The asymptotic distribution of inclusions is an arbitrary absolutely continuous positive probability density �.
Our analysis requires that the distance between neighboring inclusions remains larger than a certain threshold
which scales as N−1/3, where N is the number of inclusions, while the size of the inclusions scales as N−1.
The homogenized model is a system that consists of a heat equation for the temperature in the background
medium, coupled to an ordinary differential equation for the temperature in the inclusions. The coupling terms
are local, linear and do not involve derivatives of the unknowns; their strength is proportional to the density of
inclusions �.

Extending our result to the case of an unbounded domain Ω should be straightforward, but would require
some modifications in our arguments. For instance, it may be necessary to drop the assumption that 1/� is
bounded on Ω, and to assume instead that

1
N

N∑
i=1

|xi|2 ≤ Cin for all N ≥ 1 (8.1)

for some positive constant Cin. The definition of the inner product (·|·)V in Section 3 should be modified
accordingly.

A more interesting open problem would be to obtain an equation for the spatial distribution of temperature
in the inclusions under exactly the same scaling assumptions as in Theorem 2.6. This could be relevant to the
modeling of sprays. With the notations of the proof of Theorem 2.6, the question would be to investigate the
evolution in the time variable t of limit points of

με(t, dxdθ) :=
1
N

N∑
i=1

δxi ⊗ δTi,ε(t)

as ε→ 0 in the weak topology of probability measures. The analysis in the present work leads to a closed system
governing the evolution of the averaged quantities

� =
∫
μ(dθ) and ϑ =

∫
θμ(dθ)

if μ is a weak limit point of some subsequence of με as ε → 0. Obtaining an equation for μ itself seems more
complicated.

We conclude this section with a remark of a more technical nature on the arguments used in the proof the
homogenization theorem (Thm. 2.6). Specifically, we draw the reader’s attention to the difference between the
two classes of test functions used in this proof. Cioranescu and Murat have stressed the importance of the
condition Θε

∣∣
∂B(xi,ε)

= 0 in obtaining the limit (6.4): see the discussion of assumptions (H5) and (H5’) on p.
108 in [8]. This accounts for the different arguments leading to the damping terms in the homogenized equations
for T and for θ – in other words, to the difference between the proofs of (6.3) and (6.4), or equivalently between
the proofs of Lemmas 6.3 and 6.4.

Appendix A. Some lemmas on evolution equations

Let V and H be two separable Hilbert spaces such that V ⊂ H with continuous inclusion and V is dense in
H. The Hilbert space H is identified with its dual and the map

H � u �→ Lu ∈ V ′,
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where Lu is the linear functional
Lu : V � v �→ (u|v)H ∈ R,

identifies H with a dense subspace of V ′.

Lemma A.1. Assume that

v ∈ L2(0, T ;V) and
dLv

dt
∈ L2(0, T ;V ′).

Then

(a) the function v is a.e. equal to a unique element of C([0, T ],H) still denoted v;
(b) this function v ∈ C([0, T ],H) satisfies

1
2
|v(t2)|2H − 1

2
|v(t1)|2H =

∫ t2

t1

〈
dLv

dt
(t), v(t)

〉
V′,V

dt

for all t1, t2 ∈ [0, T ].

Statement (a) follows from Proposition 2.1 and Theorem 3.1 in Chapter 1 of [12], and statement (b) from
Theorem II.5.12 of [5].

Lemma A.2. Let L ∈ L2(0, T ;V ′) satisfy

〈L(t), w〉V′,V = 0 for a.e. t ∈ [0, T ]

for all w ∈ V. Then
L(t) = 0 for a.e. t ∈ [0, T ].

Proof. Pick Nw ⊂ [0, T ] negligible such that L is defined on [0, T ] \ Nw and

〈L(t), w〉V′,V = 0 for all t ∈ [0, T ] \ Nw.

Let D be a dense countable subset of V and let

N̄ :=
⋃

w∈D
Nw.

For all t ∈ [0, T ] \ N̄ , one has

〈L(t), w〉V′,V = 0 for all w ∈ D so that L(t) = 0

because L(t) is a continuous linear functional on V and D is dense in V . �

The next lemma recalls the functional background for Green’s formula in the context of evolution equations.

Lemma A.3. Let Ω be an open subset of RN with smooth boundary, and let T > 0. Denote by n the unit
outward normal field on ∂Ω. Let ρ ∈ C([0, T ];L2(Ω)) and m ∈ L2((0, T ) ×Ω,RN). Assume that

∂tρ+ divxm = 0 in the sense of distributions in (0, T ) ×Ω.

Then

(a) the vector field m has a normal trace m · n∣∣
(0,T )×∂Ω

∈ H
1/2
00 ((0, T )× ∂Ω)′;
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(b) for each ψ ∈ H1(Ω)

d
dt

∫
Ω

ρ(·, x)ψ(x)dx −
∫

Ω

m(·, x) · ∇xψ(x)dx = −〈m · n∣∣
∂Ω
, ψ
∣∣
∂Ω

〉H−1/2(∂Ω),H1/2(∂Ω)

in H−1(0, T ).

Proof. Let χ ∈ C∞
c (R) be such that

χ(t) = 1 for t ∈ [−1, T + 1] and supp(χ) ⊂ [−2, T + 2].

Define

ρ̄(t, x) :=

⎧⎪⎪⎨
⎪⎪⎩
ρ(t, x) if 0 ≤ t ≤ T

χ(t)ρ(0, x) if t < 0

χ(t)ρ(T, x) if t > T

and

m̄(t, x) :=

{
m(t, x) if 0 ≤ t ≤ T

0 if t /∈ [0, T ]

so that the vector field X := (ρ̄, m̄) is an extension of (ρ,m) to R ×Ω satisfying

X ∈ L2
(
R ×Ω;RN+1

)
.

Besides

(∂tρ̄+ divx m̄) (t, x) = χ′(t) (1t<0ρ(0, x) + 1t>Tρ(T, x)) =: S(t, x)

with S ∈ L2(R ×Ω) so that

divt,xX = S ∈ L2(R ×Ω).

Therefore X has a normal trace on the boundary ∂(R×Ω) = R× ∂Ω, denoted X ·n∣∣
R×∂Ω

∈ H−1/2(R× ∂Ω).

Let φ ∈ H
1/2
00 ((0, T ) × ∂Ω); denote by φ̄ its extension by 0 to R × ∂Ω. Thus φ̄ ∈ H1/2(R × ∂Ω) and there

exists Φ̄ ∈ H1(R × Ω) such that φ̄ = Φ̄
∣∣
R×∂Ω

. The normal trace of m is then defined as follows: by Green’s
formula

〈m · n∣∣
R×∂Ω

, φ〉
H

1/2
00 ((0,T )×∂Ω)′,H1/2

00 ((0,T )×∂Ω)
:= 〈X · n∣∣

R×∂Ω
, φ̄〉H1/2(R×∂Ω)′,H1/2(R×∂Ω)

=
∫∫

R×Ω

(ρ̄∂tΦ̄+ m̄ · ∇xΦ̄+ SΦ̄)(t, x)dxdt.

Applying Green’s formula on (0, T )×Ω shows that two different extensions of the vector field (ρ,m) define the
same distribution m · n∣∣

(0,T )×∂Ω
on (0, T ) × ∂Ω. This completes the proof of statement (a).
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As for statement (b), let κ ∈ H1
0 (0, T ) and ψ ∈ H1(Ω), define Φ(t, x) := κ(t)ψ(x) and let Φ̄ be the extension

of Φ by 0 to R ×Ω, so that Φ̄ ∈ H1(R ×Ω). Thus φ = Φ
∣∣
(0,T )×∂Ω

∈ H
1/2
00 ((0, T ) × ∂Ω) and

〈
〈m · n∣∣

∂Ω
, ψ
∣∣
∂Ω

〉H−1/2(∂Ω),H1/2(∂Ω), κ

〉
H−1(0,T ),H1

0 (0,T )

:= 〈m · n∣∣
(0,T )×∂Ω

, φ〉
H

1/2
00 ((0,T )×∂Ω)′,H1/2

00 ((0,T )×∂Ω)

=
∫∫

R×Ω

(ρ̄∂tΦ̄+ m̄ · ∇xΦ̄+ SΦ̄)(t, x)dxdt

=
∫ T

0

∫
Ω

(ρ(t, x)κ′(t)ψ(x) +m(t, x) · ∇ψ(x)κ(t))dxdt

= −
〈

d
dt

∫
Ω

ρ(t, x)ψ(x)dx, κ
〉

H−1(0,T ),H1
0 (0,T )

+
∫ T

0

∫
Ω

m(t, x) · ∇ψ(x)κ(t)dxdt

which is precisely the identity in statement (b). �
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