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ON GENERALIZED p-ADIC INTEGRATION

Arnt VOLKENBORN

Introduction

Integration of p-adic valued functions has first been considered by E;_Egmég%ﬂ
and F. Bruhat [2]. A function f defined on the valuation ring Zi of the rational
p-adic field QP with values in QP is integrable in this sense, if thgre exists a
p-adic pumber I such that for all &> O, all great m and all representative sys-
tems &big of Z /P™ (P is the prime ideal in Zb)
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This integral being translation-invariant is far too restrictive for analytic
and arithmetical purposes : Integrable functions in this sense must be differen-
tiable with derivative zero. Now Leopoldt-Kubota's definition of p-adic L-functions
as a mean value indicates the great arithmetical importénce of non-translation-
invariant p-adic integrdtion. It turns out that a general concept and theory of
generalized p-adic integratior not only leads to a simpler presentation of some of
the properties of p-adic L-functions and Leopoldt's Bernoulli numbers, but serves
as a conveniant tool in the investigation and definition of new p-adic analytic
functions similar - but of course not to the same extent - to classical function
theory. To indicate the concepts and some results of such a theory is the purpose

of this note.

The first step in generalizing the Tomas - Bruhat - integral consists in res-
tricting the approximation (+) to a fixed canonical representative system (for each
m) only. But in order to write the p-adic L-functions as an integral in a proper
way one has to generalize (+) a second time : the completeness of the argument
groups of the functions has to be omitted. This is the reason why we start with the
notion of an integral for certain functions on a class of topological groups with

values in complete topological fields. This leads in particular to the "m-th p-adic
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A
integral” on Qp with values in an algebraically closed and complete extension Qp
of Qp , which makes all locally-analytic functions (e.g. all Laurent-series) in-

tegrable. Specialization to the "1-st p-adic integral" then gives rise to ordinary

p-adic integration.

A) P-adic integration.

1. Integration for certain classes of topological groups with values in complete

topological fields.

Let {1 be a complete topological field.
Definition 1. (G,(Un)n> O) is called a group of finite type, if G is a topological
o
Hausdorff - group and (Un)n> 0 is a countable base of open precompact subgroups Un
4

such that U D> U for all n.
—_——— "n ntl —/———=

We fix a sequence R = (R ) of representative systems & _ of G/U and regard
n'ny 0 n n

functions f defined on open, precompact subsets KCG of the form

k .
K = .Q)xium (xiCKﬂﬂ.m,m?/O)

1=

Definition 2. A function f : K—> (1 is called R -integrable on K (or a R -regu-

lated function on K) if the sequence of Riemann sums

1 .
™ T gk

is convergent in L) . Then we call
‘ =
(1) j f(u)du = 1lim - £(x)
K n—wo (U 0T xeR _NK

o n

the &-integral of f on K.

We have the following property :

If f is R -integrable on three of the four open precompact sets K, K' , KUK',
KNK' , so f is &R-integrable on the fourth, and we get
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R, R R &
/ f(u)du '+ f f(u)du = j f(u)du +f f(u)du.
KUK' KNK!' K K'

2. The m-th and the ordinary p-adic integral

We specialize this integral to the m-th p-adic integral (m a positive integer)

by setting"

+
= 2" mp® Z (nemn)

Q
"
D
-
c
[}
~N
-
(=
]

~ .
with a prime p and Q = Q‘p an algebraically closed complete extension of the field

of the p-adic numbers Qp . The integral then is based on the following canonical

representative system of Q/Un
m-1 n
= L] .
(2) Rm’n j_L=J0 (Rn +ip) ,

n-1 .
i
R-{Z biplosbi<p,n>r,rezf.

i=r
As the functions f which we want to integrate are defined on (or can be exten-

ded to) compact open subsets K of Qp , we define the m-th p-adic integral of f

on K to be

(m)
(3) ij f(u)du = lim —=— £(x)

n—o m" x€R MK

provided the limit exists in QIP (in which case f is called m-integrable on K). In
the case m=1 we speak of ordinary p-adic integral

(4) ff(u)du- 1im _}_ f(x)
K

n —® pn xeRnﬂK

and integrable functions on K, evidently this case can be subsumed under 1., also

K ¥
by ta.klngG=QP . Un=pn Zp and R = (Rn)n»O .

It can be shown easily that m-th integration can be reduced to ordinary inte-

gration :
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Theorem 1.

Let f : Zp - Qp be a function on the p-adic integers, m € W. If the m

functions g,l(u) = f(mu+i) (i=0,...,m-1) are integrable on Zp , then f is m-inte-

grable on K, and the following equation holds :

(m) m-1
(5) [ fwau =1 )" f £(muti)du.
Z
P

4 1=0
P

Thus it is sufficient to investigate the properties of the -ordinary p-adic

integral. First we note the transformation properties :

Theorem 2.

Let P=1p Zp be the prime ideal of Zp

a) If f : p* ——»QP (t € 2) is _integrable on 20 then

(6) ft f(u)du = l{ f f(ptu)du.
P P Zp ’

b) Let 2,m be integers with £ < m. If a function f : zP --’QP is.differen—

tiable in all integers i with Lsi<m, and if f(utr) is integrable on Z for some
r (£¢rém), then f(u+j) is integrable on Zp for a1l £¢j<m, and the followmg
eguatlon holds :

(1 ﬁ f(u+m)du=/ futh)au + - £1(i).
P ZP 1=

The last property gives a weak translation-invariance of the integral, if the

functions are differentiable in all rational integers with vanishing derivative.

The main results are the following two -theorems:
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Theorem 3.

All locally - analytic p-adic functions on compact open sets K € QP are

integrable. In particular Laurent-series

o
~
(8) £=) o X (s €Q)
k=—0 k k b
converging on a circle [u| = p_t (t € 2) can be integrated termwise :

< x
(9) f . f(u)du = -Z & / 4 W odu.
lui=p k=-o lui=p

The p-adic numbers

k .
j —t u  du (k € 2)
| =p
involved in the series are essentially the generalized ordinary p-Bernoulli numbers
(see part B!). This theorem relies heavily on the following estimation of the in-
tegral.

Following Schdbe [8} we define an ultranorm on the space Ly of all Laurent-—

series (8) converging on |u|=p_t (t € 2) by
-kt
Nell _y = sup la,l p 77 5
P keZ

then Lt is a Banach-space.

Theorem 4.

For all functions f € Lt there holds the estimation

(10) ljlul;P_t f(u)au| ¢ p

Hence the integral on |u|=p“t is a continuous linear functional on the Banach-

Space Lt

t+1
el _y -
P

Moreover, for power series which converge on Pt one has the following approxi-

mation of the integral by the Riemann sums
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(11) f £(u)du - —- f(x) ¢ p2BHIT g
, Pt pn xGRng_Pt p-—t

B. Applications.

1. Generalized Bernoulli numbers

Leopoldt's Bernoulli numbers introduced in [6] can be written with the aid of
the m—-th integral : For each congruence character X with conductor mL the k-th

Leopoldt-Bernoulli number can be defined by

(hm, )
(12) Bi =/ x x () of du (k »0) ,
Z

P
where h is an arbitrary natural number. Here the function X is extended to a func-

tion on ZP by setting X(x) = 0, if (x,mx) #1orxé€ zp\,z.

Modified p-Leopoldt-Bernoulli numbers can also be obtained for negative inte-

gers by the definition

(13) B}z,k =j(ﬁl). x(u) u* au (k e 2) ,
ha

1=1
where Tn'x' = [mx,q] with @ = p or 4 according top # 2 or p = 2. For k > O fhey are
essentially the Leopoldt-Bernoulli numbers :
(14) 3K = (- x(p) P71 B (k 5 0).

For all k € Z one has the p-adic series

[
Dok _ ky k-5 _s,— ys-1
(15) B2 SZ;O () 57° 8°m,)
with -1
Elz 5= X (r) =8

=1
(r,p)=1

and the ordinary Bernoulli numbers

Using the -properties of the integral, especially the analogue of theorem L4 for

the m-th integral, one can derive the Staudt-Clausen theorem and the Kummer con-
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gruences for these numbers.

If X =& is the principal character, we obtain modified ordinary p-Bernoulli

pPok =f o au (k € 2).
lul=1

For k » O they are essentially the ordinary Bernoulli numbers

numbers by

BPoE = (1p7T) BX

1-p
For all k € Z these numbers have the following p-adic series
kK _ &k, k-s _s _s-1
BP =) (D ETS 8%

S

1]
O

with

el
[
-

k-s

E k-s

r € Zp ne.

e
1]
—

As mentioned in theorem 3 the p-Bernoulli numbers occur in explicit integra-—

tion of Laurent-series (8)

. 00
(16) f —t f(u) du =3 2, pt(k_1.) L
lul=p k=-u

It may be mentioned that a lot of arithmetical identities involving Bernoulli

numbers can be derived by using the properties of the p-adic integral.

2. Special functions

Using the m—th p-adic integral‘we succeed in defining many - well known and
new - functions; only a selection can be given here.
a) The logarithm

Leopoldt's definition of the logarithm [7] as the limit

n

. = s 1D N .
log h = nl_lin_mpn (b 1) (h e Qp 3Ih=11¢ 1)

can also be written as a m-th integral

(m)

(17) log h = (h—1)j n" au for all m € N.
2
5 ,

All properties of log can then easily be derived from this presentation.
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b) Bernoulli power series

Bernoulli polynomials and - power series belonging to a congruence character X

with zonductor mx can be defined by

(m_)
B;(z) =j X (u) (urz)® au (n € N) ,
2

(18) (m_) s
B (z,s) =/ * X (u) (1+zu)® 4qu ,
xX z

P
the latter function being defined for z,s € 6p with
_
-1 .
lzl< » P70, isigt.

We obtain a relation between the two functions for all n € N and z # O by

5
(o]

Aﬂ
-

(19) Bx(z,n) =z B(;

There are many functional equations, for instance

B (z,8) = (1-2)° B3, 8)

(20) BX.(Z’S) =A(-1) B%(—z,s) for Xx. # £,

where & denotes the principal character.
Furthermore it can be shown
Theorem 5. The mapping
zZ —2>7z B
&
~
is an automorphism of the unit circle Yz| ¢ 1 in 61) for all parameters t € Q_ ,

(tZ,S)

P
s € ap , fullfilling the conditions
1
lelcp P gsign.

c.  Leopoldt L-functions
T. Kubota and H.W., Leopoldt [5] discovered a p-adic L-function belonging to a

character X with a conductor m . Following [S] we represent a p-adic unit u in

the form

Z
u=0(u) ¢u> with cus €(1+4q) ¥
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and a character @) of order p-1(resp.2) and conductor q, where q=p or 4 according

top#2orp=2.
With the projection <u) on the 1-units the L-function can be written as

(m,)

1 X 1-
(21) L(s,X) = =% X(u) cu> ° au (p # 2) ,
ful=1
where EX, = [mk,q] . For p = 2 this definition has to be modified slightly.

Many properties of these functions can be obtained by the corresponding pro-

perties of the integral, for instance the determination of the values at the ra-

tional integer points s = 1 -k # 1, k = 0 mod p-1
Bi:k
(22) L(1-k,%x) = - %

where Bi’k are the modified p-Leopoldt-Bernoulli numbers.
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