Andrzej Proszyński

Some functors related to polynomial theory. II

Mémoires de la S. M. F., tome 59 (1979), p. 125-129

<http://www.numdam.org/item?id=MSMF_1979__59__125_0>
SOME FUNCTORS RELATED TO POLYNOMIAL THEORY, II

by

Andrzej PRÓSZYŃSKI

1. Introduction. We consider the following natural transformation:

$$T^m : \mathcal{P}_R^m(X,Y) \to \text{Map}(X,Y), \quad T^m(f) = f^R$$

where R denotes a commutative ring with 1, X,Y – R-modules, and $\mathcal{P}_R^m(X,Y)$ is the R-module of all forms of degree m on the pair (X,Y) (in the sense of N.Roby [2]).

An element of $\mathcal{P}_R^m(X,Y)$ is a system $f=(f_A)$ indexed by all commutative R-algebras A, where $f_A : X \otimes A \to Y \otimes A$ are mappings satisfying the following conditions:

(i) $(1 \otimes u)f_A = f_B (1 \otimes u)$ for any R-algebra homomorphism $u : A \to B$,

(ii) $f_A(xa) = f_A(x)a^m$ for any R-algebra A, any $x \in X \otimes A$ and $a \in A$.

It is proved in [1] that in the case $X = R^n$, $Y = R$ we obtain:

$$T^m : R[T_1, \ldots, T_n] \to \text{Map}(R^n, R), \quad T^m(f)(x_1, \ldots, x_n) = f(x_1, \ldots, x_n).$$

It is well-known that the above homomorphism is not always injective; this is the starting point and the motivation of the following considerations.

It is known from [2] that the functor $\mathcal{P}_R^m(x, -)$ is represented by the m-th divided power $\mathcal{P}_R^m(x)$ of the module X. Similarly, it is proved in [1] that $\mathcal{P}_R^m(x, -) = \text{Ker} \ T^m$ is represented by $\mathcal{P}_R^m(x)$ where:

$$\mathcal{P}_R^m(x) = \mathcal{P}_R^m(x) / R\{x(m); x \in x\}.$$

The above module is generated by the classes of elements:

$$\mathcal{V}_{m_1, \ldots, m_k}(x_1, \ldots, x_k) = x_1^{m_1} \ldots x_k^{m_k}, \quad m_i \geq 0, \quad m_1 + \ldots + m_k = m, \quad x_1, \ldots, x_k \in x,$$

which are denoted by $\mathcal{V}_{m_1, \ldots, m_k}(x_1, \ldots, x_k)$.

It is easy to see that \mathcal{P}_R^m is an endo-functor of the category R-Mod.

We recall the following results contained in [1]:

Lemma 1.1. \mathcal{P}_R^m commutes with direct limits.

Lemma 1.2. $\mathcal{P}_R^m(x)$ is finitely generated if so is x.

Theorem 1.3. There exist the natural isomorphisms:
Theorem 1.4. For a finitely generated R-module X, the following conditions are equivalent:

(i) $\hat{F}_R^m(X)_P = 0$

(ii) $\hat{F}_R^m(X)_P = 0$ for any $P \in \text{Max}(R)$

(iii) For any $P \in \text{Max}(R)$: either $\dim_{R/P}(X/PX) \leq 1$ or $m \leq |R/P|$. In particular, $\hat{F}_R^m = 0$ iff $m \leq \inf \{|R/P| : P \in \text{Max}(R)\}$.

2. The structure of $\hat{F}_R^m(X)$. We shall give some structural informations on $\hat{F}_R^m(X)$ which generalize results contained in [1]. The first step is the following

Lemma 2.1. If $P \in \text{Spec}(R) - \text{Max}(R)$ then $\hat{F}_R^m(X) = 0$ for any R-module X.
Moreover, if X is finitely generated then $\text{Ann}(\hat{F}_R^m(X)) \neq P$.

Proof: Observe that R/P is an infinite domain (it is not a field!) and hence $d(R/P) = \infty$. It follows from Theorem 1.3 and 1.4 that $\hat{F}_R^m(X)_P = \hat{F}_R^m(X)_P = 0$. Then the second part of the lemma follows from Lemma 1.2.

Corollary 2.2. If $\dim(R) > 0$ then:

(1) $\hat{F}_R^m(X)$ are torsion modules.

(2) $\hat{F}_R^m(X)$ is free iff it is zero.

If $\dim(R) > 0$ then:

(3) $\hat{F}_R^m(X)$ is projective iff it is zero.

Now we explain the structure of $\hat{F}_R^m(X)$ over Noetherian rings.

Theorem 2.3. Let R be a Noetherian ring and let X be a finitely generated R-module. Then there exists a natural R-isomorphism:

$$\hat{F}_R^m(X) \cong \bigoplus_{P \in \text{Max}(R)} \hat{F}_R^m(R/P)_P^k(P_{k}(X/PX)),$$

induced by $X \rightarrow X/P_{k}(X/PX)$, for all sufficiently large k_P.

Proof: We can assume that $\text{Ann}(\hat{F}_R^m(X)) \neq R$. Let $\text{Ann}(\hat{F}_R^m(X)) = \cap_{i=1}^s Q_i$ be a primary decomposition, and let $P_i = \text{rad}(Q_i)$. Observe that $P_i \subseteq Q_i$ for all sufficiently large k_i. Denote $I = P_1 \ldots P_s \subseteq \text{Ann}(\hat{F}_R^m(X))$. Since $P_1, \ldots, P_s \in \text{Max}(R)$ by Lemma 2.1, it follows that $R/I \cong R/P_{k_i}^i$ and hence:
Functors related to polynomial theory

\[\mathcal{P}_R^m(X) = \mathcal{P}_R^m(X) / \mathcal{P}_R^m(\text{X/IX}) = s \mathcal{P}_R^m(\text{X/F}_1^k \text{X}) \]

If \(P \in \text{Max}(R) - \{P_1, \ldots, P_s\} \) then \(I + P^k = R \) for each natural \(k \), and hence:

\[\mathcal{P}_R^m(\text{X/F}_1^k \text{X}) = \mathcal{P}_R^m(\text{X}) / P^k \mathcal{P}_R^m(\text{X}) = 0. \]

This completes the proof.

Corollary 2.4. If \(R \) is a Noetherian ring then there exists a natural \(R \)-isomorphism

\[\mathcal{P}_R^m(\text{X}) \cong \bigoplus_{P \in \text{Max}(R)} \mathcal{P}_P^m(\text{X}_P) \]

induced by \(X \to X_P \).

Proof: Compare the decompositions from Theorem 2.3 for \(X \) and \(X_P \) in the case if \(X \) is finitely generated. Next apply Lemma 1.1.

The same argument prove the following

Corollary 2.5. If \(R \) is a local Noetherian ring then there exists a natural \(R \)-isomorphism:

\[\mathcal{P}_R^m(\text{X}) \cong \mathcal{P}_R(\text{X} \otimes \hat{R}) \]

induced by \(X \to X \otimes \hat{R} \).

Observe that the above two corollaries reduce the computation of \(\mathcal{P}_R^m(\text{X}) \) for Noetherian \(R \) to the case when \(R \) is local and complete. Theorem 2.3 reduces this problem (for finitely generated \(X \)) to the case when \(R \) is local Artinian. This case will be studied in the next section.

3. The Artinian case. Let \((R, \mathfrak{p})\) be an Artinian local ring. Then \(\mathfrak{p}^k = 0 \) for some natural \(k \). Observe that \(r^2 = 0 \) for any \(r \in \mathfrak{p}^{k-1} \) (if \(k > 1 \)). This is the motivation of the following.

Proposition 3.1. If \(r^2 = 0 \) in \(R \) and \(m \leq 5 \) then \(\mathcal{P}_R^m(\text{X}) = 0 \) for any \(R \)-module \(\text{X} \).

Proof: To start with, we give some general formulas. It follows from [1] that:

\[\sum_{\substack{m_1 > 0 \ \text{m}_1 \ldots, \text{m}_n \ (x_1, \ldots, x_n) = 0 \ \text{for any} \ x_1, \ldots, x_n \in \text{X}.}} \]

Denote \(/\text{m}_1, \ldots, \text{m}_n/ = \sum_{\substack{m_1 > 0 \ \text{m}_1 \ldots, \text{m}_n \ (x_1, \ldots, x_n) \ \text{for} \ m_1 > 0, \ \sum \text{m}_1 = \text{m}} \). We must prove that \(r \) annihilates all this generators. We have:

1. \(\Sigma /\text{m}_1, \ldots, \text{m}_n/ = 0. \)

Replacing \(x_1 \) by \(rx_1 \) and \((1+r)x_1\) we get:

2. \(r\Sigma /\text{m}_1, \ldots, \text{m}_n/ = 0 \)

(2') \(\Sigma (1+rm_1)/\text{m}_1, \ldots, \text{m}_n/ = 0 \)
since \(r^2 = 0 \) and \((1+r)^k = 1+kr\). In view of (1) and (2) we get from (2') :

\[
(3) \quad r \in \bigcap_{k=3}^{m-n+1} \frac{k}{k-2} \Gamma /k,m_1,m_2,\ldots, m_n/ = 0.
\]

In particular, it follows that :

(a) \(r/1,\ldots, 1/= 0 \) by (1) (n=m)
(b) \(r/2,1,\ldots, 1/= 0 \) by (1) and (2) (n=m-1)
(c) \(r/3,1,\ldots, 1/= 0 \) by (2) (n=m-2)
(d) \(r/1,m-1/= 0 \) by (2) (n=2).

For \(m \leq 2 \) there is nothing to prove. For \(m=3 \) we utilize (a),(b). For \(m=4 \) we get
\[
r/3,1/= r/1,3/= r/2,1,1/= r/1,2,1/= r/1,1,2/= r/1,1,1,1/= 0.
\]
Hence also
\[
r/2,2/= 0 \quad \text{by (1)}.
\]
For \(m=5 \) we have
\[
r/1,4/= r/3,1,1/= r/2,1,1,1/= r/1,1,1,1,1/= 0 \quad \text{and analogously for any permutation. Then (2) and (3) get us}
\[
r/1,2,2/= r/3,2/= 0.
\]
This completes the proof.

Remark 3.2. Using the same formulas (when we also replace \(x_1 \) by \(-x_1\)) we can prove the above proposition for \(m \leq 7 \) with the assumption that \(2 \) is invertible in \(R \).

Corollary 3.3. Let \(R \) be a Noetherian ring and \(m \geq 5 \) (or \(m \geq 7 \) and \(2 \) is invertible in \(R \)). Then there exists a natural \(R \)-isomorphism :

\[
\mathcal{C}^m_R(X) \cong \bigoplus_{P \in \text{Max}(R)} \mathcal{C}^m_{R/P}(X/PX)
\]

induced by \(X \to X/PX \).

Proof : It can be assumed that \(X \) is finitely generated. In view of Theorem 2.3, it suffices to prove that \(\mathcal{C}^m_R(X) \cong \mathcal{C}^m_{R/P}(X/PX) \) for any Artinian local \((R,P)\).

If \(P^k = 0, P^{k-1} \neq 0 \) and \(k > 1 \) (i.e. \(R \) is not a field) then :

\[
\mathcal{C}^m_R(X) = \mathcal{C}^m_R(X) / P^{k-1}\mathcal{C}^m_R(X) \cong \mathcal{C}^m_{R/P}(X/P^{k-1}X)
\]

by Proposition 3.1 and Remark 3.2. Induction on \(k \) completes the proof.

Remark 3.4. The assumptions of the above corollary are necessary. In fact, it can be computed that :

\[
\mathcal{C}^6_R(z_4^2) = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_4, \quad \mathcal{C}^6_R(z_9^2) = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_9.
\]

Remark 3.5. Since the dimensions of \(\mathcal{C}^m_R(X) \) over fields are known (see [1]),

Corollary 3.3 solves the problem of computation of \(\mathcal{C}^m_R(X) \) over Noetherian rings for small \(m \). For example, it can be proved that :

\[
\mathcal{C}^2_R(z^n) = \binom{n}{2} Z_2
\]
\[
\mathcal{C}^3_R(z^n) = 2^{\binom{n+1}{3}} Z_2 \oplus \binom{n}{2} Z_3
\]
\[\mathcal{F}_n^5(z^n) = (3 \binom{n}{2} + 5 \binom{n}{3} + 3 \binom{n}{4})z_2 \otimes 2^{\binom{n+1}{3}}z_3 \]

where \(\binom{n}{k} = 0 \) for \(n < k \). However, the problem is open for large \(m \).

REFERENCES
