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LECTURES ON MINIMAL MODELS

S. HALPERIN






INTRODUCTION

Algebraic topology has, classically, meant the study of algebraic
invariants associated with topological spaces. These invariants (homology,
homotopy,...) are normally not 'geometric" in the sense that one cannot
recover a space from them.

Although there is still no satisfactory algebraic description of
homotopy theory (over 2), the rational homotopy theory of Quillen and Sullivan
18 a practical and complete solution - if one is willing to forget torsion.
Here one models the homotopy category by the category of commutative graded
differential algebras (c.g.d.a.'s). Then to each c.g.d.a. one associates a
"minimal model" with the property that if two c.g.d.a.'s are connected by a
homomorphism which is an isomorphism of cohomology then the minimal models
are isomorphic.

The process space + c.g.d.a. + minimal model gives the minimal
model of a space. Its isomorphism class is an invariant of the weak homotopy
type of the space, S. Moreover, if S is a l-connected CW complex of finite

type then from the model one can recover a space S, and a continuous map

Q
S + S, which induces isomorphisms ﬂi(S) e Q= "i(sQ)°

Q

Minimal models have proved to be a powerful tool in the solution
of geometric problems. While the fact that one can indeed recover SQ from
the model is undoubtedly the philosophic reason for the power of the machine,
this fact plays little direct role in the applications. Rather the two key
ingredients turn out to be:

(a) A detailed understanding of the algebraic behaviour

of the models, and

(b) A dictionary from classical topological invariants

to invariants of the models.



S. HALPERIN

My aim in these notes has been to provide a self-contained refer-
ence for many of the basic theorems needed for (a) and (b), in which complete,
formal proofs were given down to the last technical detail. I have also tried
to make the hypotheses as weak as possible and the conclusions as strong as
possible. While this approach tends to make for difficult reading, it does
(or so I hope!) result in a safely quoteable source for those whose main
interest is the applications.

For the sake of completeness I have also included (with proofs!)
many well known results and definitions (eg. simplicial sets in chap. 12,
ﬂl(M)-nodules in chap. 16 and Serre fibrations in chap. 19). In fact, the
only prerequisite is some multilinear algebra and a little basic topology.

The material presented here divides naturally into three parts.

The first (chaps. 1 to 11) is pure differential algebra: suppose
n: (B,dn) - (E'dE)

is a homomorphism of c.g.d.a.'s (over a field k of characteristic zero).
Assume HO(B) = HO(E) = k, and B is augmented.

Then there is a commutative diagram of c.g.d.a. homomorphisms
(E.dg)

v

(8.dp)

(B & XX,d) —— (I\X,dA)

in which:
i) V¥* is an isomorphism.
ii) M is the free commutative graded algebra over the graded
space X

i41) A certain '"nilpotence-type" condition and a certain minimality
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condition (cf. chap. 1) are satisfied by d.
Moreover the bottom row is uniquely determined (up to isomorphism).
The diagram above is called the minimal model for n (cf. chap. 6).

When B = k we have simply
P (AX,d) + (B,d)

it is called the minimal model for (E,dE).

The second part of the theory is a functor M VwW— (A(M),d) from
topological spaces to c.g.d.a.'s (over k) such that H(A(M)) is naturally
isomorphic with the singular cohomology H(M ; k). This is described in
chaps. 13 to 15. The minimal model of (A(M),d) is called the minimal model
for M.

The third part is the study of fibrations (chaps. 16 to 20).
Suppose F L—’ E SN B is a Serre fibration in which F, E, B are path
connected. Then we can form the model of A(T) : A(B) + A(E), obtaining

the commutative diagram:

A(T) A(3)
A(B) A(E) A(F)

AX

A(B) A(B) ® AX

in which Y* is an isomorphism. The fundamental theorem of this part reads
20.3. - Theorem. Assume that .
i) Either H(B ; k) or H(F ; k) has finite type.
i1) 'nl(B) acts nilpotently in each HP(F ; k).
Then a* is an isomorphism, and so a : AX + A(F) is the minimal

model for F.
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This theorem was proved first by.P. Grivel [G] in the case B is
l-connected. Another proof was given independently a little later by J.C.
Thomas (unpublished), again for the case B is l-connected. The proof given
in these notes follows the general idea of Grivel's proof, but the techni-
calities are substantially more complex. In particular, heavy use is made
of the notion of "local system over a simplicial set" (chap. 12) which is a
simplicial analogue of a sheaf.

Let AX + A(M) be the minimal model (over Q) of a path connected

space M. There are obvious linear maps
xP -+ Homy(m () ; €), P22,

Using theorem 20.3 it is easy to deduce the
Theorem. - Assume that
i) Each ﬂp(H) ® Q is a nilpotent finite dimensional nl(H) module
for p 2 2).
1i) The minimal model for K(nl(M) ; 1) has generators only in
degree 1.
Then the linear maps D S Homz(ﬂp(n) s Q, p 2 2, are isomorphisms.

I had originally planned to include this and other applications,
but ran out of time. They will appear elsewhere.

The theory of minimal models is due to Dennis Sullivan, and his
paper "Infinitesimal Computations in Topology" [S] is the fundamental work
on the subject. Indeed the first two parts of these notes (chaps. 1 to 11
and 13 to 15) follow [S] very closely.

The reader who makes this comparison will discover that aside from
the occasional modification in the assertions of [S]) I have frequently merely
expanded the ideas there into formal proofs. (One exception is 'de Rham's

theoren" in chap. 14 whose proof is based on that of Chris Watkiss (W]; another
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version of this proof is given by Cartan [C]. Othet proofs abound in the
literature.) Of course the overlap of these notes with [S] covers only part
of [S]. I haven't touched solvable models, let alone the latter half of [S].

Another approach to minimal models is via localizations and
Postnikov towers. If M is a nilpotent space it can be localized to produce
a rational space HQ The data which define the Postnikov decomposition of
b& are exactly the data which define the minimal model of M, and so it
follows that the minimal model of M determines its rational homotopy type.
The theorem above on homotopy groups follows at once, at least for nilpotent
spaces. This approach is that of Friedlander et al. [F] and Lehmann [L2].
The resumé by Lehmann [Lll is particularly elegant and readable.

A different approach is taken by Bousfield and Gugenheim [B-G] who
provide a complete exposition in the context of the closed model categories
of Quillen. Other expositions (eg. [W-T]) are also available.

At least two other algebraic categories have been successfully used
to model rational homotopy theory: the iterated integrals of Chen [Ch] and
the category of graded differential Lie algebras. In the latter category
the notion of minimal model was introduced by Baues and Lemaire [B-L].

The recent book of Tanré [Ta) provides a clear description of the
relation between these categories and goes very much further than the present
notes in describing topological invariants in terms of the model.

These notes are a greatly expanded version of lectures I gave at
Lille in 1976 and 1977 in the seminar on algebraic topology and differential
geometry. They first appeared in 1977 in the Publications Intermes of the
U.E.R. de Mathématiques, Université de Lille I and are presented here unchanged,
except for changes to the introduction.

The seminar discussions were, naturally, enormously helpful - I

want particularly tomention Daniel Lehmann and Chris Watkiss. My thanks also
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g0 to Mmes Tatti and Bérat for their careful typing of the manuscript, and
to the Université de Lille I, whose hospitality made the whole thing possible.
It is a great pleasure to be able, now, to say thank you to my Lille colleagues
not only for their hospitality that year, but for all the subsequent years as
well.

Finally, I should like to take this opportunity to express my warm
gratitude to my teacher, friend and colleague Werner Greub from whom I first

learned about commutative graded differential algebras and Koszul complexes.

July 1983
University of Toronto
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Chapter 0

Notation and conventions

All vector spaces, algebras, multilinear operations, ... in these notes
are defined over a fixed field k of characteristic zero. Occasionally we
specify k = Q, R or C.

All algebras are associative, and have an identity, 1, which is preser—
ved by homomorphisms.

By a graded vector space ve mean 1 direct sum V = IP>° w (note

that the sum is over the non negative integers). We write v . zp>0 v,

Elements of V° are homogeneous of degree p. V has finite type if each

VP has finite dimension. If W is a second graded space then a linear map

¥ : V+W has degree r if ﬂ(VP) C HP", p 2 0.

20
An augmentation of A is a homomorphism ¢

A graded algebra A = £P> AP is one which satisfies AP.A%C AP*e,

+
Al A + k such that cA(A ) = 0.

A derivation of degree p in A 1is a linear map, 6, of degree p such that

0(ab) = e(n).b*(-l)Pq..G(b). ac Aq, b e A. A is called n-connected if

A =k and AP = 0, 1 £ p ¢« n. By a homomorphism of graded algebras we

mean a homomorphism of degree zero. A homomorphism ¢ : (A.:A) - (B.en) of
augmented graded algebras satisfies LN :36.

A homomorphism of graded algebras is called n-regular if it is an
isomorphism in degrees < n and injective in degree n. The tensor product
of graded algebras A and B is the graded algebra A ® B with product

a €A
@ob).(a 0b) = (<D an' 0>t , PEF
a' e Al

b' e B .
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A commutative graded algebra (c.g.a.), A, is one which satisfies
ab = (-l)qua, acAP, beal.1f Y:C>A and y: C~+ B are homomor-
phisms of c.g.a.'s the elements ayP(x) 8 b -~ a2 @ Y(x)b (a € A, x ¢ C,
b € B) span a graded subspace 1 C A @ B. In fact I 1is an ideal and we

write

AOCB-(AOB)/I H

it is again a c.g.a.

A graded differential algebra is a graded algebra A together
with a derivation dA of degree 1 such that di = 0. The spaces ker dA’
Im dA are called the cocycle and coboundary spaces and the graded algebra

H(A,dA) = ker dA/Im dA

is called the cohomology algebra. It is sometimes written H(A). A homomor-
phism ¢ : (A'dA) - (B’dB) of g.d.a.'s is a homomorphism of graded algebras
which satisfies 0dA - dnﬁ. It induces a homomorphism of cohomology algebras,

written
¢ B - H(B).

1f 0’ is an isomorphism we sometimes write ¢ : (A’dA) — (B,dB).
(Note that { v~ 0. is a covariant functor !).

A is called acyclic if H(A) = k. An ideal JC A (which is dA
stable) is called acyclic if H(J) = O.

The tensor product of g.d.a.'s A and B is again a g.d.a. with
- -nP P
dAOB(' 8 b) dAa @b+ (-1)" a @ de R aeA, beB.

Multiplication defines an isomorphism H(A ® B) = H(A) @ H(B).

10
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If (A,dA) is a g.d.a. and A is a c.g.a. then (A.dA) is called
a commutative graded differential algebra (c.g.d.a.). If C+ A and C + B

are c.g.d.a. homomorphisms then A Oc B is naturally a c.g.d.a.,

1






Chapter 1

KS-extensions

1.1.- Definitions.- Let X be a graded space. AX will denote the

free graded commutative algebra over X :

even

AX = Exterior algebra (XOdd) ® Symmetric algebra (X )

(Akx)" is the subspace generated by x, Ao A X with zi deg X, =P

we say the elements in (I\)()p have degree p.

Let A —— k be an augmented graded algebra. We define a graded

space Q(A) = 2P>OQP(A) (also written Q) by
Q(A) = ker e/ker e.ker € ;

it is the space of indecomposables of A. We denote the canonical projection

(of graded spaces) by CA : ker € » Q(A).

An extension is a sequence of augmented c.g.d.a.'s
. i 0
€ : (B’dB) —_— (C.dc) —_— (A’dA)

such that i and p preserve the augmentations and

i) A = AX for some graded subspace X C A, and A'X is the
augmentation ideal.

ii) There is a commutative diagram of algebra homomorphisms

(1.1") B fl=

13
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where f is an isomorphism and € is the augmentation for B. (We make no
requirement about how f behaves with the differentials). Note that
f(ker ¢ ® A+ B @ A*x) is the augmentation ideal for C.

We call the c.g.d.a.'s (B,dB), (C,dc) and (A,dA) the base;

total space, and fibre of the extension.

The above definition involves the existence of two "non~canonical
objects", namely X and f£f. The extension E, together with (X,f) will

be called a structured extension. We often use the structure to identify

C with B ® A. In this case the elements b ® 1 (= i(b)) and 1 8 a

(=£(1 ® a)) will often be denoted simply by b and by a.

An extension is called elementary if there is a structure (X,f)

such that
(1.2) dc(x)c B.

Suppose {xa) is an ordered homogeneous basis for X. Then we will

ael

write A(“ and Asu for the subalgebras generated by the Xg with 8 < a

(resp. B s a). Note that
(1.3) A A 6 Axa N
the isomorphism being multiplication in Asa'

An extension E is called a Koszul-Sullivan ( KS) extension if it

admits a structure (X,f) and a homogeneous basis {x !

olael of X, indexed by

a well-ordered set I such that

(1.4.) dC(xu) € B @ A<a' ae I.

An extension € is called positive if A is connected : ()(-):p)I xP).
A KS-extension £ is called minimal if there is a structure

(X,f) and a well ordered homogeneous basis {x for X such that

}
a‘ael

14
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deg x_, < deg X, => 8 < a, and such that (1.4) holds.

B
If B =k we replace "extension" by “complex" in the definitionms,

obtaining KS-complex, minimal KS-complex.

1.5.- Remanks.-
1) If B+ C~-+ A is a KS extension (resp. minimal KS)
then A is a KS complex (resp. minimal KS).

2)A KS-extension is a generalized sequence of elementary extensions.

Finally, a morphism between two extensions is a commutative diagram

B' c' A'

of homomorphisms of augmented c.g.d.a.'s ; it is written (¥,¥,a) : E + E'.

1.6.- Example.- contractible extensions.

A contractible KS extension B + C + A is one which admits a struc-

ture (X,f) and a decomposition X = )(l ® Xz such that

Thus we can write

C=B8#6 (I\}(l OAXZ)

dc'dBO\#w OdA

B
(uBb - (-l)pb. be BP) and (A'dA) is the free c.g.d.a. generated by X‘.

The ideal J C C generated by )(l and X2 is acyclic :

.
H (J) =0

15
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and this shows that the projection C + B with kernel J induces an isomorphism
of cohomology inverse to i’.

If B =k we call C(=A) a contractible KS complex.

Suppose next that (X,f) 1is a structure for an extemsion

£ : B+ C- A, and that {x_}

wlael 18 2 well ordered homogeneous basis for X.

1.7.- Lemma.- Let ¥, € C be homogeneous elements such that

i) Py, = Xy
ii) Yo f(1 8 xa) € f(B @ A<u)' ae I.

Then a second structure (X,g) is defined by
g(l © xu) - yu.

Proof : A unique homomorphism g : B @ A+ C is defined by
g(b ® 1) = i(b) and g(l @ xu) =Yy Because of i) we have pog=1¢ 6 1 ;

it remains to show that g 1is an isomorphism.

Set ¥=f og. Then $(b 8 1) =b 8 1 and ii) implies that

(1.8) 01 e Xg) - 18x €BOA

We show now that § : B @ A‘Q —— B 6 A for all a.
If not there is a least a for which it fails ; since
B®A = lim B @ A _, we have

<a — <B

x
V: B6A ————BOA
<a <a

Write BO® A = (BO® A ) @ Ax and use (1.8) to complete the proof.
<a <a a

Q.E.D.

Consider next a morphism

(Vo#,1) ¢ (B' = C' - A) = (B~ C~A)

16
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between A-extensions £' and E. Assume that E' and £ admit structures

~
(X,f') and (X,f) and that {xu}aez is a well ordered homogeneous basis for

X such that :

. v ]
i) dc,f (190 xu) € B'® A<a

and
. ' v "
i) df'(1ex) - £(18x)ef(BOA,).
1.9.- Lemma.- With the hypotheses above :
i) There is a second structure (X,f) for E such that
' -
JE'(1 @ x )= £(1 8 x).
ii) With respect to this second structure E satisfies (1.4) and
¢ is givenby ¢ = y 0 1.
iii) If ¢ (resp. w.) is an isomorphism then { (resp. 0.) is an
isomorphism .
Proo
i) Define f by f (1 8 xu) - Pf'(1 @ xa). Then
- ' -« p'f' -
pf(1 @ x ) pdf' (1 @ x) =o'f (1ex)=x
and

N ~
£ @ x) - £(1 8 x) e £(BOA ).

It follows that (X,f) is a structure on £ (lemma 1.7).

ii) Note that

d f(1 8 x) = dcdf (1 ex)
- odc,f'(l 8 x,) ¢ ¥(B' @ A(u) Cf(BOA ).
iii) We may assume by i) and ii) that both E' and E satisfy equation

(1.4) with respect to (X,f') and (X,f), and that Y=y 0.

17
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Thus if ¢ 1is an isomorphism, so is . Now assume w' is an
isomorphism. It is enough to show that (¢ € 1) : B' @ A<a +B @ A<° induces
a cohomology isomorphism for each a. If not, let & be the least a for
which it fails. Since w. is an isomorphism and

B' @A = 1lim B' @ A ; BOA = 1limB 6 A ,

a direct limit argument shows that (¢ @ 1). : H(B' A<u) = H(B © A<u).

Set E'-B'OA«:, E-BOA“:, Y=y 81 :E'>E.

Then ¢y ® 1 : B' @ Asu + B 6 A<u can be identified with
Yy®1:E'"@®@Ax - E @O Ax .
a a

Moreover d'x € E', dx ¢ E.
a a

. e . j
Set F Ijsk E' @ Mx and F_ Ej‘k E® Ax.
Then E' @ Ax = lim F', E ® Ax = lim F, and so we need only
a —— k a — k

prove that (v @ 1" : H(F)) —S— H(F).
Define (for k = 0,1 when deg X, is odd and for all k when
deg x_ is even) projections Fi + E' (and F o~ E) by
k .

J o.06x) — ¢

j=0 3 k

Then we have the commutative row exact diagrams of differential

spaces
0— F_,— F, — E' — 0
lv (- I JY [ l Y
0—Ff_,— F —E —0
Now the 5-lemma, plus induction complete the proof. Q.E.D.

18
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1.10.- Pullbacks.- We consider now a KS-extension B~ C * A which
satisfies (1.4) for a structure (X,f) and a well ordered homogeneous basis

{xu)ucl for X. Suppose in addition that
|7 (B' 'd-Bt) — (B.dn)
is a homomorphism of augmented c.g.d.a.'s such that w. is an isomorphism.

1.11.- Proposition.- There is a KS-extension B' + C' + A and

a morphism (v,¥,1) : E' +E such that

i) €' admits a structure (X,f') such that
1
dC.(l ] xu) € B' ® A(q

and

¥(1 8 xa) -10 X, € B® A<u , ae I.
ii) ¢" is an isomorphism.

Proof.- We set C' = B' @ A, f' = 1. We have to construct d

1
and ¢ so that B' - c' S8, a

cl
is a sequence of c.g.d.a.'s and so that

Y is a morphism of extensions with i) holding.

We induct over I, as usual, starting off by setting ¥ =y in B’

and d., =d_, in B'. Now assume ¥ and d., are constructed in B' 8 A
C B c <a

so that ¢ and d satisfy i) for all B, B < a. Then by lemma 1.9,

c'
I " e H
¢ : H(B A(o) — H(B O A ).

But dc(l ) xa) is a dc-cocycle in B @ A(° . Thus there is a

d_,-cocycle ¢ ¢ B' 8 A<0 and aen element Q ¢ B @ A(0 such that

c'

19
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de(1 @ x ) = 9(8) - dn.

In particular, o, Qe A<a

Extend dc, and J to B'® Ay by setting
dc.(l [*] xa) = ¢ - dc,(l 8 o)

and
Jex) =186x + (-0 8o)).
Then i) holds by definition. Straightfoward calculations show that

n

of =¢' @1, u)dc, =d, ('@ 1) ody =d, o('® ).

The existence of dC' and ' in B' @ A now follows by

induction.

Finally, lemma 1.9. yields ii). Q.E.D.

to this structure and (X,f'), d7" vO 1 and

dc(l ] xu) e Beo A<u B dc,(l [*] xa) e B' @ A<tl

Proo{ :.Apply lemma 1.9. Q.E.D.

1.12. - E_x_a_m_RZ_e_.- Suppose E : B+ C+ A is a KS-extension,
and HO(B) = k and Hq(B) =0, 0<q<m (where we allow m = =).
Let B"c g" satisfy " e dB(Bm-]) « B® and define a sub. c.g.d.a.

BcoB by

-k, BY=0, o0« q < m, " - space just chosen
89 - Bq, q > m.

Then H'(B) = H'(B).

20
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Now we can apply the corollary to prop. 1.1l to obtain a structure

(X,f) on E such that
i) Bea is d -stable

ii) dc(l ] xu) c B#@ A(u

and
cas . = = -
iii) H (B8 A) —— H (B8 A).

This will be called a normalized structure for E.

1.13. - Corollary.- Assume H(B) is connected and let B,

(X,f) be as above. Then
(1.14) dc(nea)-xedAacs’eA, acA.

- +
Proo§.- The left hand side is in (B @ A)N ker o= B @ A.

Q.E.D.

1.15. - Conollany.- Assume H(B) 1is I-connected and let B,

(X,f) be as above. Then

1.16 - ¥ 3 )
( ) dc(l 0 a) 1 dA ae€ Lis2 B @A, acA

21



Chapten 2

Reduction to a minimal extension

2.1.~ Intwoduction.- In this chapter we consider a KS extension

E: B~ c—24 4

with augmentations €pr ¢ and €y We always assume HO(C) = k ; then

HO(B) = k as well. However, we do not suppose HO(A) = k.

Recall from (1.1) the projection Gyt ker €A Q(A). If (X,f)

is any structure for £ then N restricts to an isomorphism

L.t X —— Q(A).

A

Hence if ¢ € ker €, (-A*x) we may regard ¢ as a polynomial
with no constant te}m in the elements of X, and then CAO can be interpreted

as the "linear part" of ¢.

Observe that a differential Q(dA) is defined in Q(A) by
Q(dA)EA - EAdA .
The object of this chapter is to prove

2.2.- Tneorem.- There is a minimal KS extension
i ~
3 LY ~
A ~ A
and a contractible KS-complex R = AT @ AdT such that : if C@@ R and A @R
denote the tensor products (as augmented c.g.d.a.'s) then there is a

commutative diagram of homomorphisms of augmented c.g.d.a.'s

A A
p & 1 N

A ®
A

R
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in which the vertical arrows are isomorphisms.
2.3.- Conoflary.- ¢ induces an isomorphism
v =
Q(¥) : Q(A) ® Q(R) — Q(A).

2.4.- Corollany.- E is minimal if and only if Q(dA) =0; i.e., if
and only if Im dA consists of polynomials with no linear term.

In particular the isomorphism of cor. 2.3 induces an isomorphism
" H
Q(A) ———— H(Q(A).Q(dA))-

Proof.- 1f E is minimal it follows directly from the definitions
that Q(dA) = 0. Conversely, assume Q(dA) = 0. Then because Q(v) 1is an
isomorphism and R 1is a contractible complex we conclude that R = k and so
E is minimal.

Q.E.D.

The rest of the chapter is devoted to the proof of theorem 2.2.

2.5.- Conventions.- We fix a connected c.g.d.a. B C B such that
H(B) = H(B) (cf. example 1.12). By a normalized structure we shall always mean
normalized with respect to B.

If U= Ej>0 vl is a graded space, then we write

The spaces U)p, U<P. Usp are defined analogously. Note that AUsp is the
free c.g.a. on USP, while (AU)Sp is the subspace of AU of elements of
degree sp !

1f K is contained in an ordered set I then for a € I

, K are defined analogously.

K= lye K|y<al. K‘u, K>° sa

<
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2.6.- Lenma.- Suppose Q(dA) = 0. Let (X,f) be a normalized struc-
ture for £ satisfying (1.4) with respect to a well ordered homogeneous basis

{xu)uc1° Then if q = deg X

<q
2.7 dA x, € (AX )<a N ael.

p+1

Moreover if ¢ ¢ C (p20) is a dc-cocycle and

pd = les + ..+ Onxs + Y,
| n
where x € Xp+l, B, > ... >8 , and VY ¢ Axsp, then
Bi 1 n
¢ is a scalar : ¢ € k.

1 1

Proof.- We show first that (2.7) implies the rest of the lemma.

In view of (1.14) it does imply that
(2.8) d(1ex)cbe (Axs“)w , ael,

where q = deg X Hence B 8 AX®Y s dc-stable. q=0,1,...
Now we recall that B ® A~ B ® A induces a cohomology isomorphism,
and 50 ¢ =%+ d@, with $c¢BOA and RDcBOA Then ofe A’ C AXP,

which is dA-scable by (2.7). Thus dA° Qe Axsp. and so

ot = ) o.x_ +v , v e AxSP

We may thus, without loss of generality, assume that ¢ ¢ B @ A, and we do.
In view of (2.8) this implies that

dc(l 8 0d) = dc(l 8 od-0)
3 sp
€ dc(B 8 AX™T)

cB e Ax*P.

Again because of (2.8) we conclude from this that
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n
a (18 J o.x )eberxP
c : i’8,
i=] i
A degree calculation shows that each oi € Ax°, and so because

of (2.8)

=1 o .
dcoi € B 0 AX , i=1,...,n.

Let YC X be the subspace spanned by the xY » Y # Bl. Since Bi < Bl

(i > 1) we have dc(l ) Xg ) ¢ B @ AY. Together with the relations above,
i
this yields

dc(l e 01) . (1 e xB]) € B 0 AY.
In view of the isomorphism

Bo)/\x-iaemui/\xﬁ
1

we obtain dc(l ] Ol) = 0, and so 0‘ € k as desired.

It remains to prove (2.7). Assume it holds for all a <y, some Yy
with deg xY = q. Then dc(l ) xY) is a cocycle in B @ A<Y° Since (2.7) holds
for a < y we can apply the second half of the lemma to this cocycle. This gives

dAxY - odc(l ] xy) - Axa + z ¢.x + v,

18,
1 Bi<B‘ i

o £q
where X € k, oi € (AX )(Y,v € (AX )<Y .
Hence (since Q(dA) = 0)
0= Q(d)e,x = Achel + 1 (g0 g,x

8.<8

8. ’
171 i

It follows that ) = 0. Hence 02 is a scalar and so zero. In this way we find

all the oi are zero @

<
d.x = ye (AX %<y .
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Again consider the KS extension E. Choose a normalized structure
(X,f) satisfying (1.4) with respect to a well ordered homogeneous basis
{xa}acl' It is easy to arrange that the following condition hold as well :

There is a disjoint decomposition I = J UJ'UVU H and a bijection

/. 3+ 3 such that

Q(dA)CA X, =G, X s aeJ

(2.9) and
’
Q(d)z, x =0 , aeJ UH
Note that necessarily a' <a, ae€ J.

Ve shall assume henceforth that (2.9) holds.

2.10.- Lemma.- There are elements z € ker €c (a € 1) such that
i)z -18x eBOaA .
a a <a

ii) (A Pz = CA X, .

iii) If a ¢ J then dcza is in the subalgebra generated by
<
- S,
B e A<a (deg z = pa).

(iv) If o € J then dczu -z is in the subalgebra Eu defined as
<p
. = a
follows : Ec is generated by B @ A<° (pc = deg za) and by the

elements zB such that deg zB = p°¢l and B < a', and by the

with 8 ¢ J

elements ze, dczB <«

Proof.- We assume zY has been constructed for y < a and cons-

truct z . First note that if we change the definition of xg to oz, and

if we change the definition of f(l 8 xB) to f£(1 © xe) =z, (8 < a) then we

obtain a new structure (X,f) and basis {x_! for X which still satisfy

Y vel
(1.4.) cf. lemma 1.7.
Moreover, the algebras A, are unaffected by this change, as
are the algebras generated by Ais . Finally, it follows from ii) that the
elements cA xY are also unchanged, and so (2.9) remains valid, as does the

statement of the lemma for y < a .
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Thus without loss of generality we may assume that

(2.11) zg=168x B<a ,

and we make this assumption henceforth.

Now write (J(a)’ = {8’ € J'/8 < a}. Then (J(a)’ c J:a , but equality
. . / . .
may fail. Let K be the complement of J<u V] (J«:) in l<a :

[
1 -JGU(J(Q) v K.

<a <
Let Y and U be graded spaces with bases (yY}YCK and

(uY}YCJ(u such that deg v, " deg x, and deg u, = deg L

Let A(U @ dU) be the free c.g.d.a. over U (= contractible

KS -complex) -cf. example 1.6. Set
W=U®du®Y and S = U 6 dU.
Then an algebra homomorphism
g: B8 W-BOA_

is given by g(b) = b, g(uy) =186 X g(duy) - dc(l ] xY) and

-1ex.
g(yY) xy

2.12.- Lemma. g is an isomorphism.

PrR00y.- g is surjective. We need only show 1 8 xy € Im g, Yy < a.
Suppose for scme A < a with deg X =p we know that 1 @ xY € Im g
whenever deg xy < p or deg xY =p and y < A. Then we show 1| @ x, € Im g,

and the result follows by induction.

But 1 6 x ¢ Img by definition, unless A = u', some u ¢ J(u.

But then lemma 2.10 (iv) shows that 1| 6 X, - g(duu) € Img ; i.e. ; 186 x, € Im g.
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g is injective. Define o : AW —Z . by ou = x ,
<a Y Y

o(du») - xY . o(yy) - xy. Then
100 :BO AW ——-sBBA .
<a

Moreover (g-180) ¢ = 0 if ¢ € B or U or Y. Now because

g(AW) € B O AW we can write
+
(g7180) du =16 ¢+y , YeB 64 .

Moreover, ¢ € ker €4 and by (2.9)

cA¢ = ;Ao(g-\OO)qu
- Q(dA)chY T RN

= 0.
It follows that
+
(2.13) Im(g-160) C B @ A<a + B © ker CA B

Now suppose g fails to be injective, and let Q(¥0) be in ker g.
Write
Q=70b 86 + v
1 i

where bi e 8P are linearly independent, Oi e A9 W are non zero, and

ve [j

Bl erw+sPel  alu
>p i>q

In view of (2.13), and the fact that (160)Q = (180-g)Q , we have
j P 3
80)d € ). B @ AX + B" 8 ). AX .
(160) IJ’P zJ’q

Since this relation is also satisfied by (180)y it is satisfied by

Ebi L] coi ; hence for each i

o. e 9% Y. adxa
o¢, e A%x 2J>qA X =0,
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a contradiction.
Q.E.D.

2.14.- Conollary.- A differential, d, is induced in B 8 AW by
d = g.ldcg. It coincides with dB in B and with the originally defined d

in A(U @ du).

2.15.- Remark.-Since B @ A, is d.-stable, g restricts to a

C

homomorphism

which, by the proof of lemma 2.12, is an isomorphism. In particular,
B O AW is d-stable, and gd - dCE.
Now reorder I by putting B<<y if deg xg < deg x, or if

deg xg = deg xY and B < y. This is a new well ordering.
2.16. Lema.- dyY € BOAS @ (AY)((Y. In particular
BOAS—L— B @ AS O AY —— AY

is a minimal KS extension (with Y having the differential d given by

dn = nd.).

Proos.- We show first that for vy e 1(0

(2.17) g ' e x) cBOASO (A, _ .

Suppose this is proved fer all B<y. If y e J then g-l(lexv) - uy. and
(2.17) is clear. If vy € K, g-‘(ley) -y, and (2.17) is clear.
Suppose Yy = u', u e J<°. Suppose deg x_ = p+l.

Then by lemma 2.10 (iv) g-l(lexy) is in the subalgebra generated
by duu, B, elements of degree <p, elements of the form g_l(lex)) with

A<<y , and elements in AS. All these elements are in B @ AS (AY)((y.
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Thus (2.17) is proved.

But now if y € K then by lemma 2.10 (iii) dc(l ) xy) is in

the subalgebra generated by B @ Afs . Hence by (2.17),
dy =g 'a.(18x)
Y (¢ Y

€ BOAS @ (AY)<<Y'

Q.E.D.

2.17. Proof of Lemma 2.10 cont'd. Consider the extension of lemma 2.16.

Since S is contractible, the inclusion B B ® AS induces an isomorphism

of cohomology. Thus we can apply prop. l.1]1 to obtain a KS extension
(2.18) B+BOAY~ AY

and a homomorphism h : B @ AY » B ® AS ® AY (of. c.g.d.a.'s) such that
h(b) = b, and
-1 B e AS 8 (AY
h(1ey)-106y cBense ()

and
D(18y) e Be .

- - . .
(D is the differential in B @ AY). Moreover, h is an isomorphism.

In particular we can write

(2.19) dc(l ) xu) = (gh)¢ + ch ’

for some QN € B 8 A(u and ¢ ¢ B @ AY, with D¢ = O.
Now the extension 2.18 is minimal by the definition of «<«<.

Hence obviously Q(d) = 0, so we can apply lemme 2.6 to ¢. We obtain

MmOyt e Oy ey,
1 n

where ye_ [ Yl:wI (p=deg xu). Bl > ca. > Bn y Y € AYsp, and ol is a scalar.
i
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We choose ¢ and Q so that either all the ’i are zero, or so that .l $0
and Bl is as small as possible.

Next recall that CADGA"I) = 0 for \ri € ker €
This yields

tpgh(1 0y ) =g, x + E A T.x, + ] A Tox, .
A Y Ay B A8 /s B A B
Be <o 8eJ U(J«u)
Hence
n
(xypgWe = [ €(®) g 08 hiyg)
is] i
(2.20) 2 Z
=& .7, x + u, % x_+ PR
L N N [

<8 BeJ v Y
if 01 $# 0. ( ¢ is the augmentation for AY.).
On the other hand, if all the oi are zero then

(2.21) (cAp g h)é = 0.

Now define scalars % (8 € 1(0) by

;o 0= 2 o, %, x
A el

We define (finally) the element z by

z =10x -+ ) 100, x, .
a a
Bel

Then i) and ii) are satisfied by definition. It remains to verify

iii) if a ¢ J and iv) if a e J.

Case | : a ¢ J. In this case by (2.9)

L0 dc(l (] xu) - Q(dA)r.A x, = 0.
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Were Ol ¢ 0 we would combine (2.20) and (2.19) to obtain

¢ ., x, + ) Mg &, X

, A8
BcK<B, v J<°l V] (J<°)

- - Q5 0 8

== L g%

which implies ¢, = O. Hence all the Oi are zero (since B, € K by definition)

1 1
This implies that ¢ ¢ B @ AYSP  and so (g h)¢ is in the
subalgebra generated by Be Afz . On the other hand, since all the oi =0,

(2.21) and (2.19) imply that Q(dA)cA p 0 = 0, whence

og = [o] . B € J<u

Thus

d L dc(l () x, Q) +

c d.(1 8¢

X,).
B‘; » B<a ¢ 8 8

The first term on the right is gh(¢), while the second is also in
the subalgebra generated by Be Afz, by the induction hypothesis.

It follows that iii) holds for za.
Case 2 : a e J. 1In this case
tap dl@x) =c, x,

Thus were the °i all to vanish we would obtain via (2.19) and (2.21) that

8, X0 = Qd) ¢, 00 = chJ’ Og Lp Xgo which is impossible. It follows
<

that ¢, ¢ 0.

a

Now (2.19) and (2.20) yield

C, X, =0 §, X  + 7 u, G, X+ g 0. ¢, x
A Ta 1 A 78 B A B 8 "A "B’
! BCK<Blu J<u G <J<ay Be <a
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Since ol # O we can conclude that Ol = ] and B] =a' .,
Next observe that
dzg = (gh)e+ ] d.(18 o, Xg)-

le(u

Since 01 = 1, and Bl =q',

¢-10y,che AYSP 41 @ YfZ} o AY® .

Hence

ne-10y,cBense [ar?sae Yf:’]-

Hence

ghe¢-186 xa, € Eu.

Let B ¢ l<u' Then dc(l e xB) € Ec| by definition if B8 € J<o’ and
dc(l ] xe) € En by lemma 2.10 iii) . Otherwise (by induction). Hence

dz -186 X1 € Ea' and iv) is proved.

Ca Q.E.D.

2.22. Proof of theorem 2.2.

Let z, (a € 1) be the elements of lemma 2.10. As at the start of
the proof of lemma 2.10 we can change the definition of x, (a e 1) and of

f so that
£ 8x) =z , ael ,

while retaining the conditions of the lemma and formula (2.9). We do this.

Let V and T be graded spaces with bases {v') and

yeH

{e } respectively, with deg vy = deg x, and deg ev = deg xy.

ey vyeJ

Let AT ® AdT be the free c.g.d.a. over T and set
We=T®dT 6V and R = T @ dT.

Define an algebra homomorphism g : B ® AW+ C by g(b) = b,

g(ey) =10 xv. g(dey) - dc(l ] xy) and g(vy) =18 xy.
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Then lemma 2.12 shows that g is an isomorphism, while corollary
2.14 shows that the differentials dB in B and d in AR extend to a
differential d in B @ AW such that gd = dcg.

Reorder I by putting B << a if deg x, < deg x, or if

8

deg Xg = deg L and B8 < a. This is a second well ordering. It follows from

lemma 2.16 that
de € BOARS® (AV)<<Y R y € H.

Hence if we endow AV with the differential d given by nd = dn , where

m: BO® AR ® AV +> AV is the projection, then
B8 AR—— B8 AR 8 AV —"—s AV

is a minimal KS extension.
Since the inclusion B - B ® AR induces a cohomology isomorphism,
prop. 1.11 yields a minimal extension
N ~
B—i—" B 8 AV —2— v,

where, (if D 1is the differential in B 6 AV)

D(18v)eBO (W) ., y e H.

We also obtain a homomorphism of c.g.d.a.'s
h : B®AV -+ B8 AR 8 AV

such that

h(b) = b

h(l @ v) - 18v ¢ B8 AR O (AV) . y ¢ H.
Y Y <<y

Put (B @ AV, D) = (C, €0 and (V3 = Kap.
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Then the above minimal extemsion becomes

~
N~ LY
B—"CD—’A-

Extend h to a homomorphism of c.g.d.a.'s
A
h: C®AR— B 8 AR 6 AV

by putting h(ey) = ey, eY € T. Lemma 1.7 implies that h 1is an isomorphism.
Finally, let ¥ =goh : C 8 AR —=— C.

Since Y is the identity in B it carries the ideal generated by ,: (ker eB)

isomorphically to the ideal generated by i (ker :B). These ideals are

respectively ker 2 ® AR and ker p. Thus ¥ induces an isomorphism of

c.g.d.a.'s ¢ : X @ AR —=— A such that the diagram of the theorem commutes.

Q.E.D.
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Chapten 3

The structure of a minimal extension

3.1.- Introduction.- In this chapter we consider a minimal KS exten—

sion

E:B—e c—Ls &

€,. We assume HO(C) = k, and it follows that

with augmentations €pr Ecr Ea

HO(B) = k. We do not assume Ho(A) = k, and indeed this may fail to be the

case.

We shall show how to decompose E into a countable family of

elementary extensions natural with respect to morphisms of extensions.

3.2.- The canonical filtrnations.- Define c.g.d.a.'s C

p,n

(p 2 -1, n>0) contained in C, and subspaces Z: C Cn (p 20, n20)

> %

inductively as follows :

i) C-I,O = B
s n -1 n
- N (k
ii) Zp dc (Cp-l.n) (ker €.)
. n
ii - > 0 > 0.
iii) Cp.n subalgebra generated by cp—l.n and Z, p 20, n>2
iv) c-],n = g Cp,n-l' n > 0.
Thus for each n,
c ... C [ c
Cin€ S,n Coun ¢
and
"c®c...c®c...c (ker )"
[] 1 P c
We set
PR VI A R n>0
p P
Now recall the projection Gyt ker €, Q(A) (from 1.1) and define subspaces
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@mc&w by

n n
Q) =g, pZ) . P20, 0o

Thus
Q) < ... CQ;(A) c... Q.
Next, for p 20, n 20 1let I cc be the ideal generated
p,n p,n
n s . . n .
by cp-l,n ker €c Since Cp'n is generated by Zp and cp-l , and since

n .
dC(ZP) [« cp—l,n’ it follows that

Set

. = C 1 .
(3.3 AP-n Pon/ p,n

Then (giving Ap 0 the zero differential) we obtain a sequence of augmented

c.g.d.a.'s

: C
p,n p-l,n p,n p,n * P
The main goal of this chapter is

3.4.- Theonem.- The extension E admits a structure (X,f) in
. n . . n n .
which each X is decomposed as a direct sum X = 2p>0 X" , such that with

respect to (X,f)

LY
n n
3 - n 20, > 0.
i) Zp Cp-l.n ker cc o (10 x:) , n P 2
. <n
i) ¢ =BeAX ox:p) , n20, pz-I.
iii) ¢, : x“‘p — Q2(A) , n20, p2zo0.

Before proving the theorem we establish some consequences.

3.5.- Corollary.- The sequences Ep , A&re elementary extensions.
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/

Proogd.- Use the structure of theorem 3.4 to write

@AX", p20, n2 0. Since nox:Cz: we have

4.1 @ x:) CCpy

Moreover 1 = (C

N ker ¢.) © AX®. This yields the commuta-
p,n p-l,n c P

tive diagrams

0 AXS ———— AX"

C
/ prien F

(3.6) Cp_l.n 5 z
PN n pP,n
Q.E.D.
3.7.- Conollary.- Fix n >0 and p > -l. Let Qfl(A) = 0, Then
the following are equivalent :
. n n
i) Qp+I(A) = QP(A).
ii) Q™(a) = Q:(A).
iii) 2® e c .
p+! p,n
iv) C-l.n*l - Cp'n .
Pr004.~ In view of theorem 3.4 we have iv) <=> ii) and 1iii) <=> i).

Clearly ii) => i). On the other hand, if iii) holds then by definition,

n n A . L.
CP”'n Cp,n' and so Z‘”2 Zp#l' Continuing this way we obtain iv).
Q.E.D.
Now observe that dc restricts to a linear map
- n n+l
: — n .
dc Zp Cp-l.n ker d.
This map induces (in the obvious way) a linear map
n n+1 n+1
: ~ H .
oym t 2 /°:-| ke T Ker™'(c | O )
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On the other hand the inclusion C° N ker dc - Z: (n > 0) induces a linear

map
. n n a
Bn : Coker(H (c-l.n) - H (C)) » Z°// c®
-1,n
To simplify notations write
n+l n+l n+1

Kerp = Ker(H (cp_l'n) +-H (C) y mn20, p20
and

Coker” = Coket(ﬂn(c_l’n) + H'(C)) » n>0.

’ .
3.8.- Proposition.-
i) The homomorphism H(C_l n) + H(C) 1is an isomorphism in degrees
”

less than n and injective in degree n. If n = O it is an isomorphism in
degree n.

ii) The homomorphism H(Cp n) + H(C) is an isomorphism in degrees

’

sn, if p »>0.

iii) The sequences

O*Cokern—s’zn/n L"Kernﬂ—‘o , n>0
o/C (V]
-1,n

are short exact.

iv) The linear maps
n+l

n
a Hr4 / n n z
p,n P C -1.n ker cc ——— Kgrp

are isomorphisms if p >0 or if p =0 and n = O.

Proof.- Theorem 3.4 ii) shows that C: " 9 s q < n. It follows
’
that H(CP n) + H(C) is an isomorphism in degrees < n and injective in degree

n. Moreover, by definition if n > 0
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"Nkerd.czicc , p20.

p,n
n L] n . s .
Thus for p > 0, H (Cp n) —— H (C). This proves i) and ii).
»
Finally, iii) and iv) follow at once from the definitioms.

Q.E.D.

3.9.- Conollary.- The homomorphism it H(B) - H(C) is n
regular (i.e., an isomorphism in degrees < n and injective in degree n+l)

if and only if A 1is n-connected.

Proog.- If A 1is n-connected then 8P = cP (p < n), whence
i* is n-regular.

Conversely, suppose i* s n-regular. We show that B = C_l a+l”
»

In view of theorem 3.4 ii) this implies A 1is n-connected.

Indeed if we know B = C_ (some m < n) then our hypothesis

l,m
. . m+] m cas .
implies Kero = 0 and Coker = 0. Thus by prop. 3.8 iii) and iv)

m
c .
ZO C—l,m
Hence by cor. 3.7 B = C_ =C . Q.E.D.

il,m -1,m+1
3.10.- Conollary.- The structure (X,f) of theorem 3.4 can be chosen

so that AX* is dA stable. In particular, since dA(Xo) = 0 we obtain

H(A) = Ax° @ H(AX+,dA).

B&ggﬁ.- Let (Y,g) be a structure satisfying the conclusions of
the theorem. Let EC B @ AY® be a sub c.g.d.a. such that E is connected
and H(E) = H(B 6 AYO). Use the procedure of prop. l.11 to construct a new
structure (X,f) such that

i) xX° =Y and £(1 8 x) = g(1 8 %), xeX.

ii) There are isomorphisms of bigraded spaces,
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o : x:—i» ‘I: (n > 0) such that

x-0(x) e Y 0 Yﬂp , x e x: ,
and
£(1 8 x) - g(1 8 ox) € g[B e A(Y"e Y:P)] ’ x cX: .
iii) 1f we use f to write C = B @ AX° @ AX', then E @ AX® is
dc-stable.
<n n n n
Then £(B ® AX'" @ AX" ) = - > -1, n 2
en ( GP) g(B @ AY @ AY‘p) Cp,n (p2-l,n20),
and
o n
£(1 0 x:) cgliev)e cﬁ_l'n =2, n>o.

It follows that i) and ii) of theorem 3.4 are satisfied by (X,f).
Part iii) follows at once from i).
Moreover, if x € < then
4 £ @) ¢ £(E O Ax") = £01 0 AX") + £(E* @ AXD)

c (1 @ Ax") + £(8° 0 2x° @ Ax%).

It follows that dx € o£(1 @ axy = ax’. Q.E.D.
3.11.- Coaog&g&i.- Assume H(B) 1is l-connected, and that i' s

l-regular. Then

W
o

Q) =g, n

Proof.- First note that A is l-connected by cor.3.9. Let Bcs
be a l-connected sub c.g.d.a. such that H(B) = H(B). Using the method of
prop. 1.11, choose a structure (X,f) satisfying the conclusions of theorem 3.4
so that B @ AX is dc-ctlble.
- <n . .
Then B 6 AX® is l-connected. Hence for x € X" dc(l 8 x) 1is

a polynomial in elements x, with 2 g deg x; én and elements bi ¢ B with

2 ¢ deg bi' Since deg dc(l ® x) = n+l this yields
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d(18x) cBo Ax$l

Hence 1 @ ch Z: and so

n n n
Q) = g, X" = g0 20 = QQ(A).

Q.E.D.

3.12.- Remark.- The extension E is called nilpotent if

dim Qn(A)< ©® , n=20,1,2,... . In view of cor. 3.7 this is equivalent to

(3.13) dim Q:(A) < = all n20, pz0

and

(3.14) For each n > O there is some p 2 O such that
n n
Qe a) = QP(A) .

If the h&potheses of cor. 3.11 hold then (3.14) is automatic and

nilpotence is equivalent to (3.13).

3.15.- Conollary.- Suppose H(B) has finite type. Assume A is
connected and (3.14) holds. Then H(C) has finite type if and only if £ is
nilpotent.

Thus if the hypotheses of cor. 3.11 hold (and H(B) has finite type)

then H(C) has finite type if and only if & is nilpotent..

Proog.- Consider the elementary extensions Ep n Diagram (3.6)

n n
shows that Q(Ap.n) B QP(A) / Qp_l(A).

Now suppose dim Q;(A) < » for all n and p. Then so does

Q(Ap n), and hence A has finite type. It follows that if H(Cp_ ) has
,

l,n
finite type, so does H(Cp n). Since (3.14) holds, cor 3.7 implies that

)

C =C some p. Now by induction we obtain that H(C_ ) always has
-1,n+l p,n

finite type. But by prop. 3.8,
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(e o,) = HNO.

Hence H(C) has finite type.
Conversely, assume H(C) has finite type. If H(Cp_l o) has finite
’

type then prop. 3.8 (iii) and iv)) shows that

(3.16) dim z“/“ <w .
L N ker ¢
p-1l,n C
H2nce (cf. Theorem 3.4) dim Q:(A)/Q:_I(A) < w, and so dim Q(Ap n) < =, It
’
follows in this way that H(Cp’n) has finite type. Since C_"n+| - Cp,n ,

some p, H(C ) also has finite type. Thus each H(Cp n) has finite

-1,n+] »

type, and so each Qn(A)/Qn (A) has finite dimension.
P -l Q.E.D.

We turn now to the proof of theorem 3.4. It proceeds via several

lemmas.

3.17.- Lenma.- Let (X,f) be a structure for E and let {xu}acl

be a well ordered homogeneous basis for X such that (1.4) holds and

deg x < deg Xg => a < B. Then
iy1ex"cz" , nzo0

ii) B @ Ax¥" = ¢

-1,n+1
iii) v Q"(a) = Q"(a) , n2o0.
p P
Proog. -
g
1) Assume | 6 xB € 2 , B < a, where nB = deg xB. Let n = deg x0
Then dc(l [} xa) is a polynomial in elements from B and elements | 6 Xg
i
(i= 1,...,m) with deg xg = mg £ n. By hypothesis for some P; (i=1,...,m)
i
and p > Pp.,
t n,
18 x, cezltcc R
i Pi P
n n
c .
Hence dc(l ] xo) € Cp'n, and so | 8 x, € ZP“ YA

43



S. HALPERIN

ii) is generated by B and I 2=,

c-l,n+l msn

Since z"c c"c B 8 AX*™ c B 8 AX®", we have

£n
C_y ney © B O AX

The reverse inclusion follows from i).

iii) Apply i). Q.E.D.

Now suppose (Y,g) 1is a structure for E, and (y } is a basis

a’ael
for Y such that the hypotheses of lemma 3.17 hold.
If deg y, =n we will say <o € IP a if p 1is the least integer such that
»

for some scalars XB (B < a)

n
AR g Ag Gy Vg € Q).
Lemma 3.17 iii) shows that

(3.18) I = U Ip,n ;
pHn

this union is disjoint by definition. We define Y: to be the span of the Yo
with ae I .
P
3.19.- Lemma.- For each p > -1 and n 2 0 an isomorphism
n >n, 2
: C 0 A(Y oY — C
B pon (>p )

is given by gp n (6 0Y) =¢ . g(l @ ¥). Moreover, with respect to this

isomorphism
n >n
d.(1 8y) ¢ cp'n (] (l\(Y)p oY N,
. n >n
if Y, € Y>p ey

Proof.- By induction. When p = -1, the statement follows at once
from lemma 3.17 ii). Now we assume it holds for some pair (p-1,n), and prove

it for (p,n).
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To simplify notation denote Y:p oy " by U, and write

q,m
allgq
Then {yu}ch is a basis for U. Use 8p-1,n to identify
(3.20) C @ AU = C.
p-l,n

Let (Ep_1 n,d) be the c.g.d.a. defined by

E = C //
p-l,n ideal generated by Cp_l,n N ker €
Then by hypothesis
(3.21) dc(l ) ya) € Cp-l.n ) (AU)(G , aelJ
and so
(3.22) c Lk
p-1,n p-1l,n
is a minimal extension.
3.23.- Sublemma.- Let ¢ ¢ Z: and assume ¢ ¢ C:_l n With the
—_— ,
notation above, for some a € J,
o= (1 8y) Y,
where ) 1is a non-zero scalar and Y € C e (AU) .
p-l,n <a
Prooj.- We distinguish two cases.
Case | : n=0 . Choose the least a such that ¢ ¢ Cp_l o ] (AU)<a'
Write
Comt0 ® W) = Coyo® () @ Ay,

and note that by (3.21) Cp-I.O '] (AU)(G is dc-stable and contains dc(l ) yu).
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Now ¢ has the form

m .
- i o o
® iZO o, oy, , o, ¢ Cp-x,o o ()

where Om $#0 and m > 1. (Note that each °i has degree zero).
Applying dC we find that

m-] .
m . 1
de @y + izo[dc0i+(1+|)oi 4.1 @ ya)] 8y, ¢ Cot,0

This implies that dc0m = 0 and so (because HO(C) = k) Om is a

non-zero scalar, A. Were m > | we would also have

dc(e _ +m 2@y ) = 0

which would imply 0m_l +m\ O Y, € k; i.e., A =0. Thus m=1 and so

®=2(18y) + o with e ¢C o (AU)_ .

0 0 p-1,0

Case 2 : n > 0. Again choose the least a such that

¢ e cp-l.n ] (AU)‘Q. Then (for degree reasons)

¢ = 00 ] Yo + ¥ N

where ¢ and Y belong to C ® (A\U) , and ¢ is a non-zero element
] p-1,n <a o

I,

of degree zero.

As in case | this yields

(dc 03 Oy *¢o - dc(l ) yu) +v¥eC ,

p-l,n

whence d_ ¢ =0 and so ¢ is a non zero scalar.
¢ o ° Q.E.D.

3.24.- Proog of Lemma 3.19 cont'd.- Let K be the set of indices

a € J such that for some Y ¢ C o (AU) ,
a n <a

p-l,

1oy +¥ ¢ z: .
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Denote 1 @ Yo + ?u by z and set w,=nz. We extend the definition by
setting LA (aeJ but a ¢ K).
By lemma 1.7 a new structure (W,h) for the extension (3.22) is

given as follows : W has as basis the Wy o€ J and

z ,aek
h(l @ wa) =

16 Yo ¢ otherwise.

Moreover, we have

(3.25 dch(l ") wa) =d € C , a €K,

Cza p-l,n

and

(3.26) dch(l ] wu) - dc(l ] yu) e C 0 ] (AU)(G. otherwise.

p-1,
N
Let H: be the span of the v, (a € K) and let U be the span
of the Yo (a € J but a ¢ K). Then
N
weuweu.
P

Since h : C e (AW) —I—¢
n <a

o-1, e (), ., ac J; and since

p-l,n
~N
(W) ¢ AH: o (), , aelJ,

it follows from (3.26) that

W e (AU J b ¢ K
(3.27) dc h(l ® ya) € h(Cp_ n e A ° ] (AU)<0)' a € ut a .

1,

Next observe that sublemma 3.23 yields

Pt n o n(i 8w,
(3.28) Zp cp-l.n ker ¢ h( p)
. . n m .
[ Z , we obtain
Since cp-l.n 1s generated by B and ZP_I zm<n
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n n
(3.29) Ty p(C ) N kered =Q_ () .

We show now that

K=1
P»0

First suppose a € K. Then z, - 16 Yo + Wa ez , where

Ya € cp-l,n ] (AU)(G. Since, clearly, ?u € ker £ (3.29) implies that

n
WYt L e vge

B<a
Hence ae¢ Y 1 . But also o € J, whence a € I :
qsp q,n p,n
KeC1
p’n
On the other hand, suppose a € Ip o Then
tA Yo *

A n
B<a '8 “a¥s ¢ LA

It follows from (3.28) and (3.29) that

n
QP(A) 14

n
RN w§) * Q).

Moreover, for y ¢ K,
§, o h(1 @ wY) =z, 0018 yy) + 5,0 WY

- + )
LA yv * I oyu cA yu LA pv ’
u<y
n

where CA ﬂY € Qp-l(A)'

This yields

n
Lyt e Qp_l(A).

A T
‘A ¥a* z 3 LA g * y:K ‘V(LAYV * 2 cvu

B<a vy

Suppose a ¢ K. If a >y for each y € K such that N # 0, then this

equation shows that
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g,y + 1 Aoy, e Qt (A).
Na® LT taTs ¢ B

This would give a e tU I _, which is impossible.
qp ~

But if v > a for some y ¢ K for which t_# O we conclude in

the same way that the largest such y is in which is equally

U1 .
q<p 4q,n
impossible. Hence a = y, some y € K ; i.e.

1 c K.
pP.n

Since K =1 R
p,n

n
U=Y eoym
Moreover, (3.28) shows that h carries CP‘ n ] AH§ (isomorphically) onto

Cp ' If we denote this restricted isomorphism by h then

- -1, n >n
I3 ho(@e1) Cp n® l\(‘l)p ey ) ~C.

»0 ’

Hence gp n is an isomorphism.

. . n >n
Finally, if yu € Y’P eY then

sp.n(l ) yu) = h(1 yu).
and so (3.27) reads

n >n
de gp'n(l 0y) e gp'n(cp'ne[A(Y L0 )](a).

3.30.- Proog 04 theorem 3.4.- Consider the spaces U: constructed

in sec. 3.24 above and set
L: = h(1 @ Wﬁ) cec, n20, p20,

(where h is the isomorphism depending on p and n defined in sec. 3.24).
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Then formula (3.28) reads

n_ .n n
(3.31) ZP Cp-l,n N ker €c @ Lp .

It follows that the spaces L: are linearly independent ; denote their direct

sum by

n

L

n n
Epzo Lp C C N ker £

Let L =] L® ¢ ¢ (direct sum). The inclusion L& C induces

n20,p20 p

an obvious homomorphism

Y : BOAL™C

We show that | restricts to isomorphisms

<n n s
: B =
Vpn P BOALTOL) ——C e n30.

When p = -1 and n =0 this is true by definition.

If it holds for some n and all p then by direct limits it holds for

) Thus we may assume p > O and that is an isomorphism, and

-1,n+1" p-l,n

have only to prove that is.
p,n

But in the notation of sec 3.24 we have an isomorphism

h:c e —— ¢ .
p-l.n P P,

It restricts to an isomorphism

Moreover, the diagram
e AL "eL") e
<p P

-1 p.n
vy oAv
p-l,n

c o AW c
p-l,n P v p,n
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commutes. Hence ﬂp a is an isomorphism.
»

Since each Op a is an isomorphism, so is . Thus p restricts
’
to an isomorphism ; : AL —=—s A, which carries A*L to ker €,
Define X = p(L) and xz - Z(L:).

Define £ by

-1

£(1 8x) =¢(1 8p X , xeX
Then f restricts to isomorphisms
<n - p2-1,
£:B0AX"0 x: ) =—c_ ,
P P n20.

Moreover formula (3.31) reads

n . .n n
Zp (ker ec ! Cp-l,n) e f(1 0 Xp).

Thus parts i) and ii) of theorem 3.4 are proved. Part iii) follows at once

from i).
Q.E.D.
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Chapten 4

Morphisms of extensions

4.1.- Intwduction.- In this chapter we consider a morphism-
v -
(v,¥,a) : € » £ Dbetween KS extensions :

v

v
v v .
—~— &L~ A and €:B—Cc-2—a.

(ag
wc

We assume n°(5) =Kk = HO(C). All augmentations are denoted by €.

Note that a linear map Q(a) : Q(X) + Q(A) 1is defined by

Q(a) o ¢

=g, 0o

X

It satisfies Q(a) o Q(dx) = Q(dA) o a.

v
Henceforth we assume that £ and £ are minimal, and we use the

notation developed in chapter 3. Then our morphism induces worphisms

v

tp’n - cp.n (p 20, n2>0), written
v v v
. C C A
-1l,n p,0 PN
‘DP"J\] onnl ]Gp’n
C c A ,

p-l,n p,n PN

where OP n is the restriction of V.

v
Moreover ¢ restricts to linear maps Z: - Z:. and hence induces

linear maps

:Zp/En p/.n n
N ker ¢ C ker ¢
p-l,n p-l,n
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* . ! .
Further note that op-l o Testricts to a linear map
’

N

v +
mKer : Ker: L. Ker:*l , n=220, p 20,

while ‘ﬂ. factors to give a linear map

Y n n
‘”Coker : Coker - Coker , n > O.
Clearly the diagrams
v v v
0 — Coker" —— 2, /v _ Ker:"' — 0
¢n
-1,n
(4.2) Yeoker azl i"xer
0 — Coker” - z“/ —_— ker™! ——— 0,
o/
¢ 1
-1,n
commute, as do the diagrams
v = v
%/ e
E:_‘ n N Ker €
(4.3) 'ﬁz wker
AN —_— Kerml , p>0 or
P/ n ook z P
Cp-1,n" Ker e p=0, n=0.
Finally, observe that the linear maps
n n
2 — Q (A
§4P P Qp )
factor to yield isomorphisms
n, : 2" —— Q%(a)
ST P o
q A
Co-1,n Ker ¢ QP_I( )
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Clearly Q(a) restricts to linear maps
G+ G+ Cea.
P P

Hence it induces maps

Q(a) : Qn(x) —_— Q:(A)
P n
/Qp_,(l)

(& w

n0, p 0. (lote : we set Qr_‘](A) -0 = QI_II(X)!) the diagrams

5:/ _ Q:(K)/
E:-l N ker € Q:_'I(K)
(4.4) Y, Qa)
Z:/ . —_— Q:(A)/ ’ nx0
C:-l.n N ker € Q:_l(A) p20

commute.

Our main aim is to prove

« « . .
4.5.- Theonem.- Assume that ¢ and V are isomorphisms. Then a

is an isowmorphism and each Q:(a) (n 20, p20) is an isomorphism.

We also prove :

. “« .
4.6.- Tneonem.- Assume ¢ is an isomorphism, and ¢ is an isomor—

phism. Then ¢ 1is an isomorphism.

4.7.- Kemank.-
1) We remind the reader we are dealing With minimal extensions.

2) Further isomorphism theorems are established in chapter 7.

4.5.- Lertma.- Assume that the morphism (v,0,a) satisfies that

each Q:(u) is an isomorphism. (We do not assume 0’ or w' is an isomorphism.)
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v
Then a is an isomorphism. Moreover E and E have structures

Vv
(X,f) and (X,f) which satisfy the conclusions of theorem 3.4 and with respect

to wnich
=y 0a.

Proo4. -
It follows from (4.4) that each Oz is an isomorphism. Now let
v

v
(i,f) and (Y,g) be structures for £ and E which satisfy the conclusions

of theorem 3.4. Then

A -(E“ 0 ker c)o(l ) i:)

P p-l,n
and
z? ofe N ker :\'0{1 e Y"! .
P Pl foA pl
Hence an isomorphism o0 : i: -—é—-*ig (n 20, p20) is defined
oy
v v n v n
- n .
(1l @ x) 1 8 ox € Cp-l,n ker ¢ , X € xp
Clearly (apply P )
v v + o<n n v ¥n
a(x) - ox € A (Y [] Y(p) N X € Xp.

This implies (same argument as in lemma 1.7) that a is an isomorphism.
ilow set
X" e o™ and X -I X" .
P P n,p P

Then A = AX. Define

f: BO®ANX~C
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by £(b) =b and
£(1 @ x) = Y(1 @ a.‘x) N x € X.
It follows that

f(18x) -~ 180 a-‘(x) € C:-l,n N ker ¢, x € x:.

Because o u-l H x: £ Y: this implies (again as in lemma 1.7) that £ is
an isomorphism. It also implies that (X,f) satisfies the conditions of theorem
3.4. It is clear from the definitions that £ converts ¥ to v @ a.

3.E.D.

v
4.9.- Lemma. Suppose t and t are elementary extensions, and

w‘ and Q(a) are isomorphisms. Then 0’ is an isomorphism.

v
Since £ and E are elementary,
v v
J@ = Q@) and QM) = Q) n 20

It follows trivially that each Q:(a) is an isomorphism. Thus by lemma 4.8 we
vy vn v ven
can choose structures (X,f) and (X,f) such that dc(l ® X') CB® AX ,
4.1 @ ) cBoM® and ¢ = 6 a.
Now tie method of proof of lemma 1.9 shows that 0‘ is an
isomorphism.

Q.E.D.

4.10.- Proog of theonem 4.5.

We shall show by induction that each 0; n and each Q:(u) is

an isomorphisu. Indeed if &; n is an isomorphism for all p, then

:l.n41 = lim ﬂ;,n is an isomorphism. Thus we may assume that for some p 2 O,
n 0, 0:-l.n and Q:_l(o) are isomorphisms, and we have to show that

C} n . .

op.n and Qp(°) are isomorphisms.
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. » « . . .
Since wp-l a and ¥ are isomorphisms it follows that
’
LYoo+l = n+1
!ﬂ‘“ P ker —— Kerp

and (if p=0, n > )

v -
: cokern —=— Coker".

]

coker

Thus (4.2) and (4.3) show that

yn n
P A —_'z
‘pz p/én P/n
N ker € (4 N ker €.
p-l,n

Hence (4.4) implies that

n

QP-I

W@ = G —“—w

/ Q) [ w

We have assumed Q:_‘(u) is an isomorphism. It follows from the
equation above and this that Q:(u) is an isomorphism.

Next use structures (X,f) and (i,;) satisfying the conclusions
of theorem 3.4 to write

n v v vn
c =C ® AX. and C =C ® AX .
p.n p-l,n P pP,n p-l,n P

It follows that o and o induce isomorphisms
p,n . pP,n

,n
‘p/n — X"
c N ker ¢ P
p-l,n
. y n . .
(and siwilarly for £), where Xp is considered as a subspace of Ap a

v
If we compose these with the projections onto Q(Ap ) and

Q(Ap ) we obtain isomorphisms

b4 —_ M n =
> / Q(Ap‘n) and Zp Q(A
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These convert Wz to Q(ap n)’ and so Q(up “) is an isomorphism.
. ’ 1]

v
Since t
pP,n

and Ep are elementary extensions, and since W. is assumed
»

»n p-ln
to be an isomorphism, lemma 4.9 shows that lD; n is an isomorphism.
»
It follows by induction that each ‘9; n and each Q:(u) is an
’

isomorphism. Now lemma 4.8 applies and shows that & is an isomorphism.

Q.E.D.

4.11.- Proof of theorem 4.6.

Since ¢ and \0. are isomorphisms theorem 4.5 shows that a
and each Qg(u) are isomorphisms. But now lemma 4.8 applies and allows us

to write ¥ = ¢ 8 a. Hence { is an isomorphism.
' Q.E.D.
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Homotopies and liftings

5.1.- Tne c.g.d.a. ((C,B)I,D).- Suppose U = Zp)o v is a graded
space. The susgension of U, U, is the graded space which coincides with U*

as a vector space, but with degrees shifted down by |

- P
Al szO(EU) »

and

P - P!,

The identity automorphism from Ul”l to (fU)P is written I and
called the suspension map ; we extend it to v° by setting $(u® = o.

Now consider a KS extension
E: 82— -,

with augmentations and € . To simplify notation denote IQ, by
A

€p* ¢

QA and let AQA ] AD:)A be the contractible complex generated by Q,. Denote

its augmentation by cq.

Tensoring this with (c,dc) we obtain the c.g.d.a.
(c,B)! = c 8 A3, ® ADQ
’ A A
whose differential is denoted by D, and which is augmented by ¢ = €. @ €.
Because (A((_lA [ DQA).D) is acyclic, the projection

" (€,B)D) - (C.dg)

defined by :(lOaA) = 0 and n(z81) = 2z, z ¢ C, and the inclusion
1
A (C.dc) - ((C,B)",D)

]
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(Aoz = z 3 1) induce inverse cohomology isomorphisms. In particular ker =

is an acyclic ideal :
(5.2) H(ker n) = 0.

If B =k we denote (C,B)I simply by CI.
For general KS extensions £, the projection p extends to a

projection

@1 : (C,B) »al

with kernel the ideal generated by Ao i (ker cB).

Next, suppose (X,f) is a structure for E and (xu)acl is a

wellordered homogeneous basis for X such that (1.4) holds. Then LA : X = QA'

The composite I o , : X — aA will be denoted by

A

X — X x € X.

Write C =B ® A (via f). For each a € I we have the KS extension

B+ 8 A<° - A<a . Since B ® A(utz C and Q(A<u) C Q(A) we can form
1 1
((B o A<°,B) ,D) € ((c,B)",D)
Now note that
(5.3) (C.B)' = B 6 AX 8 AQ, ©AD, -
Thus a degree -1 derivation, i, is defined in (C,B)I by
i(B) = i(Q,) = i(DQ,) =0
and

i(x) = x , x ¢ X.

. . . . 1
We define a degree zero derivation, 6, in (C,B) by
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6 =Dji+ iD.
It satisfies DO = 6D.

Note that
(5.4) i =0 and n8 = 0,

and so i and 6 preserve ker t. Moreover, i and 6 restrict to derivations
in each (B 8 A(u,B)I. We use (5.3) to regard X, aA and DaA as subspaces of

(C,B)I. Since, d.x € B @ A we obtain
a <a

C
8x - Dx BeA ,B) I
xa x‘x € ( <’ . ae I.
Clearly 6Dx = i D°x + D i Dx = 0, and so
a a a
2 1 .
8 x, € (B o A<a’ B) R ael.

Because 6(B) = O an induction on I now shows that for each q

there is an integer n, with

- - - - .. . I
Since Ox = 6Dx = U, Xx € Wy this implies that for each ¢ € (C,B)

there is some N (depending on ¢) such that

. 1
nence an autoworphism e® of the augmented c.g.d.a. ((C,3) ,D)
(with inverse e_e) is defined by

P n

e = 1§
n=0

@

3

we define an inclusion of augmented c.g.d.a.'s

At (ed) - (e, m o
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by setting
A= ee oA

(Recall Auz =281, z¢C.)
We now give an inductive formula for Al-xo. Since i 1is a derivation
of degree -1, i2 is a derivation of degree -2.

But iz(b) = iz(x) = iz(;) - iz(D;) =0 (be B, xe X) and hence

It follows that
8" = (Di+iD)® = (Di)® + (iD)".

In particular, since iDixu = iD).cu =90, ael,

IS )| n = ° 1 . n
(5.5) Ax - I (x)) = x +Dx_ + ) o (D "(x )
v n=|
Set o = El(in)“ B £(1.4), & € (BOA_,B)
et X | al (xJ. ecause o -4), & ¢ <’ .
n=

Because Qu € Im i, nﬂu = 0. Thus (5.5) reads.

(5.6) Ax -Ax =Dx +2 ;0 ¢ (BOA B NKern, ocel.
1"a oa a a [ <o

5.7.- Lemma.- The inclusions ) and Ao coincide in B. iforeover

Im(xl-xo)c Ker n ,

Proog.- Apply (5.4)
Q.E.D.

Next, suppose that (E.dE) and (E,dé) are c.g.d.a.'s. If E and

L are augmented by < and €t then by a homomorphism

0 ‘E"‘i“t’ » (E,dp.ep)
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we mean an augmentation preserving homomorphism of c.g.d.a.'s.

Assume
"O.W| : (C.dc) he (E.dz)
are homomorphisms restricting to the same ¥ : B + E.

5.8.- Deganition.- wo and 0l are called homotopic (rel B)

if there is a homomorphism
I .
¢ : ((C,B)",D) ~ (k.dE)

such that ¢ o Ai = ﬁi’ i = 0,l. We write wo ~ Y (rel B). ¢ 1is called a

homotopy (rel B) from wo to ¢..

j+ If B =k we say simply that ¥, and ¢l

are homotopic. .

Next assume E is augmented by € and

Uy ¢ (Crdgueg) » (E,dp,ey)

[}

are homomorphisms.

5.9.- Definition. - 00 and WI are called based homotopic (rel B)

if there is a homotopy, ¢, from wo to &I such that ¢ preserves augmenta-

tions. ¢ 1is then called a based homotopy (rel B) from wo to ﬂl. We write

N
00 ~ Wl (rel B).

5.1J.- Remarks.-
|. The definition above of AI : C - (C,B)I depends on- the choice

of structure. We shall see in prop. 5.14 that our definitions of "homotopic

(rel B)" and "based homotopic (rel B)" are independent of the choice of structure.

2. Fix a homomorphism wo : (C.dc) - (E'dE)' By restriction to

QA we obtain a bijection between homotopies (rel B) starting at wo and linear
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maps of degree zero from aA to E.

If E is augmented and Wo preserves augmentations, restriction
to QA defines a bijection from based homotopies (rel B) starting at 60 to

linear maps of degree zero from aA to Ker g

3. If @o ~ W‘ (rel B) then lemma 5.7 shows that 0: = WT.

5.11.- Lemma.- Assume that ¢°,ﬁl : (C,dc) - (E’dE) restrict to

the same § in B. Suppose that
- c
Im($,-9 ) € I,
where ICE 1is a dE-stable ideal with H(I) = 0. Then
¥, ¥, (rel B)
and the homotopy ¢ can be chosen so that 0(5A) c I.

5.12.- Coroflany.- Suppose €p augments E and I C Ker g If

ﬂo and Ol preserve augmentations then ¢ 1is a based homotopy (rel B).

5.13.- Proof of Lemma 5.11.- Set ¢ = ﬁo in C. We have to cons-
truct elements 0(;a) in I (a € I) such that the unique extension of ¢
to a homomorphism ¢ : ((C.B)I.D) - (E'dE) satisfies ¢ o Al - 0].
As s ume 0(;8) € I 1is constructed for B < a. Then, since
<

. . . 1
dc(xo) €Be A(a. and ¢ is defined in (B @ A u,B) , we can apply (5.6)
to find
dEkolxu_woxa_o(nu)) - dldcxu - &odcxo - oDQu
- - &) -
Ox|dcxa (4 odcxu ODQu

® OD(A,x =X x =0 )
1"a oa a

= 0.
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Moreover, because O(§B)’c I it follows that ¢(D§B) €l (B <a).
Since the ;8 and D;B generate Ker m as an ideal, we find ¢(Ker n) C I.

Hence leu - ﬂoxu - O(Qa) is a dE-cocycle in 1. By hypothesis we may write
olxc - woxo - 0(“u) - dEya ’

some y ¢ I. Note that if deg x = 0, then deg Yo -1 ; i.e. y =0.

Now extend ¢ to ;u by setting

(If deg x, = 0 then ;u =0= Yq» 80 we are all right.) It follows from

(5.6) and our choice of Yo that

- +Dx
(¢ o Al)xc O(onu Dxa*ﬂu)

¢°x° * dEyu * o(ﬂu)

- ﬁlxa.

Hence ¢ o Al - ﬁl in B @ A<°, and the induction on I- is complete.

Q.E.D.

5.14.- Proposdition.-

i) The definition (5.8) of "homotopic (rel B)" and the definition
(5.9) of "based homotopic (rel B)" are independent of the choice of structure
for E.
ii) Homotopy (rel B) is an equivalence relation on the set of
homomorphisms (C.dc) - (E.da) which restrict to a given ¢ in B.
iii) If E is augmented, based homotopy (rel B) is an equivalence
relation on the homomorphisms (C.dc.cc) - (E,dE,cE) which restrict to a

given ¥ in B.
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Proogf.-

i) Suppose a second homomorphism
At (Chdyen) » ((C,BYE,D,e)
1 *Tc’tc ’ [
is defined via a second structure on E. Lemma 5.7 shows that
Im(A'l—Ao) C Ker nC Ker € .
Hence by cor. 5.12, xo ~ x; (rel B) ; i.e. there is a homomorphism
1 I
¥ : ((c,B)",D,e) + ((C,B)",D,¢)

such that Yo A =2 and Yo A, = 21'.
o [} 1 1

Hence if ¢ : ((C,B)I,D) - (E’dE) satisfies ¢ o Xo - wo and

¢ o A; -V, for homomorphisms &0.01 : (C,dc) - (E’dE) it follows that

¢oVYo xo - wo and ¢o VYo, =y

1 " Moreover, if ¢ is augmentation preserving

so is ¢ o Y.

ii) Reflexivity. Suppose 1 : (C.dc) - (E,dE). Then Y o m : ((C.B)I.D)

- (L.dE) is a homotopy (rel B) from ¢ to V.
Symmetry. Suppose ¢ is a homotopy (rel B) from JO to 01

(00.01 : (€,d.) * (E,d).) Lemmas 5.7 and 5.11 show that X ~ A/ (rel B) ;

let ¥ be a homotopy (rel B) from Al to xo. Then ¢ o ¥ is a homotopy (rel B)

from ¢, to .
| o

Transitivity. Suppose 60.0l,¢2 : (C,dc) - (E‘dE) restrict to

the same ¢ in B. Assume
%’»% (rel B) and ﬁowwl(nlay
Then by symmetry, 00 ~ 02 (rel B).
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Let Oi be a homotopy (rel B) from ﬁo to ﬁi (i=1,2).
Let Y be an isomorphic copy of aA and fix an isomorphism a : 6A‘—§—‘ Y.
Let AY @ ADY be the contractible complex generated by Y, and tensor it with
((C,B)I,D) to obtain a c.g.d.a. augmented by € "(the tensor product of the

augmentations). Define a homomorphism of c.g.d.a.'s.

¢:C0 A6A e ADGA ® AY @ ADY + E

by
o(z) = @o z, zeC ,
o(x) = o x, xeQ, -
and
d(ax) = Ozx, X € QA'

We may use a to identify (C,B)I with C @ AY @ ADY ; then A‘

is identified with a homomorphism

A, : C+ C ® AY @ ADY

2

of augmented c.g.d.a.'s. Use the obvious inclusions to regard Xl and Az as

homomorphisms

Ai : (C.dc.cc) -~ (Ceo AQA [} ADQA @ AY @ ADY, D, €).

Observe that for 2z ¢ C,

Azz - A‘z - (Azz-z) - (Alz-z)

. - -
€ CO A (QA [} DQA ®Y @ DY),

and this is an acyclic ideal in Ker €. Hence cor. 5.12 yields a based homotopy

(rel B), Y, from Al to Az.

Un the other hand the homomorphism ¢ defined above satisfies

o\, = oi' i=1,2. Hence ¢ o ¥ is a homotopy (rel B) from él to ¢

1 2"
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iii) Note (in the proof of ii) that if oi (i = 1,2) are based
homotopies (rel B) then ¢ 1is augmentation preserving, and so ¢ o ¥ is
a based homotopy (rel B). This proves transitivity.

Refexivity and symmetry are proved as in the proof of ii).

Q.E.D.
v v v o, .
Next, suppose £t : B + 6 + A is a second KS extension, and
4
(E.dé) is a second c.g.d.a. Assume
4
xc © (idg) + (C,d) and y i (E,dp) + (E,dy)

are homomorphisms and that restricts to : B > B.

Xc Xg

Finally, assume
W°J| : (C.dc) - (E.d}:)

are homomorphisms restricting to the same ¢ in B.

5.15. Proposition. -
i) 1f mo ~ w, (rel B) then

voWO '\'y°ll]l (rel B) and 00 o xc ™ WI ° X¢ (rel E),

ii) If y‘ is an isomorphism then 00 ~ uﬂl (rel B) if and only

if 7090'\'7001 (rel B).

5.16.- Proposition.- Assume that E and £ are augmented by

€ and ci. and that vy is augmentation preserving and that so are

00 and 0l.

X

i) 1f 00 x Jl(rel B) then Yy o 00 X y o "l (rel B) and

Jo ° x¢ X ¥, © xc (rel B).



LECTURES ON MINIMAL MODELS

ii) I1f y' is an isomorphism then 00 X ﬁl (rel B) if and only if

Yo, Nyo ¥, (rel B). .

5.17.- Prnoof of prop. 5.15.

i) If ¢ is a homotopy (rel B) from ﬁo to ¢ then y o ¢

l'
is a nomotopy (rel B) from vy o ﬂo to y o wl.

Un the other hand, Ao ° X and A] ° X restrict to Ao o Xg

. v
in B, and

Im()‘l o X~ = Xo ) xc) c In(Al-xo) C Ker w.

C

Since H(Ker n) = O, lemma 5.11 shows that Ao o Xc v xl o Xc (rel ﬁ).

v
Hence $ o xo o ~d o xl ° X (rel B) ; i.e.,

C
Yy o ~N ﬂj. o rel B

ii) We have only to show that if y o 00 “yo 01 (rel B) then

wo ~ W| (rel B).

v
Denote by F the graded space E, regarded simply as a graded
space (i.e., F = E without the algebra structure). It generates a contractible

complex, F @ ADF. Tensor this with (E'dE) to obtain a c.g.d.a. (E,B) :
E = £ @ AF @ ADF.
Denote by
j i (E.dp) =+ (E,D) and p: (E,D) = (E,d)

the obvious inclusion and projection. Then p o j = 1, and Ker p is an
acyclic ideal in E.
Extend y to a homomorphisn ; H (E,ﬁ) - (E'dE) by setting

-— - -— - - - - - .
vz =2z and YDz = d.z (z ¢ F). Then y 1is surjective and Y is an isomorphism,

69



S. HALPERIN

so Ker ; is an acyclic ideal.
Now suppose ¥ is a homotopy (rel B) from ywﬂo to y\ﬂl.

Let ¢ : SA + E be a linear map of degree zero such that
Yoé=y.

(This is possible because ; is surjective.) Extend ¢ to a (unique) homotopy

(rel B), ¢, starting at j o ¢°. Then
- I
yoé=yYv: (C,B) - E.

In particular it follows that

Yodo Xl =y o ﬁ‘ =yojo 0].

nence y(¢ o AI -jo wl) = 0 ; by lemma 5.11 ¢ o Al ~njo ﬁl (rel B). On the

otiier hand, j o Wo v ¢ o A, (rel B) with homotopy ¢. Thus we obtain (cf. Prop.

1
5.14 ii))

jo 00 vijo Wn (rel B).
Finally apply p to find (since p o j = 1)
Uo ~ Wl (rel B).
Q.E.D.

5.16.- Proof of prop. >.lo.

i) The proof is word for word tne same as the proof of prop. 5.15, i),
except tunat we rely on cor. 5.12.
ii) The proof is the same as that of prop. 5.15, ii) except for the

following changes.

Let F = ker € and tensor the augmentations of E and AF 6 ADF

to augment L. Note that j,p and Y preserve augmentations. In particular
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ker p C ker € and ker ; C ker €.

Moreover ; : ker ¢ -+ ker £ is surjective, and so ¢ can be chosen so
that O(QA) C ker e.

Then ¢ extends to a based homotopy (rel B) from j o &o to
$ o )‘l' Moreover 1lm(¢ o A] -jo nDl)C ker ;, and so cor. 5.12 implies that
%o Al is based homotopic to j o ull (rel B). By prop. 5.14 iii)
jo ‘ﬁo Xjo uil (rel B). Since p is augmentation preserving we apply it

to obtain
¥, % ¥, (rel B).
Q.E.D.

We come now to the lifting theorems, which are the main results

of the chapter.

5.19.- Theorem. Assume

}

W

is a commutative diagram of homomorphisms of c.g.d.a.'s. Suppose that

i) y. is an isomorphism.

ii) The bottam row is a KS extensior, E.
Then there is a homomorphism ¢ : (C.dc) - (E,d.E) such that

Voiw=y and Yy o¥$,.n (rel B).
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f 3 : (C,dc) -+ (E,dE) also satisfies these conditions, then

¥ ¥ (rel B).

9.20.- Theorem. Assume

|

€
e —

is a commutative diagram of homomorphisms of augmented c.g.d.a.'s. Suppose

that

. L I . .
i) vy is an isonorphism.

ii) The bottom row is a KS extension, E.
Then there is a homomorphism  : (C.dc,cc) - (E,dE,cE) such that
Voi=1y and Yy o ¥ ~ n(rel B).

If vy : (C,dc,cc) - (E,dE,cE) also satisfies these conditions, then

E X ¢ (rel B).

5.21.- Prooj of theonem 5.19.

Construct (E,D), j,p and Y exactly as in the proof of

prop. 5.15 ii). We first construct a homomorphism
00 : (C.dc) -+ (E,D)

sucnthat ¥ o i=3jo¢, and Yo @o = n.

Fix a structure (X,f) and a basis (XQ)Q‘, for X so (1.4) holds.
We define wo X by induction over 1.

Indeed if wo XB is defined (B8 < a), then ﬁo dC Xc is defined,

and

Y 00 de Xy = ndex = dynx..
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Choose Yo € E so that ; Yo *n Ka. Then

19, dx Dy ) = dgmi, - dy Yy, = O,
and

= - 2

D(9d X -Dy ) = ¥ dc X = 0.

o a

Since MH(ker ;) = 0 we can write (for some LA ker ;)

wo de Xo " Dy = Dwa'

Extend wo to B 6 A‘a by setting

X =y +w.,
ﬁO ‘a yﬂ a

By definition Bﬁo Xa = &odc X while

This completes the inductive construction of ‘o'

Now we define § by setting
V=po &o : C+E.

Then Yoi=po ﬂo oi=pojowvs=y. Moreover, lm(jo&-ﬁo)c ker p, and
so by lewma 5.11, j o ¢ ~ 00 (rel B). Since Y o j =y while Yo L

we can apply Y to this relation to obtain
Yyo¥v~rn (rel B).

Finally, suppose v (C.dc) - (E.dE) satisfies voi = ¢y and

y o 9~ n (rel B). Then by prop 5.14 ii),

Y o ; ~y oy (rel B).

Thus prop. 5.15 ii) implies that V9 (rel B).
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5.22.- Proog of theonem 5.20.

Construct (E,B), Prl» Y and the augmentation €:E~k exactly
as in the proof of prop 5.16 ii).

Then repeat the construction of &o : (C,dc) + (E,D) given above,
being careful at each step to choose Yo € ker €.

Since ker y C ker E, wo will preserve augmentations.

Hence so will { = p o 60.

Use cor. 5.12 to conclude that j o ¢ ¥ Wo (rel B). Since Yy

preserves augmentations this implies
Yy o ¥ ~xn (rel B).

Complete the proof using prop 5.14 iii) and prop 5.16 ii), just
as above.

Q.E.D.

For the rest of this chapter we shall consider KS extensions
€:B~+C+ A admitting a structure (X,f) and a well ordered homogeneous

basis {x } such that (1.4) holds and

a ael

(5.23) deg x, = 0, deg x > 0 => B8 < a.

8

A KS extension satisfying this conditions will be called O-minimal.
Clearly minimal extensions are O-minimal. Moreover any KS extension with
connected fibre is vacuously U-minimal. It is easy to see that a KS extension
is O-minimal if and only if the subalgebra COC C generated by B and c®

is dc~stable.

(C,dp) = (E,dp)

5.24.- Lemma. Suppose £ is O-minimal and ﬁo. v,

are homotopic (rel B). Then 00 and w' coincide in CO.
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Prooj.- Observe that the derivation i in (C,B)I has degree -1,
and so i(Co) = 0. since E is O-minimal, C° is dc-stable, and it follows
tnat S(Co) = Q.

This iwmplies that A, = ) in Co' and so ¢

1 o - wo n Co‘

1

Q.E.D.

If £ is O-minimal we denote by (C,B)aI the augmented subalgebra
1

of (C,B) generated by ' Im Ao (=C) and Im Xl. (C,B)31 is stable under D.
Recall from 5.1. that the linear map x x of X to 6A is defined

by x = I;Ax. This extends to a linear map

g, : A'x - Q
Lyt QA'

If € is O-minimal then dA(Xo) = 0 and it follows that a differential
Q(dA) is defined in QA by
Q(dA)x = Z(A dA(x), x € X.

Extend Q(dA) to a derivation in AQA ; then (AQA' Q(dA)) is a

a c.g.d.a. and

Q(d,) =0

if and only if £ is minimal.

Next define a projection of augmented c.g.d.a.'s

P (C.BD) - (A3,.-2(d,))

by setting
p(z) = €c , z€C
p(x) = x , x € 6A
and
p(Dx) = -Q(dA)x , x € QA'
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. 31 1 . :
Let j : (C,B) = + (C,B)” be the inclusion.

5.25.- Proposition.

If E is a O-minimal extemsion then
(5.26) €5 < (c,m! B> (Ag,,-30e,))

is a KS extension. If E 1is minimal so is (5.26).

Proof.- Let J be the subset of I of indices a with deg x > 0.

. . + - .
Tnen (:uu}‘er is a well ordered homogeneous basis of X , and {xa}ch is
a well ordered homogeneous basis of aA' Now let X bve an isomorphic copy
of X' with isomorphism x + X. Then {ia}acl is a well ordered homogeneous
basis of X.

In particular we have the subalgebras
- - v
(A"IA)Q; , (ADQA)q; and (AX)<° . ae J.

Now define an algebra homomorphism

g:BOAXO AW N — '’

by
g(b) = b, beB . g(x) = A‘x, xe X
g(x) = X, X g X . g(-x)-; , xe X,

lt follows from lemma 5.24 that if we set X = x (x € XO) then

(5.27) g(x) = A

lx ’ x € X.

5.25.- Lenima. g is an isomorphism. Moreover
-] - v =
8 Dx_c bW AX® AK O (A,) , acl.
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Proof.- Define an isomorphism

h:neAXOA':'{eAEA —= . (!

by n(d) = b, hx) =x (xe X), h@) =Dx (xe€ X') and h(x) = x (xe X).
Then g-h is zero in B, X and SA'

Moreover, we obtain from (5.6) that

v v
- h = +Q aeld
SXQ xa Xa o ’ ’

whence

v - -
(g—h)xa € BOeAX @ (AQA)<u [} (ADQA)<Q'

It follows as in lemma 1.7 that g is an isomorphism.
Finally, (5.6) implies that
g ') =% - x -8 @), acJ.
a a a a
Thus induction on J shows that for a € J

-1 I. v -
g (BW® ASQ'B) C BO® AX @8 AX © (AQA)sa

It follows that g-l(ﬂu) € B ®AX 8 Ai [} (AaA)<a' and the rest of the lemma
is proved.
Q.E.D.

v
5.29.- Conollary.- g restricts to an isomorphism of B @ AX & AX

onto (C.B)al.

Proog.- Clearly g(B @ AX ® AX) C (C,B)°'. Formula (5.27) allous us

to reverse tne inclusion.
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5.30.- Prcof of prop. 5.25 cont'd.

It follows from lemma 5.28 and cor 5.29 that multiplication in

(C.B)I defines an isomorphism (of augmented graded algebras)
©»’! o iy, —— (c,n’
with respect to which
DO @ X) e (C,B) " 8 (AG)eq ael

To show that (5.26) is a KS extension we need only show that the

diagram
,n’
3 P
(c,»’! : A3,
\\\\\\
8l o Aé;////l
commutes.

That the left triangle commutes is clear. To verify that the right

triangle commutes we show that

(5.31) po6=20

where 6 = Di + iD 1is the derivation in (C,B)I used to define AI'

In fact, since fx = 6Dx = 0, x € X we need only prove that
poo(x) =0, xeX. Nwin C=B 8 AX
dc(l ex)-186 dAx € ker g 8 AX,

and so

i dc(l 8 x) - i(1 e dAx) € ker € @ AX 8 AQA’
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Since the restriction of p to B @ AX © AaA is just €c 81, we
find
pi dc(l @ x) = (ec @1)i (1@ dAx)
= a(dA); , x € X.
On the other hand
pni(lex)-pni-—a(dA)i, x e X

and adding these relations we ohtain (5.31).
But this yields p o Al =po Ao =ec s since p; = X the commuta-
tivity of the right triangle is proved.

Finally, if E 1is minimal so is (5.26), almost by definition.

Q.E.D.
5.32.- Conoflarny.- An isomorphism

ce, c—=— (c,) !
o

is defined by

zZOw —+ )z . )w.
o 1

5.33.- Conollarny.-
i) Suppose wo' wl : (C,dc) - (E'dE) coincide in Co. Then a unique

houwomorphisw

v (e, ~ (5,4

is defined by Wo Ai - wi' i = 0,1. The homomorphisms wi are homotopic

(rel B) if and only if ¢ extends to a homomorphism
1
¢ : ((C,B) ,D) - (E'dE)'

ii) If E 1is augmented by e then ¢ preserves augmentations if

and only if Vo and Gl do. In this case Wo X W‘ (rel B) if and only if

¢ can be chosen to preserve augmentations.
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Now recall that E is assumed O-minimal. Suppose
ﬁo, ﬁl : (C,dc) - (E,dE) are homotopic (rel B) and that ¢ and ¥ are both

homotopies (rel B) between them. Thus
o, ¢ ((C,B)1,D) + (E,d)

restrict to the same ¢ in (C,B)al.

Since the sequence (5.26) is a KS extension we can apply

.definition 5.8 to define the notion of a homotopy (rel (C,B)aI) between

¢ and Y. If such exists we say ¢ and Y are homotopic (rel (C,B)al).

Similarly if 00 and wl preserve augmentations (for some given cE)

and ¢ and Y are based homotopies then we can use definition (5.9) to define

a based homotopy (rel (C,B)al) between ¢ and Y ; if such exists ¢ and

Y are based homotopic (rel (C,B)afl.

If £ was actually minimal then so is the KS extension (5.26)
In this case we can iterate the procedure to cbtain homotopies of homotopies

of homotopies....

5.34.- txample.- Suppose E is O-minimal. Then the homotopy class of
the homotopy ¢ of lemma 5.11 (resp. the based homotopy class of the homotopy
& of cor. 5.12) is uniquely determined by the condition o(aA) Cc 1.

Indeed if ¥ 1is a second such homotopy then ¢ and VY agree

in (C,B)aI and Im(¢~¥) C I. Thus lemma 5.!! implies that ¢ ~ ¥ (rel (C,B)QI).

5.35.- Exanmple.- The hypothesis of O-minimality is essential. Indeed
consider the contractible complex A(x,dx) generated by x with deg x = O.
Then
A(x,dx)I = A(x,dx,dx, Ddx)
and

i(x) = 0, i(dx) = d%, i(dx) = i(Ddx) = O.
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Hence
8(X) = dX, 8(dx) = Dax, 8(dx) = 6(Ddx) = 0.
Thus

A x = xedx and  Ajdx = dx + Déx.

It follow that Im Al and Im xo generate all of A(x,dx)I, and so lemma 5.28

fails in this case.

Moreover the augmentation ¢ : A(x,dx) - k and the inclusion

i : k + A(x,dx) satisfy i o0oe~v1 . But i o e does not coincide with

in A(x,dx)o. So lemma 5.24 fails as well.
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Chapten 6

Models

In this chapter we consider a homomorphism of c.g.d.a.'s
v i (Bdp) » (E,dp).

We assume B is augmented by €p and that HO(B) =k = HO(E).
The main result (existence and uniqQueness of models) is stated in the next

three theorems.

6.1.- Theonem (existence).- There is a minimal KS extension

E: B2 CEw &
and a homomorphism ¢ : (C,dc) - (E'dE) such that :

i) yoi=y.
ii) w- is an isomorphism.

Moreover, if E is augmented by g and Y preserves augmentations,

then ¢ can be chosen to preserve augmentations.

Now assume there are two minimal KS extensions

M
1

> v
B—=—— & 2— a4

ra

t: B——C——A and ’
and suppose,

(' (C.dc) - (E’dk) and v o (C.dé) - (E.dE)

both satisfy i) and 1i) of theorem 6.1.
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6.2.- Theonem (unijueness). With the hypotheses above there is a

commutative diagram of homomorphisms of c.g.d.a.'s

v

5 v

p —t c L A

B C A
i P

such that § and a are isomorphisms, and Y o § ~ & (rel B).

Moreover if Yy, ¥ and 5 are augmentation preserving with respect
to an augmentation e of E, then ¥ can be chosen to be augmentation
preserving and so that @ and $ are based homotopic (rel B). In this

case a 1is also augmentation preserving.

6.3.- Theorem (uniqueness of {somorvhism). With the hypotheses and

notation of theorem 6.2 assume that

o<

v
1

is a commutative diagram of homomorphisms of c.g.d.a.'s such that
v
Vox~V (rel B).

Then x and a are isomorphisms and

X N J (rel B) and a ™ a.

Moreover, if E is augmented by € if all homomorphisms preserve

augmentations, and if ¥ o x 3 ¢ (rel B) them x and E are based homotopic

(rel B) and a and a are based homotopic.
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6.4.- Proof og theoxrem 6.1.

We shall construct C in the form C = B @ AX where each X

is decomposed in the form

and dc extends dB and satisfies

(6.5) d(18x)c BoAx™ex"), m20, q20.
c q <q
We shall simultaneously construct ¢ : B ® AX + E so that

(6.6) '} dc = dE v.

If Yy preserves augmentations (for a given cE) we shall also arrange that

6.7 V(1 e x:)c ker € q 0.

E’

6.8.- The spaces x:. Set -

-
X0 = ker(a' (B) —L— ®'(E)).

. . o .
Define dc in 1@ Xo so that dr(l @ x) is a cocycle in B

representing X :
o
[dc(l (] x)] -x , X € Xo.

Extend ¢ to X: so that (6.6) holds (and (6.7) if CE is given).
Suppose X: has been defined for q <p and ¢ and dc have
been extended to B @ AXSP so that (6.5) and (6.6) hold (and (6.7) if e
is given). Let

x: - ker(in'(B @ Ax‘(’p) . ')

and further extend V¥ and dc just as we did when p = O.
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6.9.- Lemma.-

i) H°(B @ AX°) = k.

s ” | o 1 e s .
ii) ¢ : H(B® AX) - H (E) is injective.

Proof. -
i) We need only show that HO(B ] szp) = k for all p.
Assume this holds for q < p ; then H(B @ Axfp) = k. Let B =380’

P
write

Be A’ =3B e Ax®.
<P P
m
i=0 %5
vo j0 . o s
¢. € B @ AX, ¢ # 0. Since d.¢ = 0 it is clear that
J P m c

If ¢ ¢ (ﬁ ] AX:)° is a cocycle write ¢ = 2

(6.10) (dﬁ e \)0m =0

It follows by our induction hypothesis that Om el e Amx:.
Now by construction, d

v
Bl which does not meet di(ﬁo). On the other hand since d.¢ = 0, (6.10)

C
shows that

dCom * (dh i l)om--l -0
Since ¢ ¢ | @ AX° this implies
m P

dcom = 0.

Consider the contractible complex AXZ e Apx° generated by X .

Since dC : X§ — B s injective, it follows that Dom = 0. Because
sz () Abxs is acyclic, the only D-cocycles in AXE ® | are scalars.

Hence m = 0O and ¢ = ‘m € k.

ii1) Assume ¢ ¢ (B @ AXo)l, dCO = 0, and ¥ ¢ 1is a coboundary.

| Coa e
Then ¢ ¢ (B @ Axfp) , some p, and so (by definition of Xz*l) for some

85
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X € xp*l'

o
[] dc(l @ x) € dc(B ] Ax‘p).

In particular ¢ is a coboundary in B 8 Ax°.

Q.E.D.

6.10.- The spaces x:. n > 0.
Suppose that for some n > 0 X2 is defined for m < n and

q 2 0, and that dC and | are extended to B AX® so that (6.5) and

(6.6) hold.

Assume as well that
L ] <n .
(6.11) Y : H(B ® AX ') - H(E) 1is (n-l1)-regular.
Define spaces Uz and Y: by

L ]
W2 = Coker(H"(B @ Ay —— W E))

and
-«
YD - ker(8®' (8 0 Ax“™) —4— ™' ().
n n n .
Let xo ug ] Yo and extend dc to xo by setting

d.(1 0w =0, HcH:
(6.12) . and

dc(l @ y) is a cocycle in (B @ Ax<“) representing vy,

y € Yg.

Extend ¢ in the obvious way so that 0. is surjective in degree n and

(6.6) holds.

Next, if x: is defined for q < p and J and dC are extended

to B @ AX™ @ AX"  so that (6.5) and (6.6) hold, set (for p 2 1)
|4

-
n+l
X = ker(™ ' (3 0 (X" @ AX:p) 4w ey.
P
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Extend d. to X° so that
c P

(6.13) dC(l 9 x) e BO A" e Axfp is a cocycle representing x, Xx € x:.
Extend ¢ to X: so that (6.6) holds.

6.14.- Lemma.

Yy : H(B ® Ax‘“) + H(E) 1is n-regular.

Proog.-
since (B @ AX¥™™ = (B @ AX*™™, m < n, it follows from (6.11)
« . . . sy s
that ¢  is an isomorphism in degrees less than n. We show next that it is

injective in degree n.

Suppose ¢ is a cocycle in (B @ Ax‘“)“ and ¢ 1is a coboundary.

Note that ¢eBoAx"o Ax:P. some p. Let B=Borx"e Ax:p ; it

. . . <n n v n .

is dc'stable by construction. Write B @ AX ~ @ Ax‘p =B @ AXP, and write
¢=ve+a, veie x:. ae 8™

Since dco = 0 we conclude that (dB @ 1)Y = 0. But since HO(E) =k,

(6.11) shows that Ho(ﬁ) = k. Hence
velex
P

It follows that dC ¥ € di(ﬁn). which, in view of our construction of X:,
implies Y = O.

Hence ¢ ¢ B. Continuing in this way we eventually obtain
¢ ¢ B® AX™. Now (6.11) shows that ¢ 1is a coboundary. Thus 0. is injective

in degree n.

. .« . . . L

Finally ¢ is surjective in degree n by the definition of
U: c Xg. It is injective in degree n+! by the same argument as used in
lemma 6.9 1ii).

Q.E.D.
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6.15.- Proof of theonem 6.1. cont'd.

Above we have defined a c.g.d.a. (C,dc) with C = B @ AX. We augment

it by € where € extends ¢ and vanishes on X.

C B
If I = ker €p @ AX we write A =C/I and let p : C - A be the
projection. dc and £c factor over p to make A into an augmented

c.g.d.a. It follows from (6.5) that

i [}

E:B—— C— A.

is a minimal KS extension.
We also defined a homomorphism  : (C.dc) - (E,dE) ; lemma 6.14
shows that w. is an isomorphism. Moreover ¥ o i = y by definition.

Finally, if Yy was augmentation preserving with respect to €

then (6.7) applies and shows that ¢ is also augmentation preserving.
Q.E.D.

6.16.- Remarks.

1) Cor 3.10 shows that
o +
H(A) = AX™ ® H(AX )

for suitable choice of x’.

2) Cor 3.9 shows that v' is n-regular if and only if A is

n-connected.

6.17.- Proof o4 tneorem 6.2.

Consider the diagram

C ———JE——-* E

i |

B C .

i
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. ., . .

Since § is an isomorphism, theorem 5.19 applies and yields a homomorphism
v (Ca0 > ()
v vé »Cc

such that 3 ) 1 =i and ¢ o 3 ~ $ (rel B).
In particular 3(i(ker es).é) C i(ker :B). c.
This can be rewritten as @(ker $) C ker p. Thus E factors over

to yield a commutative diagram of homomorphisms of c.g.d.a.'s
A
J;
A.

- - v,
Moreover, since ¥ o y & (rel B), 6. ) 6' - J-. Because W.

v v
1 [

0O +——— o
Py

i 0

and &‘ are isomorphisms, so is E..
N - a -
Next set :l =¢_ 0y and c2 = tA o a; these are (possibly new)
i b

v v v
augmentations in t and A. It is trivial to check that B —— C —£— A,

N N .
together with €ps €0 cz,is still a minimal KS extension. Denote it by t.
v
(In fact if (X,f) is a structure for £ set
“ "N A . ]
X = (x-e§x)l | x € X} ; then (X,f) is a structure for t. If (l.4) holds for

a basis {x )}

Y
for X, then it holds for the basis {x :%fx Y1} o for X.)
a ael a o’ ‘ael

Observe that by definition

- - "
(\,W,@) : E = E

. . - . .
is a morphism of minimal KS eXtensjons. Since ¥ is an isomorphism, theorem

. - . .
4.5 shows that o is an isomorphism. Since 1 and ¢ are isoworphiscs,

theorem 4.6 shows that § is an isomorphism.

Finally, suppose €. 0 y = ¢

E for some given augmentation ¢ of

B E

£, and V¥ and & preserve augmentations. Then theorem 5.20 applies (just as

theorem 5.19 applied above) to yield a homoworphism
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[ (C.d&.eé) - (C,dc.ec)

such that 3 oi=1i and VY o a is based homotopic (rel B) to J.

As above ¢ induces a : X + A and this time without making

changes

v

(1,9,a) : E—E

is a morphism. It follows exactly as above that (1,@,;)‘ is an isomorphism.

Q.E.D.

N
6.18.- Proof of theorem 6.3. Change E o E by changing the

augmentations of ¢ and X so that (1,x,a) : E + £ is a morphism (as in
the proof of theorem 6.2 above). Since Y o x ~ J (rel B), x' is an isomorphism.
Thus theorems 4.5 and 4.6 imply that x and a are isomorphisms.
Moreover since Y o x i v ¥ o J (rel B) we obtain
Vox~rdo 3 (rel B). Since W' is an isomorphism we may use prop 5.15 ii)
to conclude x ~ W(rel B). If ¢ is a homotopy (rel B) from Vv to X then

¢ factors over the projection

to yield a homotopy from a to a.

Finally, if E 1is augmented by €ps all homomorphisms preserve

augmentations and V¥ o x X a (rel B) then
. A -
voxaxvayx Vo ¥ (rel B).

1t follows that v o x y ¥ o U (rel B). Since ¢  is an isomorphism

prop. 5.16 ii) yields x I (rel B).

Again, as above, this implies a X a.
Q.E.D.

Theorems 6.1 and 6.2 motivate the following definitions.
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6.19.-_Deginition.
Let vy : (B,dn) - (E,clE) be a homomorphism of c.g.d.a.'s such

that H°(B) = k = H°(E). Assume B is augmented by e

B
Then a KS extension, E : B 2.2 A, together with a

homomorphism ¢ : (C,dc) - (E,%) is called a model for y if Yo i =y
R 3 . .
and Y is an isomorphism.

If £ is minimal we call (£,f) a minimal model for y .

6.20.- Definition.

Let v : (B,dB,cB) - (E,dE.eE) be a homomorphism of augmented
c.g.d.a.'s such that H°(B) = k and H°(E) = k.

Then a KS extension £ : B —— C —2— A together with a

homomorphism
¥ (C.dc.cc) - (E.dE.EE)

is called a model for y if Y o i =y and w- is an isomorphism. If E is

a minimal then (E,y) 1is called a minimal model for y .

In the case B = k these definitions specialize as follows

6.21.- Deganition.

Let (E'd"E) be a c.g.d.a. with HO(E) = k. A model for (E'dE)
is a KS complex (C,dc) together with a homomorphism ¥ : (C'dC) - (E,¢E)
'such that w* is an isoworphism. If (C,dc) is minimal then we call this

a minimal model for (E'd"E)'

6.22.- Remanks.-

. Theorem 6.1 and theorem 6.2 show that minimal models exist, and
are uniquely determined up to isomorphism.

2. 1f (E,d) is ac.g.d.a with H(E) = k then the minimal model

is automatically connected. Thus if E is augmented ¢ automatically
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preserves augmentations.
3. By “abus de langage" we may refer to E rather than (E,y¢)
as a model for y and we may refer to (C.dc) as a model for (E,dE).
4. Let (t,y) be a model for vy : (B,dB.cB) - GE,dE,:E). Then it
is a model for vy : (B,dB) -+ (E,dE). Thus in particular as we vary the augmen-

tation of E we do not change the isomorphism class of £ or the (unbased)

homotopy class (rel B) of .

6.23.- Vefinition.

Let (E,dE) and (F,dF) be c.g.d.a.'s such that HO(E) = k and
HO(F) = k. Then (E'dE) and (F,dF) are called C-equivalent if there is
a sequence (Ei.di) of c.g.d.a.'s (i=0,1,...,n) such that

i) (Eo.do) - (E'dE) and (En'dn) - (F,dF)-

ii) For each i (i=0,...,n-1) there is either a homomorphism
Ui n (Bpadp) = By pndy,

l) such that ﬁ: is an isomorphism, or there is

a homomorphism *1 : (Ei*l'di*l) - (Ei’di) such that w. is an isomorphism.

6.24.- Theorem.
(E,dE) and (F,dF) are C-equivalent if and only if they have

isomorphic minimal models.

Proo{. -

Clearly an isomorphism of models defines a C-equivalence. To prove
the converse it is enough to consider the case that there is a homomorphism
¥ (E'dt) - (F,dr) such that 0’ is an isomorphism.

[
But then if (C,dc) £ (E,dE) is a minimal model, by definition
WOWE
(C.dc) —— (F’dF) is a minimal model. Hence by theorem 6.2 it is

isoworphic with any other.

Q.E.D.
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6.25.- Morphisms. Suppose

i Py i, P2
£, : B, ——C, —— A and E, : B, —~— ¢, —— A

| 1 ! 2 2 2 2

) restricts to ¢ : B, -+ B

C 1 2’

are KS extensions. Assume ¢ : (C,,d. ) -+ (C,,d
1 C1 2 2

and that  preserves augmentations.

Then, as we observed in the proof of theorem 6.2, {(ker o]) C ker °2

and so ¢ factors over Py to give a commutative diagram of homomorphisms

of c.g.d.a.'s

B ¢ — A
5 ) A

It is a morphism of extensions if and only if § preserves augmentations.

6.26.- Definition.

(v,¥,a) will be called a free morphism from El to t

6.27.- Remanrs.
. A free morphism need not be a morphism !
2. 1f (y,¥,a) 1is a free morphism then there are unique augmentations

(namely ¢ oy and ¢, oa) in C, and A, such that § and a are
C2 AZ 1 1

augmentation preserving.

As we observed in the proof of theorem 6.2, with these new augmenta-

~N
tions Bl - C‘ - Al becomes a new KS extension El (minimal if El was) and
~

(v,9,0) 1 € =y is a morphism.

Now consider a commutative diagram

YI
B —

Y2
b, ——

E
(6.28) v l"
2 E
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of homomorphisms of c.g.d.a.'s. Assume Bi is augmented by € (i=1,2) and

B.
i

that ¢ preserves augmentations. Assume Ho(Bi) =k = Ho(Ei), i=1,2.

Let
4 1
&) P By C 4 E,
\ Y and -Y/ 2}
. E, E, : B, R c, T

be models for Y, and Y, Combining them with (6.28) we arrive at the

commutative diagram

7
2
¢ E,

izow] now]
B

1 1I 1 P 1

Since W; is an isomorphism we can apply theorem 5.19 and obtain

a homomorphisw ¢ : (C,,d. ) - (C,,d. ) such that
ICl 2C2

¥ o il - iz oy and wzw ~“no 0! (rel Bl)'

Moreover the homotopy class of ¢ (rel BI) is uniquely determined.
In particular ¢ determines a free morphism (y,f,a) from El to

E2, and we have the diagram

i °
B, — ¢, A,
\\“ x/w
Y2 E 1
1
(6.29) v o N/ o
Y . v
2 2« 2
— o
. C A 1]
2 12 2 02 2
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in which the triangles and left and right squares commute and the central

square homotopy commutes (rel Bl).

6.30.- Remarks.-

1. Assume
2
2 2
v n
33 ———t E3

is a second commutative square of homomorphisms of c.g.d.a.'s. Suppose

B3 is augmented, E preserves augmentations, and HO(B3) - H°(£3) = k.

Let t3 : B3 - C3 - A3 and w3 : C3 - E3 be a model for

Repeating the above construction yields a free morphism (¥,¥,a) from E2

Y3-
to Ea.

Clearly EWil - i3Ew. Moreover, prop. 5.15 i) shows that
033W ~ ;nwl (rel BI). Hence ¥ is a lift for nn. (Note that by prop. 5.15 i)

the homotopy class of W (rel Bl) depends only on the classes of { and )

2. Assume in (6.28) that El and Ez are augmented, and that
Yy o 72 and n respect the augmentations. Then (by definition 6.20) so do
01 and ﬁz. In this case we can apply theorem 5.20 to obtain a morphism

(v,¥,a) : EI —_ E2 such that OZW o nﬁl (rel Bl)' The based homotopy classes

of Yy and of a are uniquely determined by n.
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Chapten 7

Isomorphism theorems

In this chapter we consider a morphism,

v
v
B L ¢ e A
- B - c - A,

v
of KS extensions t and E . We always assume that
HO(B) = 1°(C) = k and  H°(B) = HO(C) = k.

In view of remark 6.27.2 many of the results extend to free morphisms.

The main theorems are as follows :

?.1.- Theorem.- Any two of the following three conditions implies
the third :
i) ¥" is an isomorphism.
ii) 0. is an isomorphism.

-
iii) Either a or Q(u). is an isomorphism.

1f these conditions hold then both a' and Q(o). are isomorphisms.

7.2.- Theonem.- Assume g and E

are winimal. Then any two of the
following three conditions implies the third :
i) w' is an isomorphism.
ii) w' is an isomorphism.

iii) Q(a) 1is an isomorphism.

If they hold, then a and each Q:(u) is an isomorphism.
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v
7.3.- Theorem.- Assume E and E are minimal. Then any two of the
following three conditions implies the third :

i) v is an isomorphism.
ii) ¢ 1is an isomorphism.

iii) Q(a) 1is an isomorphism.

7.4.- Remark.-
These theorems contain theorems 4.5 and 4.6, which we used in

chap. 6. Now we use the results of chap 6.

7.5.- Prood of theorem 7.2.-

First observe that thc final assertion of the theorem, as well as
i) and ii) => iii) are proved in theorem 4.5.

i) and iii) => ii) : Consider the minimal model,

e
<

O<
™
-

El

of the homomorphism ¢ : (6,dé.cé) - (C,dc,:c). Let I CE be the ideal
generated by j o 1 (ker c;) ; set G = E/1I and let ® : E + G be the
projection. Use ™ to make G into an augmented c.g.d.a.

It is easy to see that

.V
E: i -t E T G

. —. .
is a KS extension. Moreover, because HO(E) = k and HO(E) =k (since ¢ is
an isomorphism) we can apply theorem 2.2. This yields a minimal KS extension

" v ~ Y= , . .
t :B-E -G and a morphism (1,y,0) : E = E such that ¥ is an isomorphism

and (cf. cor. 2.4)
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L v =
Q(a)  : Q(6) —— H(Q(6),Q(d,)).

On the other hand § induces a morphism (.y,E,;) from £ to E.
Thus ("'u,a?ﬁ,;:) is a morphism between minimal KS extensions and w* and
a’%’ are isomorphisms. Hence theorem 4.5 implies that Q(;:) is an isomorphism.
But Q(aa) = Q@ " = Q(@* (™. since Q®” is an isomorphism,
so is Q(;)'.
Finally observe that j factors over 5 and p factors over T

to yield a commutative diagram,

(7.6)

o<

> — <
-

O —

which in fact is a morphism of minimal KS extensions.

v
Since £ and E' are minimal cor 2.4 gives

Q(dx) =0 and Q(dF) =0
Thus the lower row of (7.6) gives rise to the short exact sequence
v
(7.7) 0~ (Q(A),0) ~ (Q(G) .Q(dc)) ~ (Q(F),0) - o.
Moreover, it is immediate from the definitions that the diagram

v
Q(A) —— Q(6)
\,

Qla) N, Q(a)
“
Q(A)

commutes.
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But Q(a) is an isomorphism by hypothesis,‘while Q(;).' has just

been shown to be an isomorphism. This implies that inclusion induces an iso-
. v = .

morphism Q(A) —= H(Q(G),Q(dc)). In view of the exact sequence (7:7) we may

conclude
Q(F) = 0.

v
It follows that F = k and so C=E and j 1is the identity map.

- -x . . .
Hence { = ¢ . But ¢ was an isomorphism, and so w. must be one.

ii) and iii) => i): Coasider the minimal model

(-]

of the homomorphism ¢ : (E,dV,c§) - (B,dB,cB). Let
v
Ez-zloic‘.(-zlom

then the sequence of augmented c.g.d.a.'s

is a minimal KS extension.

Combine ¢ and the morphism (v,¥,a) to get a morphism

~

€1
—
———
E=Y]
—
Q

of extensions.
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We show now that Hv(EZ) = k. In fact, write Ez = El e Ai

and let xy be a well ordered homogeneous basis of X satisfying (1.4) for

EI' Now HO(EI) =- HO(B) = k. Assume by induction that HO(EI ) (Ai)sk) = k.

The existence of a non scalar degree zero cocycle in El () (Ax)sx

would imply (as in previous chapters) that deg X = 0 and

d(1 e x, ¢+ z) =0 . some 2z € (El ) AX(A)O.

We may assume 2 1is in the augmentation ideal, and so, since

H°(C) =k, @(l ® x + z) = 0. Thus projecting | € X + z to Q(X) and

A

following by Q(a) gives zero. Since Q(a) is an isomorphism we obtain )

A

g, (x)) € Q((AX) ;)

which is impossible.
This proves HO(EZ) = k, and so we can apply the second part
of the theorem ( i) and iii) => ii) ) to the morphism above to obtain that

- . . .
¥ is an isomorphism.

On the other hand, write
52‘5955,'59*'1-
This exhibits

& S = E, L F,

as a minimal KS extension, where = = € ® p, and j 1is the obvious inclusion.

Since Ej - and 5. and w. are isomorphisms, we conclude that so is j.

v .
Hence cor. 3.9 gives F, =k, B= El' ¥ = ¢ ; in particular ¢ is an

isomorphism.
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7.8.- Proof o4 theonem ?.1. In view of theorem 2.2 we can find

minimal extensions
v
E, :B ——C — A and E :B —C — A

and morphisms

v v
(Wl.@l.al) : El — t and (wz,wz,az) : E -+ El

= & * * . . .
such that wi. ﬁi , ui and Q(ai) are isomorphisms (i = 1,2).

Moreover (wzwwl,wzwﬁl.azunl) : El - EI is a morphism between
minimal KS extensions, to which we can apply theorem 7.2. The final assertion
together with i) and ii) => iii) follow immediately. It also follows at once
that if Q(u)* is an isomorphism and either ﬂ‘ or w' is, then both w.
and w. are isomorphisms.

Finally, suppose " is an isomorphism. Define connected minimal

KS complexes i and F by

v
Fek s v and F= AI// .
(ker €x ) A] (ker €, ) . A

1 A] 1

Then cor 3.10 shows that

(o]

o,V vo o
H (Al) - AI ’ H (A‘) Al

and that the sequences

0 = (ke ¢} ).a(Z,) - H(A) =~ H(F) = 0
1

and

0+ Ho(ker ¢, ).H(A ) = H(A,) ~ H(F) = O
A, 1 1

are short exact.
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We may conclude the a,0a, is an isomorphism in degree zero.
(and so also Q(uzual) is an isomorphism in degree zero.) We may also con~
clude that the homomorphism a:F+F induced from a,aa, satisfies :
a" is an isomorphism.

Applying theorem 7.2 to the morphism (1,;,;) from
k+F+F to k+F+F we conclude that Q(a) is an isomorphism. But clearly
Qa) = Q(uzua]) in degrees > |. We have thus shown that Q(azunl) is an

isomorphism. It follows that so is Q(n)..

Q.E.D.

7.9.- Proof 04 theonem 7.3.- That i) and ii) imply iii) is shown

in theorem 7.2. If i) and iii) hold then theorem 7.2 shows that ﬂ. is an
isomorphism. Hence theorem 4.6 shows that { is an isomorphism.
Finally, assume ii) and iii) hold. Then by theorem 7.2 each

Q:(a) is an isomorphism. Thus lemma 4.8 asserts that we can write
v v
Yy=yO®a:BOA-+BEOA.
Since ¥ and o are isomorphisms (cf lemma 4.8) it follows that so is y .

Q.E.D.
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Chapten §

The y-homotopy spaces : n;(y).

§.1. - Introduction.- In this chapter we consider a homomorphism

(8.2) Y ¢ (B.dB,cB) - (E,dE,cE)

between augmented c.g.d.a.'s such that HO(B) = H°(E) = k. We shall associate

with y a graded space w;(y).

v
§.3. - Lerma.- Assume LTI (A,d;,cx) - (A,dA,eA) are homomor-

phisms of KS complexes, and that e, and a, are based homotopic. Then

ea)" = e

Prood : Let ¢ : (ZI.D.C) -~ (A,dA,cA) be a based homotopy from

a, to a. Since KI is a KS complex we can write
a@)® = e’ 00", i =0,
On the other hand
VI - —'
Q(A") = QA eQye Q(D)(QA)

and it follows that Q(n') : H(Q(xl)) - H(Q(X)) is an isomorphism. Since

Q(m) o Q(li) = 1 we obtain

a0 )" = @M a0,

and so Q(uo). - Q(ul)..
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Now let
E:p - ¢ 2. 4
N
E
be a model for the homomorphism (8.2) - cf. definition 6.20. Then we set
(8.4) "y (GED = 1 Q@),a,)) -
Suppose next that
£ A o 2L g
Ny
N
E

|

and yields a morphism (1,¥,0) : E' = E such that i) is based homotopic
to §¥' (rel B). Moreover the based homotopy classes of ¢ and o are uniquely

determined.

In particular there is a canonical homomorphism

)" : HIQ(A'),Q(d, ) —  H(O(A),Q(d,))

104



LECTURES ON MINIMAL MODELS

which is independent of the choice of ¥ and a. (Apply lemma 8.3.)

Moreover, because J ~ ' (rel B) we have that w. b - wH®,
and so a‘ is an isomorphism. Thus theorem 7.1 shows that Q(E)' is an

isomorphism .
We have thus a canonical isomorphism
(8.5) T (GELID —E TU(GE,
which depends only on (E',§') and (E,J). If (E",J") is a third model for
Y then the isomorphism
* “w 3 *

n(GELI) —— m (ED
is obtained by composing the isomorphisms
T(GETL) = m(vE', ') and my(vE'LEY) S TU(ED

(cf. Remark 6.30.1). Moreover, if (E',{') = (E,§) the isomorphism (8.5)

is the identity.
Now fix vy, and consider the family of graded spaces ';(Y;E.ﬁ)

indexed by the models of y. In view of our remarks above the isomorphisms

(8.5) can be used to identify all these spaces as a single graded space.

§.6. - Dedinition.- The graded space obtained by identifying the
n.(v;f.ﬁ) will be denoted by w;(y) and will be called the y-homotopy
v

space of v.

§.7. - Definition.- 1f (E.dE,cEX is an augmented c.g.d.a. with

y -8 -
HO(E) = k, and if Yy : k - E 1is the inclusion, the graded space "w(y)

will be denoted by n;(E.dE.:E) and called the y-homotopy space for E.
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§.8. - Remwrks 1.- Let (E : B+ C —+ A,f) be a model for .
We shall often say we identify H‘(Q(A)) with “J(y) s note that this

identification depends on { !

2.- We shall frequently further abuse notation and

write ﬂJ(A) = H’(Q(A)), even though it may not be the case that HO(A) = k.
3.- 1f (E,¥) 1is a minimal model then
n, (1) = QA).

4.- We shall frequently abuse notation and write (in

definition 8.7 ) ";(E) for ﬂ;(E,dE,sE).

5.- Observe that the isomorphism class of 11;(E)

is independent of the choice of augmentationms.

§.9. - Moaphisms .- Suppose now that

Y
1
Bl El
' !
(8.10) v n
B —_— E
2 Y, 2

is a commutative square of homomorphisms augmented c.g.d.a.'s. Assume

HO(B,) = HO(E)) = k, i =1,2. Let (E,8) be amodel for » —and (E,.0)

be a model for \’E

Then (cf. remark 6.30.2 and diagram (6.29)) there is a morphism

G od,a) : El to 52 such that U,¢ a n ﬂl (rel B|), and this completely

determines the based homotopy class of a.
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Hence by lemma 8.3 the linear map
* * »
Qs om CrE LD > (nysEy, 0

is independ nt of the choice of ) and a. Moreover (cf. remark 6.30.1) if

(E',ﬁ;) and (Eé,ﬂé) are also models for Y, and Y, then the diagrams,

. a"® . '
m, O EID ™, (12365505

w
LU

- *
T, O E D "o (rpiEyady)

Q)"

commute. (The vertical arrows are the isomorphisms (8.5)-

It follows that the linear maps Q(u). define a linear map

":KYI) - ﬂ;(yz) which depends only on the square (8.10).

§.11.- Deginition.- The linear map defined above will be denoted by
& . -
(v, ) : ﬂw(wl) Te(¥y) -

If Bl =B, = k we write it simply as
Tte) *(E,)
- s - 7 .
'u(l v

§.17.- Propositaon.- i) Assume that

‘7
B, E,
y '
(A 3
{ N 4
3
By Ey
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is a second commutative square of homomorphisms of augmented c.g.d.a.'s.

Assume HO(B3) - H°(£3) = k. Then

# # #

(V' ¥,n'n) = (¥',n")" o (¥,n)

ii) If Bl.BZ’E-EZ' Yy =Yg and V=, n =

1

we have

(\,\)# = 4,

Prood : Apply remark 6.30.1.

Q.E.D.
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Chapter 9
A-extensions.

9.1. - Definition.- A NA-extension is a KS extension

E:B -2 ¢ -2+ A such that (B,dg,ep) is itself a KS complex. The A-
extension is called A-minimal if B is a minimal KS complex and E 1is a

minimal KS extension.

9.2. - Remarks 1.- A A-extension may be minimal as a KS extension,

without being A-minimal.

2.- Suppose E : B =+ € -2+ A is a A-extension.

Let (X,f) be a structure for E and assume {xu} is a well ordered

ael

homogeneous basis for X such that (1.4) holds. Let Y C ker g be a

graded space such that B = AY and assume {yY) <] is a well ordered homoge-

neous basis of Y such that (1.4) holds.

Then the triple (Y,X,f) determines a commutative diagram

AY ——————— AY 6 AX ———  AX

w
(o)

(9.3)

of homomorphisms of graded algebras. This diagram, together with the equations
(9.4) dByy € (AY)(‘ and dc(l ] xu) € AY © (1\)()(u

exhibits (C,dc.cc) as a KS complex.

3.- Suppose C is a minimal KS complex. Then by
cor.. 2.4 Q(dc) = 0 and hence (9.3 ) implies that Q(dA) = 0 and Q(dB) = Q.
Thus (again by cor. 2.4 ) B and E are minimal ; i.e., E 1is A-minimal.

The converse, however, may fail : £ may be A-minimal while C 1is not minimal.
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Now consider a A-extemsion E : B —— ¢ -2 a.
As in chap. 5, denote by GB"" the suspensions of QB""' and suspend
Q(i) and Q(p) to linear maps Q(i) and Q(p). These extend uniquely

to homomorphisms

- - i - - o - -
AQB (] ADQB —_— AQC e ADQC AQA () ADQA
between the contractible complexes generated by 6B’BC and 6A'

Next, tensor this sequence with
B —— C — A

to obtain a sequence

(9.5) gl . gl & ¢! — . Al

in which il =i @I and ol = 0o @ 5.

Choose now (Y,X,f) and well ordered homogeneous bases {y\'}wI

for Y and {x }

oloel for X, satisfying the conditions of remark 9.2.2.

From (9.3 ) we obtain the commutative diagram

(9.6) L |2 H ccof z

Qq ——— Q Q
B Qi) ¢ Qo)

Thus the choice of (Y,X,f) determines isomorphisms

(9.7) Q. :Q@Q, and Q. :0Qy0Q,
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compatible with Q(i) and Q(p) (resp. Q(i) and 6?;3). Using (9.3 ) and
(9.7 ) we may write

1 - - - -
C"=B6 AX 6 I\QB [} ADQB [} AQA (] ADQA

(9.8) -slenxe A3, @ D, .

Moreover, the diagram

(9.9) B al

/

1 - .
B" @ AX @ Q, ADQ,

I . ey s .
commutes. Thus E is exhibited as a A-extension.
We may also write

(9.10) L 3 3 o a
C AY 8 XX 8 AQB ] I\DQB (2] AQA ] I\DQA .

Recall the degree -} derivation i and the degree O derivation 8
defined in chap. 5. We apply this definition to the KS complex C to obtain

. . . . . . I .
a degree -1 derivation i and a degree zero derivation ec in C given

by
iC =0 in 68.065.6A.DGA.
i) =y (e Q. i) =x(e Q). ye¥, xeX

and

Then lC and ec restrict to derivations 18 and 68 in B,
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and project to derivations iA and eA in AI.

Next denote the standard inclusions and projections by

I 1 I
(g :B = B, () :C > C, ), :A = A
and I I I
"B : B -+ B, "C : C - C, “A : A - A.
9B
Set (A])B =e o0 (AO)B,... . Then
(O)ey(A)n(A),) : E = EF
o’B’ "0’C’ "0’A" T ’
I
@'B'"C'"A) : E E,
and (OO ()t E - E
1’B>*71°C? 7 17A .
are morphisms of extensions.
9.11. - Remark.- The ideals ker "B < BI and ker ﬁct: CI are

acyclic, and iI(ker nB) c ker Moreover,

c

Im((Ao)B - (Al)B)t: ker "B and Im((lo)c - (AI)C)CI ker e

Finally, let ((C.B)I,D) be the c.g.d.a. defined in chap. 5

with inclusions XO.A : C - (C,B)I and projection n o (C,B)I - C.

1

Consider the projection

p:cl - (B!

defined by

P(z) =z, z ¢ C,

P=0 in 68 and 068.

P(x) = x and PDx = Dx, x ¢ 6A.

Evidently P 1is a surjective homomorphism of augmented c.g.d.a.'s,
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and P" is an isomorphism ; i.e.
H(ker P) = 0.
It follows from the definitions that

Po (Ai)c = Ai o P, i=o0,l1.

Suppose now that n: (G’dG) - (E,dE) is a homomorphism of

c.g.d.a.'s. Assume that

v,
J
(B,dp) (G.d.)
(9.12) i ‘ n
(€,d0) 'Bj (E.dp) » 5 =0,1,

are commutative squares of homomorphisms.

9.13. - Definition.- The pair (wo.ﬁo) is called homotopic to the

pair (WI,Jl) if there is a commutative square of homomorphisms

1 v
,p) ©,d5)
1
1 n
«lm (E,d_)
’ [ *"E

such that v o (xi)B - wi and ¢ o (xi)c - wi, i =0,l. We write
Wyl ) ~ (o))

The pair (Y¥,¢) is called a homotopy from (uo,ﬂo) to (;l.dl).
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Now suppose that E and G are augmented by €. and ¢

E and

G’

that wo, wl, ﬁo’ 01 and n preserve augmentations.

9.14.- Definition.- (.yo,dlo) is called based homotopic to (¥,¥))

if there is a homotopy (Y¥,¢) from (wo.ﬂo) to (wl,ﬂl) such that Vv
and ¢ preserve augmentations. The pair (¥,¢) is then called a based homotopy

from (v ,0) te (u,,¥) andwewrite _.0) x Gw,.0).

9.15.- Remarks 1.- We shall see in prop. 9.17. that these definitions

do not depend on the choice of structure used to define (AI)B,...

2.- Assume (wo'd)o) v (w]’dl). Then 'JJO ~ "" and
ﬁo ~ ﬂl, and hence w; = w: and J: = ﬂ:. However, the converse is not
always true ; it may be the case that wo Ny and ﬁo ~ J] without (wo.ﬁo)

and (w,,dl) being homotopic.

4 .
3.- Suppose wo,ﬂl : (C,dc) - (E,dE) satisfy
6j oi=noy, j=0,1, for some y : (B.dB) - (G'dG)° A homotopy (¥,¢)
from (w,ﬂo) to (w,ﬂ‘) is said to be constant in B if
Y =Vo ﬂB .
It follows easily that a homotopy is constant in B if and only if

it has the form (W o o P) where P 1is the projection defined above

B’

and o 1is a homotopy (rel B) from 00 to { Moreover, if Q 1is any

e

homotopy (rel B) from @o to &I then (v o . o P) 1is a homotopy from

B’

(w.éo) to (w.@l) constant in B.

This defines a bijection between homotopies (rel B) and homotopies
constant in B. In particular, if Jo N 0! (rel B) then

(v.&o) ~ (u.ﬁl). but the reverse implication does not always hold.
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4.- Homotopy extension property.- Assume

wo,wl : (B,dB) - (G,dG) and Jo : (C,dc) - (E,dE) are homomorphisms and

that &o oi=no wo. Suppose further that ¥ 1is a homotopy from ¥, to

Then a bijection between homotopies (V¥,¢) starting at (WO,OD)
(and restricting to the givemn VY in BI) on the one hand, and degree zero

linear maps 6A + E on the other is given by restricting ¢ to QA'

In particular (take 0(6A) = 0) there is always a homomorphism

J (C,d.) + (E,dp) such that

Jyoi=noy and (y,0) ~ (y,9)

5.- Remark 3 applies verbatim to based homotopies,
and homomorphisms of augmented c.g.d.a.'s. Remark 4 applies with the single

change that the bijection is with degree zero linear maps 6A -+ ker €p*

9.16.- Lemma.- Assume given the commutative squares (9.12 ) with

the property that
- - c
Im(y, = y)C I, and Im(J, -J) 1.,
where IG and IE are acyclic ideals in G and in E, and n(IG) c IE'
Then (wo,do) ~ (wl,ﬁl). and the homotopy (¥,%) can be chosen

so that W(aB):I and °(6A)C 1

G E’

Moreover if the homomorphisms of (9.12 ) preserve augmentations and

1.2 ker ¢ and IEC ker ¢

c G £ then (¥,¢) 1is a based homotopy.

Proo§ : Use the proof of lemma S.11.
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9.17. - Proposition.-

i) Definitions 9.13 and 9.14 of homotopic and based homotopic are

independent of the choice of (Y,X,£).

ii) Homotopy and based homotopy are equivalence relations on commutative

squares of the form (9.12 ) (with B 2. ¢ and ¢ —~ E fixed .

Proof : Use lemma 9.16 the same way lemma 5.11 and cor. 5.12 were
used to prove prop. 5.14.

Q.E.D.

v v ‘{ v b’ v, .
Next suppose E : B —+ C — A 1is a second A-extension, and

that n : (é,dé) - (E.dﬁ) is a homomorphism of c.g.d.a.'s. Assume given com-

mutative squares of homomorphisms of c.g.d.a.'s

v X Y v
B -—————JL—————* B G -——————ii—————-* G
v v
i i and n n
v v
C ——————— (o} E —————— E
Xc YE

9.18. - Proposition.- Consider the commutative squares (9.12 ) in

conjunction with the squares above :
i) 1f (v ,0) ~ (v .¥) then
) . |
(rg¥og¥y) ~ (rg¥yavg¥)  and  (¥oxpo¥oxa) v (¥ xga¥ x )

-
and vy

ii) If g are isomorphisms then (wo.do) ~ (vl.ol)

L ]
G
if and only if (cho’YEdo) ~ (YGWI'YEvl)'

iii) If all c.g.d.a.'s are augmented and all homomorphisms preserve

augmentations, then i) and ii) hold with "based homotopic' replacing "homotopic’.
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Proof : Part i) is trivial (cf. the proof of prop. 5.15 ). To prove ii)
we may assume (YG wo,ysﬂo) ~ (yGwI,YE@I). Then, as in the proof of prop. 5.15

ii) define a commutative square

Ye

G ® AF @ ADF ¢

n @ nl I;

v

E® AL @ ADL — E
YE

where F = é. L= E and n, 1is the obvious homomorphism extending n.

Denote the left hand side of the above square by

v v

Now suppose (¥,¢) 1is a homotopy from (YGWO'YEJO) to (YGwI.YEﬂl).

Choose linear maps (of degree zero)

so that ;GY = Y and §E¢ = ;. These extend to a unique homotopy (¥,¢)

starting at (jG %.jgéo).

Use lemma 9.16 (as lemma 5.11 1is used in prop. 5.15 ) to conclude
the proof.

To prove iii) modify the proof of prop. 5.16 the way the proof
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of prop. 5.15 was modified above.

Q.E.D.
Suppose that £ : B 2. ¢ £+ A is a fixed A-extension.
9.19. - Theonem.- Assume
¢ —nM . g
Y6 E
G —2>2—— E
% ///}
E B o A
i [

is a commutative diagram of homomorphisms of c.g.d.a.'s such that

i) Y; and y; are isomorphisms.

ii) E is a A-extension.

Then there are homomorphisms wo : (B.dB) - (G.dc) and

L (C,dc) - (E,dE) such that

Jgoi=not and (vouoavgd) ~ (0, )
If (v ,0‘) also satisfies these conditions, then

Wy od)) v (ygad)e

Prood : Existence.- By theorem 5.19 , we can find vy ¢ (Budg) = (G,dc)
J: (C.dc) - (E.dz) so that

so that Yobo M V- By remark 9.15.4 we can find

Vois=3? Yov, and (ycwo.z) ().
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Now theorem 5.19 applies again and yields 00 : (C,dc) - (E,dE) such

that
Jo oci=noy  and Ysﬁo A~ ¥ (rel B).

By remark 9.15.3 this implies (YGwo’YEvo) A (ycwo,a) and since homo-

topy is an equivalence relation we obtain (ycwo,ysdo) AW,y

Undiqueness.- Apply prop. 9.18 1ii).

Q.E.D.

9.20.- Theonem.- Assume all the homomorphisms in the diagram of
theorem 9.19 are homomorphisms of augmented c.g.d.a.'s. Then (Wo,oo) may

be chosen to preserve augmentations, as well as to satisfy
&o oi=novy  and (v ,vgd)) ~ (a¥)-
Moreover, these conditions determine (00.00) up to based homotopy.
Proof : Modify the proof of theorem 9.19 , using theorem 5.20
and prop. 9.18 iii).
Finally, consider free morphisms
G o) t E o~ E, im0,

where

v -

E:B —~ ¢ -2 A and E:B 1. ¢ £ &

are A-extensions. If (¥,¢) 1is a homotopy from ( 0.00) to (yl.dl)

then in particular
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Now if Y is a based homotopy then we have Y¥(ker ¢) ¢ ker €g

and it follows that
vl
d(ker p’) € ker p.
Thus ¢ factors over BI to yield a homomorphism

v
: AI -+ A,

which is a homotopy from a, to a.

9.22. - Definition.- If ¥ is a based homotopy we say that

(¢b.ﬁo.no) and (w].ﬂl,a]) are homotopic by the homotopy (¥,¢,=). We write
(ua¥sa) v Cya¥paa).

If (wi.ﬁi.ai) are actual morphisms and ¢ 1is also a based homotopy,

then

(v,0,2) : EL + E

is a morphism. We call it a based homotopy from @:o.ﬁo.ao) and (w].ﬂl,ul),

and write (wo.do,uo) % (W|-$|'°|)'
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Chapter 10

A-models.

In this chapter, we consider a homomorphism of c.g.d.a.'s
n: (G,dc) hd (E.dE)
such that H°(G) = k and HP(E) = k. We adapt the theorems of chap. 6.

10.1. - Theonem (existence).- There is a commutative diagram of

homomorphisms of c.g.d.a.'s

n
G — E
" ¥
E B ——— (¢ —mmm—— A
1 4

such that
i) E is a A-minimal A-extension.

ii) " and " are isomorphisms.

Moreover, if G and € augment G and E and €gN = Ego

then ¥ and ¢ can be chosen to preserve augmentationms.

Proc{ : Let Y : B - G be the minimal model for (C.dc) (or for
(G.dc.cc)). Let (E,¥) be the minimal model for nw : B-E (or for
n ot (B.dB.cB) - (E.dE.:E)).

Q.E.D.

10.2. - Remak.- Note that H°(B) = H°(G) = k. Thus in the KS
extension k - B - B the inclusion of k 1is O-regular. Thus cor. 3.9.

shows that B 1is connected. [n particular B has exactly one augmentation.
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Next suppose

E :B X+ c 2+ A and E :B e C 2. 2

are A-minimal A-extensions. Assume °

¢ —I—0 E ¢ —1—
t v T .
] | ¢ ¥ | ¢
a l
v v
B —— ¢ E —— ¢
i i

. . - *« Ye
are commutative squares of homomorphisms of c.g.d.a.'s such that v , ¥, ¥

v

» . .
and ¥ are isomorphisms.

10.3. - Theorem (undiqueness).- Under the hypotheses above there is

a commutative diagram of homomorphisms of c.g.d.a.'s

<

B 1 ¢ £ A
E H J s ={a
i
B C A,
1 e

such that ;, a and o are isomorphisms, and (wC.oD) ~ (:.6)-

A4 v
If n, ¢, ¥, ¥, ¥ are augmentation preserving (for given augmentations
of G and E) then (E. 3, &) can be chosen to be augmentation preserving

and so that (vy,09) X (J.&).

Proo{ : Apply theorem 9.19. (or in the augmented casetheorem 9.20.)

to obtain homomorphisms «, ¢ such that (ve,80) ~ (%, 0).

By remark 10.2., v s automatically augmentation preserving.
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Hence y factors to give a.

Now because (&E,w@) n (;hJ) we have that ¥~ and @* are isomor-

phisms. Apply theorem 7.2 to the morphism
(LHW : k —B 2B + (k— BZuB)

to obtain that § is an isomorphism.

v

On the other hand, (cf. remark 6.27.2), we can reaugment C and A
so that (V,y,a) is a morphism. Since ¥ is an isomorphism and @* is an

is an is&morphism. Hence theorem 7.3.

el

isomorphism, theorem 7.2. implies that

shows that so is .

Q.E.D.

10.4. - Theonem (uniqueness o4 {somorphism).- With the hypotheses

and notation of theorem 10.3. assume that (wo.ﬂo.uo) : E+E is a free

morphism such that
(wwo.wo) LY.
Then (wo.do.uo) is an isomorphism, and (wo,wo) (W) .
Moreover, if E and G are augmented and all homomorphisms preserve
v N - - -
augmentations, and if (wwo.ﬂdo) » (v.d) then (v \¥ .a) ).

Proo4 : Note that 0; and w: are isomorphisms and argue as above
that (wo.do.uo) is therefore an isomorphism. Prop. 9.18. ii) implies (because
C Y Y] . .-
W ) v (W) v (v,30))  that (v W) v GL0).
In the augmented case prop. 9.18 iii) implies that (uo.ﬂo) ) (ul.al)

whence (cf. definition 9.21 ) (.O.JO.JO) - (;l.Jl.al).
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10.5. - Definition.- Let n : (G,dc) > (E,dE) be a homomorphism of

c.g.d.a.'s such that H°(G) = k = E°(E). Then a A-model for n is a A-
i p
—

extension E : B C — A together with homomorphisms

v: (B,dp) + (G,dy) and ) : (C,d) =+ (E.dp)
such that Joi=noy and w* and J‘ are isomorphisms.

If £ is A-minimal then (E,¥,y) is called a A-minimal A-model

for n .

10.6. - Definition.- Let n : (G,dc.gc) > (E.dE,cE) be a homomor-

phism of augmented c.g.d.a.'s such that H°(G) = k = H°(E). Then a A-model

for n is a A-extemsion E : B —~ ¢ —E4 a together with homomorphisms

v e (B,dB.cB) - (G,dc.ec) and ¢ : (C,dc,cc) - (E,dE.cE)

such that Yy oi = no y and w, and @’ are isomorphisms.

1f E is A-minimal then (E,y,Y) is called a A-minimal A-model

for n.
10.7. - Remanks 1.- Theorems 10.1 and 10.3 show that A-minimal
A-models always exist, and are unique up to isomorphism.

2.- Another way of constructing the A-minimal A-model

of n is as follows (if G 1is augmented). Let

G 1 L P A
\\\\\\\\ lw
n o
\
E
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be the minimal model of n. Then let

-
(B,dg,ep) (Gudg.eg)

B

be the minimal model of G. Finally, let

1 [o]
E : B c A
" ¥,
6 — L
]

be the minimal model of jy.

Then (E,W,JOJI) is a (and so the) A-minimal A-model of n.

Note that because | preserves augmentations, 4, factors to yield

1

where a 1is an isomorphism by theorem 7.2.

Thus the fibres of the A-minimal A-model of n and of the minimal model

of n coincide.

3.- Suppose (E,y,¥) is a A-model for n : G - E.
Then ¢ : B+ G is a model for G and (E,J) 1is a model for r o .. If
(E,v,¥) is A-minimal then both these are the minimal models.
On the other hand V¥ : C - E is also a model, and even if (E,,.{)

is A-minimal this model for E need not be.
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10.8. - Moaphisms.- Consider a commutative square

(10.9) Yo Yg

of homomorphisms of c.g.d.a.'s. Assume Ho(ci) - HO(Ei) =k, 1=1,2.

Combine (10.9) with A-models (Ei,wi,wi) for " (i =1,2). This gives a

diagram
i 0
1 ]
B, ¢ A
::\\\ c i £ (//ii
1 1
(10.10) v Yo l Yg ¥ a
G —_— E
////’ 2 n, 2
Y J’z\
B, ; ¢y > A
12 2

Here ¢ and J are constructed so that (YGWI‘VEOI) ~ (v2w.020).
(cf. theorem 9.19 ). Note that all the remaining squares commute. We assume
the augmentations in BI and B2 are chosen so that ¢ preserves augmen-

tations (this is a vacuous assumption if Bl is minimal). Then ¢ factors

to give o. Finally note that the homotopy class of (v,¥) 1is uniquely

determined.
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10.11. - Remorks 1.- Suppose

n
2
———
c, E,
Y6 YE
Gy m Ey

is a second commutative square with HO(GB) = HO(EB) = k. Let (EB,W3,$3)
be a A-model for ny and repeat the above construction to obtain a free

morphism W,P,a) : E2 - E3.

Then (yy,¥,aa) : E] - E3 is the free morphism corresponding

to (Yo 0 Yo,vp © Yp).
2.- Assume in (10.% ) that the c.g.d.a.'s are
augmented and that the homomorphisms preserve augmentations. Let (Ei,wi.ﬂi)

be a A-model for n; (Gi'd ), 1i=1,2.

c.*%.) * (Byrdp o
i i i i
Then using theorem 9.20 , we can choose (w.ﬁ.c) to be a morphism

such that (yc Vs Y 0‘) Y (wzw.ﬂqﬂ). Moreover this uniquely determines the

based homotopy class of (v,f,a).

10.12. - The exact V-homntom seauence.- Suppose E : B — C —-»

is a A-extension. Then the sequence of differential spaces
o - @@,y S (o) 2 0w.0w@,) - o

is short exact, as follows from (9.6 ). Hence it gives rise to an exact triangle
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YOO
H(Q(B)) H(Q(C))

(10.13) e Q)"

H(Q(A))

in which the connecting homomorphism, 3., has degree +1.

A morphism of A-extensionsinduces a morphism of short exact sequences
and hence a morphism of exact cohomology triangles. According to lemma 8.3

this last only depends on the based homotopy class of the original morphism.

Now suppose that (E,¥,y) is a A-model for a homomorphism

n i (Gdgiey) — (Eidgep)

E’°E
of augmented c.g.d.a.'s. Then

¥ i (Bydg,el) + (Gydgie) and Wz (Cod )+ (Evdp,ep)

c’tc
are models.

Thus, as described in chap. 8, we have canonical identifications
(10.14)  H(Q(B)) —— w;(G) and H(Q(C)) ——nu rv:(E).

On the other hand, (E,\) 1is clearly a model for i and hence

we have a canonical identification

(10.15) H(Q(A)) 2 v;(i).

Moreover, because Y 0 i = n o v we can apply definition B.11 to obtain a

linear map
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# - .
[€X)] s, () — Ty (M-

Since w' and d' are isomorphisms theorem 7.2 shows that so is (w.ﬂ)g.

Thus composing (10.15 ) with (w,@)# gives an isomorphism
(10.16) HQM) —F— ()

We can thus express the exact triangle (10.13) in the form

-3
- n' -
"W(G) ﬂw(E)
(10.17) ' /
ﬂ;(n)

If (E',¢',y') 1is a second A-model then theorem 9.20 gives a
morphism (v,0,a) : E' -~ E such that (WW,¥¥) X (¥',9'). This completely
determines the based homotopy class of the morphism. Moreover, w* and a’

are isomorphisms, and hence Q(E)..Q(a)‘ and Q(;)‘ are canonical isomorphisms.

I1f we identify the "primed triangle' analogous to (10.13 ) with

(10.17 ) as described above then the two identifications are identified by

A *,0M* and .

Finally observe that a commutative square

")
¢ E|
A E
i |
6 —— &

of homomorphisms of augmented c.g.d.a.'s defines a commutative diagram
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#
P " P P 2" p+l
> "W(Gl) —_ ww(El) R "w(nl) —_ (G‘) -
4 #
(10.18) lvt lv:: l(vc,ys) lv&
-+ P — P — P ———— p"l -
"w(cz) T "w(az) "w(“z) i ™ 6,)

Ny

10.19.- Example.- Suppose the A-extension E is in fact A-minimal.

Then the short exact sequence reads
0 — (Q(B),0) — (Q(C).Q(dc)) — (Q(A),0) —@™ 0

as follows from cor. 2.4.

Thus Q(dc)(Q(B)) =0 and Im Q(dc)c Q(B).

Hence Q(dc) factors to produce a linear map
Q(dc) : QA) + Q) ,

and this by definition is exactly the connecting homomorphism 3,
In other words, ?* =0 if and only if Q(dc) = 0.

Thus (cf. cor. 2.4 ) " exactly measures the failure of the middle KS complex

in the A-minimal A-extension E to be itself a minimal KS complex.

Now if n : G - E is a homomorphism of augmented c.g.d.a.'s
with HO(G) = HO®E) = k, then n has a unique A-minimal A-model. The
middle term of this will be the minimal model for E if and only if the

connecting homomorphism a* in (10.17) is zero.
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Automorphisms.

In this chapter (A,dA) denotes a connected KS complex and

CA : A+ + Q(A) 1is the projection (cf. 1.1). Thus if we write A = AX then

g, t X == Q(a).

A

11.1.- The Hurewicz map. Recall (2.1) that a differential, Q(dA)'

is defined in Q(A) by Q(dA):A = ZA od,. Thus ¢

A induces a map

A

- +
Gt H () =+ HQM),Q(4,)) 5

this map is called the Hurewicz map.
If §: (A’dA) -+ (x,dx) is a homomorphism of connected KS complexes,

then it induces a linear map Q(¥) : Q(A) -~ Q(K) and the diagram
-

4
) —A— na)

(11.2) ) adh*

1 (d) ————————— H@Q))
4

>< %

commutes.
In particular, suppose ¢ : (A,dA) - (E,dE.eE) is a model for an

augmented c.g.d.a. (E.dE,cE). If we use ¢ to identify
H(A) = H(E) and H(Q(A)) = ﬂ;(E)

(cf 8.8.1) then L: defines a map
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(11.3) Bt E) -+ u;(E).

Diagram (11.2) shows that (11.3) does not depend on the choice of model ; it is
called the Hurewicz map for (E,dE,eE).
Now suppose that (A'dA) is minimal (so that Q(dA) = 0 - cf. cor 2.4).

Then

« +
gt H (&) + Q(A) .

On the other hand, recall from 3.2 (with B =k and C = A) the filtrations
Q:‘(A):Q']‘(A)r:....cq"(A), nxl.

According totheorem 3.4 induces isomorphisms

a

E : 2n H n
A P/, —= Q_(A)
P n
/AP‘l.n /Qp_l(A)

(11.4) and
- . H n
g, : 2 / . —— QO(A).
-1,n

By definition the second restricts to an isomorphism (cf. prop 3.8)

- = -
(11.5) ‘A : Im g ———— Im CA .

be a family of linear

11.6.- Locally nilfpotent families. Let (wy)Ycr

transformations of a vector space W. We say the family is locally nilpotent if

there is a well ordered basis (wu)ucl of W such that for vye T, ael

WY v is a linear combination of the Vg with B < a. If V 1is a subspace
of W which is stable under each WY then the family is locally nilpotent in
W if and only if the induced families of transformations of V and W/V are

locally nilpotent. If W 1is a direct sum of subspaces wx and each UA is
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stable under the ﬁy then {WY) is locally nilpotent if and only if for each
A {ﬁYIWx} is locally nilpotent.
Finally, if {ﬁy-l) is locally nilpotent we say {oy} is locally

unipotent.

11.7.- Proposition. Let (A,dA) be a minimal connected KS complex.
Assume ﬁY B (A,dA) - (A'dA)’ YyeT, is a family of c.g.d.a. homomorphisms.

Then the following are equivalent :
i) {ﬁy} is a locally unipotent family.
ii) {0:) is a locally unipotgnt family.
iii) {Q(éy)) is a locally unipotent family.

iv) The restrictions of the (Q(ﬂY)) to Im L: form a locally unipo-

tent family.

Proof.- The following implications are evident from the remarks above :

i)

iv)

It is also easy to verify that iii) => i).

Now assume iv) holds. We apply prop. 3.8 (parts iii) and iv)) together
with the isomorphisms (11.4) and (11.5). Together these show that if i) holds
for some A then iii) holds for A . Since iii) => i) the proposition

p-l,n P,
follows.
Q.E.D.
Next, consider a locally unipotent family (0y) of automorphisms of

a minimal connected KS complex (A,dA). Since the Q(Oy) are locally unipotent

and respect the filtration
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QoA € Qj) C ...

we can find a well ordered homogeneous basis

following conditions :

(11.8) B < a => deg z, 5 deg z -

B8

(11.9) B <a, deg z

{z}

a a€

1

of Q(a)

subject to the

n n
g=1o" deg 2,2, € QP(A) =z ¢ QP(A)-

(11.10) For all .y and all a, (Q(Oy)-t)zu is a linear combination of the

z8 with B8 < a.

11.11.- Proposition. Let z  satisfy the above conditions and let

x € A be homogeneous vectors such that

cA.xa

i) The x are a basis for a graded space

ii) dAxa € (Ax)(a.

. Then
a

iii) For each Yy and each a, (Oy-\)xu € (Ax)(u.

X C A", and A = AX.

Proof.- i) and iii) are immediate from the conmnectivity of A.

ii) follows from theorem 3.4 (because of (11.8) and (11.9)).

11.12.- The cincle construction. Assume

(A4

Q.E.D.

is minimal. Fix a

locally unipotent automorphism, {, of (A,dA). For each z € A there is some

n, such that
n
(1) 2 z=0.

Thus we can define

® n-1
o =log¥= ) LY o

n=1 n

it is a locally nilpotent derivation of A, homogeneous of degree zero, and

commuting with dA' Note that ¢ = ee.

We can also define a linear map of degree zero, commuting with dA :

¥ A-+A, by
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n
(n+1)! 6.

ve-J
n=0

~

It is locally unipotent, and hence a linear automorphism. It nntilfiés
0y = ¥ = 1=y .

Now let {xu)ucz satisfy the conclusions of prop. 11.11 (for ¥)
and let X be their span ; then A = AX. Define a c.g.d.a. (Au @ A,D‘),

(where deg u = 1) by

D -
‘u 0
and

D‘(l 6a)=186 dA a+u@ fa, a € A.
Apply prop 11.11 ii) and iii) to conclude that
dAxa € (AX)(G‘ and exa € (Ax)<u H

it follows that (Au @ A, Dﬂ) is a minimal KS complex. It will be called the

circle construction for .

On the other hand denote by A(t,dt) the contractible KS complex
generated by an element t of degree zero. Define
L "l : A(t,dt) @ A + A

by wo(t) =0, nl(t) = 1 and wo(n) - nl(n) =a, acA.

Let (K‘.d) be the c.g.d.a defined by
K‘ = ker(nl-‘wo).
Then a homomorphism of c.g.d.a.'s
(11.13) UJ : (Au @ A,D&) - (K6.d)

is defined by oy(u) = dt, oy(a) = ] L " 0 6%a).
: u=0
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11.14.- Proposition. c; is an isomorphism. Thus (11.13) is the mini-
mal model of (KW’d)'

Proof.- Define a short exact sequence of differential spaces

(11.15) 0+A-3AueA—Lraso

by a(a) = -u @ w-l(a)and B(u © a*lOal) = a . On the other hand we have the

1
short exact sequence

. ﬂ,-wwo
(11.16) o-»xw--L-» A(t,dt) 8 A ———— A » O,

where j is the inclusion.

In the long exact cohomology(sequence arising from (11.15) the connec-

ting map 30 : Hp*l(A) - HP+1(A) is given by
30 - 0* -

as is easy to check. On the other hand, if a € A then

T ! -1
(r=dn )= ] ——— 006" ¥ a) = a.
°  n=0 (n+1)!

It follows that the connecting map 31 for the long exact sequence arising from

(11.16) is given by

3 - - *
1% ¢
Thus the diagram
P u' p+l B- P+l -ao pl
+ H'(A) —— H~  (AueA) ———— H" (A) —————— H" (A) -+
N L] - * -] N
z i 1 oy = (ﬂo) ER
» WP (A) —— #* ! (kp) —— wP* (e, de)8h) ———— w () -
1 j (n]-@ﬂo)
commutes and the proposition follows.
Q.E.D
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Next recall from chap. 5 the c.g.d.a. Al. (Let B =k, C = A.) We have

the projection = : A; + A and the inclusions XO,A‘
[ AI + A is a homotopy from ¥ to i. Then 3. = 0., so @ is also locally

T A~ AI. Assume

unipotent. Let 6 = log .

Regard m, as projections A(t,dt) © AI - AI, i = 0,1, and define

p-non]-oonozn(:,dc)OAI-»A.

Then set Ky = ker P; it is a sub c.g.d.a.
Consider the row exact commutative diagram

0 — Ky — A(t,dt) 0 A Cowo-fn

o
Y 10

0—’K°‘—->A(t,dt) OAI—Y———’A
7 o -
YI I‘ :,,/’;/:;: .
0 —— K_ —— A(t,dt) @ A 1 7 ;
¥

from it we deduce that Y. and ' are isomorphisms.

Now identify u with dt. Then

Ko

Y o 00
Ay =t (Au OA'DO) + A

and

Au

(Au 8 A,D_) =+ A
]

are both minimal models for the inclusion Au =+ Ko.
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Hence by theorem 6.2 there is a c.g.d.a isomorphism

Tt (Au 8 ADY —— (Au @ A,D)

¥
such that Tt(u) = u. Clearly 1t must have the form
1(1 6 a) = -u @ :(n) +180 ro(a), a €A,
where T, is an automorphism of (A,dA).
Straightforward calculations show that
Fab) = S (B + (-1)%B 2 _(a)3(b)
and
N N -
sdA + dAs = toe ero
In particular a degree -1 derivation, s, in A 1is given by
-1
s =1 8.
o

It satisfies
sd, +d,s = 6 - T_l T
A A o o
We have thus proved

11.17.- Proposition. Assume V¥ is homotopic to #. Then there is a

degree -1 derivation, s, of A, and an automorphism T of (A'dA) such that
log ¥ = adA + dAs + 12' log v T,
In particular, if ¥ ~ 1 then

log § = sdA + dAs.
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Next suppose ¢ 1is a based homotopy between §¥ and J Since A is

| 1 1 2

connected A" =X and A= AX @ Ax>’ . Thus (since A is minimal)

Ax! -+ A - ax3?

is a minimal KS extension and so we can form the c.g.d.a (A,Axl)I. The projection
AI i N (A,l\)(l)I (of chap. 9) satisfies p o )‘i - Xi’ i = 0,1, where
Xi : A~ (A,AX“)I are the inclusions. Since ¢ 1is based and A 1is connected,

¢ factors over p to yield a homotopy
Y (A,I\){])I - A

such that ‘Poio-(:‘, ‘Poxl-w.

Now repeat the above construction with ¥ replacing ¢ to achieve

the commutative diagram

A(t,dt) 6 A

1 0
Y o

0 — KV ——— A(t,dt) @ (A,I\)(l)1 — A — 0
1

; lOA]

0 ——K

¥

A(t,dt) @ A

Note that (A.I\)(l)I is connected. Thus if we augment A(t,dt) by t - O then

K_ are augmented and Y, Y preserve the augmentations.

v

Moreover )‘o s A

, asree in AXl and hence so do W.E‘ and 6, 8.

Thus we can write

1
wlﬁ YOE n : Au 6 AX KV
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In particular

Ky
n
Yao
Au @ Ax! Au @ A Ax>?
and
n ;‘,’_
¥
2
Au @ A% Au @ A x>

are both minimal models for n.

We apply theorem 6.2 to obtain an isomorphism
T (Au@ADY —=— (Au @ A,Da)

. : : . . 1
such that 1t = 1 in Au @ AX'. The resulting derivation s 1is thus zero in X ,

and we obtain

11.18.- Proposition. Assume ) ~ y. Then there is a degree -1 derivation

8 of A and an automorphism A of (A,dA) such that

T, =0 in AXl and 8 =0 in AXl

and

-l -
log ¥ = ldAOdAl + T log ¢ T
. . A
In particular, if ¥ ~ 1 then

log § = s8d,+d,s.
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11.19.- Lomotopies. Again assume (A,dA) is minimal. For any c.g.d.a.
(E,dE) form the c.g.d.a. A(t,dt) 8 E (deg t = 0) with the inclusion and

projections

£ : E-> A(t,dt) O E, LA A(t,dt) @ E - E

=
given by 1z =1 6 z, wot =0, nlt =1,
Two c.g.d.a. homomorphisms ﬁo,ﬁl : A+ E will be called lomotopic

if for some c.g.d.a. homomorphism
¢ : A+ A(t,dt) OE,

v 0 ¢ = @i, i=0,1. If oo’wl preserve augmentations (for a given augmenta-
tion €g of E) then wo and ﬁ| are called based lomocogic if ¢ can be

chosen so that
+
[QW) eE)O (A) =o0.

11.20.- Proposition. Assume H°(E) = k. Then
i) 0° ~ @I if and only if they are lomotopic

ii) &o N ﬁl if and only if they are based lomotopic.

+
/ _ es - . . < e
Paoon. Since Im(iﬂo 1) C A (t,dt) @ E, which is an acyclic ideal,
we have lno ~ 1. Similarly znl A~ 1. Thus lwo ~ Lwl and by prop 5.15,

n 1, . Hence WOO ~ 1. ¢. Thus ﬁo.ﬁl lomotopic => ﬁo ~ Gl.

o 1 1

The identical arsument shows that Wo.ﬁl based lomotopic => Wo X ﬁl'

once A(t,dt) @ E is replaced by the augmented c.g.d.a.
[A(t,de) @ ker €] © k.

Conversely, suppose &o ~ Ol and let VY : AI -+ E be a homotopy.
Recall that (Chap. 5))

Al = AX @ AX @ ADX.
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Define a degree -1 derivation, h, in A(t,dt) @ AI by
h(x) = tx ; h(t) = h(dt) = h(x) = h(Dx) = O.

Denote the differential in A(t,dt) @ AI also by D.
Then an automorphism of A (t,dt) @ AI is given by eDh’hD.

Put

Dh+hD
[

¢=(10Y¥)oe Ao : A+ A(t,dt) @ E.

Then ﬂ°0 = 00 and nlo - 0,. Moreover if y was a based homotopy then
(1 8 ep) oA") = 0.
Q.E.D.

11.21.- Theorem. Assume (A'dA) is a minimal connected KS complex
and ¥ : (A,dA) - (A.dA) is a homomorphism of c.g.d.a.'s. Then the following

are equivalent :

i) ¢~
sdA+d s
ii) J=e , where 8 is a degree -1 derivation of A.

Prood.- In prop 11.17 we proved i) => ii). If ii) holds define a
P

degree -1 derivation j in A(t,dt) @ A by

j(t) = 0, j(dt) = 0, j(a) = ts(a), a € A.
Define ¢ : A + A(t,dt) 6 A by
dj+jd

o(a) = e (1 ® a) . ac€ A,

where d is the differential 1n A(t,dt) e A.
Then wOO = . and wlo = . Hence prop. 11.20 shows that ¥ ~ 1.

Q.E.D.
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The same argument gives

11.22.-Theorem. Assume (A’dA) is a minimal connected KS complex and
[/ (A,dA) -+ (A,dA) is a homomorphism of c.g.d.a.'s. Then the following are

equivalent :

i) ¢ v
sdA+dAs
ii) ¥=e , where s is a degree -1 derivation of A and
s(Al) = 0.
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Simplicial sets and local systems.

12.1.- Simplicial sets. For each integer n > 0 write
[p] = {0,1,...,n}. Let Ord denote the category whose objects are the sets [0],

0], [2], and whose morphisms are given by
Ord([n],[m]) = {set maps f : [n] - [m] such that igj=>f(i)sf(
Among the elements of Ord([n].[nﬂj) we distinguish the face maps
§; = {0,..un} » {0,000 ,im1, I, i+1,...,n¢1)
and among the elements of Ord(|n+!],|n]) we distinguish the degeneracy maps
o, ¢ {0,...,n*+1} > {0,...,i,i,...,n}.

They satisfy the relations

GJ i Giéj-] , 1 <3

03 i Oioj-l » 18]

(12.2) and éioj-l , 1 < 3
ojéi = 1 , 1= 3,3+1
éi-loj , 1 > 3+l

A simplicial set is a contravariant functor, K, from Ord to the
category of sets. We denote by En the set 5([@]); it is called the set of

n-simplices of K. If o € En we write |o| = dim o = n.
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Corresponding to the Gi and o, are the face and degeneracy maps

G K K, ad s; ‘K K-

They satisfy the relations

395 = A,y , i<j,
8;8; 84185 , igj,
(12.3) and
sj_lai , i<j
318j - }' i= j)j#l
'jai-l , i > j+1
(A family of sets, Sn. n > 0, together with maps ai, s; satisfying (12.3)

defines a simplicial set.)

n-1
If K is a simplicial set the simplices in U si(gn_‘) are called
i=0

degenerate. The other simplices in En are called nondegenerate.
A simplicial map L - K is a family of set maps Ln - En commuting
with the face and degeneracy maps. If each Ln - Kn is the inclusion of a subset,

we say L is a subsimplicial set of K.

Suppose K is a simplicial set, and Hn C En are subsets such that

C .
3, M) C M _

Define subsets L C K by
1 -n -

(12.4) = (s, 5, ...8 (M)t e un_p, l¢pgn} U M.

1

L
- 1 "2 P

Using (12.3) it is easy to see that the Lh define a subsimplicial set of K.

Note that the non-degenerate simplices of Ln are all in Hn ; we have only

added degenerate ones.
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If we apply this construction with

K , MSN
M -{""

n ] , m>n

we obtain a subsimplicial set which we denote by E(n) and call the ntP skeleton

of K. Thus
Nondegenerate simplices in Em' m< n,
Nondegenerate simplices in Eén) =
[ m >n
(Note that K(n) - (K(n)) .)
-m - m
. . . . s . (n) (n)
A simplicial map L =+ K restricts to simplicial maps L +K , n20.

12.5.- Lemma. Let K be a simplicial set. Assume w,T € En satisfy
8T = sjm =0 , some j g i.
If j=1i then 1 =w. If j <i then

T=8,3,0w and w = 9.w.
ji i

8i-1

Proof.- Using (12.3) we find

T = ai*]six - ai+lsjm = sjaiw»

and
w®=293,.8,w™=203,8.T=256. 9.T.
13 j1 i-

1)

Hence

w=28., 3.5.3.,w =86, ,0,w.
i-17373°1 i=171
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12.6.- Example-simplicial complexes. Let K be a simplicial complex.

If Kp is the set of p-simplices then each element of Kp is a subset of Ko

containing p+] elements.

An associated simplicial set K is given as follows :

i) En consists of all the set maps o : [nﬂ - Ko such that Im o
is a simplex of K.

ii) For f € Ord([n],Bm]), K(f) : kK is given by

K(f)(0) =0 o £.

12.7.- Example - ondered simplicial complexes. Suppose K is a simpli-

cial complex, and that the vertices of K havec been assigned a (partial) order
in such a way that the vertices of any simplex are linearly ordered.

An associated simplicial set, K, is given as follows :
i) K  consists of all the set maps o : [n] - K~ such that
Imoc is a simplex of K and such that
0(0) £ 0(1) £ ... € o(n).
ii) For £ e ord(|n],|m]), K(f) : K, + K is defined by
K(f)(o) =0 o f.

Then the set map o~ Im o defines a bijection :

(12.8) Nondegenerate simplices of 5n = Kn.

(n) is the n-skeleton of K then K(n) - (5)(n).

In particular, if K

12.9.- Example-the standard simplex A". Denote the standard basis

(1,0,...40) , (0,1,0,04250) 4 vvev , (0,...,0,1)

of Rml by vo,...,vn. The standard n-simplex, An, is the subset of R

n+l

given by
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n n n
A" - (g tv; loce ety g e, =1k

The continuous function bi S given by
bi(ftjvj) -t

is called the ith barycentric coordinate function. If £ : |n] » [m] is any

set map we define a continuous map A(f) : A"+ A" by
n n
A“"g £;vy) = g 8iVe(i)

Then :.z b. .
-1,,, 3 , £ ) 0,

(12.10) bi o A(f) =
0 R otherwise.

A function a" + M (Ma c” manifold) is called smooth if it extends
to a smooth function U + M in some neighbourhood U of " in Rn*l.
We shall also denote by An, and call the standard n-simplex the

ordered simplicial complex given by

n
(A )o (vo....,vn} »V S eee <V
and

(An)p = {all subsets of (An)o with p+l elements}.

Applying example 12.7 we obtain a simplicial set é? ; if we identify

[n] - (vo,...,vn} then
(12.11) (g“)p = ord(|p|,[n]).

The (n-1)-skeleton of A" s just its boundary s’ (consisting of

all simplices of dimension < n) ; clearly then 25“ is the (n-1)-skeleton

of A" H

3a" - (An)(n—l)c L
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(We regard aa® as an ordered complex !)

Thus (cf. (12.11) or (12.8)) all the non degenerate simplices of
35? are of dimension ¢ mn-1. An has a single additional non-degenerate simplex.
It has dimension n and we denote it by [An].

Finally, let K be any simplicial set. Each o € En determines a

simplicial map

by (using (12.11))
a(f) = K(E) o o.
It satisfies

(12.12) o([a"]) = o.

12.13.- Example - singularn simplices. The singular simplices on a

topological space, M, form a simplicial set Sing(M) :

cont

Sing (M) = {0 : A" ———— M} ;
ai(c) =00 6i H si(d) =o0oo;,.
A continuous map ¢ : M - N defines a simplicial map
S(¥) : Sing(M) - Sing(N)

by S(¢)o = § o o.
1f M is a C manifold then smooth singular simplices are a

subsimplicial set, SingD(M).
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12.14.- Local systems. Recall that all vector spaces are defined over
a given field k of characteristic zero. By the category of n-graded spaces we
mean the category whose objects are the n-graded spaces

PyaeessP,
V = v 1 n

pls"'opn)—o

and whose morphisms are the linear maps, homogeneous of multidegree zero.

The category of n-graded differential spaces has for objects pairs
(V,d), where V is an n-graded space, d is a linear map of total degree |,
and d2 = 0. The morphisms are the linear maps, homogeneous of multidegree zero,
which commute with d.

In the sequel C will always denote one of the following categories :

i) n—-graded spaces.

ii) The subcategory of n-graded algebras.

I
iii) The subcategory of commutative (in the graded sense) n-graded algebras.
iv) n-graded differential spaces.
v) The subcategory of n-graded differential algebras.
II

vi) The subcategory of commutative (in the graded sense) n-graded diffe-

rential algebras.

In group II the differential is usually denoted by d. We shall almost
always restrict ourselves to the case n = | (graded spaces, etc.) and leave the

general case to the reader.

12.15.- Definition. Let K be a simplicial set. A local system F

on K with values in C is :

i) A family of objects Fo - XP’O F: in C, indexed by the simplices
o of K.

ii) A family of morphisms (called the face and degeneracy operators)
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ai H l-‘o — Faic and li : Fo — Fl.o

satisfying the relations (12.3).

12.16.- Definition. Let ¥ : L+ K be a simplicial map, and F a
local system over K. The pullback of F to L is the local system \V‘F

over L given by
&
WE) =Fg 3 3 =23 3 5 =5
If LG-JL K is a subset we say ¥'F is the restriction of F to

Next, let F be a local tysi:em over K with values in C. Define
a graded space F(K) as follows : an element & of FP(E) is a function which

assigns to each simplex o of K an element 00 € F: such that for all o

3.

- = 8
[ 10 3i(0°) and O.io i(Oo).

The linear structure is given by
(M*uv)o =) 00 +u \vo .
If C is a category of algebras (or with differential) we put

(0.‘!’)c - Oc . ‘t’o (or (do)o = d(Oo))-

If C is a category of n-graded spaces then the finite decompositions

PireeerP

- I F! n
pl*...d-pn-p

define in an obvious way an n-grading in F(K).

In this way F(K) becomes an object of C. It is called the space of

global sections of F.
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If ¢y : L+K is a simplicial map it determines a morphism

F) : (J"F) (L)« F(K) given by
(F(WZQ)O = %

If § is an inclusion of L we denote (0’!)(}9 simply by F(L),
and call the morphism F(K) » F(L) restriction.
Again suppose F is a local system over K. Assume Mn [ En are

subsets (n > 0) such that 23, : M - M
i n n-

'
Recall that ({M } generates a subsimplicial set L CK (cf. (12.4)).

Moreover, if 8. c € M then o = 3.8,.0 € M.
i n+l ii n

12.17.- Lemaa. Suppose o ¢ Fg (o € Mn’ n > 0) satisfy

°ai° = aioo (0 € Mn’ n=1) and °sio - aioa (if o and s;0¢€ Mn’ n > 0).

Then there is a unique element ¢ ¢ FP(E) extending the 00.

Proof : We show by induction that there are unique elements

¥y e (oel, n=0,l,...) such that
[¢] a -

Yy =9 if oceM

] [} n
(12.18)n W.'T =- siW‘ if t e Ln-l , n2>21
Y =3.Y if cel , n 1

3.0 10 -n

In fact, for n = O the first condition defines the Wc and the
others are vacuous. Assume the Vo are constructed for o € Lm, m € n, such
that (12.18)m holds for m ¢ n.

If o€ Ln*l then by (12.4) either o € Hn*l or o =1, Te¢ Ln.

In the first case put Vo - 00. in the second put Vc = BiWT. To check that

¥ is well defined note first that if o = 8.1 ¢ M fhen T eM and so
o i ™ n

$ =8.6 =38.Y.
[+ 17 i
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On the other hand, if o = s, 1= 'j"’ with 1é¢w, 7T,0¢ l’n then

i#é j. Take j < i and apply lemma 12.5 to find

. =g, =8 8,
ijm .JY‘. d.w j i=1 ?aim

= 2.8, 8, . .
'1‘JY3.m ERE A I it
i i

Finally, the first two parts of (12.18)‘..“l are true by definition,

while the third follows easily from (12.3).

Q.E.D.

Recall (example 12.9) that if K 1is a simplicial set, each simplex

o€ !(_n determines a simplicial map o : A" -+ K with o ([An]) = o. In particu-

lar, if F is a local system over K we can form g.l-‘ over An

12.19.- Definition. F is extendable if for each o the restriction

P ™ + (o"P) (38"
is surjective.

12.20.- Proposition. If ¥ : L K is a simplicial map and F is
an extendable local system over K, then w'F is an extendable local system

over L.

Proof : Obvious.

Q.E.D.

12.21.- Proposition. Suppose LC K is a subsimplicial set and F

is an extendable local system over K. Then the restriction morphism

F(K) + F(L)

is surjective.

163



S. HALPERIN

Proof : It is sufficient to show that any ¢ € FP(L v E(n.‘)) can
be extended to an element Y of FP(LU _]S(n)). Suppose that o ¢ En' g t Ln

and o non degenerate. Then g restricts to

we can use 3¢ to pull ¢ back to an element of g’Fp(_a_An).
By hypothesis there is an element \!'a € Fs which restricts to this

pull back of ¢ (use the isomorphism 12.12.b) below) ;

ai‘ro - °3i0 0<1icgn.

Next, set \Po = Oa if oe (L U_ls(n-l))m, m 2 0. Finally, use lemma 12.17 to

extend ¥ to all the simplices in LU 5_(“).

Q.E.D.

12.22.- Definition. 1f F is an extendable local system over K
and LC K we denote the kernel of F(K) ~ F(L) by F(E,E), the space of rela-

tive global sections. Thus
0+ F(K,L) - F(K) » F(L) + 0

is a short exact sequence.

12.23.- Exampfe. Let F be any local system over K. Put

NK_ = {nondegenerate simplices in K}
-n -n

and
P
Fo . g e K
m.-g -
)] : FP - F° K z 1.
oOsisn ker(ai : l-‘a - 3.0)’ o€ , D 2

1

154



LECTURES ON MINIMAL MODELS
Define an inclusion

P P .(n)
agNK NFo — P&
-n

as follows. If ¥ e NF: » 0 € NK, extend by putting ¥ =0, if lo] <n

(n)

and then use lemma 12.17 to extend to a unique element ¥ of Fp(g ). It is

easy to verify that the sequence

(12.24) 0 — 1 NFg - pP(E(n)) rest'n Fp(ﬁ(n—l))
ocﬂgn

is exact.
In particular, if F is extendable this inclusion is an
isomorphism

(12.25) nooweP 2 Pe® ™Dy oo,

oeNK
-

On the other hand, suppose F is any local system over Aﬁ.

It is an equally easy exercise to deduce that an isomorphism

12.26. F(A™) —— F;
( a) @) |An]

is defined by ¢ = ol n]' In view of (12.24) it restricts to an isomorphism
A

(12.26.b) Ker(F(a") + F(38™) —— NF_ _
(6" -
In the applications we shall consider local systems satisfying certain
additional conditions. Aside from extendable we need the following definitions.

A local system F over K is

i) constant if for some F € C each F =T and each 3., S.
—_— o o o it i

is the identity map of Fo.

ii) constant by dimension if for some sequence Fn e C (n > 0),

Fc =F, oe K and ai, sj depend only on |o].
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iii) a local system of coefficients (L.s8.c.) if for each ¢ and each i

3, : F_+F and s, : F_ +F
[ i [

1 3.0 S.o
i i

are isomorphisms.

iv) a local system of differential coefficients if C is a category

with differentials and if for each o , i
at : H(F) ~ H(F, ) d st : H(F) » H(F_ )
i’ o 3.0 an §; ¢ o ( 8.0
i i
are isomorphisms (in other words if {H(Fc), 3;, u:} is a
local system of coefficients).

Our next goal is the following

12.27.- Theonrem. Let F and G be extendable local systems of diffe-

rential coefficients over K. Assume we are given morphisms
y : F_ -G , cek,

compatible with the face and degeneracy operators, with each w; an isomorphism.

Then a morphism  : F(K) - G(K} is given by (00)o = 05(00).and

o H(FK)) ~ HG(K))

is an isomorphism.

12.28.- Lemma. Let E be an extendable local system of differential
s . n m,n n
coefficients over &4 . For m s n let L C A Dbe the subcomplex generated
by all simplices of dimension < m which contain the vertex v Then

i) For each m g n,
H(E(A™) - HEW™™)

is an isomorphism.
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ii) PPEE",8") =0, p<n.

Proof :
i) If m = n there is nothing to prove and if m = O formula (12.26.b)

reduces the assertion to H(E n]) = H(Ev ). This is true by hypothesis.
) )

Now assume that O <m < n and (by induction) that the lemma holds
for LP*? c A9 whenever p < m. Since E is extendable we need only show that

(cf. definition 12.22)

(12.29) BEQ™®," ) - 0.

Let GpseeesOy be the m~dimensional simplices of ™" ; they are also
the non degenerate simplices of Lm'n (of dimension m). Each g ¢ Am - Lm'n
pulls E back to a local 'system Ei of differential coefficients on Am and

Ei is extendable by prop. 12.20.

It is easy to check that the induced morphisms
. m,n m
E(gi) : E(L) » Ei(A )

define an isomorphism

. N
) N n Ei(éé' Lm—l,m

i=]

E(Lm,n. Ll'n-l.n

).

Formula (12.29) follows, and so i) is proved.

ii) Use the embedding 8, ¢ [n-1] < [n] to write 2" e a" (as the

face opposite vo) and L\“_I c é_n. Since E 1is extendable we obtain the short

exact sequence

n-1

Ln-l,n) R E(An-"aé )y + 0.

0~ E(a",38™ + E(A", L

n~l,n

But i) shows that H(E(An,k )) = 0, and so there is a linear

isomorphism of degree |
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(12.30) BEQ™ 20" ) < mEE®,n™).
Q.E.D.

12.31.- Proof of theorem 12.27. We show first that for each n,

(n)

(12.32) ¢ aEE™) - aer™))

is an isomorphism. Assume this is true for n-1 ; to prove it for n we

have to show only that

»

U H(F(g(n) ,5(“'”)) - H(G(_‘S(n) ,E(n-l)))

is an isomorphism.

Because of the isomorphism (12.25) it is sufficient to prove that

- . . .
00 : H(Nl?o) - H(NGO) is an isomorphism for o € N_Isn Use o to pull F

and G back to An and obtain (cf. (12.26.b) a commutative row exact diagram

0 —— NF F SFe™ Yy — o
o o = "l=n
‘Dc WO

0 NG G *ea™ )y o
(4] o] - -n

in whica the right hand arrcw is a cohomology isomorphism by induction and the

central arrow is by hypothesis. Hence so is the left hand arrow, and (12.32)

follows.
Next observe that by lemma 12.28 if o0 ¢ En,
w (o "F(a",28") = 0 = W(a"c(a",28"),  p <n.
Equations (12.26.a) and (12.26.b) translate this to
(12.33) HP(NF ) = 0 = HP(NG) , oek P < n.
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Now the isomofphisms (12.25) yield
(12.34) W™ k™) Lo - P er™ g™ D)), p<nm

In particular, let ¢ ¢ FP(E,E(n)). p < n, satisfy d¢ = 0. Using

equations (12.34) and the extendability of F we can find a sequence

(n*i)), (n*m*l))‘

m
v, e PR K i=0,1,... sothat &-d(]¥)eFPKEK
(o]

For each o set
Vo = g(vi)c (this is a finite sum !).

(n)

Then VY ¢ Fp-l(g.g ), and ¢ = d¥Y. Hence

(12.35) WP FRk ™)) = 0 = PGEE™)), P <.
These equations, together with (12.32), complete the proof.
Q.E.D.

Finally, suppose A and B are objects from one of the categories
C in our list. If A and B were n-graded then A ® B is 2n-graded. If
A, B were algebras we set (a @ b).(a' 6 b') = (-l)|b||a'laa' @ bb'. If A
and B had differentials we set d(a @ b) = da 6 b + (-I)'ala ® db. With these

conventions we say.

12.36.- Defainition. The tensor product of local systems E and F

over K with values in C is ‘the local system E @ F given by
(E®F) =E OF 3 9., =293, 0 3. ; 8. =8, 038.,
o o [4 i i i i i
Our next main result is

12.37.- Theorem. The tensor product of extendable local systems is

extendable.
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12.38.- Proposition. Let E be an extendable local system over K.

Let L, L',...,IC K be subsimplicial sets.

N m
i) Suppose Qi e E(L,L N El) satisfy Z Oi = 0. Then each .i
. m im]
extends to ?i € E(_,&") such that z '{'i = 0.
i=]
ii) If T € E(K,L) and T = ? I;s T; € EK,L) then also
o i ?
re § T, wien T, ¢ E®,LULD).
i=]

Proof : By induction on m. Regard the assertions above as i.)m and

ii)m. Note that both are trivial for m = 1. We show that

iz’.)m_l = i), and i)m => ii)m.
s . i : s o
n)m_I > 1)m. Choose ni € E(K,L") extending oi for i 1,0..,m1, and
o
set o = Z Q.. Then
i=1 *
m-1
and
m=1 i
a= ] a , 8, e E(K,L).
i=]
mel - i m
Hence by ii) Q =] R.» where 2. € E(X,L" UL(LNL)).
m=- im] & i - - -

In particular, a, is zero in I_.m ntu L). Hence by the

extendability of t we can find l‘i € lﬂ'l(l(.l_.1 U L) so that

r. - Q. , iw1,...,m1.
1Lm 1‘£m
m-1 ’
Put ¥, =@ - T, (i=l,...,0-1) and ¥ = -iZl Y. Then
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Y.l ., =Q,| . =T,] . =0-0=0, = i=1,,..,n0]
i Lx 1‘;. ll_‘:l
and mil mil mil -
Y = (- Q.) + ( r.) = =-Q + Q.
mIE- T i Lm [ i L||| .1.'.“ : 1|£m
= 0.
Finally
v.| =Q| -r.] =¢, -0=9¢, , i=1,...,m!
i L i L 1|£ i i
and so :
mil mil
¥ - - Y. - - ¢, = ¢ .
m{L i=] llL im ! n
? i
i) => ii) . Set & =T.| . Then | ¢ =0 and ¢ € E(L,LN L"). Hence
m m i il T i ===
— = ; o
by i), ¢ extends to ¥, € E(K,L) such that ) ¥, = 0. Now set

i=]

I'. =T, -v¥,.
i i i
Q.E.D.

12.39.- Lemma. Let E and F be extendable local systems over A",
=amne € £
Suppose Q €(E 8 FXA“) satisfies (3i -] ai)n =0, Os i< m Then we can
write Q = Z Q2 where for each a :
a «a

Either (3. ®1)Q =0 or (1 ©€3.,)Q =0, i=20,...,m.
i a i’%a

Proo4 : For each subset o = (i]....,ip) Cc [n] (including o = 9)

define subspaces NE CE , NF CF by
o AP o

(27

NE - N ker 9. and NF = ) ker 3.
o ieo i o ieo i

161



S. HALPERIN

Choose subspaces ﬁ'g [ Ng and ﬁgC N: so that for each p

o ﬁg -+ Nﬁ and o e o+
lo]2p |o|2p |o]

(Here @ denotes direct sum, + denotes not necessarily direct sum.)

We show first that in E and F

(2™ (a"]

(12.40) ker 3, = ® N and ker 3. = © N.
1 o] 1 [¢]

oai ol

In fact the right hand side is contained by definition in the left. Thus we

need to show that ker Bi ne l.ig = 0.

oji
n, . . .th . i
Recall that ai(A ) is its i face ; denote it by L and denote

n .

(W} Lt by LU. These are subcomplexes of A"  and so we can form _I:GC A

ieo

clearly Ni = E(An, _Eo).

Now suppose ¢ = 2 ¢ , ¢ € E‘B. and that 93.¢ = 0. Then
|°|>P o [+ (<} 1
ifo
00 =0 and [J = 0.
v L
Hence by prop. 12.38 ii) ¢ = 2 ?c with *a = 0.

|ol2p Ec: u Lt
E

In particular 1’0 € N and since i ¢ ¢ we have

ou{i}

ee ) M. e W

[t]zp+t T frlapet T

. =E . .
Since E[An] gNo this gives @o o, |of p.

Continue in this way to deduce ¢ = 0, which completes the proof of

(12.40).
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Finally, write Q = Zur ﬂor' nor € ﬁ§ e ﬁf.

Using (12.40) we see at once that if (3i e ai)n = 0 then Qox =0
unless either i € 0 or i € t. Hence for each ¢ and (ai ] \)QOT - 0o

or (1 @ ai)nat = 0.
Q.E.D.

12.41.- Proof of theorem 12.37. In view of the definition we have only

to prove that if E and F are extendable local systems over An then

(E 8 F)(A™ + (E 8 F)(3s™)
is surjective.

Suppose R ¢ (E @ F)(gAn). If Q n
a.A
So if Q2 # O there is a least r such that @ n $ 0.

9_4
r

=0, 0<igmn, then Q = 0.

In particular, for i < r,

(3. 8 3.)Q n-ﬂ n'ﬂ n
S WY 3.3 8 3__.3.8
T ir 11
= (3_, 03 _)0 =0
1 -1 3.a"
i
By lemma 12.39 we can write
Q =7e o ¢E _OF
a A" @ ¢ 3 2.8
r r
where either (3i ] |)0u =0 or (O ai)oa -0, i < r, and we may obviously
E
assume ¢ = OE (] OF. Extend OE and OF to elements Y ¢ E and
a a a a a n

Y

VF € F so that 3. YE = 0 whenever 3, OE = 0 (and similarly for F),
a AQ 1 a 1 a
i<r.

Then WE ] WF satisfies (3. O 3.)(‘VE ] WF) =0, 1<r.
a a i i"ta a
Moreover 2 - ({ ¥ e VF) n is zero in 3 4" . This completes
o 8 a” |38 r

the proof (by induction on r). Q.E.D
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12.42.- Proposition. Let E, F, G be extendable local systems over

K. Assume for o ¢ En‘ ne=0,l,....

) "
0~+E 2. F
[+ o [+

are short exact sequences,coherent with the face and degeneracy operators.

Then
0-+E® s Fr®) 4 6() + 0
is also short exact.
Proof : Use the identical inductive technique of theorem 12.27.

Q.E.D.

12.43.- A spectral sequence. Suppose G and F are local systems

over K taking values in a category with differentials. Suppose further that

i) G and F are extendable

ii) F 1is a local system of differential coefficients.

The bigrading on the local system G @ F makes (G ® F(K),d) into

a bicomplex. That is we can write

d=do+dp

where dE' dF are the differentials of degrees (1,0) and (0,1) given by

[d.(@] =4d.(a) , d.(b @Y)=d ¢ @Y
G o G'o G o o G o o

fo |
o
[.al,(rz)]‘J = d.(a) . dp(e, @ ¥) = (-1) o @d ¥ .
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Now filter (as usual) this bicomplex by the spaces

P=] erhyw=1 & enw®.
j2p j2p
q20

We obtain in this way a convergent first quadrant spectral sequence
(12.44) (Ei’di) => H((G @ F)(K),d).
It is standard that
(Eo.do) = ((G ? F)(E),dF)
(E,,d)) = (B o F)(K),dg), d3)

and

L
E, = H(B((G ® F)(K),d ,dg).

On the other hand, note that we can define local systems

Z(F), B(F) and H(F) over K by

Z(F)0 = ker d : Fa +-F B(F)a = d(Fo)

and

R(F)o = H(Fc,d).

Moreover because F is a local system of differential coefficients,

H(F) 1is a local system of coefficients.

Notice that Q¢ (G ® F)(K) satisfies
(A = dp(R)

and so dFQ = 0 if and only if Qo € G0 ] Z(F)0 for all o. Similarly for

any

(dFQ)c € Gc [} B(F)o.
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In this way we obtain a commutative diagram

0o— [c e B(F](X) — [c 8 2(F] (K — [ 8 H(F]XK) —— 0

(12.45)

"

0 Im d

~+ Ker d, —— H([G @ F](K),d) + 0

in which the bottom row is exact and the top row arises from the short exact

sequences

(12.46) o+ [ceBm], ~+ [ce zm]o + [c e nm] ~o.

Our next object is to establish

12.47- Theorem. With the hypotheses above, all the vertical arrows in

(12.45) are isomorphisms. Thus the spectral sequence (12.44) satisfies

(E;,d,) = ((c & H(F))(K),d)

and

E, = H[(C 8 H(P)(K),d].

12.48.- Lemma.
i) The local system G ® Z(F) 1is extendable.
ii) The inclusion Im dF — G @ B(F)(K) is an isomorphism.

iii) The local system G ® B(F) 1is extendable.
Proof : We establish inductively that :
(12.49)  1f K = 2" then [c 0 2(M](" ~ [c @ 2(M] (2™ is surjective.
(12.50) [c e 8] x™ k™) - aifc e r]x™, k™))

(2.51)_ lc o 8] k™) = a ([c 0 F] k™).
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In fact, (12.49)o is vacuous and (12.50)0 coincides with (I2.Sl)°.
To prove them let ¢ ¢ [G @ B(F)" (l((o)). For each o0 € K write ¢ =d_ V¥
- - -0 [} F o
and extend the \Po t> a (unique) element Y of (G @ F) (_I(_(o)) via lemma 12.17.

Then O-d},‘l’.

We now assume the three assertions proved for m < n (some n 1)
and establish them for n.
(12.49) : let ¢ ¢ [G @ 2(F)](3a"). For each o of 2a" let y_e€ G_ 8 H(F)
———n —_ —_ o o o
be the element represented by 00. Because H(F) 1is a local system of coeffi-
cients and G 1is extendable, G ® H(F) is extendable. The g define an
element in [G (] H(F)] (En), and so we can find an element

vy ¢ [G 8 H(F)] (An) =G n] 8 H(F n ) which restricts to the Yo

A [a

Let (ZF) represent Y, and regard I as an element

reG ]
(4% (&7
in [c @ Z(F)](A™). Then

e-r e [coBm].
|2

Since B_A.n = (ﬂn)(n-l) we can apply (I2.SI)“_l with K = ﬂ“ to obtain
o - r| =d_ ¥, some Y e (GO F)(3a".
aAn F —_

Because G and F are extendable so is G 6 F (theorem 12.37).
Extend ¥ to an element Y ¢ (G @ F)(An) ; then

Tr+dpte [ce Z(F)](An) and extends ¢.

(|2.50)n : Suppose € [G (] B(P)j(_ls(n). !(_(n.')). For each nondegenerate

o € En write no - dF ra. some l‘o € Go (] Fo.
Recall the simplicial map o : An + K of example 12.9. It pulls G

and F back to local systems over _A_n satisfying the same hypotheses. We may
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write
T ¢G OF =g'c __80'F _ = (sc0aFKY .
[ o g - [An] = " = - -
Moreover
dF(airc) = ai dF Tc = Bi Qo =0 , O¢ig<n,
and so
r

o € oG 8 2(a"F) (387).

By (12.b9)n r extends to an element

|20®

- . n
Wo €0 G8Z(cF)) Gc 8 Z(F)o.
Let 00 = ro - Wo ; then
dF ¢° = Qa and ai 00 =0, Os1ig<n.

The isomorphism (12.25) implies now that the Oc define an element

¢e (GO F)(g(“),g(“")). which by definition satisfies dFO = Q.

512.51)n : This is now immediate, via the extendability of G @ F.
We finally complete the proof of the lemma.
Part i) is already established by (12.49).
To prove ii) let ¢ ¢ (G ® BF)(K). Using (12.50) we may construct

a sequence Yo,...,vn,... € (G @ F)(K) such that

. n
-0 and ¢ =d (] ¥

Y
n 5(n—l) E(n) i=0 !

tg(“) '

¥, where VY = 2 ¥ .
n
n=0

Then ¢ = dF
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To prove iii), we may assume K = AP. If ¢¢ (GO BF)(QAP) then by

ii) ¢ =d.¥. Extend Y to lc (G@F)(2") ; then d.T extends 9.

Q.E.D.

12.52.- Proof of theorem 12.47. Because of lemma 12.48 we know that

G @ B(F) and G ® Z(F) are extendable. Because G 1is extendable while H(F)
is a local system of coefficients, G ® H(F) 1is also extendable. Hence,

because the sequences (12.46) are exact, prop. 12.42 implies that the upper

row in (12.45) is exact.

The theorem now follows trivi}lly from part ii) of lemma 12.48.
Q.E.D.

v v
Finally, assume G and F 1is a second pair of extendable local

systems over K taking values in a category with differentials, and such that

v
F is a local system of differential coefficients. Assume

are morphisms,conpatible with the face and degeneracy operators.

Then
v v
oy : (GOF)K) - (GoF)K)
is a map of bicomplexes and so induces a map of spectral sequences
v v .
e W)i : (Ei'di) hd (Ei'di) » i 2 0.
The isomorphism of theorem 12.47 identifies
(12.53) Wew, =ve : [conmn|® ~ [¢onm)w®.

We thus arrive at
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12.54.- Theorem. Assume in addition to the above hypotheses that
v
G and G are also local systems of differential coefficients, and that each
]
)

; and W: is an isomorphism. Then

68y, : (E;,d) + (E;,d)
is an isomorphism for 2 s i g =.

Pnoaﬁ : By (12.53) (4 @ w)1 is identified with the map of global

sections

vey : [cenmlk ~ [c o HE]®

determined by the morphisms 00 ] w; . Since G, é are extendable local
systems of differential coefficients, and H(F) and H(;) are local systems of
coefficients, G ® H(F) and E ] H(;) are extendable local systems of
differential coefficients.

Moreover (ﬁo ] w:).l - 0: e w; is an isomorphism. Thus theorem 12.27

asserts that (Y @ w")"l is an isomorphism, whence (§ @ w)z is.

Q.E.D.
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Chapter 13

Differential forms.

13.1  Difdenential forms on s". Recall that a"c &'

(example 12.9.) ; it spans an affine n-plane which for the moment we denote by

n

F'. a ¢ p-differential form on A", ¢, isa family of p-linear skew

symmetric maps

o T (FM x ... xT(FH — & xeo",
N ——r
p factors

.

which extends to an ordinary c” p~form on the manifold .

These form a real vector space, AE(A“) and we have the obvious
restriction map AE(F) - Az(An), which is surjective by definition. It is a

straight forward calculation that in the direct sum

n
A(™ = 7 AP
p=0

there is a unique multiplication, A, and a unique differential d such that

restriction Aw(Fn) - Am(An) is a homomorphism of c.g.d.a.'s.

Moreover, the standard proofs of the Poincaré lemma apply to show

that (A_(t™),d) 1is acyclic :
H(A_(a™),d) =R .

Next, let f : [nl - [m] be any set map and define a linear map

f : Rn¢| -~ Rm+l by v, ® v%(i). It restricts to a linear map A(f) : A" - "

which induces in the standard way a homomorphism of c.g.d.a.'s

A(E) A (8™ - A (8™
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If f 1is a face map Gi or a degeneracy map 9 (cf. 12.1)

we write simply
13.2 - _—
( ) Ac(si) ai and A.(ci) 8-

These satisfy the relations (12.3 ).

Now each element of AE(A“) may be uniquely written

o = ) o, . db, A ... Adb, ,
lgi <...<i_gn 1l"'lp Y 1p
si s
where (cf. 12.9 ) bj is the j':h baryéentric coordinate function and each
°i i is C -function in 4". If each @i i is a polynomial in
peeip oeeip

bl""’bn with rational coefficients we say ¢ is an element of the ratiomal

vector space AP(n).

Q

The rational vector space

n
= T AP
Ag(™ Z Ag(®)

is in fact the sub c.g.d.a. of Am(An) generated (over Q) by bo,....b

n
(because bo =1 -7 bi)' We can write
i=]

A (n) = A(bl""'bn’db

Q ..dbn).

10

Hence it is a contractible KS complex and in particular acyclic

H(A (n),d) = Q.

Q

Note as well that if f : |n| + |m] is a set map the induced map
a(f) : a" - ™ is linear, and A_(f) restricts to a homomorphism of

c.g.d.a.'s
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Aq(f) : A(n) « A(m)

(cf. formula 12.10 ). In particular, as in (13.2 ) we write
(13.3) AQ(ﬁi) - Bi and AQ(ci) = ‘i'
Finally, if k 1is any field extension of O we set
13.4 = . - -
(13.4) A (0) = Ag(n) @ ok 5 3, =3, 01, & =8 0,.

If the field k is fixed throughout we will usually suppress the k

and simply write A(n).

13.5  Differential forms on a simplicial set.- Let K be a simplicial

set. Define local systems A_  and A (over R, or a given field k) on K by
n
(A )y = A_(27), o = Am(di)’ si = An(oi), oeK.,

and

A = A(m), 3, =A(5), s, = Afoy), o€ K
13.6 Defénition.- The c.g.d.a.'s of global sections of A and A :
(A_(K),d) and (A(K),d)

are called, respectively the c.g.d.a. of c” differential forms and the c.g.d.a.

of polynomial differential forms on K. Because we usually consider A(K) we

often call it simply the c.g.d.3. of differential forms on K.

13.7 Pronosition.- 1f § : L - K is simplicial then &’Am = A_

and O.A = A. In particuiar ¢ induces homomorphisms
A_(0) 2 A_(L) + A_(K) and A(D) : A(L) - A(K)

Proo4 : Clear.

Q.E.D.
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13.8 P

—_—

noposition.- A and A_ are extendable local systems.
25225 : Given prop. 13.7 we need only prove that
A » A" and A (&™) ~ A_(38M)

are surjective.
Now‘an element ¢ in AP(EA?) is determined by the elements

o, =¢ (e,

0 £ i ¢ n which must satisfy.
3.4
i

aioj = aj-koi N 1< 3.

If oi =0, 1i<r <n, then 3i°r =0, 1i<r. Write
o = ) P. .db. A ... Adb, ,
Osjl<...<r<...jp<n Jl"'Jp 3 Jp
where le"‘jp is a polynomial in bo" ,bt.‘ "bn-l' This same expression

defines an element Y_ in Ap(n) which satisfies ain =0, i<r and
3r?r = Gr. In this way we reduce to the case Oi =0, i < n. Assume this.

Consider the projection A" - {vn} I, !

given by
n n-1 ti
n(} tv)) = ) v, -
o o I-tn

Then A_(m) : A_(An.l) -+ A-(An - (vn}) satisfies

b. dbi bidbn
A (n)(b.,) = —— and A (db,) = +
n

—_— -
l-bn (l-bn)

Because ¢ is polynomial it follows that for some large N

G-b)% (e e AP(n) = AP(aM)
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It is the desired extension.

In the cas of A_ the same proof works, except that (I-bn)N has
fo be replaced by a smooth function, zero near Vo

Q.E.D.

13.9.- Remark.- Prop. 13.8 and its proof are taken directly from
Sullivan [}O, P. D3]. Cf. also Grivel [_7] who gives a different proof, which
he attributes to Karoubi.

Next, let F be any local system on K. We "regard" F as taking
values in a category with differentials, (which may possibily all be zero 1.
Then we can form the local system A é F (cf. 12.36) whose space of glob;l

sections is denoted by A(K;F).

13.10  Definition.- The graded differential space (or g.d.a. or

c.g.d.a.) (A(K;F),d) is called the space (algebra) of differential forms with

values in the local system F.

13.11 Remanks 1.- The canonical inclusions
1 FO - 1 8 FU C A(n) © Fc, o€ Kn N

[+

are coherent with the face and degenerary operators. In particular they determine

a canonical inclusion

i

p i F(K) — A F)

Moreover, because
H(A(n) @ Fc) = H(A(n) @ H(Fo) = H(Fo).

L. . .
each i is an isomorphism.
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2.- 1f F 1is a local system of differential coefficients

then so is A ® F, since H((A © F)o) = H(Fa).
3.- 1f F is extendable so is A @ F (by theorem 12.37).

4.- 1f F 1is a local system of coefficients, then

A ®F is extendable. Indeed it is trivial that the pullback of F to A" via

any 0 € En is constant, and the tensor product of an extendable with a constant

local system is obviously extendable.

13.12 Theorem.- Let F be an extendable local system of differential

coefficients on K. Then the canonical inclusion, i induces an isomorphism

F’
ip @ HEE) —— HAKP) .
Proof§ : According to the remarks above, A 8 F 1is also an extendable

local system of differential coefficients. By remark | we can apply theorem 12.27.
Q.E.D.
Finally, consider the local system, F, of theorem 13.12.
We apply the results of sec. 12.43 to the tensor product A @ F to obtain a

bicomplex. Filtering by the ideals

P- 7 wWerhw = | A
j2p j2p
all q

we obtain a convergent first quadrant spectral sequence, (Ei.di), i 0.
According to theorem 13.12 this spectral sequence converges to
H(F(K)). On the other hand, theorem 12.47 gives natural isomorphisms
(E,,d)) = ([& 8 HIF)](K),d) = (A(K;H(F)),d)
(13.13) and

E, = H(ACKH(F))).
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As an example, assume F takes values in the category of g.d.a.'s.

Define a homomorphism A : (A(K),d) -+ (A(K;F),d) by

() =001 ,0€ck.

13.14  Proposition.- Assume H°(A(K)) = k = HO(F), o € K.

Pt vhdthddtlind

Then H°(A(K;F)) = H°(K)) = k and

W oa'am) - B aE)

is injective.

Proof : Filter A(K) by the ideals zj)p AJ(E) to obtain a spectral
sequence (Eg'q,&;). Then )\ 1induces a homomorphism Ai : Ei - Ei of spectral

sequences.

Because of our hypothesis on F, (13.13 ) yields
)% = (WP(x),4), P3O,

and so xl : AK) = E:'o. Hence 1, is an isomorphism in degree zero and
injective in degree 1. The standard comparison theorem for spectral sequences

now implies that A" has the same property.
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Chapter 14

Simplicial cohomology.

14.1. - Definition.- Let K be a simplicial set. Definme

3_ : K + K and aB : K + K
P  ~p¥q -p qQ ~p*q =q
by
aio = (3 41 O ¢+ © ) +q)° and 320 = (ao 0 ... 0 30)0.
P P
p factors

The simplices 3:0 and 3:0 are called the front p-face and the

back g-face of o.

Now we recall the g.d.a. (C(K;k),8) of simplicial cochains on K.

Cp(g;k) is the vector space of all set maps f : Ep + k. It is a g.d.a. with

multiplication and differential given by

(£.8)(0) = f(Bzo)g(azo) , £ e cP(kik)

g € cl(k;k)

ce€ekK
<p+q
and p+l : .
(6£) (o) = iZO (-17E@;0) , fe (KK, o€ K .

The identity is the constant function 50 - 1.

The cohomology algebra of (C(K;k),8) is denoted by H(K;k) and is

called the simplicial cohomology of K.

A simplicial map ¢ : K =+ L determines homomorphisms
cd) : C(Ksk) + C(L;k) and C(H" : H(K;k) + H(L:k) given by
(€c@f) (o) = £(Jo).
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More generally, suppose F 1is a local system of coefficients on K
(cf. just before theorem 12.27) so that each 3i

: F +F and
o

3.0
i
sj : Fo - Fs o are isomorphisms. Define a bigraded space

Ck;F) = § cPg;FD
P»q20

as follows :

an element of Cp(gin) is a function which assigns to each o0 € K
an element of Fg.

A differential (of bidegree (1,0)) in C(K;F) is given by
Pl i-
(66)(0) = J (-1)7 3, £(3,0)

P
ogeKk , f e CT(K;F).
i=0 Pl

If F takes values in a category of algebras we make

C(K;F) into
a g.d.a. by putting

= (=197 F,.~1 F -, By~1 B
(£.8)(0) = -DV[) f(apo>].[_<aq> LHOCHP

f e cP(k;F"),g e CI(K;FS).

We call C(K;F) the space (or algebra) of simplicial cochains with

coefficients in F. Its cohomology, H(K;F) is called the simplicial cohomology

of K with coefficients in F.

It is bigraded : H(K;F) = E
P»920

HP(x;FY).

14.2. - The focal sustem C.- We shall interpret

C(K;k) as the global
sections of a certain local system over K (if 12.14 ). Recall (12.11

is the simplicial set given by (é“)p = Ord(Dﬂ ,Eﬂ).

) that én

Denote C(én:k) simply by C(n). Each a € Ord(Dﬂ. Bﬂ) defines a

simplicial map a : én - ém (a(o) = a o 0)

and so determines a g.d.a.
homomorphism C(a) : C(n) =

C(m)

(14.3) (C(a)f) (o) = f(a 0 o) f e cP(m)

a € Ord([n], ﬁﬂ)

n
ge (b )p.
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In particular we write C(Gi) = ai and c(oj) - 'j where Gi and

aj are defined in (12.1 ) ; these homomorphisms satisfy (12.3 ).

Now proceed exactly as in the case of differential forms to define a

local system C over every simplicial set K as follows :
c, = c(|o]) , O€ Ep, p=0,1,... ,

and 3i,sj are the homomorphisms just defined. The g.d.a. of global sections
is written (C(K),8). A simplicial map J: K + L determines an obsvious

homomorphism C(J) : C(L) + C(K).

More generally let F be any local system of coefficients over K,
such that the differential in each FO is zero. Then the local system C 6 F
over K is a system of bigraded differential spaces (in which the differentials

are simply & ® 1). We shall describe a canonical isomorphism

(14.4) r: (c? e FYy —— cP;FY,

where the right hand side is defined in 14.1. In particular (when F = k)

we may identify C(K) with C(K;k) as g.d.a.'s.

First observe that

cP(n) @ FY = set func:ions(@“)p ~ k) o F
= Set functions((én)p -~ Fg)

- CP(AR.p4
cPa™Ed),

because (én) is a finite set. Thus if ¢ e (cP @ Fq)(g) we may interpret each

¢ as a set map
c

[ (én)P - Fg, o€ K .

In particular ¢ determines set maps
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. (AP q
o, 2 (4 )p - Fo oe Ep'

Now recall that [hp] € (QPYP is the distinguished simplex corres-

ponding to the identity map Dﬂ - Dﬂ. Define T by
(14.5) (Te)(o) = ¢ ([P , ¢ e (PO FH(®K), o K, -
14.6. - Theorem.- The linear maps
r:(c? e frhH® - cPx;F)

defined by (14.5 ) are isomorphisms commuting with the differentials. If F

takes values in a category of algebras then I is an isomorphism of g.d.a.'s.

Proo4 : Because the face and .Jegeneracy operators of F satisfy (12.3 )

we can find unique morphisms
F(a) : F = Fg(a)c , O € Ep' a e Ord(Dm],[p]) .

such that F(Gi) = Bi, F(oj) - sj and F(aB) = F(B) o F(a). Since F 1is a

local system of coefficients, each F(a) 1is an isomorphism.

Next, fix ¢ € (Cp ] Fq)(g). Because ¢ 1is compatible with the face

and degeneracy operators we have

(14.7) [c(a) ® F(a)]o, = oek . aeord([m],[n]).

ol_((u)c’

If ¢ is interpreted as a function 7% F: (Jo] = n) then this reads

(14.8)  F@o (aon)] = (1),7 € (é‘“)P = ord([p], [m]),

*k(a)o
as follows from (14.3 ).

Since F(a) is an isomorphism we obtain, finally,
o ¢ K
“n
(1)} a ¢ ord([m ,n))

+ € ord({p],[m])

-1
(14.9) 00(0 o 1) = F(a) (oﬁ(u)c
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In particular vhen m = p and T = [Ap] is the identity map of [p], (14.9)
reads
oceK

. -1 n
(14.10) ¢°(a) = F(a) {(T¢)(R(a)o)} e e Ord([p].[n])

This equation shows that if T'¢ = O then ¢ =0 and so T is

injective. Moreover if f e CP(L;Fq) is given, define ¢ € P o rq)(g) by
06(3) = F(u)-](f(g(u)o)} o€ gn,u € Otd([p],[n]).

Then TI'¢ = f and.so I 1is surjective.

It is easy to verify that To§ = § o T and that T preserves
products if F takes values in a category of algebras.

Q.E.D.

14.11. - Proposition.- The local system C (over K) has the following
properties :
i) If Y : L + K is a simplicial map then 9%C = C. The induced

homomorphism C({y) : C(L) <+ C(K) coincides with that given in 14.1.

ii) H(C(n),8) = k for all n. In particular, C 1is a local system

of differential coefficients.
iii) C is extendable.
Proof : i) is obvious, ii) is a classical computation and iii) is an

immediate corollary of theorem 14.6 (with F = k).

Q.E.D.

.

14.12. - Topological spaces.- Let M be a topological space and

consider the simplicial set Sing M of singular simplices on M (eg. 12.13)
The g.d.a. (C(Sing M),§) will simply be denoted by (C(M),§) ; by definition
it is the g.d.a. of singular cochains on M (with coefficients k).

Its cohomology is written H®M) dr HQM;k) ; it is the singular cohomology
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of M (with coefficients k).

14.13. - Integration and de Rham theorems.- We conclude this chapter

with the simplicial version of de Rham's theorem. Recall from 13.1 the definition

of A.(An). Define a linear map

f : ADA™) + R
Aﬂ

by
I £db A ... Adb = J f(x)dx, f e C (&™),
A" A"
where the right hand side is the ordinary Riemann integral. Stokes'theorem reads
i=0

n .
(14.14) f =3 (-nt I 3., e A" (M.
An n=1 1

Now Az(n) c A:(A“) is the subspace defined by : f 1is a polynomial

in the bi with rational coefficients. It follows that I n restricts to a
A
linear map Ag(n) + Q. Tensoring with k we obtain a linear map

f : An(n) + k
AP

which still satisfies (14.14) . If E is any vector space (over k) we also

write

[ n
J - @, :A(n)8E -+ E.
A" A"

Next, let F be a local system of coefficients over a simplicial set

K. Define linear maps

J : AP 5 FY) - Pk FY
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by

(14.15) (JO)(O) 'IP.OO oegp .
A

(Note that 00 € Ap(p) 8 E; and so J 00 € Fa .)
P
A

If §:L+K is a simplicial map and G = ﬂ.l’ then ¥ induces

maps.
A(W) : A(L ; G) « A(K ; F) and C(#) : C(L ; G) « C(K ; F).
It is immediate from the definitions that the diagram
A
AL ; G) ————— A(K ; )
J i)
(14.16)
C(L; G) +~—=———C(K ; F)
cw)
comuutes.
Next we use (14.14) to prove that
(14.17) Jod-6oj.

Let ¢ € AP(K ; FY) = (AP @ F9)(K). Then

(Jdo)(a)ﬁj as_ = § (-1)iJ 2,

AP i=0 Ap-l
p-1
i .-l
- 120 (IOl [ l,_‘(a 823,)(e).
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\

Because ¢ ¢ (A" @ F)(K), (3, @36 = ¢, . Thus

9.0
i

SN - SEUNE RS
(IdO)(o) =] 0t (IO)(Bia) - (a[o)(a)-

i=0

Note, however, that even if F = k, f is not an algebra homomorphism !

In view of (14.17) and (14.16) I induces natural linear maps
. +
j : BP((a 8 FHY(®),d) — BP(k ; FD).

14.18. Theonem.- Suppose F is a local system of coefficients over

K (with zero differentials). Then

L ]
f : H((A 8 F)(K)) » H(K ; F)

is an isomorphism of bigraded spaces. If F takes values in a category of

L ]
algebras then J is an isomorphism of algebras.

Proof : Since A and C are extendable local systems (prop 13.8,
prop 14.11) and F is a local system of coefficients, A® F and C @ F are
also extendable. Thus by theorem 12.37, A® C @ F is extendable as well.

Because H(A(n)) = k = H(C(n)) and F 1is a local system of coeffi-
cients, AO@F, COF and A® COF are all local systems of differential
coefficients.

Now consider the inclusions "opposite 1"

U, : (AOF) — (A®COF)
and

b, (cC e F)o ~— (AO® C 8O I-‘)o , o€ En’ n 3 0.

They satisfy the hypotheses of theorem 12.27. Applying this theorem we obtain

isomorphisms

¢° : u[a e HK] —— u[(a6cCoF)K)]
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and

v i HCE 3 B) —=—» 1[(a 8 ce P®],

which are multiplicative jif F takes values in a category of algebras. (Note
that we have used the isomorphism I of theorem 14.6 to identify (C @ F) (K)
with C(K ; F).)
L ]
It remains to show that I = (w’l)-l o @.- Define linear maps

I0 : A(n) @ C(n) @ Fo + C(n) @ F , g€ En’

as follows : since A(n) = A(An) and 'C(n) = C(AP) the chain map
[ : (A(n),d) + (C(n),8)

is defined. Let

Io(o e foz)= (Io) .f0z

Because Id =- GJ, Io commutes with the differentials. Because f
is natural with respect to simplicial maps (14.16), the Io commute with the

face and degenerary operators. Hence the IU define a map
I1:(A8C@8F)K — CK;F).

Clearly I oy =1 and I oy = J. Hence I' - (w')-] and so
L ]
J - wH o .

Q.E.D.
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Chapter 15

Topological spaces and manifolds.

15.1.- Differential forms.- Let M be a topological space and recall

(example 12.13) that Sing M denotes the simplicial set of singular simplices

on M. Thus we can form the c.g.d.a. (A(Sing M),d).

If ¢ : M+ N is a continuous map it defines a simplicial map

S(J) : Sing(M) + Sing(N) and so we obtain a homomorphism
A(f) : (A(Sing M),d) <« (A(Sing N),d).

15.2.- Definition.- The c.g.d.a. (A(Sing M),d) will be denoted sim-

ply by
(A(M),d)

and called the c.g.d.a. of differential forms on M. If i : N+ M is the

inclusion of a subspace then
(A(M,N),d)
denotes the ideal of forms which vanish on N (A(i)¢ = 0).

15.3.- Property.- The map M,§ ~+ A(M),A(§) is a contravariant
functor from spaces to c.g.d.a.'s.
15.4.- Property.- If N is a subspace of M then
A1)

0O - AMN) > AM) ——— A(N) = O

is a short exact sequence.
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Proof : Since NC M, Sing N is a subset of Sing M. Apply prop.
12.21 to the extendable local system A.

Q.E.D.

15.5.- Property.- A(point) = k. In particular the inclusion of a

point in M defines an augmentation A(M) - k.
Proo§ : Any singular simplex o ¢ Sing_(pt) can be written
o=g. 0 ...08. (1)
1 n

where 1 is the unique singular simplex of dimension zero. It follows that

A(pt) -~ A(0) defined by ¢ ~ 01 is an isomorphism. But A(0) = k.
Q.E.D.

15.6.- Property.- Integration defines a natural isomorphism of

graded algebras
HAM) ,d) — HOMGK),
where H(M;k) 1is the singular cohomology.
Prood : By definition H(M;k) = H(Sing M;k) . Now apply theorem 14.18.
Q.E.D.
15.7.- Propertu.- 1f NC M integration defines a natural isomorphism
HAM,N),d) = HO4LNGK),

which identifies the long exact cohomology sequence of the differential form

cohomology with that of singular cohomology.

Because H(A(M),d) = H(M;k) it follows that HO(A(M),d) = k if

and only M is path connected. In this case we can apply the results of
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chap. 6 to the inclusion
k «— (A(M),d)
to obtain a "unique" minimal model (cf theorems 6.1 , 6.2 , 6.3 )
JM : (AXM,d) — (A(M),d) .
15.8.- Definition.- The minimal model
WM : (AxM’d) — (aM),d)

is called the minimal model for M. Note that AXM is connected.

Next suppose A(M) is augmented (by the inclusion of a fixed base
point in M). Recall (definition 8.7 with A(M) = E) the y-homotopy spaces

gives an explicit identification

WW(A(M)) and note that 0H

P . oP . P
Pam. - PUxy (= X

15.9.- Deginition.- The spaces nE(A(M)) will be written simply
P
M
ﬂw( )

Py = P
"w(M) Q (AXM)

and called the y-homotopy spaces of the path connected based space M.

Next recall that a continuous map V¥ : N - M between path connected
spaces determines a homomorphism
AW ¢ a(),d) ~ (A(N),d).
We regard this as a special case of diagram (6.28) (with B = B, = k

E, = AM), E, = A(N), n = A({)).

1 2
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Then, as described in diagram (6.29) we obtain a homomorphism
U (X ,d) > (AKy,d)

such that the diagram

A(M)

My
v

(15.10) A() [
Xy

A(N) 7
N

homotopy commutes. Moreover, the homotopy class of ¥ is uniquely determined.

If | preserves base points ther the based homotopy class of ?
is uniquely determined. In particular, it determines maps between the y-homo-

topy spaces (cf. definition 8.11) which we write

o, . R .
(15.11) LA 0 ww(N) H
i.e.,
" - .
15.12.- Property.- Assume 00,0] : N+ M are homotopic maps between

path connected spaces. Then the induced homomorphisms

Tordy 2 My —
are homotopic.

1f wo'&l’ and the homotopy preserve base points (fixed in M and

N) then @o and 31 are based homotopic, and so

#

- -
o ¢ ﬂw(M) —_— nw(N).
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Proof : Fix a base point x € N, and consider the c.g.d.a.
AN x I) = AN x I,x x 1) @ k.

The inclusion X(N x I) e+ A(N x I) induces a cohomology isomorphism as
follows at one from property 15.7 , and K(N x I) 1is naturally augmented.

The projection =n : N x I + N induces a homomorphism of augmented
c.g.d.a.'s

Y
A(n) : A(N) -+ A(N x I)
which is a cohomology isomorphism. Hence we may take
A(m) o ON : AXN - X(N x 1)

as the minimal model ; composing with the inclusion X(N x I) <« A(N x I)
gives the minimal model for N x I.

On the other hand the inclusions : N+ N x {a} (A = 0,1)

I

define homomorphisms of augmented c.g.d.a.'s
. Y
A(JX) AN x I)  +  A(N)
and A(jx) o A(n) = A(wjx) =

Now assume ¢ : N x I + M is a homotopy from Wo to @l which

preserves base points : ¢(x x I) = y. Then ¢ determines a homomorphism of

augmented c.g.d.a.'s
%
A(®) : AN x 1) - A(M)

This in turn determines a homomorphism

L]

R
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such that A(9) o d“ & A(T) o ﬂN od .
We thus have
Iehy % AG DV, = AG DA®Y,

& AGOAMYE = 08 A =0,1,

Now prop. 5.16. ii) implies (because ﬁ; is an isomorphism) that

ao Moy al’ whence Wo v ﬁl.

The "unbased” case is left to the reader.
Q.E.D.
We next consider a number of topological constructions, and find

c.g.d.a.'s which "carry” the model of the constructed space.

15.13.- Products.- Let My M xN-+M, L M x N+ N be the

projections, and define
A(M) @ A(N) =+ AM xN)

by ¢80V ~ A(WM)O.A(WN)?.

This is a homomorphism of c.g.d.a.'s. Because f. is a multiplica-

tive isomorphism, it identifies the induced homomorphism
H(A(M)) ® H(A(N)) ~+ H(A(M x N))
with the homomorphism
H(M;k) @ H(N;k) - H(M x Njk)

given by a 6 B8 =~ (w;a).(w;ﬁ).
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If either H(M;k) or H(N;k) has finite type the Kunneth theorem

asserts that this is an isomorphism.

Assume this to be the case and let

WH:AY.“-»A(H) and 0N:AXN + A(N)

be the minimal models (supposing as well M,N path connected). Then

WM-‘DN:A:S‘OAXN + A(M xN)

(¢h.0n(0 ey = A("H)wHO'A("N)w%Y) induces a cohomology isomorphism. Hence it

is the minimal model for M x N.

15.14.- WngeA.- Let {Hu’xa}ucl be a collection of path connected
spaces with base points. Their wedge, VuHa is the disjoint union with all

the xa's identified.

On the other hand if (A }

8,58 gel is a collection of augmented

c.g.d.a.'s, their wedge is the augmented c.g.d.a.

VBAB =k 0 2 ker CB'

In particular the inclusions Hu - VOMo define homomorphisms
A(VM) - VAM)
a a
a a

and

H(V M 5k) -V H(Mc;k).
a a

Integration identifies the second of these with the cohomology homomorphism
induced by the first : if the second is an isomorphism the first induces a
cohomology isomorphism.

Assume this to be the case. Then A(V Hn) and V A(Ma) have
a a
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the same minimal models (cf. theorem 6.24). On the other hand if
lva : Axa - A(Mu) is the minimal model then the vﬂu determine

V\B‘z : Z(AXG) - XA(MG)

and (V\Ba)’I is an isomorphism. Hence (again by 6.24) the minimal model of V M
a
is the minimal model of

V(X ) =kemaA'x .
a a a a

(Observe that the right hand side is rather horrid.)
15.15.- Attaching maps.- Let
i :N+M and f : N+ P

be continuous maps, in which i 1is the inclusion of a subspace. We use f to
attach M to P by identifying x and f(x) (x € N) in the disjoint union

of P and M ; the resulting space is written P Vg M.

Then these is an obvious map of topological pairs
(M,N) — (P UfM,P)
and we shall say M 1is well attached to P 1if this map induces an isomorphism
(15.16) H(M,N;K) <= H(P UM, P3K).
Consider the analogous situation for c.g.d.a.'s. Suppose
n:R+G and y :L~+G
are homomorphisms of c.g.d.a.'s,.and n is surjective. Define the c.g.d.a.
Lo, RCLOR

to consist of the pairs (¢ @ ¥) such that Yo = nY. Note that it fits into
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the short exact sequence

(15.17) 0 - LOR > LOR X0, 6 + 0

(in which y-n 1is not product preserving and sends | to zero !).
In particular, if we are in the topological situation described above

we can form the exact sequence

0 - A(R) ®, AG) - A(P) & A AEAM) ., 4y L o,

A(N)

Let j : P=+P UfM, YoM PUfM be fhe obvious maps and define a homomorphism

¥ : A(P ufu) — A(P) © A(M)

A(N)

by V6 = A(j)¢ & A(Y)9.

15.18.- Proposition.- 1f M is well attached to P then w- is an
isomorphism of cohomology. In particular, the minimal model for P UfH is

the minimal model for A(P) @ AM).

A(N)

Prood : Observe that A(M,N) = O @ A(M,N)C A(P) @ A(M) and

A(N)
that the diagram

0 — A(P UMP) — AP UM — A(P) — O

f f

¢ '

0 — A(M,N) — A(P) ©

A(N)A(M) — A(P) — O

is commutative and row exact. By (15.16) and property 15.7 the left hand

arrow is a cohomology isomorphism. Hence w‘ is an isomorphism.

Q.E.D.
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15.19.- Manifolds.- Let M be a smooth manifold and conmsider the
standard c.g.d.a. of "de Rham" differential forms, (ADR(M),d). Recall the
simplicial set Sigg.(H) of smooth singular simplices on M. Define a homo-

morphism (cf. 13.6) of c.g.d.a.'s
Yyt Apg() + A _(Sing” ()
by (y]o)a = A(0)¢.

On the other hand the inclusions Siggm(u) > Sing(M) ~nc

qR(n) — Aw(An) define homomorphilqs of c.g.d.a.'s
A_(Sing”(M)) «— A (Sing” (M) «— A CY) .

Moreover the diagram

Apg M) A_(Sing™(M)) Ap ()

C(Sing” (M) ;R) C(Sing (M) 3R)

commutes.

Now the first vertical arrow is a cohomology isomorphism. (This is
in fact the De Rham theorem of De Rham!) The other two vertical arrows induce
cohomology isomorphisms by theorem 12.27. That the bottom arrow does this is

standard topology.

It follows that y: and y; are isomorphisms. lience Yy and 72
define a c-equivalence between ADR(M) and ﬁR(M) (cf. 6.23). Hence

(theorem 6.24) their minimal models and y-homotopy spaces coincide.
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Chapter 16

nl(n)-modules and singular cohomology.

16.1.- In this chapter M denotes a fixed path connected topological
space with base point x. The fundamental group of M, based at x, is

denoted by L M.

By a ﬂl(H)-module we shall mean a graded vector space (over k)

F= Z Fe together with group homomorphisms ﬂl(H) o GL(Fq). q 2 0.
q20

(GL(FY) denotes the abstract group of k-linear automorphisms of Fq,) We
shall regard: a € nl(H) as an automorphism of F and write simply a.w € F,
wePF.

Given a ﬂl(M)-module F define submodules

FcF c...CF C...CF
o 1 P

by : w e FP if and only if (ao-\)(al-\) (ap-\)w = 0 for all

uo,...,up € ﬂl(H). This sequence is called the upper central series for F.

The quotient of a wl(H) module by a submodule is a nl(H)-module
(in the obvious way). In particular, the inclusions Fp c Fp#q c F define

an isomorphism of modules

(16.2)  F  JF ——— (F/E) .

Next observe that if G C F is a submodule then

(16.3 G =GNF_ , 20
) P » p
and so G/GP is a submodule of F/Fp.

A ﬂl(H)-module F is called nilpotent if for each q there is
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an integer N(q) such that

q . 54
=Py -

In this case we say w](H) acts nilpotently in F.

A ﬁ](H)-module F has finite type if it has finite type as a graded

vector space (each F? is finite dimensional). It is finitely approximable if

it is the union of its submodules of finite type.

16.4.- Lemma.- Suppose F is a finitely approximable nl(M)4module

with family {FY} of submodules of finite type :

F=UF.
Y
Then

. i) Each FP is finitely approximable and the submodules of finite

type are exactly the F;‘

ii) Each F/I"p is finitely approximable and the submodules of finite

type are exactly the FY/F;.

iii) Each Fp#q/Fp is finitely approximable and the submodules of

finite type are exactly the F', /FY.
P 4 p+a’ p

Proog :

i) follows from (16.3 ) with G replaced by F'.

ii) follows from the observation that FY/F; is a submodule of F/Fp.
iii) is a special case of ii).

Q.E.D.

16.5.- Local sustems of coefficients.- Let F be a local system of

coefficients (£.s.c.) over Sing M (cf. just after (12.26 )). Each 2z ¢ M s

a singular o-simplex and hence determines a graded vector space Fz. Each
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path A : I - M is a singular l-simplex and hence determines isomorphisms

F 0 = A z YOS

The composite isomorphism 30 ) 3; will be denoted by

B« Fy 0 Fxan

and called the path isomorphism determined by A.

16.6.- Proposition.- The path isomorphisms have the following properties
i) If X : I -z is the constant path, then [A] is the identity map

of F_.
ii) [AJ depends only on the homotopy class (rel. the endpoints) of A.

iii) Let A and u be paths from y to z and from z to w, and

let u%) be the composite path from y to w. Then [:ul)«] = [u] o [A]
Proo§ :
i) Regard z as a O-simplex ; then X\ = s,z Hence 30 = al =
ii) Let ¢ : I x I - M be a homotopy such that
¢(s,0) = Ao(s). o(s,1) = 1 (s), ¢(0,t) =y, o(l,t) = z.

Triangulate I x I as shown :
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and let o, and u be the singular simplices (of dimensions 2,2 and 1) obtained

by restricting ¢.
z}l“
The face maps define isomorphisms

l,Fu and FB _— FXO'FU'

F —= . F

a A

Combine these with i) to achieve the proof.
iii) Comstruct a singular 2-simplex o such that 303 =y,
alu = usd and aza = ) ; then argue as in ii).
Q.E.D.

If X is a loop based at x, then [A] is an automorphism of Fx.

Prop. 16.6 shows that these automorphisms make Fx into a ﬂ](M)-module.

16.7.- Definition.- The ﬂ](M)ﬂmodule F, is called the ﬂl(H)-module

associated with the £.s.c. F.

Suppose GC F is a sub £.s.c. (i.e. G_CF

° ogr O € Sing M and

the face and degeneracy maps of F restrict to those of G). We define the

quotient £.s.c., F/G by
(F/G), = F /G, , oecSingH

with the obvious face and degeneracy operators.

In particulqr note that Gx is a submodule of Fx and the equality
(F/G)x = Fx/Cx

is an equality of wl(H)-modules.

On the other hand, let EC Fx be any sub w‘(M)-module.
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For each o € Sing M' choose a path A from x to o(0). Restriction defines

an isomorphism F0 —= Fc(O) and so ) determines a composite isomorphism

)
F, —o Py —7— Fo

Because E 1is a submodule, the image of E wunder this isomorphism
is a subspace Eotz Fo which is independent of the choice of ). Thus the

Ec define a sub £.s.c. of F. In this way we obtain

16.8.- Pronosition.- The correspondence G "~ Gx defines a bi-
jection between sub local coefficient’systems of F and sub ﬂl(H)-module:

of F_.
x
16.9.- Example.- The upper central series of Fx :
=
(Fx)o ...C(FX)PC...

determines a sequence of local systems of coefficients

F C...CF c...
° P

such that (Fp)x = (Fx)p. It is called the upper central series for F.

Next recall that the L.s.c. F determines the graded space
F(Sing M) of global sections whose elements ¢ are the families 00 € Fa
(0 € Sing M) compatible with the face and degeneracy operators. For simpli-

city we write

F(Sing M) = F(M).
Then the correspondence ¢ ~ oc is a linear map

e : F(M) = Fo , 0 € Sing M.
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If o and w are faces of a simplex T then the face maps define

isomorphisms l"1 RN Fc,l-‘m and the diagram

(16.10)

commutes.

Since M is path connected each o is a face of a simplex T which
contains x as a vertex. Setting w = x in (16.10) we see that eo¢ =0
if and only if exo = 0. But in this case eoo =0 for all 0 and so ¢ = O.

Hence each e, is injective.
Next consider (16.10) when T is a loop based at x and
o=w=1x. It shows that C!] oce =e and hence
x x
Im e c (Fx)o .
On the other hand, if w € (Fx)e an argument similar to the proof of prop. 16.8

extends w to an element of F(M). Thus

(16.11) e, : F(M) —_— (F), -

Since (Fx)o - (Fo)x a final application of (16.10) shows that
(16.12) e :FM) —=— (F) , oe SingM.

a o0

The isomorphisms (16.12) exhibit Fo as a constant system of coefficients.
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16.13.- Singular cohomofogy.- Let F be a local system of coefficients

over Sing M (with zero differentials !). 1In l4.1. we defined the bigraded
differential space (C(Sing M;F),6) which we shall denote simply by (C(M;F),é).

It is called the space of singular cochains on M with coefficients in F.

Because & 1is homogeneous of bidegree (1,0) the cohomology space

H(C(M;F),8) 1is also bigraded : it is written simply

HOGF) = 7 BPOGFY)
P»q20

and called the singular cohomology of M with coefficients in F.

On the other hand if E 1is a graded vector space we have the bigraded

differential space (C(Sing M;E),$8) of singular cochains on M with values in

E, which we write (C(M;E),$8). 1Its cohomology,

HMGE) = ] ®WPOGED),
P»q20
is the ordinary singular cohomology of M with values in E. When E = k
we write simply H(M) = H(M;k) - cf. example 14.12. - and call thisc.g.a.

the singular cohomology algebra of M.

Suppose F 1is, as above, an £f.s.c. Then we have the differential
spaces C(M;F(M)), C(H:(Fx)o) and C(M;Fo) obtained by taking E = F(M),(Fx)o

and replacing F by the Z£.s.c. F . If £ e cPM;FIQ1)) define

e fecPM;(FY) ) and ef € CP(M;F)
X X O o]

by
(exf)(o) = ex(f(o)) = f(c)x and (ef)(c) = ec(f(c)) - f(a)c, o € Sing (M).
In this way, we obtain isomorphisms of differential spaces
: e
(16.14) CM;F ) +~—— C(M;F(M)) ———— C(M:(F) ) ,
o = H x'o
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as follows from (16.10), (16.11) and (16.12). These isomorphisms induce isomor-

phisms
& &
(16.15) H(H;Fo) —— HOGFQ)) - H(H:(Fx)o)-

Finally, recall that an element f ¢ CP(H;Fq) associates with each

p-simplex o0 an element f£(0) € F:. Since 6 is homogeneous of bidegree

(1,0) we have
2 oi;FY = cCFY) N ker .
In particular the linear map CO(H;Fq) - F: given by £ -+ f(x)
to a linear map HO(H;Fq) - F:.
We show that this map is in fact an isomorphism

O mM: £,
(16.16) H (M;F) (Fx)o.

Indeed, suppose f € HO(H;Fq). Let X be a path from x to vy,

3 :F, =—+F, 3 :F, — F. Then
o A y 1 A x
0= (BH)(N) = 3 '£(y) - 3] £(x)

and hence

£y =290 = DlEG), vy e n

restricts

with face maps

This shows that f(x) = O if and only if f = O, and that

f(x) < (Fx)o. Finally, if v € (F:)o extend v to an element ¢ € FI(M)

and observe that y =+ oy is a cocycle in CO(H;Fq) which restricts to v.

Thus (16.16) is established.

16.17.- Direct Limits.- Let G be an L.s.c. over Sing M (with

zero differentials). Denote by G; c Gx the family of sub wl(M)-modules of

finite type ; each C: entends to a unique sub £.s.c. ¢'co.
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The modules G; are directed by inclusion, and if Glc G: then
. A : .
¢'ce , 80 we have an inclusion C(H;GY)C C(H;GA). Denote the direct limit
by (lig C(M;GY),G). The inclusions G'C G define inclusions

iY : C(M;Gy) + C(M;G) and so we obtain an inclusion
i (lig c6Y),8) — (CMM:6),8)
of bigraded differential spaces.

16.18.- Proposition.- Suppose that

i) Gx is a nilpotent wl(ﬁ)module.

ii) Gx is finitely approximablé : Gx LI ) G:.
iii) Either Gx or H(M) has finite typeT

.., . .
Then 1 is an isomorphism.

16.19.- Lemma.- The proposition is correct when Gx - (Gx)o'
Proof : When Gx = (Gx)o then the same is true for each G:. In this

case we use the isomorphisms (16.14) to identify i with the inclusion

i :GY ;
lim C(M;6,) — C(M;G.)

Now because G; has finite type there is a canonical isomorphism

C(M) 6 GI - C(M;G;). Extend to diYect limits and use hypothesis ii) to

write
. QY -
lim C(M,Cx) C(M) © Gx.

We are thus reduced to proving that the inclusion
c(M) 6 Gx - C(M;Gx) induces a cohomology isomorphism. This is a direct

consequence of hypothesis iii).

Q.E.D.
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16.20.- Proo4d of the proposition.- Consider the short exact sequences

of L£.s.c.'s

o -+ GP - Gp+l - Gp#l/cp e+ 0

Because C is an extendable local system, tensoring with an £.s.c. yields an
extendable local system. Hence prop. 12.42 applies to yield the short exact

sequences

o - C(H;Gp) + C(M;6_..) - C(H;GP*‘/GP) - 0.

P+l
We make the same construction for each G’ and pass to direct limits
to obtain the commutative row exact di;gram of differential spaces
0 + lim C(M;6Y) — 1lim C(M;6Y, ) — Llim COM;6Y, /GY) =+ O
= P R v2d AL e J

(16.21)

0 - C(H;Gp) — C(M;G ) — C(!-i;GP+|/Gp) - 0.

p+!

p+|lcp)x

are finitely approximable, and their submodules of finite type are exactly

According to lemma 16.4 the nl(H)-modules (Gp)x and (G

the (G;)x and the (G;“/G;)x. _ Moreover (16.2) (with gq = 1) shows that

(6, /6, = [(c;‘m/cp)x]o .

Thus lemma 16.19 implies that the vertical arrow on the right of
(16.21 ) is always a cohomology isomorphism, and the one on the left is when

p = 0. It follows by induction that for each p 2 0
- H
i : H(lim C(M;GY —— H(M;G_).
i (lim C( p)) ( p)

The proposition follows now from the nilpotence of Gx and the

equations
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HM;G) = § HM;6Y)
q

Q.E.D.

16.22.- Conollary.- Under the hypotheses of prop. 16.18 the linear

maps i: define an isomorphism
lim i° : lim HM;6") —S—  H(M;6),
— Yy —

16.23.- The main theorem.- Suppose now that G and F are local
systems of coefficients (with zero differentials) over Sing M, where M is,
as always our fixed path connected topological space with base point x. Assume

given linear maps *

00 : Gc - Fo , O € Sing M,

homogeneous of degree zero and compatible with the face and degeneracy operators.

Define a linear map of bigraded differential spaces,’
¥ : (C(M;6),8) + (C(M;F),8)

by (Vf)(o) = 0c(f(o)). Denote by W* : H(M;G) - H(M;F) the induced map of

bigraded spaces.

As above let GYC G be the sub local systems of coefficients such

that G: has finite type. Write
v :do i, Ce;6Y) - C(M;F)

and

v=Voi: lim C(M;6Y) = COGF) ;

then v = lim v, and 4" = lim w:.
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16.24.- Theorem.- With the notation and hypotheses above, assume further
that
i) Px and each GI are nilpotent ﬂl(M)ﬂmoduleo.
ii) Gx is finitely approximable : Gx = U G;.
iii) Either Fx or H(M) has finite type.Y
iv) W. : li& HO(M;GY) + HO(H;F) is an isomorphism and

v* ¢ lim B 046" » B OGF)  is injective.

Then a‘,w‘ and each Go are isomorphisms. In particular, Gx is

nilpotent. o

Proof : It is enough to prove the theorem separately for each Fe
and G? and so we lose no generality in assuming F = Fq, G = G%. We assume

this henceforth. In particular, because F 1is nilpotent,

F=F N some n.
n

We show next that *x restricts to isomorphisms

w
[

W, : @, S @y L e

In fact we obtain from (16.16) the commutative diagram

lim KO(M;67) ———— Lim(d))

—_—

o - (GX)

S,

MG ———— (F),

[+]

w!

Thus hypothesis iv) implies that (Jx)o is an isomorphism.

Suppose we have proved that (d?x)P is an isomorphism. It follows

at once (because M 1is path connected) that 00 restricts to isomorphisms
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(Wp)a : (Gp)O — (Fp)a and so | restricts to an isomorphism

\'p : C(n;cp) - C(u;rp).

By hypothesis ii) and lemma 16.4 (GP)x is finitely approximable
with submodules of finite type exactly the (GY) = (GY) .  Because ) is
X p pXx X'p
an isomorphism either (Gx)p has finite type or H(M) has finite type. Since

(Gx)p is (trivially) nilpotent we may apply prop. 16.18 and conclude that

H(lim C(M;6Y)) —=— H(M;G ).
(_;» ( p)) ( p)
Because wp was an isomorghism this implies that the restriction

.14 .cY s
wp : l$2 C(M,Gp) —_— C(H,FP)

also induces a cohomology isomorphism, w;.

Next, exactly as in the proof of prop. 16.18, we have the commutative

row exact diagram of differential spaces

0 — 1_in;c(n;c;) — lim C(M;6Y) — lim C(M;c”/c;) — 0

Wp v Yp

0 — C(M;Fp) — C(M}F) ——m C(H;F/Fp) — 0

where Ep is defined in the obvious way.

Since w; is an isomorphism in all degrees we can pass to cohomology

and use hypothesis iv) to conclude that

- : o Y, AY o
: lim H (M;G'/G — H (M;F/F ).
v, ¢ Lim H( ) ( .

As above use the isomorphisms (16.16) to identify this with an isomorphism
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e B, = B/a],

induced by ¢x.

On the other hand by lemma 16.4 cl/(cl)P is a submodule of
Gx/(cx)p’ and the left hand side is exactly [bx/(cx)é]o' By (16.2) we may

identify this isomorphism with an isomorphism

(Gx)p+l/(cx)p —_— (Fx)p+l/(Fx)p
(induced by 0x). Since (-ﬁx)p is alr;;dy shown to be an isomorphism it follows

that so is (ox)p+l'

We have now shown that each (yﬂx)p is an isomorphism. Since

F, = (rxin ve have (F,) and so  (G.) = (G.)

n (Fx)n+l n x)ns) This implies

Yy o (oY
that (Gx)n (G)

MIY Since GI is assumed to be nilpotent we conclude that

Y o (oY
Gx (Gx)n for all y and so

= Y -
Gx :)(Gx)n (Gx)n'

It follows that wx and each wo (and hence ¥ and 0‘) are
isomorphisms. Moreover Gx is nilpotent and so i’l and w- are also

isomorphisms (prop. 16.18).
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Chapter 17

A Converse to theorem 12,27

17.1.- Introduction. Fix a path connected topological space M with
base point x. For any local system, F, over Sing M denote the space of global
sections, F(Sing M) simply by F(M). If G 1is a second local system over

Sing M with values in the same category C then a morphism

J; : G—F

is a family of morphisms 00 : Gc -+ Fc’ compatible with the face and degeneracy

operators. It determines a morphism
¥ : G(M) -~ F(M)
via (00)O =- 00 00.
Next, recall (chap. 13) the local system A whose global sections are

the c.g.d.a A(M) of differential forms on M. Tensor 0. with the identity

to obtain a morphism of local systems :
'&.-\em_:Aec»AeF.
The induced morphism,
V:AM; G) ~ A(M ; F),

is homogeneous of bidegree zero.
Suppose now that G and F are extendable local systems of differen-
tial coefficients. Then local systems of coefficients H(G) and H(F) over

Sing M are given by
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ﬂ(G)a = H(Ga) and l'l(l’)0 - H(Fo)'

The morphisms §_ define morphisms 0‘ : H(G.) = H(F_), which it is convenient
] (] o g

to denote by H(¥, ). Then the H(ﬁa) define a morphism
H({,) : H(G) + H(F)
of local systems. Prpceeding as above obtain a morphism of local systems :

HP) =1 0 H(J,) : A @ H(G) ~ A @ H(F)

and hence a linear map of bigraded differential spaces :
H(P : A(M ; H(G)) + A(M ; H(P)).

On the other hand, as in 16.23 (replace 00 by H(ﬂa)) the morphisms

H(ﬂa) define a linear map of bigraded differential spaces,
H(¥) : C(M ; H(G)) + C(M ; H(F)).

It is trivial to cherk that the diagram

H(D)
AM ; H(G)) A(M ; H(F))
/ /
C(M ; H(G)) C(M ; H(F))
H(D

commutes.

Next, filter A(M ; G) and A(M ; F) by the subspaces

. Aj(H s F).

P.
I iJ%P

P IV
! [jap AYM ; G) and
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This defines spectral sequences

Gz'i”‘l = H(A(M ; ©)) and (ED'% = BQAM ; B)),

as described in 12.43 and the end of chap. 13. Because ¥ is homogeneous of

bidegree zero it defines a homomorphism of spectral sequences

TPq . P,q P»q :
v‘i’ 2 GEDY - pEY . ixo.

Since 3 is homogeneous of bidegree zero we can identify ao = 3 ;

E =AM ; G) ; I-‘Eo = A(M ; F). Thus theorem 12.47 yields the commutative

Go
diagram
/
& —Z s A(M ; H(G)) ————— C(M ; H(G))
a7 9, L) LI()

ol ———— AM ; H(F)) ——]— C(M ; H(D))

Finally, theorem 14.18 shows that f- is an isomorphism. Thus (17.2)

yields the commutative diagram

P»q 2 + WP . g9
GEZ B (M ; H(G))

(17.3) %l @wm*HP 9

Peq WPy .yl
FEZ < H'(M ; HI(F)).

17.4.- Dinect Limits. Let T be a partially ordered set such that

for any Yo y2 e I there is some Yy ¢ ' with y 2 ‘I and vy 2 72. Assume
given :

. . Y . . .
i) A family of local systems (G )YCT over Sing M with values in

the same category C.
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ii) A family of morphisms
YoY Y Y
2’1 1 2
E' : G — G » YISYZ’

YqY YoY Y,Y
such that (ZY- 1 and 5.3 2 [ 5-2 . 5.3 l.

Y
Then {G ; € 2 l} is called a directed family of local systems.

Because all our categories C have direct limits we can form the

direct limit of such a directed family ; it is the local system G = li cY

‘T’
given by
= 11 Y . ‘m 11 . = 11
Go l%g (G )a H Bi l%g 3i H sj l%g sj .

The morphisms Gz -+ G0 define morphisms
Y . oY
E. : G +G.
2 0N Y2
The morphisms £ : G (M) »G “(M) define a directed system of

objects in C ' and the morphisms EY : GY(M) + G(M) define a morphism

€ : lig 6 () » (M),
r

However, £ need not be an isomorphism.
Next, assume G and each GY are extendable local systems of diffe-

YaY
rential coefficients. As in 17.] the morphisms E.Z ! and £: determine morphisms

oY Y Y
2'1 GZ

3 : AM 3 G l) +~ A(M ; )

and

B o AM; G) > AM ; G).

The first collection of morphisms makes {A(M ; CV)) into a directed

family, and the second collection determines a morphism
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€ : lig AM; 6V) » A ; 6.
r

Y,y
Since the £ 21 are homogeneous of bidegree zero we can bigrade

the limit by
[Lig A ; ¢")]P*% = 1im AP(u 5 (V).
T T

With this bigradation T is homogeneous of bidegree zero.

v .
Moreover, if we set P - I [lim A(M ; GY)]J", we define a filtration
2P

which determines a spectral sequence

BP9 o> H(Lig A®M 5 e").

Since & is homogeneous of bidegree zero it preserves filtrations and induces

a map
P,q , ¥P,q . gPed
87 By cti

of spectral sequences.
Ya2"y . Y"1,
As in 17.]1 the morphisms £, determine morphisms H({ ) and
Y271 Y Y . . -
H(E ) which make {A(M ; H(G'))} and {C(M ; H(G'))} into directed families.

Moreover theorem 12.47 yields the commutative diagram

——E—— lim A(M ; H(G')) —————— ligp C(M ; H(G"))

—

E
: T
(17.5) E,] lig H(EY) lim H(EY)
T T
1

" A(M ; H(®) ——— (C ; K(®)
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(in which B({Y) and H(EY) are the morphisms induced from E:, again as
described in 17.1).
Passing to cohomology and using the fact that f- is an isomorphism

we obtain the commutative diagram

Eg'“ - lim 8P (4 ; HY(C"))
T
- P,q
ar.e) B9 %Q[H(EY).]
Ep-q ‘
G2 - P ; 136)).

w

Finally recall that Ga - l%g G;. It follows that for o € Sing M

the H(E;) define an isomorphism

. Yy . oqs Y g
(17.7) l%! H(Ea) : l%g H(Go) —— H(Ga)'

17.8.- Finite type. Suppose as in 17.4 that G = lim G', where G
and each GY (y € T) is an extendable local system of differential coefficients
over Sing M. Then H(G) and H(G") are &.s.c.'s.

As in 16.17 let {(H' | T € T} be the family of sub £.s.c.’'s of H(G)
such that ﬂ: has finite type. Then we have the inclusions

iT Eof ¢4 B H‘) -+ C(M ; H(G)) which yield the inclusion

i: limC(M ; H) = C(M ; H(G)).
T

Now assume that for each y e T, H(q:) has finite type. Since
HCEY) : H(GY) =~ H(C) 1is a morphism of £.s.c' s, a sub {L.s.c. HY C H(G) is

defined by

H")_ = In H(&:) , o ¢ Sing M.
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Moreover &Y has finite type ; hence H' is one of the H' 's consi-

dered above.

Y2 Ya" " Yi_ Y2
1f Y)Y, then H(E ) o n( ) =H(f ) and so H C H ",
L ]

Moreover (17.7) shows that H(G ) = O BY
yel

Thus we have the commutative diagram

Lig M 5

- S

C(M ; H(G))

On the other hand, the morphisms H(E:) determine morphisms
!,Y

.’ H(GY) +n' by the requirement that the composite
H(GY) + 1 > H(E)
be' H(EI). The morphism 2: defines a linear map
2 :c(; H(CT)) + (M ; HY)
and, passing to the limit we obtain the linear map (of differential spaces)
2 = lip 2¥ : lig C(M ; H(G")) ~ lim C(M ; H").
r r r

17.10.- Lenrma. The linear map £ is an isomorphism and makes the

diagram
lig C(M ; H(C")) ————— lig c(M ; HV)
T r
Llim H(EY) i
r
C(M ; H(G))
commute.

217



S. HALPERIN

Proof. It is obvious that the diagram commutes. By definition

mz : u(cZ) - Hz ., vyeT, oeSingly,

is surjective ; hence so is tY and it follows that so is 2.

On the other hand, suppose £¢ = O. Then ¢ comes from some
oY ¢ c(M ; H(GY)), and by choosing Yy large enough we can arrange that
2Y¢Y = 0. We lose no generality®in assuming o' ¢ C(M ; Hq(GY)).

Now since H(E:) : H(GY) + H(G) 1is a morphism of L.s.c.'s an

L.s.c. N'C H(G') is defined by

(NY)c = ker'H(EZ) , ©oec Sing M.

Since 27¢Y = 0 we have ¢ ¢ Cc(M ; (Ny)q).

On the other hand, recall from (17.7) that
By = Lig H(GD).

.
It follows that if 2z € ker E(El) then H(g; Y)z = 0 for some

Y' 2 y. Since (Nl)q has finite dimension (because Hq(G:) does) there is

some yq 2 vy such that

Y.y

we dHapd = o.
YqY Y q s
This yields H(Ea )(No) = 0, o0 ¢ Sing M, whence
Y.y

H(E 9 )¢ = 0.

It follows that ¢ = 0 and £ is injective.

Q.E.D.

1f we combine (17.6), lemma 17.10, and (17.9), we arrive at the

commutative diagram
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g5 = Lim BP0 ; @HY
(7.11) e (@hHPe
&t = # o ; 8YG))

in which the direct limit is over all sub L.s.c.'s H' C H(G) such that H;

has finite type, and i' is the linear map defined in 16.17.

17.12.- The main theorem. Recall that M is a path connected topolo-

gicaihspace with base point x . Assume that
ﬂ. : G+ F

is a merphism of local systems over Sing M. Assume further that

Y,Y
Y . 2'1 . . . .
{G" ; £y )Ycr is a directed family of local systems over Sing M and that
EZ : 6 - G
Y2 YZYI Y‘
are morphisms such that E, °¢&, - E. , and

Recall from 17.1 and 17.4 that ﬂ. and the EI determine morphisms
¥ : GM) ~ F(M) and ¢ : lig cY(M) ~ G(M).
The main theorem of this chapter reads.

17.13.- Theorem. With the hypotheses and notation above, suppose that

i) F,G and each Gy are extendable local systems of differential
coefficients.

ii) H(Fx) is a nilpotent ﬂ‘(H)-module.

219



S. HALPERIN

iii) Each H(GY) is a nilpotent 7, (M)-module of finite type.
iv) Either H(M) or H(l?x) has finite type.

v) There are isomorphisms

o} N~ LY - ) N .
H(Fu)'ﬂo(ca)-H(G:)-k vyeTl ,o0e€ Sing M,
compatible with the face and degeneracy operators.
vi) The composite ¢ o £ : lim H(G'()) + H(F(M)) is an isomorphism.
T
Then £, ¥ and each \P: :

h(cu) - H(Fa) are isomorphisms.

Proof.- We adopt all the notation defined earlier in this chapter.

In particular we have morphisms

E: lipg A(M ; G') »A(M; G) and ¥ : A(M ; G) »~ A(M ; F).
r

Moreover (cf. 13.11 and theorem 13.12) we have a commutative diagram

1ig ¥ (M) & ey —I . o

T
Lim AM ; GY) ——————— A(M ; G) ——————— A(M ; F)
r € ]

in which the verticalarrows are cohomology isomorphisms. It follows that

¥ 0T : lip HAM ; €M) == HQAM ; F)
r

On the other hand a and E define morphisms of convergent spectral

sequences. Combining (17.11) and (17.3) we have the commutative diagram
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TPq q
4 & [ £B4

¥p,q
E

(17.14)

lig B (M ; (DY) ——— WP ; 8Y(6)) ———— wP(n ; HI(F)).
@*HPe CION

17.15.- Lemma. Assume that for some gq, a;,q [ Eg.q is an

isomorphism and a;.q [ E;'q is injective. Then
i) ?;'q and E‘z”q are isomorphisms for all p.

ii) 00 : Hq(ca) - Hq(FO) is an isomorphism, O € Sing M.

Proof.- First consider the wl(H)-module Hq(cx). Formula (17.7)
shows that
HY(Gy) = lip HY(GY).
T

Since each Hq(GZ‘) is a nilpotent n,(H)-hodule of finite dimension it follows
that Hq(Gx) is finitely approximable, and each finite dimensional submodule
is nilpotent.

Moreover, by hypothelif Hq(l-‘x) is a nilpotent ﬂl(H)-module, and
either H(M) has finite type or Hq(Fx) has finite dimensi.on’.

Finally, (17.14) shows that
HOD® o i" ¢ lim 801 HY) < w0 5 1)
is an isomorphism, and

B o i : Lim B oo (OY - w' o wIE)

is injective.
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We may thus apply theorem 16.24 to the morphism

By, : BY6) » 1P

and conclude that‘ H(\O)o is an isomorphism (in degree q) for all ¢ and

that

B : B ; 83(6) ~ H(M 5 HY(P))
and

i* + lig B 5 @HY - 5 ; BYG)
are isomorphisms.

Part i) of the lemma now follows via (17.14) while part ii) follows
from the definition H(Wo) - 0: .
Q.E.D.

17.16.- Lemma. Eg,o o E‘;’o is an isomorphism for each p 2> O.

Proof. Hypothesis v) of the theorem and (17.14) identify I’g’o o E};.o
with the identity map of HP(M s k).
Q.E.D.
Theorem 17.13 follows now from the Zeeman —Moore comparison theorem
(17.17) below. Indeed, since @.OE' is an isomorphism, lemmas 17.15 and 17.16
allow us to apply the comparison theorem (with ng’q - a}i”qozg'q) to conclude
that v;.qozli).q is an isomorphism for all i > 2 and all p,q > O.

- - )
A second application of lemma 17.15 gives that 02, :2 and each 00

- - ] -
are isomorphisms. Hence so are vV,E,V and £.
Q.E.D.

We complete the chapter by establishing the Zeeman-Moore theorem.

v
Suppose nli)'q : El;’q - E?’q (i 2 2) is a morphism of first quadrant

spectral sequences in which the ith differentials are homogeneous of degree

(i, 1-i). We put

o ’

P,q _ P,q %P»q _ ¥P.q P»q _ P,q
n; n l-:i E_ , !-:i E-'
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if i > p+q+2.
v =

Next assume n' : H—— H is an isomorphism of graded spaces.

Suppose n.(Fp(ﬁq))C l?p(ﬁq) where
BerPah or@o... o '@l -0, Q20

v,
and similarly for B We say n, converges to the isomorphism n- if there

v
are isomorphisms \El:’q = FP l'lpﬂl/l"”l BP9 and E:'q = FP l-llwq/l?‘”| wP*d

P,q

which identify n-' with the map induced by n*.

The comparison theorem we need reads as follows :

17.17.- Theorem. Suppose n; ¢ Ei - Ei, 25ig® is a map of

first quadrant spectral sequences, as described above. Assume that

i) n];,o is always an isomorphism (p > 0).

1,q

249 g an isomorphism and n,

ii) If for some gq, n, is injective,

then ng'q is an isomorphism for all p > O.

iii) n; converges to an isomorphism.

Then ng’q is an isomorphism for all p,q >0 and i 2 2.

The proof proceeds by a number of lemmas.

17.18.- Lemma.

. rlo . . . .
i) n, is injective.

ii) If ng.r—p is an isomorphism for p > m then A T injective.

iii) If n‘:’l—p is an isomorphism for p > O then n: ¥ is an

isomorphism.

Proof.- Apply hypothesis iii) of the theorem.

Q.E.D.
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17.19.- Lemma. nz’o is surjective for all i 2 2. In particular

nz’o is an isomorphism.
Proof.- Apply hypothesis i) of the theorem, and lemma 17.18 i).
Q.E.D.

For the rest of this chapter (only) we establish the notation :
A PN La L A i 2P A ker d.
i il i i i
and we denote the restrictions of n?'q by
Psq , }P.q P »q
B(n);'" & BJ' — B
and
P,q ., ¥P,q P»q
Z(n)i : Zi. - Z:.L .
We also adopt the convention that p and q always denote integers 2 O.

P»q

17.20.- lemma. Suppose for some m 3 O that n, is an isomorphism,

.

q < m. Then for i > 2 :

isomorphism if p+q < m+l, q % m+l.
ng'q is an isomorphism if p+q = m+2, p 2 1i.
injection if p+q = m+3, p > max(3,2i-2).
Proof.- By induction on i. The lemma is true by hypothesis when i = 2.

Assume it is proved for some i > 2. We show that :

L p*q 5 m+!

r

(17.21) :3(n)'i"q is 5urjectiVeif}J ptq = m+2, p # i
r

p*q = m+3, p > 2i.

N
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p+q < m+l, q ¥ m+]
or

(17.22) n‘i"" is injective if p*q = m+2, p
or

p+q = m+3, P

i

W

max(3,2i-2).

WV

p*q < m+l,, q #-m+l
or

(17.23) B(n)?’q is an isomorphism if p+q = m+2, p 2 i+l
or

p+q = m+3, p

W

max(3,2i).

P+q € m+l,  q ¥ m+l
(17.24) Z(n)?’q is an isomorphism if | or

[\
-
.

p+q = m+2, P

Indeed by induction nz-x,q+1-l is an isomorphism when (p,q) satis-

fy one of the conditions of (17.21). Thus (17.21) follows from the surjections
a, : EPTRAMTL | gPaa
i i i

Equation (17.22) simply restates part of the induction hypothesis.

Since B(n)li)’q is a restriction of nf'3 , (17.23) follows from (17.21) and

i
(17.22). )
To prove (17.24) consider the exact sequence
0+ zP'9 — gPr0 L, ppriacivl
i i i
By our induction hypothesis nz'q is an isomorphism and n?‘l'q_l§l is injective

when (p,q) satisfy one of the conditions of (17.24). Equation (17.24) follows.
Finally, consider the exact sequence

o+ 8P 4 2P P9,
i i i+l

In view of this sequence equations (17.23) and (17.24) imply that

P»q

N is an isomorphism if p+q ¢ m*!, q ¢ m¢] or if p+q = m+2, p 2 i+l.
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Equations (17.22) and (17.23) show that nl:;? is injective if p+q = m*3 and

p 2 max(3,2i).
This closes the induction, and completes the proof.

Q.E.D.

17.25.- Lemma. Suppose n‘;’q is an isomorphism for q ¢ m, all p.

Then nz’q is an isomorphism for p+q ¢ m+l.

Proof.- 1f q # m*l, this is lemma 17.20. Thus the lemma follows

from lemma 17.18 iii).

Q.E.D.

17.26.- Lenma. Fix integers m 2 O and i > 2. Suppose that ng’q

is an isomorphism if q s m (all p), and n;’m' is, an isomorphism, j 2 i.
Then for £ > O-.and j 2 i :
i) n?i:l’(wn-(zrl) is injective.

2j+2,(m+3)-(2j+L)

ii) B(n)jﬂ is an isomorphism.
iii) n;;?zhj is an isomorphism.

2j+2, (m+3)=(2j+2)

iv) "j+2.+l

is injective.

Proof.- We use induction on £. When £ = O, ii) is equation (17.23)
and the other three parts are lemma 17.20. Now assume the lemma proved for
j21i and 2's 2, some fixed £ > O. We prove it for j > i and 1+]

Part i) : If £ = O then lemma 17.2(shows that n?iﬂ'(m‘”-(z"”)
is injective. If 2 > O then l)j,l*l coincides with lv)jﬂ,l-l and so is true
by induction.

Part iii) : Consider the short ekact sequence

. . d, . .
o pdem*2=] | pi,m2-j 42 | o240, (m+3)-(2j+L)
0=z, et Bt > 0.
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we may conclude that

Because of 1iii), .
’

and 1ii),
J L )J'

(17.27) Z(n);;:*z-J is an isomorphism.

jm+2-j

j"f»*l 18 an

1If £ >0 them EI’™27i o Z;;:*Z-J and so n

jeasl

isomorphism. If £ = O we have the exact sequence

d, . . . .
0~ a?"”” —l z:]‘. AL N E;;‘:"Z'J — 0.

We have assumed that n?'m#‘ is an isomorphism (hypothesis of lemma).

jm+2-j

Thus (17.27) shows that nj*] is an isomorphism, and iii) is proved for

L+1.

part ii) : Observe that 2?'m+2-1 - E?’m+2‘] and consider the exact

jra+l j+e+2

sequence.

. d, . .
ome2oj | gdam2ei __jebel |, gZiatel ()2l o
ks ] 3

By xxx)j'z¢| and l)j,l#l (which are now proved) we have an isomorphism

in the middle of this sequence and an injection at the right. Hence we have an

isomorphism at the right, which proves ii)j el
»

Part iv) : Let r = 2j+2+1 and consider the exact sequence

r,m+3-r | r,m+3-r r,m+3-r

0= Bitgel jeael jere2 T O

By ll)j,l#l we have an isomorphism at the left and by l)j,lfl we
have an injection at the centre. Thus we have an injection at the right ;
i ©,m¢3-r is injective
i.e., nj+242 jec .

The induction is now closed and the proof complete.

Q.E.D.

17.28.- Lemma. Assume ng'q is an isomorphism for q < m and all p.

+l . . .
Then ng,m is an isomorphism for all i > 2.
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Proof.- By lemma 17.25 n:'m+l = “:1§+l is an isomorphism.

,m+1

Now assume n; is an isomorphism for all j > i+l, some i 3> 2.
\.

We show that

(17.29) ngi;l’(m‘3)-(21+l) is injective, L 20
and
(17.30) n;;:*2-1 is injective, L 21

In fact (17.29) is lemma 17.20 if 2 = 0,1 or 2. If £ > 2 we write

2i48, (me3)=(2i48) _  2(i+1)+2-2,(m+3)-(2i+2)

Ni+s (i+1)+(2-2)+1

and apply lemma 17.26, iv). This provéu (17.29).

Next, consider the exact sequences

. . . . d, : .
i,m+2-1 i,m+2-1 i+8 2i+8, (m+3)=-(2i+2)
0~ Eifeel " Eing " Eiu ’ L2l
By (17.29) we have an injection on the right. Hence
(17.31) nl’m+2-1 injective => n?’m+2-1 injective, L 21,

i+vg+l i+g

On the other hand for j > i+! lemma 17.26 iii) shows that

ni'm’z-J is an isomorphism. Hence lemma 17.18 ii) shows that n:‘m*z-l is
injective. Now (17.30) follows from (17.31).
Finally, consider the exact sequence
o,m+] o,m+] 4 i,m+2=i i,m+2-1
o-ET » EO —2 3T gl Lo,
ie] i b i+
. : . o,m+l . .
Since we have assumed (by induction) that N4 is an isomorphism,
and since Z(n);.nPZ—x is an isomorphism by (17.24) and since niiT’z-l is
injective by (17.30), we conclude that ng,m*l is an isomorphism. The lemma

follows by induction.
Q.E.D.
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17.32.- Lemma. Assume ng’q is an isomorphism for q s m (all

and ng,mﬂ is also an isomorphism. Then for i > 2 :
isomorphism if p+q g m+l.
ng'q is an isomorphism if p+q = m+2, p > 2.
injection if ptq = m+3, p 2 i+l,

Proof.- The proof is identical with that of lemma 17.20.

Q.E.D.

17.33.- Proof o4 theonem 17.17. We show by induction on q that

ng'q is an isomorphism (all p). When ‘ q = 0 this is hypothesis i) of the

theorem. Assume we have proved it for gq < m.

S

By lemma 17.28 n?’mﬂ is an isomorphism, i > 2. In particular

n;’mﬁ is an isomorphism. Moreover, by lemma 17.26 iii) n:;'mq-1 is an

isomorphism for i > 2. Hence by lemma 17.18 ii), n.l.,m-ﬂ is injective.

Consider the exact sequences (for i 2 2)

%

pP)

d, . .
0 - E!,m—ﬂ . E!,m#l i E%+l,(m+3)-(x+l)
i+l 1 i
. o,m1 . . . .
Since n, is an isomorphism, lemma 17.32 applies and shows we

have an injection on the right. Hence

lymel . . . T,mel . ., .
. injective => n, injective
i+] 1
. [ 3 N . 1,m+] e . .
Since n_ is injective we conclude that nz is injective.
p,m+!

Now hypothesis ii) of the theorem shows that n

for all p. This closes the induction.

Q.E.D.
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Chapter 18

The local system of a KS extension.

18.1.- Introduction.- In this chapter M denotes a fixed path con-
nected topological space with base. point m. Recall (definition 15.2) the
c.g.d.a. (A(M),d) and (property 15.5) the augmentation A(M) + k determined
by m. If F is any local system over Sing M we adopt the same convention
as for A and denote F (Sing M) simply by F(M).

n

Since A(M) = A(Sing M) each singular simplex o : A -+ M deter-

mines the evaluation homomorphism {of c.g.d.a.'s)
e : AM) -+ A(n)

given by eao- Oa (cf. 13.5) .
Now assume
E:AM -~ R 2 1
is a KS extension (cf. chap. !). Use the c.g.d.a. homomorphisms
s i
A(M) — A(n) and A(M) — R
to tensor A(n) with R over A(M) : denote the resulting c.g.d.a. by
(Rg,d) = (A(n) OA(H)R,d).
(Note the dependence on o comes from the homomorphism e, )

Next observe that by definition the diagrams

230



LECTURES ON MINIMAL MODELS
A(M)

(18.2)

A(n-1)

A(n+1)

commute. It follows that ai and sj extend to c.g.d.a. homomorphisms

ai 81 : A(n) 8

A(M)R + A(n=~1) ©

and sj @ 1 : A(n) © R + A(n+l) 6

Aok A Q1) aenk

We denote these simply by

3. : R_-+R and s, : R +R
: i .

Formulae (12.3) are clearly satisfied and so (Ra,ai,sj} is a local
system over Sing M. Since it is a local system of c.g.d.a.'s we can pass to

cohomology and obtain the local system {H(Rc),az,s;}.

18.3.- Definition.- The local system {Ro'ai’sj} will be denoted by

R, and called the local system determined by E. The local system {H(Rc),a:.s;}

will be denoted by H(R’).

The canonical homomorphisms

(18.4) Ac : A(n) -+ A(n) “A(M)R = Rc' o € Sing M,

are compatible with the face and degeneracy operators. Hence the Ao define a

c.g.d.a. homomorphism

(18.5) Yo (AM),d) - (R*(H).d),

by (¢) = &
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On the other hand the canonical homomorphisms

(18.6) My PR > A(@) @, \R=R , e Sing¥
satisfy ai ou = uaio and 'j owu = u.jo. Thus a c.g.d.a, homomorphism
(18.7) u: (Rd) =+ (R (M),d)

is defined by (uo)c = uoo.

A short calculation yields yu o i = ). Since e ! AM) -k is
the augmentation and E is a KS extension, ker p is generated by i(ker em).

Thus p factors to yields the commutative diagram of c.g.d.a.'s

(18.8) A(M) u u
R (M) ————— R
* (ek)m

(Here (eR)m T b — om ; clearly (eR)m o\= em).

18.9.- Proposition.- With the hypotheses and notation above, suppose
T 1is connected. Then
i) R_ is an extendable local system of differential coefficients.

ii) H(R.) is a local system of coefficients.
iii) U T~ Rm is an isomorphism.
iv) If T has finite type (as a graded space) then u : R - R-(H)

is an isomorphism.

Proo4 : Since M is path connected H°(M) = k and so by theorem 14.18

(with F = k) HO(A(H)) = k. We can thus write
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(18.10) R=AM)OT

so that p = e, ® 1 and d(1 @a) - 160d,.ac¢ A‘(M) T, acT, (cf. 1.14).

T
Moreover we can write T = AX and find a well ordered homogeneous basis {xa)

for X such that (cf. 1.4)

(18.11) d(1 e xa) € AM) @ (I\)()(u .

Use the isomorphism (18.10) to identify

(18.12) RO = A(n) @ A(M) €T = A(n) O T.

A(M)

Thus an augmentation A(n) - k determines a c.g.d.a. homomorphism Ra - T
and, by (18.11)

A(n) —2— R T

is a KS extension. For suitable augmentations of A(n) and A(n-1), Bi

preserves augmentations, and so there is a commutative diagram

A
A(n) S R T
ai ai
1) — -
A(n=1) A Ra.c T
aic i

This diagram is a morphism of KS extensions. Since T is connected
H°(R ) = B°(R, ) = k. Since (trivially) 3} ¢ HAM) —— H@&A(M-1),
i
. . - 1 . - - -
theorem 7.1 implies that Bi : H(Ro) H(Raic)' Since ai N 1,

each s: is also an isomorphism. This proves ii).

To complete the proof of i) we need only show that R_ is extendable.
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Regard T as a constant local system over Sing M. The isomorphisms (18,12)
identity R, with A ® T (in the category of graded spaces), Since T is

constant and A is extendable, A ® T (and so R.) is extendable.

Part iii) follows from (18.12) with o = m. To prove iv) let
a),..,a) be a basis of 2 Tz. If Qe R.(M) use the isomorphisms (18.12)

Lsp
to write

r
Q, = LE no,l 8a, , Qo,[ e A(]o]).
=1
The isomorphisms (18.12) convert 3i and sj to ai ® v and sj ® U and
so the equations @ = 3.0 and @ = 5.0 yield
i“o s j'o

3.0 .0
1 J

Qaic,z = ainc’2 and nsja‘£ = Sjﬂc,z , L=1,...,p.

It follows that elements Q£ € AM), £ =1,...,r are defined by
(Ql) =2 - Clearly Q = u({ 2, 8 al). Thus u 1is surjective. On the other

hand if w({ Ot ] al) = 0 for elements oe € A(M) then
0= “0(2 0, 8 a,) = F(ot)0 8 a,.

Hence (°()o = 0 for all £,0. This implies that oz =0, £=1,...,r, and

so u 1is injective.

Q.E.D.

1§.13.- Remank.- Suppose E : A(M) 2. R -2.T is a KS extension
with T connected. Since H(R.) is a £.s.c., a canonical n](M)-module

structure is defined in H(R.)m = H(Rm) - cf. definition 16.7.
Now by part iii) of prop. 18.9 :‘ is an isomorphism :

v H(T) — HR ).
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Thus H(T) becomes a canonical ﬂI(M)-module.

We shall now make this nl(u)-module structure explicit. Fix an
isomorphism R = A(M) ® T, a graded subspace X c:Tf, and a well ordered’

homogeneous basis {x } 1 of X such that
o ae
i) p = en 1KY
(18.14) ii) T = AX

iii) d(1 8 x ) e AM) 8 (AX)_, ael.
a <a

We also need the following conventions. We regard Sl as the unit
interval I with endpoints identified, and let g : I + SI be the projection.
We put o0(0) = o(1) = b ; it is a base point for SI. Note that ¢ 1is a

l-simplex on Sl.
Next write A(1) = A(t,dt), where t is the barycentric coordinate

function bl (cf. example 12.9). Then A(O) = k and the face maps

ao,al : A(1) + k are given by

(18.15) aot =1 and 3,t = O.

. 1
It is easy to construct a cocycle u € A (Sl) such that u, = dt.

Clearly the inclusion
1
(Au,0) —— (A(S),d)

induces a cohomology isomorphism.

Now suppose T : I - M 1is a loop based at m :

1(0) = (1) = m. Then =t factors over ¢ to yield a continuous map
9 s - em.

The base point b determines an augmentation e A(Sl) - k and
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A : A) - A(sh)

is a homomorphism of augmented c.g.d.a.'s.

In particular we can form the commutative diagram of homomorphisms

of augmented c.g.d.a.'s :

AQM) i R £ AX
A(¥) !

1 1
A(SY) -5 A(S)) OA(M}_‘( —_— AX

in which j¢ = %261 and n = e e .

Our fixed isomorphism R = A(M) ® AX defines an isomorphism
A(Sl) OA(H)R H A(Sl) ® AX. Because of (18.14) this identifies the lower row

above as a KS extension.

We now apply prop. l.1] and its corollary to the inclusion

Au ~ A(Sl). This yields a second isomorphism

ol H I
f:A(S) 6 X —— A(S) OA(H)R

with respect to which

i) n= e e .

i) d0 ex) e As') o My, el

iii) Au ® AX 1is stable under d.

Identify A(SI) ® AX with A(Sl) OA(H)R via f. Then iii) implies

that

d(1 € a) = | @€d.a+u®eéa), a € AX,

T

where 6 1is a degree zero derivation of AX. The equation d2 = 0 yields
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dTO = OdT and so 6 induces a derivation 6 in H(T). Moreover, because

of ii) we have
chl € (M)m . ael.

This shows that for any a € T, 8% =0 if n is large enough.

Thus e° = Z- 8"/n! is an automorphism of (T,dT) and

.
(" - L8

18.16.- Proposition.- The wl(M)-module structure of H(T) is given

by
0" :
Gl =e : R = HWD.

Proof : Since Y o 0 = T  the homomorphisms
e. t AM) + A1) and e :A(S) - A

T [+

are connected by e =e o A(¥). Thus we can write
R_ = A(1) @, R=A(1) @, I [As) 6, . K
T A(M) A(SY) A(M) ’

where we use e, to make A(l) into an algebra over A(Sl).

Next, use the isomorphism f above, together with this equation to
write

Rr = A(1) ® AX = A(t,dt) 6 AX.
Because u = dt the differential in R is then given explicitly by
d(1 6 a) =180 dTa + dt @ 6a, a € AX.

It follows that a homomorphism V : (T,dT) - (RT.d) is given by
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@
vV = Z t®/n! & 6%a.
a

n=0

On the other hand, because 0(0) = 0(1) = b we have
] ->
9. o e, = 30 oe, =e : A(S) k.

1

It follows that the diagrams

H 1 )
A1) 8, 4 R a() 8, 1 [as) 8, 0 R] = AG) 8 KX
3.61 . 9.8e 61 9.61
i i i
Ry = k 8, R k8, R = AX

commute. Thus the ﬂ)(M)-module structure of H(T) 1is given by

[ -0,60" [3, e 0T : nm =~ wD.

Now use (18.15) to conclude (3, @ 1)V = 1, (ao )y = ee

1

hence
*

(] = G, o) " - f

and

Q.E.D.

18.17.- Conollaru.- 1f T is connected and finitely generated (as

an algebra) then H(T) 1is a nilpotent ﬂl(M)—module.
Proof : We can write (in this case)
R = A(M) 6 A(x',...,xn)

with d(IOxi) € A(M) @ A(x].....xi_l

we have
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6T -
(] =D : um +~ WD
where OT is a derivation of (T,dT) and

er(xl) =0, eT(xi)'c A(x',...,xi_ ), io> .

These equations imply that if a ¢ T then for some integer N

(depending on a)

8 o0...086_ (a)=0
B ™

for any sequence of N 1loops TI"";TN'
Since T (and hence H(T)) has finite type, it follows that H(T)

is a nilpotent ﬂl(M)-module.
Q.E.D.
18.18.- Dinect £imits.- Again consider the KS extension
E:a@y) 2—Rr —2—1
of 18.1. Assume T 1is connected. Fix an isomorphism
(18.19) R=AM) 6T,

a graded subspace X c T° and a well ordered homogeneous basis {xa)acl

of X such that (18.14) holds.

If Yy 1is a subset of I denote by TYC T the subalgebra generated
by the X5 @ EY and denote by X' © X the subspace spanned by the L

a € Y. Then

Let T be the collection of finite subsets y € I such that
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R' = AM) 6 T' 1is stable under d. Then T is ordered by inclusion. The

properties (18.14) exhibit
£ AaM) — R — 17

as a sub KS extension of E. Moreover I = U y and so the inclusions

- . X YeT
R’ &+ R define an isomorphism,
(18.20) limR" —=—— Rr.
r
Yy Y2
Similarly the inclusions R — R — R define morphisms
of local systems
()2
1 Y2 .
R —e R.I ——b R.

(cf. 17.1). In particular (RY) is a directed family of local systems over

® vyel
Sing M (cf. 17.4) and the morphisms E: : RI - R. define a morphism of
local systems )
. . Y
€, * lin R, R,

r

18.21.- Proposition.- With the notation above :
i) R, and each R: are extendable local systems of differential
coefficients.
ii) For each 1, H(R;) is a nilpotent w|(H)-module of finite type.
iii) The morphism lig R: + R, is an isomorphism of local systems.

T
iv) The diagram below commutes, with isomorphisms as shown :
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lim RY

—_—

T
g,u’ ¥ u
r
r

Y
lig R, 00

; R (M) .

Proof :
i) is prop. 18.9 i). ii) is cor. 18.17 (with remark 18.13).

iii) is immediate from the definitions. The commutativity of iv) is obvious
and each u' is an isomorphism by prop. 18.9 iv).

Q.E.D.
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Chapten 19

Serre fibrations

19.1.- Serne fibrations. A Serre fibration is a continuous surjective

map of topological spaces,
m™: P +M,

which has the following homotopy lifting property : if

T
AnX{O}——L——'P

n

4 x I ————— M

is a commutative square of continuous maps, then T extends to a continuous

map T : A" x I + P such that =1 = .

The spaces P and M are the total space and base space of the fibra-

tion. If x ¢ M the fibre, Px’ at x 1is the subspace w_l(x) of P.

19.2.- Fibrations over a simpfex. Recall (12.9) that the vertices of

the p-simplex Ap are denoted by vo,....vp. Further, the order preserving maps
a € Ord([p],[ql) define continuous maps A(a) : AP - 29. In this section it will,
in particular, be convenient to denote the face and degeneracy maps respectively

by
- =1
(19.3) n, = ae6.) : P71 > AP and ¢, = 8(0,) : aP - AP7),
i i j j
We recall now the standard triangulation of aP x 1. It is given by

the continuous maps

[ :Ap‘l——ﬁAp!I

- s 0O<mc¢ep,
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defined by
p+l
1
a(z) = (z(2), I b,(2), z e aP"
o m jemer t
where bi(z) is the i.th barycentric coordinate.

Let o0 : AP » A" be any continuous map. Denote by

.

o : 8P xI »2a" the continuous map given by

. o 3
(1-\)o (izo—vi) *av, A#,

1-A

- prl

(19.4) ) um(.z )‘ivi) -
1=0
vn . A=1,
ptl

where A = I A.. Thus

jemtl b
(19.5) 5(z,0) = 9(z)  and  3(z,1) = v, z € AP,

The relations (12.2) imply that the diagrams

AP-I x 1 9.0
\
(19.6) : n

commute, where (as usual) 3io =cgon,.

Now consider a Serre fibration
P———0
Using the homotopy lifting property, and (19.6) we obtain

19.7.- Lemma. There are continuous maps

TP x1—p , 1 € Sing (P), p20,
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such that

i) ¥(z,0) = t(z).

ii) 7 o T = Wotr, where wotr is defined from T o t by (19.4).

.

iii) If nt(aP) = v, then F(z,t) = 1(z), tel.

iv) ?o(nin)-r? , O0sgicgop.
Recall next from 19.2 (or 12.9) that an inclusion of simplicial sets
A" Csing(a™)
is defined by a = A(a). Thus a .ubniwl‘.icial set P CSing P is defined by
(19.8) TePc>nocrte a".
We have thus the sequence of inclusions of simplicial sets

Y Y
Sing(P ) —2—s p —L— sing (@),
n

19.9.- Lerma. The homomorphisms

A(Yz) Ay
AR ) A®)
n

»

A(P)
induce isomorphisms of cohomology.

Proof.- In view of theorem 14.18 it is enough to prove that

C(Yz) c(vl)

ce, ) —— c@® ——— c®)
n

induce cohomology isomorphisms. For each 1 € Sing (P) (p 2 0) 1let
T:8°P x1I+P bea continuous map such that the conclusions of lemma 19.7

. v . = P
hold. Define 71 ¢ Sing (Pvn) by 1t(z) = T(z,1) - cf. 19.7 ii) and 19.5.
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Define linear maps

x:c"(rv)-’c’(r), P20,
n
by (A£)(1) = £(¥). It follows from 19.7 iii) that

(19.10) C(yz) ° C(yl) o=,

Recall the linear maps o A‘”' + 8P x 1 defined above.

Put hl(‘r) =%o0 a ¢ A'”l +P, 1€ Sing (P). Define linear maps

n: e - Py, P20,
by
m ; .
(hf) (1) -zo (=1) f(h-(t)) . T ¢ Sing (P).

Then a classical calculation (via 19.7iV)) yields
(19.11) hé + 6h =)o C(Vz) ) C(Y‘) -1 .

This, together with (19.10) shows that c(yz). o C(yl). is an
isomarphisn.
Finally, suppose o ¢ Sing (An) is actually in (An)p.

Then formula (19.4) shows that 0 o o, € (An) m 2 0. Hence

pel’
if tep, hn('r) satisfies (by 19.7 ii))

—_— n
LI h.(r) =wToa € (a )PH.

This shows that if T € P so does each hn(t) and so h restricts to an operator

in C(P). It follows that C(v,)" is an isomorphism .

Q.E.D.
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19.12.- Puflbacks. Consider continuous maps

and suppose 7 is a Serre fibration. Define a subspace #’ PC Ml x P by

VP = {(x,9) | ¥x =n y).

The projections of M‘XP onto Hl and P, when restricted to 0.P, give the

comnutative square

o

P

Hl——-——T—-—-—'H.

Evidently L is again a Serre fibration ; it is called the pullback of =

to M‘ via V.

Let y : M2 - Ml be another continuous map. Then w.(ﬂ.P) is the

subspace of HzlexP of points of the form (x,yx,z) with @Y¢x = z. Thus pro-

jection szHl!P - MziP restricts to a homeomorphism

(19.13) V) —— w0 (®).

We often identify these spaces via this homeomorphism.
If ¥ : x M is the inclusion of a single point then the pullback
. . . R .
is just the constant projection Px + x. More generally, if o : 4 + M 1is any

n .
singular simplex on M we denote the pullback of m to &4 via 0 by

(19.14) P —— 4.
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In particular, if ai ans ’j are the face and degeneracy operators
in Sing M (cf. 12.13) then the identifications (19.13) yield commutative

squares of continuous maps

Ai L.
P, ————P P ——dp
3.0 5.0
(19.15) “310 L and "o L
An-l AR An+1 AP
g.
1 J

(ni and :j are defined in (19.3).) Moreover Ai'zj satisfy the equations

(12.2).

19.16. Local system of fonrms. Consider a Serre fibration

For each o0 ¢ Siggn(H) the pullback

is a Serre fibration over A". We can thus apply definition (19.8) to define a
simplicial subset 22 C Sing(P).

It follows from the diagrams (19.15) that the simplicial maps
S1ng(Paic) - Sing(Pc) and Slgs(sto) - SlEﬂ(Po) defined by Ai and Ij

restrict to simplicial maps

Hence they determine c.g.d.a. homomorphisms

9. @ A(Pa.a) - A(Pc) and sj : A(Ps.o) - A(Pc).
i <2 j <
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Because Ai and zj satisfy (12.2), ai and 'j satisfy (12.3).

Hence a local system of c.g.d.a.'s, F, over Sing(M) is defined by
ru - “:q_)' 9., 8, . c e Sing(M).

It is called the local system of the fibration.

19.17.- Lemma. The local system, F, of a fibration is an extendable

local system of differential coefficients.

Proof.- That F is a local system of differential coefficients is

an easy consequence of lemma 19.9. o

To show it is extendable, fix o € Sing (M). Denote by Pao the

simplicial subset of these T such that LI 3_A_n. It is easy to idenmtify

the homomorphism

SreM + g"F(a™

with the restriction A(Po) -+ A(Paa). -cf. definition 12.19. But the latter
is surjective (prop. 13.8).

Q.E.D.

Since Pc is the pullback of P we have commutative squares

4

—_— P
(19.18) uol lu
4 — M

o

Equations (19.13) yield the relations

. o € Sing (M).

(19.19) Ea o Ai - Caio and zo [ Ij - Ec.o .
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Next, denote by

a_ : A(P) » A(Pa)

c —
A(Ea)
the composite homomorphisma A(P) —————— A(Pa) - A(Po)' From (19.19) we have

(19.20) 3i [ - ‘aia and .j oa = "jo N o ¢ Sing(M).

These relations show that a c.g.d.a. homomorphism.
a: A(P) - F(M)

is defined by (-0)0 - 300 » 0O € Sing(M). (P(M) is the c.g.d.a. of global

sections of the local system F.)
19.21.- Lemma. The homomorphism, a, is an isomorphism of c.g.d.a.'s

a: A(P) —=— F(M).

m n

Proog.- If o e Sing (M) and a ¢ Ord([m],[n]) then 4(a) : 4" + &
is a continuous map, and we obtain the commutative diagram

A 4

- \ a [}
A(a) (Pa’ Po
" "
[4
m n
) 2(3) 4 5 M

If we use (19.13) to identify A(c).(Po) with P then

cold(a)

bgo2 " EcoA(u)'

(This generalizes (19.19).)
Moreover the simplicial map ngg(PooA(n)) - Sxm(?a) induced by xu

restricts to a simplicial map
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Ao

_a l,cmA(a;) +P

2

and hence determines a homomorphism

A(:g) : A(P )*A(i).

god(a)

(Note that ai and sj are special cases !) Notice that 'X& is given by

i(t) -)‘uot TcpooA(a)"

Furthermore if Q ¢ F(M) it is coherent with respect to all the A().a) ; i.e.

(19.22) A(ig)no "2 ) ’ o ¢ Sing (M),
a € ord([m],[n]).

Now consider a singular simplex w : & =+ P.

It determines the singular simplices

o : A% +M . and T A% +p
w w o
w
given by
cw(z) = nw(z) and Tw(z) = (z,w(2)) , z e o™
Observe that T, satisfies (and is determined by) the relations
(19.23) L ot =1 and Eo o Tw -0y .
w w
Hence 1 ¢ Pc . Moreover, for w € Sing (P) and o € ord({m],[n]),
w
o, ° o(a) = %ot (a)
(19.24) and

Y _—
Tw® 8(a) a® TmoA(u) _a TwoA(u)
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as is easily verified. These equations specialize to

9.0 = g . 8.0 =0
iw aiw jw ‘j“
(19.25) and
airm - Ai [} taim , 'jTu - :j [} Tsjw .

From (19.23) we deduce (for ¢ ¢ A(P), w ¢ Sing(P)) that

(a0, (1) = [‘“aw”]"u) =g o) e,

(30)0 (Tm) - ON » w e Sing(P).

w
Hence a is injective.

On the other hand, let § ¢ F(M). For each w ¢ Sing (P) define
ow € A(n) by

% - nc (Tw)
w

It follows from (19.25) that the Ow are compatible with the face
and degeneracy operators, and so define an element ¢ € A(P).

Now if T € PO , some o € Sing (M) then mot = 4(a), some

a € Ord( [m] ,[r]) and we candefine '

€ Sing (PooA(u)) by the equations

‘= A ' =1,
"ooA(a)T 1 and o o

Let w = Eo 0T= o 1'. Then (cf. (19.23)) ' = T and

anA(a)
o =0 o A(a) . T=)X 0T .
w

Equations (19.22) yield

Q)= (v) =29 .

a o w w

w
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But by definition
(a#) (1) = [A(E )] (1) = #(E01) = @,
Hence a® = Q and a is surjective.

Q.E.D.
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Chapter 20

The fundamental theorem.

20.1.- Introduction.- Suppose

is a Serre fibration in which M 1is a path connected space with base point m.

We adopt the notation of chap. 19. The diagrams (19.15) show that

L ] L ]
HES 3 8 5 Iidoesings

is a local system over Sing M. Integration (cf. theorem 14.18) identifies

this with the local system
L L ]
(H(A(Po)) H A(Ai) :A(tj) }.
Thus by lemma 19.9 it is identified with the local system
{H(A(i)) 33 s 'j)

and is in particular a local system of coefficients. (cf. also lemma 19.17 1!)

Since M 1is path connected H(P}) becomes a ﬂI(M)-module (cf. 16.5)

and the identifications
H(Pntk)-H(A(Pm)) - H(A(fg_l_))

are isomorphisms of n‘(H)-modules.

Next, let j : Pm - P be the inclusion. Then 7 o j 1is the constant’

map Pm - m and so

AGG) o A(n) = e : A(M) = A(P)) ,
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where e is the augmentation of A(M) at m. It is given explicitly by
ed = e A(M).

Finally, assume P jig also path connected. Then

HO(A(M)) = HO(A(P)) = k and so by theorem 6.1 and theorem 6.2 there is a

unique minimal model :
A(P)

A(ﬂ) 8

E: AM) n R T
1 [

for A(m) ; the row denotes a minimal KS extension. Because ker p 1is the
ideal generated by i (ker em) we can complete this diagram to a commutative

diagram

A(M) _A_(L A(P) _A(J)___. A(pm)

(20.2) B a

A(M) T R T

in which a is a homomorphism of c.g.d.a.'s.

The main theorem of these notes reads

20.3.- Theorem.- With the notation and hypotheses above suppose that
i) Pm is path connected.

ii) H(Pm;b is a nilpotent ﬂl(H)-module.

iii) Either H(Pm;w or H(M;®W has finite type.

Then o : H(T) - H(A(Pm)) is an isomorphism, and so (T,a) is

the minimal model for Pm'
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Proog : Let o ¢ Sing (M). Then m : § ~ 4"

defines a simplicial
map Sing(Po) - Sing(An) which by definition (cf. 19.8) restricts to a simpli-

cial map

[¢] o

Since (12.26 a)) A(An) = A(n), the resulting homomorphism of diffe-
rential forms is a homomorphism

A(no)

A(P ) «———— A(n) .
)
Now denote by
e ¢ AM) -+ A(n)

the homomorphism ¢ &~ °c' Then a computation shows that the diagram

AP ) —Z—  A(P)
<

(20.4) A(n) A(n)

A(n) '-———e—— A(M)
o]

commutes.
Next, recall the local system R* = (Ro H ai H sj} determined by £,

as defined in 18.3. Since Rc = A(n) 8 the diagrams (20.4) show that

AR

homomorphisms of c.g.d.a.'s
¢ RG —_— A(P_C_)’ o€ SinE(H),

are defined by

J_=A(-) 8 (a_ o B).
g c ¢

As in 19.16 denote the local system {A(P_)} by F.
Relations (19.20) imply that the ¢ are compatible with the face and degeneracy

operators. Hence they define a morphism

255



S. HALPERIN
0. t R, - F

of local systems. We wish to apply theorem 17.13 to this morphism.

First observe that since Pm is path connected the homomorphism
. : HI(M) - HI(P) is injective. This is therefore also true for A(n)',

and it follows by cor. 3.9 that T is connected.

Since T 1is connected we can apply the results of 18.18. In parti-
cular (cf. prop. 18.21) R, is expressed as the direct limit of a directed

family Rl of local systems over Sing M. We now verify the hypotheses of
.

theorem 17.13 (with R, playing the role of G) :

i) F is an extendable local system of differential coefficients by
lemma 19.17. R, and RI are extendable local systems of differential coef-

ficients (prop. 18.21 i)).

ii) Note that Fm = A(SE? and so H(Fm) - H(A(Eﬁ)) is a nilpotent

"l(M)~modu1e by hypothesis.

iii) Each H(R;) is a nilpotent ﬂl(M)ﬂmodule of finite type

(prop. 18.21 ii)).
iv) Either H(M;k)or H(Fm) (= H(ﬂék))ha: finite type by hypothesis.

v) Since (H(Fc)} is a local system of coefficients, and P is path
connected, clearly Ho(Fa) = Ho(Pm) = k and these isomorphisms are compatible
with the face and degeneracy operators. The same is true for R, and R:

because T is connected.

vi) By prop. 18.21 iv) the composite H(lim R'(M)) = H(F(M)) can be

identified with the composite

]
HR, M) —— HFOD).

H(R)
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By definition, for z € R
Wu(z) = Ouuo(:)
- [A(n_q) e (a 0B8] 02

= a (82) = [a8(2)] .
Hence Y o u = a o g.

Now a is an isomorphism (lemma 19.21) and B' is an isomorphism by

: * . .
hypothesis. Hence V¥'u' is an isomorphism.

We have now verified all the hypotheses of theorem 17.13. We may thus

conclude that

Vot HR) —E— HAE ).

But

L T (prop 18.9), A(EE) - A(Pu) (definition)
and, clearly, 0m = g, This completes the proof.

Q.E.D.
20.5.- Theonem. Let M be a path connected space with base point m
and suppose P T+ M is a Serrefibration satisfying the hypotheses of theorem

20.3. Assume that

A(m) AGj)
A(M) A(P) A(P)

|

A(M) T R, P T,

is a commutative diagram of c.g.d.a.'s, in which the bottom row is a KS extension.

Suppose also that u'l P R(T)) = H(A(P_)). Then

a: i H(R) —E e H(A(P)).
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Proof.- Combine (20.2) with the diagram above to achieve the commutative

diagram
p
¥R T
i
8 a
A(M) ) A(P) TN E) I A(Pm)
8 a
1 1
)
R T .
1 _?l 1

: « . . .
By construction B8 is an isomorphism.

Hence we can apply theorem 5.19 to obtain a c.g.d.a. homomorphism

E:RI»R

such that B o il =i and Bo B~ B (rel A(M)).

The first condition shows that B i, (ker em) = i(ker em) and so

1

B (ker 91) C ker p. Thus B factors to yield the commutative diagram
AQM) : R 2 T

|

A(M) T R, 5 T

By changing the augmentation in Tl (if necessary) we can arrange
that a preserves augmentations. Hence so does B : (\.E,;) is a morphism of
KS extensions.

Now (cf. definition 5.8) the homotopy from B8 o B to 8‘ is a
homomorphism ¢ : (RI.A(M))I -+ A(P) such that

¢o) =808, o0 ), = BI' o0 i

o ) = A(m).
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In 5.1 is defined a projection (RI.A(H))I -+ T{. The equations above

show that A(j) o ¢ factors over this projection to yield a homotopy

I
T] — A(Pm)

from a o a to e,

It follows that e o - o:. Since uT is an isomorphism by hypo-

thesis, and u. is (by theorem 20.3) so is ;’. Now theorem 7.1 implies that
8" is an isomorphism.

Since B8, v Bo B and B and B are isomorphisms,
8l = 8" 0 8" is also an isomorphism. :

Q.E.D.

20.6.- Pullbacks.- Consider a commutative square of continuous maps

P ——
(20.7)
S

in which n is a Serrefibration and ™ is the pullback via .

Choose basepoints m‘ € MI and me€ M so that ¥ ml = m ; then

-
(€] P)m‘ = Pm.

Now suppose that
i) M and Ml are path connected.
ii) ﬂl(H) acts nilpotently on H(Pm;k)

iii) Either H(Pm;k)or both H(Mjk)and H(Ml;k)have finite type.

Let the model of A(n) be denoted by
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A(M) A(P) A(Pm)
(20.8) - 8 a
E: A R T :

then 8. is an isomorphism by construction and a is an isomorphism by
theorem 20.3.

On the other hand A(Y) : A(M) =+ A(Ml) is a c.g.d.a. homomorphism
which preserves augmentations (because ﬁnl =m).

Thus we can use A(y) to define the c.g.d.a.

Ry = A(M)) 6,y R

Diagrams (20.7) and (20.8) produce in the obvious way the diagram

AM)) ————— A@"P) ———— AR )
o,

AM)) ———— R —m T

in which the bottom row is a KS extension. Moreover the homeomorphism PIII & (J’P)III
1
gives an isomorphism A(Pn) . A((O“l’)m ) which identifies a and a. Hence

1
a: is an isomorphism.

New theorem 20.5 applies and shows that 8* is an isomorphism :

(20.9) 85 ¢ H(AM)) 0, 0 B —— HAW'P).

A(M)
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[B-L])

[B-G]

{c]

[chl

[G-M]

(4]

[v,]

(L]

(s]

[swl

[Tal

(W)

[w-T]
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