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Algebraic topology has, classically, meant the study of algebraic

invariants associated with topological spaces. These invariants (hooology,

hoinDtopy,...) are normally not "geometric" in the sense that one cannot

recover a space from them.

Although there is still no satisfactory algebraic description of

homotopy theory (over 2), the rational hoaotopy theory of Quillen and Sullivan

is a practical and complete solution - if one is willing to forget torsion.

Here one models the homotopy category by the category of commutative graded

differential algebras (c.g.d.a.*s). Then to each c.g.d.a. one associates a

"minimal model" with the property that if two c.g.d.a.'s are connected by a

homoBDrphisn which is an isomorphism of cohomology then the minimal models

are isomorphic.

The process space •*• c.g.d.a. -*• minimal model gives the minimal

model of a space. Its isomorphism class is an invariant of the weak homotopy

type of the space. S. Moreover, if S is a 1-connected W complex of finite

type then from the model one can recover a space S^ and a continuous map

S - S^ which induces isomorphisms TT^(S) • < - ̂ ^ •

Minimal models have proved to be a powerful tool in the solution

of geometric problems. While the fact that one can indeed recover S^ from

the model is undoubtedly the philosophic reason for the power of the machine,

this fact plays little direct role in the applications. Rather the two key

ingredients turn out to be:

(a) A detailed understanding of the algebraic behaviour

of the models, and

(b) A dictionary from classical topological invariants

to invariants of the models.
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My aim in these notes has been to provide a self-contained refer-

ence for many of the basic theorems needed for (a) and (b), in which complete,

formal proofs were given down to the last technical detail. I have also tried

to make the hypotheses as weak as possible and the conclusions as strong as

possible. While this approach tends to make for difficult reading, it does

(or so I hope!) result in a safely quoteable source for those whose main

interest is the applications.

For the sake of completeness I have also included (with proofs 1)

many well known results and definitions (eg. simplicial sets in chap. 12,

TT, (M)-modules in chap. 16 and Serre fibrations in chap. 19). In fact, the

only prerequisite is some multilinear algebra and a little basic topology.

The material presented here divides naturally into three parts.

The first (chaps. 1 to 11) is pure differential algebra: suppose

n : (B.dg) ^ (E.dg)

is a homo TOD rphism of c.g.d.a.'s (over a field k of characteristic zero).

Assume H°(B) - H°(E) - k. and B is augmented.

Then there is a commutative diagram of c.g.d.a. homomorphisms

(E.dg)

(B.d.) ———————- (B • AX.d) ———————r (AX.d )
u A

in which:

i) iR* is an isomorphism.

ii) AX is the free commutative graded algebra over the graded

space X

iii) A certain "nilpotence-type" condition and a certain minimality
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condition (cf. chap. 1) are satisfied by d.

Moreover the bottom row is uniquely determined (up to isomorphism) .

The diagram above is called the minimal model for H (cf. chap. 6).

When B • k we have simply

i|) : (AX,d^) -̂  (E.dg) ;

it is called the minimal model for (E,d_).

The second part of the theory is a functor M 'w\>—>• (A(M),d) from

topological spaces to c.g.d.a.'s (over k) such that H(A(M)) is naturally

isomorphic with the singular cohomology H(M ; k). This is described in

chaps. 13 to 15. The minimal nodel of (A(M),d) is called the minimal model

for M.

The third part is the study of fibrations (chaps. 16 to 20).

Suppose F > E Tr » B is a Serre fibration in which F, E, B are path

connected. Then we can form the model of A(TT) : A(B) -»• A(E), obtaining

the commutative diagram:

A(TT) A(j)
A(B) —————————- A(E) —————————^ A(F)

I P a

A(B) ——————- A(B) 9 AX ————————- AX

in which iP* is an isomorphism. The fundamental theorem of this part reads

20.3. - Theorem. Assume that

i) Either H(B ; k) or H(F ; k) has finite type.

ii) IT (B) acts nilpotently in each H^F ; k).

Then a* is an isomorphism, and so a : AX -» A(F) is the minimal

model for F.
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This theorem was proved first by P. Grivel [G] in the case B is

1-connected. Another proof was given independently a little later by J.C.

Thomas (unpublished), again for the case B is 1-connected. The proof given

in these notes follows the general idea of Grivel*s proof, but the techni-

calities are substantially more complex. In particular, heavy use is made

of the notion of "local system over a simplicial set" (chap. 12) which is a

simplicial analogue of a sheaf.

Let AX ->• A(M) be the minimal model (over 9) of a path connected

space M. There are obvious linear maps

Xp -^ Hony(7r (M) ; <p . p ^ 2.

Using theorem 20.3 it is easy to deduce the

Thejpn.vn. - Assume that

i) Each IT (M) • ̂  is a nilpotent finite dimensional TT, (M) module
P 1

for p ^ 2) .

ii) The minimal model for K(TT (M) ; 1) has generators only in

degree 1.

Then the linear maps if -»• Hom_('TT (M) ; <0 , p ^ 2, are isomorphisms.L p

I had originally planned to include this and other applications,

but ran out of time. They will appear elsewhere.

The theory of minimal models is due to Dennis Sullivan, and his

paper "Infinitesimal Computations in Topology" [S] is the fundamental work

on the subject. Indeed the first two parts of these notes (chaps. 1 to 11

and 13 to 35) follow [S] very closely.

The reader who makes this comparison will discover that aside from

the occasional modification in the assertions of [S3 I have frequently merely

expanded the ideas there into formal proofs. (One exception is "de Rham's

theorem" in chap. U whose proof ie based on that of Chris Watkiss [W]; another
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version of this proof is given by Cartan [c3. Other proofs abound in the

literature.) Of course the overlap of these notes with [S3 covers only part

of [S3. I haven't touched solvable models, let alone the latter half of [S3.

Another approach to minimal models is via localizations and

Postnikov towers. If M is a nilpotent space it can be localized to produce

a rational space »L. The data which define the Postnikov decomposition of

^ are exactly the data which define the minimal model of M, and so it

follows that the minimal model of M determines its rational homotopy type.

The theorem above on homotopy groups follows at once, at least for nilpotent

spaces. This approach is that of Friedlander et al. [F3 and Lehmann [L.3.

The resume by Lehmann [L.3 is particularly elegant and readable.

A different approach is taken by Bousfield and Gugenheim [B-G3 who

provide a complete exposition in the context of the closed model categories

of Quillen. Other expositions (eg. [W-T3) are also available.

At least two other algebraic categories have been successfully used

to model rational homotopy theory: the iterated integrals of Chen [Ch3 and

the category of graded differential Lie algebras. In the latter category

the notion of minimal model was introduced by Baues and Lemaire [B-L3.

The recent book of Tanre [Ta3 provides a clear description of the

relation between these categories and goes very much further than the present

notes in describing topological invariants in terms of the model.

These notes are a greatly expanded version of lectures I gave at

Lille in 1976 and 1977 in the seminar on algebraic topology and differential

geometry. They first appeared in 1977 in the Publications Internes of the

U.E.R. de Hathematiques, Universite de Lille I and are presented here unchanged,

except for changes to the introduction.

The seminar discussions were, naturally, enormously helpful • I

want particularly to mention Daniel Lehmann and Chris Watkiss. My thanks also
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go to Hues Tatti and Berat for their careful typing of the manuscript, and

to the Universite de Lille I, whose hospitality made the whole thing possible.

It is a great pleasure to be able, now, to say thank you to my Lille colleagues

not only for their hospitality that year, but for all the subsequent years as

well.

Finally, I should like to take this opportunity to express my warm

gratitude to my teacher, friend and colleague Wemer Greub from whom I first

learned about commutative graded differential algebras and Koszul complexes.

July 1983
University of Toronto
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ChapteA 0

Notation and conventions

All vector spaces, algebras, multilinear operations, • • • in these notes

are defined over a fixed field k of characteristic zero. Occasionally we

specify k • (, ft or C.

All algebras are associative, and have an identity, 1 , which is preser-

ved by homomorphisms.

By a graded vector space we oean a direct sum V • E o ' (note

that the sum is over the non negative integers). We write V • E - V'.

Elements of V1* are homogeneous of degree p. V has finite type if each

V^ has finite dimension. If W is a second graded space then a linear map

^ : V -» W has degree r if ^(vP) C W^. p ^ 0.

A graded algebra A • t „ A1* is one which satisfies tf.t^C A^.p^o

An augmentation of A is a homoaorphism e : A -»• k such that ^(A ) • 0.

A derivation of degree p in A is a linear map, 6, of degree p such that

8(ab) - eCa^b'^-D^a.e^), a e A^ b c A. A is called n-connected if

A° • k and Ap • 0, I ( p ( n. By a homoaorphism of graded algebras we

mean a homomorphism of degree zero. A homomorphism ^ : (A,e.) •* ^^R^ °^

augmented graded algebras satisfies c • e^.

A hoaomorphism of graded algebras is called n-regular if it is an

isomorphism in degrees $ n and injective in degree n. The tensor product

of graded algebras A and B is the graded algebra A C B with product

a € A
p

(a « b ) . ( a * • b * ) - (-1)^ aa' • bb' . b € B

a- C A "

b* c B .
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A commutative graded algebra (e.g.a.). A, is one which satisfies

ab - (-D^ba. a e ff, b c A^ If ^ : C ^ A and ^: C -^ B are homomor-

phisms of c.g.a.'s the elements a^(x) 9 b - a 0 ^(x)b (a € A, x e C,

b c B) span a graded subspace 1 C A 9 B. In fact I is an ideal and we

write

A ê  B - (A 6 B)/I ;

it is again a e . g . a .
A graded differential algebra is a graded algebra A together

with a derivation d of degree 1 such that d *• 0. The spaces ker d ,
Im d are called the cocycle and coboundary spaces and the graded algebra

H(A.d ) - ker d /Im d

is called the cohomology algebra. It is sometimes written H ( A ) . A homomor—
phism ^ : ( A , d . ) -- ( B , d _ ) of g . d . a . ' s is a homomorphism of graded algebrasA o
which satisfies ^d, • d-^. It induces a homomorphism of cohomology algebras,A o
written

/ : H(A) - H ( B ) .

If (P is an isomorphism we sometimes write <j? : ( A , d ) —:—- ( B , d ) .A 0

(Note that (f Â/\/-r ̂  is a covariant functor ! ) .
A is called acyclic if H(A) • k. An ideal J C A (which is d .A

stable) is called acyclic if H(J) - 0.
The tensor product of g . d . a . ' s A and B is again a g . d . a . with

âî  ® b) • d . a » b -̂  ( - I ) 1 ' a « d.b . a c f ^ , b c B.ABD A 0

Multiplication defines an isomorphism H(A 8 B) - H ( A ) 8 H ( B ) .

10
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If (^^ is a g . d . a . and A is a e . g . a . then (A,d ) is called
a commutative graded differential algebra ( c . g . d . a . ) . If C -»• A and C -*• B
are c . g . d . a . homomorphisms then A 9 B is naturally a c . g . d . a . .

11
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Chapter 1

KS-extensions

? . ? . - Pe^^izctcoyiA.- Let X be A graded space. AX will denote the

free graded commutative algebra over X :

AX - Exterior algebra (X0^) 6 Symmetric algebra (X6^11)

(AkX)p is the subspace generated by x A ... A x, with ^. deg x. - p ;

we say the elements in (AX) have degree p.

Let A -^ k be an augmented graded algebra. We define a graded

space Q(A) - ^ Q^A) (also written Q^) by

Q(A) " ker e/ker e.ker e ;

it is the space of indecomposables of A. We denote the canonical projection

(of graded spaces) by l, : ker e ^ Q(A).

An extension is a sequence of augmented c.g.d.a.'s

£ : (B,dg) ——^ (C.d^) ——^ (A.d^)

such that i and p preserve the augmentations and

i) A • AX for some graded subspace X C A, and A X is the

augmentation ideal.

ii) There is a commutative diagram of algebra horoomorphisms

( I . I ' ) B

13
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where f is an isomorphism and e is the augmentation for B. (We make no

requirement about how f behaves with the differentials). Note that
f(ker e e A + B 0 A^) is the augmentation ideal for C.

We call the c . g . d . a . ' s ( B , d g ) , (C.d^) and ( A . d ) the base;
total space, and fibre of the extension.

The above definition involves the existence of two "non-canonical

objects", namely X and f. The extension £, together with ( X , f ) will

be called a structured extension. We often use the structure to identify

C with B 8 A. In this case the elements b 0 1 (- i ( b ) ) and 1 8 a

( " f ( l 0 a ) ) will often be denoted simply by b and by a.

An extension is called elementary if there is a structure ( X , f )
such that

( 1 . 2 ) dcmc' B-

Suppose { x } - is an ordered homogeneous basis for X. Then we will
write A^ and A for the subalgebras generated by the x with 6 < a
(resp. £ $ a ) . Note that

( 1 . 3 ) A = A e Ax ,$a <a a

the isomorphism being multiplication in A .(ex

An extension £ is called a Koszul-Sullivan ( KS ) extension if it
admits a structure ( X . f ) and a homogeneous basis { x } , of X, indexed by
a well-ordered set I such that

( 1 . 4 . ) d-(x ) c B 8 A . a c I .C a <a

An extension £ is called positive if A is connected : ( X " ^ X^.
A KS-extension E is called minimal if there is a structure

( X , f ) and a well ordered homogeneous basis { x } - for X such thata ad

14
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deg x. < deg x -> 8 < a, and such that (1.4) holds.
P ex

If B • k we replace "extension" by "complex" in the definitions,

obtaining KS-corn? lex, minimal KS-complex.

?.5. - Rejno^JtA.-

1 ) If B -- C - A is a KS extension (resp. minimal KS)

then A is a KS complex (resp. minimal KS).

2)A KS-extension is a generalized sequence of elementary extensions.

Finally, a morphism between two extensions is a commutative diagram

C'

of homomorphisms of augmented c.g.d.a.*s ; it is written (^,(P»a) : £ - » • £ ' .

?.6 . - Exflffip^g.. - conVuictibte. fcUem^onA.

A contractibleKS extension B - C -> A is one which admits a struc-

ture (X,f) and a decomposition X • X • X^ such that

^ x! X;.

Thus we can write

C - B 0 (AX 8 AX )

^ • ^ e l ' "B e \

(u b • ( - l ) p b . b c B^ and ( A . d ) is the free c . g . d . a . generated by X .B A '
The ideal J C C generated by X and X- is acyclic :

H *(J) " 0

15
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and this shows that the projection C -»• B with kernel J induces an isomorphism

of cohomology inverse to i .

If B • k we call C(»A) a contractible KS complex.

Suppose next that (X,f) is a structure for an extension

t : B -»• C -*• A. and that {x } , is a well ordered homogeneous basis for X.a aei

7 .7 . - Lejnma.- Let y c C be homogeneous elements such that

i) ^a m \

ii) y^ - f0 e x^) c f(B 6 A^). a e I.

Then a second structure (X,g) is defined by

gO 8 x^) - y^.

P^OQ^ ; A unique homomorphism g : B ® A -» C is defined by

g(b 8 1 ) - i(b) and g(l e x ) - y . Because of i) we have p o g • e e i ;

it remains to show that g is an isomorphism.

Set <P • f~1 o g. Then ip(b e I) - b ® 1 and ii) implies that

(1 .8 ) ^0 e x^) - i e x^ e B e A^

We show now that <P : B ® A ^ -=——(t B C A^^ for all a.

If not there is a least a for which it fails ; since

B O A • lim B 8 A -, we have
<a ITS ^

^ : B e A^ -?— B e A^ .

Write B ® A " ( B O A ) ® A x and use ( 1 . 8 ) to complete the proof.
(01 <CL Q

Q.E.D.

Consider next a morphism

(^.i) : (B* - C' - A) -^ (B •<• C - A)

16
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between A-extensions E1 and E. Assume that £' and E admit structures
^

( X , f ) and ( X , f ) and that (x } , is a veil ordered homogeneous basis for
X such that :

i) d^f'O 9 x^) c B1 « A^

and

ii) ^f 'd e x ) - r0 e x ) c r(B e A ).a' 'v ' " a7 " ̂  " "<&'

1 . 9 . - Lej?imfl..- With the hypotheses above :

i) There is a second structure (X,f) for E such that

^ro e x )- f ( i » x ).a a

ii) With respect to this second structure E satisfies (1 .4 ) and

<( is given by ^ " ^ 9 \.

iii) If ^ (resp. 4;*) is an isomorphism then <? (resp. f ) is an

isomorphism .

?ft00^ :

i) Define f by f (1 9 x^) - <Pf1 (1 e x^). Then

pf(l e x^) - P'l»f'(l » x^) • p ' f ' ( l « x^) • x^

and
'\» ^

f ( l 9 x ) - f ( l e x^) € f ( B 9 A^).

It follows that ( X , f ) is a structure on E (lemma 1 . 7 ) .
ii) Note that

V0 ̂  • dC^ f ' ( l e ̂

- tPd^fd e x^) c ^(B' « A^) C f(B 0 A^).

iii) We may assume by i) and ii) that both E* and E satisfy equation

( 1 . 4 ) with respect to (X.f) and (X. f ) . and Chat <P - <p 0 i.

17
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Thus if ^ is an isomorphism, so is f. Now assume ^ is an

isomorphism. It is enough to show that (^ 0 i) : B* 6 A -»• B 8 A induces

a cohomology isomorphism for each a. If not, let a be the least a for

which it fails. Since ip is an isomorphism and

B* e A^ • l̂  B* e A^ ; B e A^ • Mm B e A^ ,
0<a 8<oi

a direct limit argument shows that (^ 6 i)* : H(B' 8 A^ ) ——* H(B 0 A^ ).

Set E* - B* 0 A , E • B 8 A , y • ^ e i : E* -^ E.<a <a

Then 4 / O i : B ' 8 A - » - B 8 A can be identified with(a $a

Y 6 i : E' 9 Ax - E 0 Ax .a a

Moreover d'x e E * » dx e E.a a
set ^ - Ij«k El e ̂ ^ and \ • ^j<k E e ^V

Then E* e Ax - lim F*. E e Ax • lim F. and so we need onlya —"+' k a -——•• K

prove that (y 0 i)* : H(F^) -^ H(F^).

Define (for k " 0.1 when deg x is odd and for all k when

deg x is even) projections F, -- E* (and F, •*• E) by

ky ^. e x-1 —> <>. .
j-0 ^ ° k

Then we have the commutative row exact diagrams of differential

spaces

y e i Y e i Y

" k-1 k

Now the 5-lemma, plus induction complete the proof. Q.E.D.

18
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^ • ? ^ * ' ^u^-back^, - We consider now a KS-extension B -^ C -*- A which

satisfies (I*4) for a structure (X,f) and a well ordered homogeneous basis

{x } « for X. Suppose in addition thata aei

^ : (B'.d^.) ——- (B.dg)

is a homomorphism of augmented c.g.d.a.'s such that ^ is an isomorphism.

? . ? ? . - P^LOpO^^tcon. - There is a K-S-extension B' -*• C* -*- A and

a morphism (4s^»0 ! £' -^fc such that

i) E* admits a structure (X,f*) such that

d^.d ex^) c B- O A ^

and

^ ( l e x ) - i e x e B e A , a c l .
01 Q <Cl

ii) ^ is an isomorphism.

P/iOO^.- We set C* « B* 8 A, f * • i. We have to construct dp,

and <P so that B* -»• C* -^———^ A' is a sequence of c.g.d.a.'s and so that

^ is a morphism of extensions with i) holding.

We induct over I, as usual, starting off by setting ^ " ^ in B*

and d , • d , in B* . Now assume <P and dp. are constructed in B' 8 A^

so that <P and d , satisfy i) for all B. 6 < a. Then by lemaa 1 . 9 .

^ : H(B ' 6 A^) ——— H(B 0 A^^) .

But d-( 1 8 x ) is a d-cocycle in B 6 A . Thus there is aC a L ^a

d ,-cocycle <» c B* 8 A and an element 0 £ B 8 A such Chat

19
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d^O C x^) - ^W - d^Q.

In particular, p n e A^ .

Extend d^, and ip to B' 6 A^ by setting

d^.d e x^) • o - d^.o e p^)

and

< i 5 ( i e x^) « i e x^ + (Q - >^( i e p n ) ) .

Then i) holds by definition. Straightfoward calculations show that

pi? - c' 8 i. <i) d^. « d^), (e ' 6 i) o d^, - d o ( e* « i).

The existence of dp, and ^' in B* 9 A now follows by

induction.

Finally, lemma 1.9. yields ii). Q.E.D.

Co_^o^a/i^.- E admits a structure (X,f) such that with respect

to this structure and (X,f), ^ • ^ 9 i and

dp( l 8 x ) c B 0 A . ; d/, ,( l O x ) e B' Q A»» d ^o w Q <ci

P/l00< : Apply lemma 1.9. Q.E.D.

J . ? 2 . - Eidwp^e.- Suppose E : B - » - C - » - A is a KS-extcnsion,

and H°(B) - k and H^B) -0 . 0 < q < m (where we allow m • •).

Let B"1^ B" sa t i s fy 5° • d-CB""1) • B1" and define a sub. c .g.d.a .
D

B d B by

B " k , B " • 0, 0 < q < m , B • space just chosen

Then H*(B) " H ^ ( B ) .

20
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Now we can apply the corollary to prop. 1 . 1 1 to obtain a structure

( X . f ) on E such that

i) B O A is d -stable

ii) d^(l 8x^ ) c B 8 A ^

and

iii) H*(B 9 A) -^ H*(B C A).

This will be called a no rma 1i ze d s true tu re for E.

7 . 7 3 . - Co^otta^M.- Assume H(B) is connected and let B,

(X,f) be as above. Then

(1.14) d.O e a) - 1 8 d a c B'*' e A, a c A.
U A

PWJ^.- The left hand side is in <S ® A)0 ker o" B ® A.

Q.E.D.

7 . 7 5 . - Co^O^n/it/.- Assume H(B) is 1-connected and let B,

(X,f) be as above. Then

( 1 . 1 6 ) d (1 e a) - 1 e d^ a c ^.^ B3 8 A. a c A.
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Chapter 2

Reduction to a minimal extension

2 .? . - Iti^ioduLCtLon. - In this chapter we consider a KS extension

£ : B — — — C — — — A

with augmentations c-, e- and c . . We always assume H (C) « k ; then
D L A

H°(B) « k as well. However, we do not suppose H°(A) » k.

Recall from ( 1 . 1 ) the projection C. ; ker c - Q(A). If (X,f)

is any structure for E then l. restricts to an isomorphism

^ : X-1——> Q(A).

Hence if 4> e ker c ("A X) we may regard ^ as a polynomial

with no constant term in the elements of X. and then (; <> can be interpreted

as the "linear part" of ^.

Observe that a differencial Q(d.) is defined in Q(A) by

^A^A • ^A •

The object of this chapter is to prove

2.2,- Tne.on.ejn. - There is a minimal KS extension

1 - ^ "B ——— C ——* A

'\- '\-
and a contractible KS-complex R - AT 9 AdT such that : if C 8 R and A C R

denote the tensor products (as augmented c.g.d.a. 's) then there is a

commutative diagram of homomorphisms of augmented c .g .d .a . ' s

B — — — S J — — — C 8 R——L 8 -———AC R

|| 2 <? = ^

B ———:——————. c ———————————- A
L 0
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in which the vertical arrows are isomorphisms.

2.3.- Co^iOUxum.- ^ induces an isomorphism

QW : QOO • Q(R) ————> Q(A).

2 * 4 * " Co^i^uj^ - E is minimal if and only if Q(dJ - 0 ; i.e., if

and only if Im d consists of polynomials with no linear term.

In particular the isomorphism of cor. 2.3 induces an isomorphism

Q(A) ————> H(Q(A).Q(d^)).

P^OOX.- If E is minimal it follows directly from the definitions

that Q(d ) • 0. Conversely, assume Q(d ) - 0. Then because QW is an
A •»

isomorphism and R is a contractible complex we conclude that R " k and so

E is minimal.

Q.E.D.

The rest of the chapter is devoted to the proof of theorem 2.2.

2.5.- Con^fcn^conA.- We fix a connected c.g.d.a. B c B such that

H(5) • H(B) (cf. example 1 . 1 2 ) . By a normalized structure we shall always mean

normalized with respect to B.

If u - ^. „ V2 is a graded space, then we write^O

^ - I,>. ̂  '"J^P

The spaces U^, U^. l)^ are defined analogously. Note that AU^ is the

free e.g. a. on U^. while (AU)^ is the subspace of AU of elements of

degree $p \

If K is contained in an ordered set I then for a c I

< - (v c ^ |Y<a) . < , K , < are defined analogously.<a " <a >a ^a
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2.6.- Lemma.- Suppose Q(d ) " 0. Let (X,f) be a normalized struc-
—•—''—'— A

ture for ^ satisfying (1 .4) with respect to a well ordered homogeneous basis

^acl- Then if q " deg Y

(2.7) d^x^AX^ . ad.^q,

p+1Moreover if • e C^ (p ^ 0) is a d-cocycle and

p..*^.... -v^ ^ .
where x, € X1''*'1. 6, > ... > 6 , and ^ c AX$P. then8. 1 n

•t. is a scalar : 4 . c k.

P .̂00 ̂ . - We show first that (2.7) implies the rest of the lemma.

In view of ( 1 . 1 4 ) it does imply that

(2.8) d (1 « x^) c B e (AX^)^ . a e I.

where q • deg x . Hence 5 9 AX^ is d -stable, q " 0,1, . . . .

Now we recall that B 8 A ^ B 9 A induces a cohomology isomorphism.

and so 4> - 5 ••• d ^. with 5 c 5 e A and ^ € B 9 A. Then pft c ff C AX^.

which is d -stable by (2.7). Thus d p Q € AX^, and so
A A

oi - I ^x * ? . ^ c AX^P .
i"l i

We may thus, without loss of generality, assume that • c B 8 A, and we do.

In view of (2.8) this implies that

d (1 8 o^) - d ( 1 8 o^^ )

c d^(5 e AX^)

c B e AX".

Again because of ( 2 . 8 ) we conclude from this that
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dM e I ».x. ) e i e AX^.
w i-1 l p!

A degree calculation shows that each •. c AX°. and so because

of (2.8)

d •. c 5* 6 AX° , i - l,...,n.

Let Y C X be the subspace spanned by the x , y ^ 6 . Since B. < 6^

(i > 1 ) we have d.,0 0 x. ) e B 0 AY. Together with the relations above,C 6^

this yields

d.O e •,) . (i e x ) c 5 e AY.
L 1 P <

In view of the isomorphism

5 6 AX • 5 ® AY 8 Ax
6!

we obtain d (1 0 •.) " 0, and so • c k as desired.

It remains to prove (2.7). Assume it holds for all a < Y » some Y

with deg x • q. Then d (1 e x ) is a cocycle in B e A^ . Since (2.7) holds

for a < Y we can apply the second half of the lemna to this cocycle. This gives

d.x - od-0 8 x ) - Ax - ^ •.x - f .
A ^ c v B! fi^B, ' ̂

where X c k. <^ C ( A X ° ) ^ .f c (AX^)^ .

Hence (since Q(d . ) • 0)

0 - Q(d,K^ - X^x . I (e^) C,x .
1 ^̂ l

It follows that > - 0. Hence ̂  is a scalar and so zero. In this way we find

all the • . are zero :

d^ - y c (Ar\^ .

Q . E . D .
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Again consider the KS extension E. Choose a normalized structure
( X , f ) satisfying ( 1 . 4 ) with respect to a well ordered homogeneous basis
{x } , . It is easy to arrange that the following condition hold as well :a aei

There is a disjoint decomposition I « J U j ' U H and a bijection
/ : J -̂  3' such that

Q(d K x - ; x , a e J
A A a A a

(2.9) and

Q(d,K, x • 0 . a € J U H
A A 01

Note that necessarily a' < a , a e J.

'Je shall assume henceforth that (2.9) holds.

2.10.- LwvnoL.- There are elements z e ker c (a c I) such that

i) z ^ - i e x^ c 5 e A^.

ii) ^A p \ m ̂  \ •
iii) If a i J then d z is in the subalgebra generated by

B O A ^ 0 ( d e g z ^ - p ^ ) .

(iv) If a c J then d z - z . is in the subalgebra E^ defined as
. ^PQ

follows : E is generated by B 6 A^ (p^ • deg z^) and by the

elements z., such that deg z_ « p -H and B < a ' . and by the
D D Ol

elements z-, d-z. with 6 € J .
b L D -»*

P/LOOft.- We assume z has been constructed for y < a and cons-

truct z . First note that if we change the definition of Xg to oz^ and

if we change the definition of f ( l 6 Xg) to f ( l 8 Xg) - Zg (6 < a) then we

obtain a new structure (X.f) and basis ^^j for x which scin ^^y

( 1 . 4 . ) cf. lemroa 1 . 7 .

Moreover, the algebras A^ are unaffected by this change, as

are the algebras generated by A^ . Finally, it follows from ii) chat the

elements ^ x are also unchanged, and so (2.9) remains valid, as does the
A Y

statement of the lemma for y < a .
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Thus without loss of generality we may assume that

( 2 . 1 1 ) Zg • 1 e Xg . B < a ,

and we make this assumption henceforth.

Now write (J / - { 6 ' c J ' /B < a}. Then (J / C J ' , but equality
<0t <(X <d

may fail. Let < be the complement of J U (J / in I :

I « J U (J )' U <•<a <a <a

Let Y and U be graded spaces with bases (y } ^ and
Y Y€^

(u } j such that deg y • deg x and deg u " deg x .
Y Y€J^ " ' Y ° Y - Y Y

Let A(U ® dU) be the free c.g.d.a. over U (- contractible

KS-complex) -cf. example 1 .6 . Set

W - U e dU 6 Y and S - U • dU.

Then an algebra homomorphiam

g : B 9 W - B O A
<a

is given by g(b) - b. g(u ) m 1 e x . g(du ) • d (1 8 x ) and

g(y,) - > »^-

2 . 1 2 . - Lzjnnci. g is an isomorphism.

r^lOO^. - g is surjective. We need only show l ( 9 x e l m g , Y < a .

Suppose for seme \ < a. with deg x " p we know that I 9 x € 1m g

whenever deg x < p or deg x " p and y < X . Then we show 1 8 x c Im g,

and the result follows by induction.

But I 8 x c Im g by definition, unless A • \i\ some u c J

But then lemma 2 . 1 0 (iv) shows that 1 8 x - g(du ) c Im g ; i.e. ; 1 8 x € Im g.
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8 is injective. Define o : AW —=—*- A by ou » x ,

o(du^) - x . o(y ) • x . Then

i 9 o : B 9 AW ——s——> B O A<a

Moreover (g-i^o) • » 0 if 4> € B or U or Y. Now because

g(AW) C B e AW we can write

(g-i»o) du " 1 8 * -»• f , 4 ' e B ^ C A

Moreover, » € ker e and by (2.9)

^A* " ^P(g-i®o)du

• ̂ ^^y - '-AV

« 0.

It follows that

(2 .13 ) Im(g-i9o) C B^ 9 A^ + B 8 ker i; .

Now suppose g fails to be injective, and let ^(^0) be in ker g.

Write

n - ^ b . ® < > ^ < y
1 i *

where b. c Bp are linearly independent, ^. c f^ V are non zero, and

1> c T . B-1 9 AW ^ Bp ® T . A-^W.
"J>P t•.l>q

In view of ( 2 . 1 3 ) . and the fact that (180)^ " (i8o-g)^ , we have

(i8o)n c [.^ a3 e AX -^ B? e ^ . ^ A J x .

Since this relation is also satisfied by ( t9o)t it is satisfied by

^b. ^ o^. ; hence for each i

o^. c A^ H ^ . ^ A-3 X - 0.
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a. contradiction.
Q.E.D.

2•N•• Co^oUo^y. - A differential, d. is induced in B 9 AW by

d • g d g. It coincides with d in B and with the originally defined d

in A(U • dU).

2 .75 . - Rgjnfl/ife.- Since B e A^ is d-stable, g restricts to a

homo oo rph ism

g : B 8 AW - B » A^ ,

which, by the proof of lemma 2 . 1 2 , is an isomorphism. In particular,

i 0 AW is d-stable, and gd • d g.

Now reorder I by putting 8«Y if deg x < deg x or if
8 Y

deg x " deg x and 6 < Y. This is a new well ordering.
P Y

2 . 1 6 . lemma.- dy e B 9 AS 6 (AY) . In particular———— Y <<y

B 9 AS —J—^ B 9 AS e AY —1-̂  AY

is a minimal KS extension (with Y having the differential d given by

d7r - wd.).

P-ZOO-i.- We show first that for y e I———t*— <a

( 2 . 1 7 ) g'^l e x ) c B 9 AS 9 (AY)^.

Suppose this is proved for all 6<T. It Y e J then g (19x ) » u . and

(2 .17 ) is clear. If Y e <. g'^l^x ) • y and ( 2 . 1 7 ) is clear.

Suppose y • u* , p c J . Suppose deg x " p+1 .

Then by lemma 2 . 1 0 (iv) g (18x ) is in the subalgebra generated

by du , B, elements of degree ^p, elements of the form g ( 1 8 x . ) with

A«Y , and elements in AS. All these elements are in B 8 AS 9 (AY)
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Thus (2 .17) is proved.

But now if Y c K then by lemma 2 .10 (iii) d (1 9 x ) is in

the subalgebra generated by 5 9 A^ . Hence by (2 .17) .

dy^ • g'\0 ® x^)

e B C AS 8 (AY)^ .

Q.E.D.

2 . 1 7 . Pfupo^ o^ twna. 2 . 1 0 c.oyut'd. Consider the extension of lemma 2 . 1 6 .

Since S is contractible, the inclusion B^ B ® AS induces an isomorphism

of cohomology. Thus we can apply prop. 1 . 1 1 to obtain a KS extension

(2 .18) B - 5 8 AY -» AY

and a homomorphism h : 5 9 AY -»• 5 0 AS ® AY (of. c.g.d.a.'s) such that

h(b) - b. and

h(l 9 y^) - 1 e y^ c 5 8 AS e (AY)^

and

D(l « y^) € B « (AY)^.

(D is the differential in B 9 AY) . Moreover, h is an isomorphism.

In particular we can write

(2 .19 ) d-(l 6 x ) - (gh)<» * d-n .
L Q L

for some ^ € B 9 A and 4> c B 8 AY, with D4> - 0.<a

Now the extension 2 . 1 8 is minimal by the definition of «.

Hence obviously Q(d) • 0, so we can apply lemma 2.6 to 4>. We obtain

r» • »,y * ... * »^g * T ,
1 n

where y c Y^ (p-deg x ) . B > . . . > 6 . ^ € AY^. and <t> is a scalar.c • Q 1 n 1
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We choose 4 and H so that either all the 4. are zero, or so that • ^ 0

and 8. is as small as possible.

Next recall that ^pCC .T J - 0 for y . c ker c _ .
A * & ^ C

This yields

i; pg h(l « y ) - C. x •»• T X c.x - I ^g ^ x .A . A Y ^^ B A 8 ^ ^j^)/ B A 6

Hence
n

( ^ P g h)» • 1 cCJ C p g h(y )A ^ L A D^

(2.20)

• *1 • ^A X B + ^ ^^ ^ + l ^ ̂  9

} 6€ <6l ^^a u ^a^

if • ^ o. ( e is the augmentation for AY.) .

On the other hand, if all the •• are zero then

(2.21) ^A 0 8 h)* "" °*

Now define scalars o (B c 1^ ) by

I..P » - I o C. x .

^<a B B

We define (finally) the element z by

z - i e x - n - t - ^ i e o , x .
Bd B B

<a

Then i) and ii) are satisfied by definition. It remains to verify

iii) if a i J and iv) if a c J.

COAC 1 : a i J. In this case by (2.9)

C. o d - ( l e x ) . Q(d. .K. x • 0.A C Q A A a
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Were » i1 0 we would combine (2.20) and (2.19) to obtain

*i • ^ 'B. + ^ "e ^ "B
^B, u ^a u (J<a)<

- - Q(d^ o ft

"eV6^6"

which implies *. " 0. Hence all the •. are zero (since 8^ £ K by definition)

This implies that • c I 9 AY^ and so (g h)» is in the

subalgebra generated by 5 « A^ . On the other hand. since all the <^ - 0,

(2.21) and (2.19) imply that QC^^A p " " °» whence

°B • ° • 6C3«.

Thus

d^-d^O^-O).^ d,(,,^).

The first term on the right is ghC). while the second is also in

the subalgebra generated by B « A^. by the induction hypothesis.

It follows that iii) holds for z^.

CAAC 2 : a c J. In this case

^p d^i e x ^ ) - ^x^. .

Thus were the •. all to vanish we would obtain via (2 .19 ) and ( 2 . 2 1 ) that

^ x^. - Q(d^) ^ o ft - Ig^j- Og ^ Xg. . which is impossible. It follows
<a

that ^ ^ 0.

Now (2.19) and (2.20) yield

l- •••-'•'•x.,-.. .../̂ u ,,yl* "•'. .5, ° • i t v -
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Since <t. ^ 0 we can conclude Chat * " 1 and 6. " a * •

Next observe that

d^ - (g h)» * ̂  d ^ i e o g x g ) .
^o

Since •. " 1 » and 6. • a* »

• - i e y . c 5 e AY^ + i e Y^i e AY° .a <a

Hence

h ^ - i e y . e i e A S e [AY^ - AY° 9 Y^l] .

Hence

gh • - 1 0 x , e E .(X (X

Let 6 c I . Then d« ( l ® x , ) e E by definition if 6 e J , and<0 ^ p (X ^Q

d ( i e x ) e E by lenna 2.10 iii) . Otherwise (by induction). HenceC S a
â ' } % \^ e ̂ a9 and iv) is proved- Q . E . D .

2.22. Proof of theorem 2 . 2 .
Let z (a £ I) be the elements of lenma 2 . 1 0 . As at the start ofa

the proof of lemma 2.10 we can change the definition of x (a e I) and of

f so that

f ( l e x ) - z , a e I .a a

while retaining the conditions of the lemma and formula ( 2 . 9 ) . We do this.
Let V and T be graded spaces with bases ( v } „ and

{ e } , respectively, with deg v - deg x and deg e • deg x .

Let AT 8 AdT be the free c . g . d . a . over T and set

W " T • dT • V and R - T • dT.

Define an algebra homomorphism g : B 9 AW - C by g ( b ) » b»

g(e ) - I e x . g(de ) - d^(l ® x ) and g(v ) - 1 6 x .
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Then lemma 2.12 shows that g is an isomorphism, while corollary
2.14 shows that the differentials d- in B and d in AR extend to a
differential d in B 9 AW such that gd • d g.

Reorder I by putting B « a if deg x < deg x or if
deg x. " deg x and 6 < a. This is a second well ordering. It follows from
lemma 2 . 1 6 that

dv € B « AR C (AV)^ , Y € H.

Hence if we endow AV with the differential d given by ird " dir , where

IT : B 9 AR 8 AV -»• AV is the projection, then

B 0 AR —^ B 8 AR 9 AV —^ AV

is a minimal KS extension.

Since the inclusion B •*• B 8 AR induces a cohomology isomorphism,

prop. 1 . 1 1 yields a minimal extension

\, ^
B ——— B 9 AV —^ AV.

where, (if D is the differential in B 9 AV)

D(l % v ) e B 6 (AV)^ . Y € H.

We also obtain a homomorphism of c.g.d.a. 's

h : B 9 AV - B » AR 0 AV

such that

h(b) • b

and

h(l 9 v ) - 1 « v € B e AR 9 (AV) . y c H.
Y Y " îr

Put (B « AV. D) - (^. d ;̂) and (AV.d ) - (X.d-^).
L A
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Then the above minimal extension becomes

BJ-^-^.

Extend h to a homomorphism of c.g.d.a.'s

h : 'c « AR ————- B 9 AR 0 AV

by putting h(e ) « e . e e T. Lemma 1 . 7 implies that h is an isomorphism.
\,

Finally, let ^ - g o h : C 8 A R ——>• C.
^

Since i? is the identity in B it carries the ideal generated by i (ker c,J
D

isomorphically to the ideal generated by i (ker e_) . These ideals areB

respectively ker p 9 AR and ker p. Thus ^ induces an isomorphism of
^ s

c.g.d.a.'s 4> .: A 6 AR —=—*• A such that the diagram of the theorem conmutes.

Q.E.D.
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The structure of a minimal extension

3 . 1 . - I n^AO daemon. •• In this chapter we consider a minimal KS exten-

sion

£ : B —» C-^ A

with augmentations Cg. e^, c^. We assume H°(C) • k. and it follows that

H°(B) • k. We do not assume H°(A) • k. and indeed this may fail to be the

case.

We shall show how to decompose E into a countable family of

elementary extensions natural with respect to morphisms of extensions.

3.2.- The Otno WLUlJL ^AJLtnatio^. - Define c.g.d.a.'s C ^

(p >. - 1 . n >, 0) contained in C . and subspaces Z" C C11 (p >. 0, n >. 0)

inductively as follows :

i) ^1 .0" B

ii) Z" • d^CC . ) n (ker e )"p C p-l,n C
iii) C • subalgebra generated by C and Z" p >, 0. n >, 0.

p,n P • »11 r

iv) C • U C , , n > 0.
-I." P P.n-1

Thus for each n,

C C C C . . . C C C . . . C C .- l . n O.n p . n
and

Z^ C Z" C ... CZ" C ... C (ker c.)".
o 1 p c

We set

Z" - U Z" . n >, 0.
P P

Now recall the projection r ; ker e . — Q(A) (from 1 . 1 ) and define subspacesA A
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Q^CA) C (^(A) by

Q^(A) • ̂  P(Z^) . p z 0. n >, 0.

Thus

Q^(A) C ... CQ^(A)C ... Qn(A).

Next. for p >. 0. n ^ 0 let I C C be the ideal generatedp,n p,n
by ^-i n n ker ̂  since c „ is generated by Z11 and C , , and sincep • >" ^ p*1* p p— l ,n
d.(Zn) C C . it follows thatC p p-l,n

d/,(C ) C IC p,n p.n
Set

(3.3) A • C /Ip,n p,n p,n

Then (giving A ^ the zero differential) we obtain a sequence of augmented

c.g.d.a.*s

E : C . J i c —•'—*• A . D > 0 n > 0p.n p-l.n p,n p.n * r ' * '

The main goal of this chapter is

5.4.- T'he.Qfi.ejn. - The extension E admits a structure (X,f) in

which each X is decomposed as a direct sum X" - \ - X" , such that with

respect to (X.f) :

i) ^-^.n^61-^ ° ̂  - n ̂  P ^ 0 -

ii) C ^ - B 9 ACX^ • X" ) . n >, 0. p >, - 1 .

iii) ^ : X^ —^ Q"(A) . n >. 0. p >. 0.

Before proving the theorem we establish some consequences.

5.5.- Co^ottaAy.- The sequences £ are elementary extensions.
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P^OOa.- Use the structure of theorem 3.4 to write

C - C , 6 AX11 . p ^ 0. n z 0. Since 1 8 X" C z" we have
p»n p~* »n p F K

V <»^)<=<p.i^.

Moreover I - (C
P»n p-1 ,n 0 ker e ) 6 A^. This yields the commuta-

C- 0

five diagrams

C , ® AX •p-l.n p
AX"

(3.6) p-l.n

C ——————————> A
p,n v P»n

Q.E.D.

3.7.- Co^oUa^.- Fix n ^ 0 and p ^ -1 . Let (^(A) • 0. Then

the following are equivalent :

^) Q^i^ -Q^-
ii) Qn(A) - Q^(A).

iii) z^lc S.n-

^ ^l^l - S . n -

p^O^.- in view of theorem 3.A we have iv) <•> ii) and iii) <"> i)

Clearly ii) -> i). On the other hand. if iii) holds then by definition.

C - C . and so Z" • ̂ r Continuing this way we obtain iv).
p+2 p-*-!p-^1 ,n p,n* Q.E.D.

Now observe that d restricts to a linear map

-c : ̂ C"", n ker d-p- 1 ,n C

This map induces (in the obvious way) a linear map

»"*!.Vn^/C",^^————-er(H-(C^)-H (0).
p-l ,n
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On the other hand the inclusion C11 n ker d,, -»• Z11 (n > 0) induces a linearC . o

B : Cokerd^C ) -*• H^C)) -^ Z° / nn -l ,n o / C ,-l ,n

To simplify notations write

Ker11"1 - KerCH^^C ^ ^) - H^^C)) . n >. 0. p ^ 0

and

Coker" • Coke^(Hn(C , ' ) -^ Hn(C)) , n > 0.— l ,n

3.8.- P^opoA^ctcon. -

i) The homomorphisQ H(C ) "*' H(C) is an isomorphism in degrees~ l »n

less than n and injective in degree n. If n - 0 it is an isomorphism in

degree n.

ii) The homomorphism H(C ) •* H(C) is an isomorphism in degrees

$ n, if p >0.

iii) The sequences

0 - Coker" —6- Z" An ——— Ker^1 — 0 . n > 0
0 / C , 0-I ,n

are short exact.

iv) The linear maps

Op.n : ̂ p/C^ n .cer c, -———K.^'

are isomorphisms if p > 0 or if p - 0 and n • 0.

P/looK.- Theorem 3.4 ii) shows that C^ " Cq if q < n. It follows
——— P»n

that H(C ) - H(C) is an isomorphism in degrees < n and injective in degreep.n

n. Moreover, by definition if n > 0
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C" H ker d C Z° C C . p ^ 0 .C o p,n

Thus for p > 0, H^C ) ——-»• H^C). This proves i) and ii).p,n

Finally, iii) and iv) follow at once from the definitions.

Q.E.D.

3.9.- Co^^totjf. - The homomorphism i : H(B) •* H(C) is n

regular (i.e., an isomorphism in degrees $ n and injective in degree n+1)

if and only if A is n-connected.

P^iOO^- If A is n-connected then B^ • C^ (p $ n) , whence

i is n-regular.

Conversely, suppose i is n-regular. We show that B « C ..

In view of theorem 3.4 ii) this implies A is n-connected.

Indeed if we know B • C , (some m $ n) then our hypothesis-1 »m

implies Ker"^ • 0 and Coker" - 0. Thus by prop. 3.8 iii) and iv)

Z" C c , .0 -1 ,m

Hence by cor. 3.7 B - C.̂  - C^ ̂  . Q.E.D.

5.1(?. - CofiOtioAy.- The structure (X.f) of theorem 3.4 can be chosen

so that /^ is d. stable. In particular, since d (X ) - 0 we obtain
A A •

H(A) ^ AX° 6 H(AX\d ) .

PfiOO^- Let (Y,g) be a structure satisfying the conclusions of

the theorem. Let E C B 8 AY° be a sub c.g.d.a. such that E is connected

and H(E) • H(B 9 AY°). Use the procedure of prop. 1 . 1 1 to construct a new

structure (X,f) such that :

i) X° - Y° and f( I 8 x) • g( 1 ® x) . x £ X°.

ii) There are isomorphisms of bigraded spaces,
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a : X11 —^ Y" (n > 0) such that

x - o(x) c ̂  . Y^ . x c X;

and

f(l O x ) - g(l % ox) e g[B C ACY^e Y° )] . x cX" .

iii) If we use f to write C " B 9 AX° « AX"*'. then E e AX'*' is

d--stab Ie.

Then f (B C AX<n 8 AX" ) • g(B 9 AY" « AY" ) • C (p >. -1. n > 0).
<P <P P»n

and

f(i e x ^ ) c g ( i OY^ ) • (^^^-z^ . n > o.

It follows that i) and ii) of theorem 3.4 are satisfied by (X.f).

Part iii) follows at once from i).

Moreover, if x e X then

d. f ( l e x) € f (E « AX*) - f ( l e AX'*') •»• f(^ % AX'")
L>

C f ( l « AX'*') ^ tCB"" 6 AX° 9 AX"*').

It follows that d x c p f ( l » AX'*') - AX'*'. Q.E.D.

3 . ? ? . - Co/iotta^. - Assume H(B) is I-connected, and that i* is

I-regular. Then

(^(A) • Q^(A) . n >, 0.

PfiOO^- First note that A is 1-connected by cor. 3.9. Let 6 C B

be a 1-connected sub c.g.d.a. such that H(5) - H(B). Using the method of

prop. 1 . 1 1 , choose a structure (X,f) satisfying the conclusions of theorem 3.4

so that i 9 AX is d-stable.\,

Then i C AX^" is 1-connected. Hence for x c X" d^(l 0 x) is

a polynomial in elements x. with 2 ( deg x. < n and elements b. e B with

2 $ deg b.. Since deg d.,0 e x ) • n^l this yields
L L
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d (1 9 x) € i 9 AX^1 .

Hence 1 C XnC Z" and so

Q^-^-^-Q^A).

Q.E.D.

3 . 1 2 . - Re/nfl/lfe. - The extension £ is called nilpotent if

dim C^W< ctl , n « 0,1,2,.. . . In view of cor. 3.7 this is equivalent to

(3.13) dim (^(A) < « all n ^ 0. p ^ 0

and

(3 .14) For each n ^ 0 there is some p ^ 0 such that

^w -^-

If the hypotheses of cor. 3 . 1 1 hold then (3 .14) is automatic and

nilpotence is equivalent to (3 .13) .

3 . ? 5.- Q.onjoiiaA.if. - Suppose H(B) has finite type. Assume A is

connected and ( 3 . 1 4 ) holds. Then H(C) has finite type if and only if £ is

nilpotent.

Thus if the hypotheses of cor. 3 . 1 1 hold (and H(B) has finite type)

then H(C) has finite type if and only if E is nilpotent.

VnjDO^.- Consider the elementary extensions E . Diagram (3.6)———"• p,n

shows that Q(A ) 2 Q"(A) / Q" .(A).
p»" P P~l

Now suppose dim (^(A) < <D for all n and p. Then so does

Q(A ), and hence A has finite type. It follows chat if H(C ) has
p,n p,n P-1 »"

finite type. so does H(C ). Since ( 3 . 1 4 ) holds, cor 3.7 implies that

C • C some p. Now by induction we obtain that H(C ) always has-l,n+l p.n p.n

finite type. But by prop. 3.8,
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-̂l.n^ •Hn((:)•

Hence H(C) has finite type.
Conversely, assume H(C) has finite type. If H(C , ) has finitep— i ,n

type then prop. 3.8 (iii) and iv)) shows that

/,(3.16) dim Z°
P 7 ^ . 0 ker E.p-1 ,n C

Hance (cf. Theorem 3.4) dim C^W/Q^ , (A) < », and so dim Q(A ) < CD. Itp p-l p,n
follows in this way that H(C ) has finite type. Since C . - C ,p, n *»" ' * p»"

some p, H(C ) also has finite type. Thus each H(C ) has finite

type, and so each (^(A)/?" .(A) has finite dimension.
P P * Q.E.D.

We turn now to the proof of theorem 3.4. It proceeds via several

lemmas •

3 . ? ? . - Lgjmia.- Let (X.f) be a structure for E and let ^^gj

be a well ordered homogeneous basis for X such that (1 .4 ) holds and

deg x < deg x •> a < B. Then
a B

i) 1 6 X"C Z" . n >, 0

ii) B e AX^" - C^ ^ . n >. -1.

iii) U Q"(A) - Q"(A) . n >. 0.
P P

"fii) Assume 1 ® x. c Z . 6 < a. where n • deg x . Let n - deg x^

Then d ( 1 ^ x ) is a polynomial in elements from B and elements 1 8 x
(i- l , . . . . m ) with deg x - n. ( n. By hypothesis for some p^ ( i - l , . . . , m )
and P > P • »1 n .

1 « x, c Z l C C
^ Pi P*"

Hence d^( 1 « x^) c C^. and so 1 8 x^ c Ẑ  c Z " .
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ii) C . is generated by B and T Z .

Since Z^ C" C B 0 AX^" C B « AX^. we have

^l.n.!0 B e A X $ n -

The reverse inclusion follows from i ) .
iii) Apply i ) . Q.E.D.

Now suppose (Y,g) is a structure for E, and (y } j is a basis

for Y such that the hypotheses of lemma 3 . 1 7 hold.

If deg y » n we will say a e I if p is the least integer such that
a p »n

for some scalars Xg (0 < a)

^a' ^6 Sl^^-
V

Lemma 3 . 1 7 iii) shows that

(3.18) I • U I ;
p,n

this union is disjoint by definition. We define Y11 to be the span of the y^

with a c I
P

3.?9 . - Lgjwifl..- For each p ^ -1 and n ^ 0 an isomorphism

g : C e A(Y" • Y^) ~2— C^p.n p,n >p

is given by g (• 0 V) - • . g(l 0 f). Moreover, with respect to this

isomorphism

V^S.n'^P'^"^ •

if y ^ c Y ^ . Y ' " .

P/iOQ^.- By induction. When p " - 1 . the statement follows at once

from lemma 3 . 1 7 ii). Now we assume it holds for some pair (p-l.n), and prove

it for (p.n).
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To simplify notation denote Y • Y by U, and write

U I U U J . J.
q^p q,n m^n q,m

allq

Then (y ) 7 is a basis for U. Use g , to identifya aeJ P""* »n

(3.20) C , 6 AU • C.
p-1 ,n

Let (E ,d) be the c.g.d.a. defined by

p-l,n / ideal generated by C , 0 ker £„.

Then by hypothesis

(3.21) d^(l ey^) c Cp.,^0 (AU)^ , a c J

and so

(3.22) C , -&-^ C ——^ E .p-l»n p-l»n

is a minimal extension.

5.23.- .Sabtowia.- Let 4> c Z" and assume 4> i C" , . With the—————— p P-l»n

notation above, for some a c J,

0 - ^ ( 1 0 y ) -• f .
Q

where ^ is a non-zero scalar and f c C , 0 (AU)p-1 ,n <a

P^LOOa. - We distinguish two cases.

Co^e ? : n-0 . Choose the least a such that • c C _ 8 (AU)^.

Write

c . e ( A U ) - c , „ e ( A U ) e Ayp-1 .0 $a p-1 ,0 <a 'a

and note chat by (3 .21 ) C ^ ^ 8 ^"^a is dc"3^18 and contains d c ( l e ̂  '
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Now • has the form

* • Jo*i •^ • ^^-l.O9^0^

where <fr ^ 0 and m ^ 1 . (Note that each 4'. has degree zero).

Applying d- we find that

m-1
^m e ̂  + J^d^(i^)^ d,(l 9 y^)] C y; c C^ ̂  .

This implies that d-,* • 0 and so (because H (C) - k) <t> is aC m m

non-zero scalar, \. Were m > 1 we would also have

^m-l*'11 ̂  • °

which would imply • + m X 9 y e k ; i.e., X " 0 . Thus m • I and sonr~ 1 ci

* - ^ ( l ey^) + *o with ^S-l.O' w)^

CcL&e. 2 : n > 0. Again choose the least a such that

• c C , 9 (AU) . Then (for degree reasons)p" * »n (a

• - • 9 y + f ,o -a '

where • and T belong to C , 9 (AU) , and 4> is a non-zero elemento p— 1 ,n <a o

of degree zero.

As in case 1 this yields

^C^^a* *o • dCO ̂  + t £ S-'.n •

whence d • • 0 and so • is a non zero scalar.
c ° ° Q.E.D.

3.24.- PfLOQ^ 0^ twnOL 3 . J 9 cont'd.' Let K be the sec of indices

a c J such that for some T € C . 0 (AU) .a p-l,n <a

t 9 y * Y € Z" .a a p
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Denote 1 8 y •»• f by z and set w « n z . We extend the definition by-a a a a a '
setting w m y (a c J but a i K ) .a a

By lemma 1 . 7 a new structure ( W , h ) for the extension (3.22) is

given as follows : W has as basis the w , a c J anda

a € K

h(l 6 v^) • <

^ 1 0 y , otherwise.

Moreover, we have

a e K,d.h(l 8 w ) • d z € CC a C a p'~l ,n(3.25^

and

(3.26) d h ( l 9 w ) - d (1 9 y^) e C ^ ® < A U ) <a• otherwise.

^
Let \T be the span of the w (a c K.) and let U be the spanp a

of the y (a c J but a i K). Then

W - W" • U.
P

Since h : C , % (AW) ——2——- C , 0 (AU) . a c J; and sincep-1 ,n <a p-1 ,n <a

(AW)^C A W ^ C (AU)^ a c J .

it follows from (3.26) that

(3.27) d h(l 0 y ) c h(C -, n ° Awn ® ( A U )^<a )^* a € J but a ^ K"

Next observe that subleoma 3.23 yields

( 3 . 2 8 ) Z" - C0 , " ker c. • h ( l % W " ) .p p-l.n C p

generated by B and 2" , • L zm . we obtainp"" i TD<nSince C . isp-1 ,n
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(3.29) ^A^-l.n"'1"^-^-^ •

We show now that

K - I
P.n

First suppose a e K. Then z " 1 ® y + V c Z11 , where— a "a a p

f e C , ® (AU) . Since, clearly, 4' c ker e- (3.29) implies thata p~ 1 ,n <a ex c

^ ̂  + J, ^B ^ ^6 £ ^(A) •

Hence a e ^ I . But also a e J, whence a € I :q$p q,n p,n

K C I
p.n

On the other hand. suppose a € I • ThenP.n

^'eL^A^^-

It follows from (3.2B) and (3.29) that

(^(A) • ̂  p h(l 8 W") ^ Q^.i(A).

Moreover, for Y e ^(,

(; o h(l 6 v ) - c p( l 6 y ) - (. p ^
A Y A Y " y

- ^A y. + ^ °yu ^A ̂  + ^ S •
U<Y

where ^ ̂  c Q^.,(A).

This yields

^ ̂ + J^ ^ ̂  y g + j^ s'v.+ ^0^ Yu ' c ^-i^^
Suppose a i K. If a > Y for each Y c K such that T ^ 0 , then this

equation shows that
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^^ ^^A^Qp-^-

This would give a € ^J I , which is impossible.
q<p '••n

But if Y > a for some Y e K. for which T ^ 0 we conclude in

the same way that the largest such Y is in ^ I » which is equally

impossible. Hence a " y, some Y c K ; i.e.

I C ^C.P»n

Since K * I ,p,n

5' • Y" • ̂
> P

Moreover, (3.28') shows that h carries C , ® AW" (isomorphically) ontop-l,n p

C . If we denote this restricted isomorphism by h then
p,n

•Sp.n - h ° (i> e l)"1 : S." e ^^P • Y>n) " c-

Hence g is an isomorphism.°p,n

Finally, if y c Y" « Y^ then

8p.n<1 ^^ • h < l e^

and so (3.27) reads

^p.n0^^.^.^^"^-

3.30.- P^iooa o^ ^izo^ejn 3.4 . - Consider the spaces W constructed

in sec. 3.24 above and set

L" - h ( l » W") C C. n >. 0. p >. 0.
P - P

(where h is the isomorphism depending on p and n defined in sec. 3.24).
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Then formula (3.28) reads

(3.31) Z11 • C" , 0 ker £„ • I" .p p-l,n C p

It follows that the spaces L are linearly independent ; denote their direct

sum by

1" • T /. 1° C C" 0 ker e-.^0 p C

Let L « ^ L11 C C (direct sum). The inclusion L^ C induces

an obvious homomorphism

^ : B e AL - C

We show that ^ restricts to isomorphisms

^ : B 9 AO^ « L") ——L-^ C .
p.n <P P»n

P^-l ,
n^O.

When p - -1 and n " 0 this is true by definition.
If it holds for some n and all p then by direct limits it holds for
\Q . Thus we may assume p ^ 0 and that <P , is an isomorphism, and• - l . n + l P-i»n
have only to prove that <P is.

But in the notation of sec 3.24 we have an isomorphism

h : C , 6 AW"p-l .n p p.n

It restricts to an isomorphism

Moreover, the diagram

B 6 AO^ • L" ) 8 AL"<p p

^ 1 n®^p-1 ,n

p-l , n e AW"

50
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commutes. Hence t? is an isomorphism.p,n

Since each ^ is an isomorphism, so is ^. Thus p restrictsp,n

to an isomorphism ? : AL ——=—>• A, which carries A L to ker e^.

Define X - ^(L) and X^-^L").

Define f by

f ( l e x) - <P(1 8 ? "'lx) . x e X.

Then f restricts to isomorphisms

P^-l.

n^O.
f : B 9 ACX^ • X" ) ^— C

<P p»n

Moreover formula (3 .31) reads

^-O1"^ ' '^-! ,^^0 8^-

Thus parts i) and ii) of theorem 3.4 are proved. Part iii) follows at once

from i).
Q.E.D.
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Chapter 4

Morphisms of extensions

4 .? . - I )zt̂ io daemon*' In this chapter we consider a morphism-
v

(^,^,a) : E -»• t between KS extensions :

v v i y
t : B ——^ C A and t : B ——^ C -{—^ A.

We assume H (C) « k " H°(C). All augmentations are denoted by £.
v

Note that a linear map Q(a) : Q(A) -»• Q(A) is defined by

Q(a) o Cw " ̂  o a.

It satisfies Q(a) o Q(dv) • Q(dA^ ° a*
A A

Henceforth we assume that £ and E are minimal, and we use the

notation developed in chapter 3. Then our morphism induces morphisms
w
t -*• t (p >. 0, n >, 0) , writtenp,n p »n

P-l.n P.n p.n

Vl.n P.n p.n

p-1 ,n p.n p.n

where ^ is the restriction of <P.p.n

Moreover <P restricts to linear maps Z - Z , and hence induces
P P

linear maps

j . 7"
z ' P /?"

p- 1 . n H ker e p /Cn ° ker e
. n > 0. p >, 0.

52



LECTURES ON MINIMAL MODELS

Further note that f . restricts to a linear map

^Ker : ̂ F1 "̂  ^F1 > n >" °9 p >' 0>

while i? factors to give a linear map

^Coker : covkern "" cok€rn • n ' °'

Clearly the diagrams

v n ^n , v n+1 -0 ———- Coker ————— Z^ L ————— Ker^ ———— 0

I tn I
(4.2) ^Coker ^ ^Ker

0 ——- Coker" ————•* Z" / ————> Ker""'1 ————> 0. n > 0,o / n o
/'-l.n

commute, as do the diagrams

(4.3)

^
P

^

z"
P

v
/ —'-—

Kt

^-.n011"-

/ ———————:——————- Kt

/C" , 0 Ker cp- 1 ,n

"r'
^ker

er"'"1 , p > 0 or
P

p"0, n"0.

Finally, observe that the linear maps

^ •• ̂  — ̂ h)

factor to yield isomorphisms

\--^/ ——'Qp ( A ) /
/^-l.n" K e r £ ^p"-!̂

S3
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Clearly Q(a) restricts to linear maps

Q;(a) : Q^(X) - Q^(A).

Hence it induces maps

^ 0, p >, 0. (i^ote

^n
p/

4) h

^/

'p 7^-,(X) xpw/
: we set Q"^(A) - 0 - Q°,(X)!)

/ -————— ̂  1

^.n^"- /

f ——————^^
C , n ker e /p-I ,n

^.,(A)

the diagrams

^-l<x>

Q(o0

/ » n >, 0

Q^.^A) p >, 0

conmute •

Our main aim is to prove

4.5.- Tneown. - Assume that ^ and <> are isomorphisms. Then a

is an isomorphism and each ^"(a) (n >. 0, p >. 0) is an isomorphism.

We also prove :

4.6.- fne-o l̂gjn. - Assume ^ is an isomorphism, and i? is an isomor-

phism. Then ^ is an isomorphism.

4. 7.- Kgjnq^z.-

1 ) We remind the reader we are dealing with minimal extensions.

2) Further isomorphism theorems are established in chapter 7.

4 .&. - Lfcjmd.. - Assume that the morphisro (4',(P»a) satisfies that

each ^ (a) is an isomorphism. (We do not assume ^* or \^ is an isomorphism.)
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v
Then a is an isomorphism. Moreover E and E have structures

v v
(X,f) and (X,f) which satisfy the conclusions of theorem 3.4 and with respect

to which

f • ^, 6 a.

^V)0i.-

It follows from (4.4) that each i^_ is an isomorphism. Now let
v v w

(X,f) and (Y,g) be structures for E and E which satisfy the conclusions

of theorem 3.4. Then

y ^ , H k e r c ^ X 1 1

P \ P-*.n / \ P I

and

Z" -^n , H ker e1» f l 6 Y" ,1 .p \ p-1 ,n < ^ p/

Hence an isomorphism o ; X11 —=——-Y11 (n ^ 0. p ^ 0) is defined

by

^(1 ^ x) - 1 ® oX c C" , H ker e . 5c c X" .p-l,n p

Clearly (apply P )

a(x) - ox c A^Y'" 6 Y" ) . x € S".<p p

This implies (same argument as in lenna 1 . 7 ) that a is an isomorphism.

Now set

X" - a^") and X - r X" .p p n.p p

Then A " AX. Define

f : B ® AX - C
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by f(b) - b and

f(l 8 x) - iPO « o^x) , x € X.

It follows that

f(l 6 x) - 1 6 o a'^x) c C^^ n ker e. x e X^.

Because o a"1 : X" -2——- Y" this implies (again as in lemma 1 . 7 ) that f is

an isomorphism. It also implies that (X,f) satisfies the conditions of theorem

3.4. It is clear from the definitions that f converts ^ to ^ <? a.

Q.E.D.

4.9.- Lgjnma. Suppose c' and £ are elementary extensions, and

^ and Q(a) are isomorphisms. Then ^ is an isomorphism.

PnjQO Q.-

Since ^ and £ are elementary.

^(A)-^(A) and Q^A) • Q>). n >. 0.

It follows trivially that each Q^(a) is an isomorphism. Thus by lemma 4.8 we

can choose structures (U) and (X.f) such that d^( I ̂ n) C B ^ AX'".

d (1 « X") C B « AX^. and <P • ^ ^ a.

How the method of proof of lemma 1 . 9 shows that ^ is an

isomorphism. Q.E.D.

4.Ji}.- P^LOOft oj thrown ^.5.

ye shall show by induction that each ^^ and each Q^(a) is

an isomorphism. Indeed if ^ is an isomorphism for all p. then

^ - lim <T is an isomorphism. Thus we may assume that for some p > 0.
'-l.n-*-! ——^ P»"
n >, 0. ^ and Q\ (a) are isomorphisms, and we have to show that

iD* and (^(a) are isomorphisms.
P»n P
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Since <P and ^ are isomorphisms it follows thatp-l,n

^-r'—^-r1

and (if p • 0, n > 0)

^Coker^011"11———^011"1-

Thus (4.2) and (4.3) show that

^y ————z^
/%" , n ker e /C" , 0 ker e.p-l,n p""l>n

hence (4.4) implies that

^T) : Q"(X) . s ' Qn(A) .

/Q" .(A) /Q" (A)P 1 P-l

We have assumed Q 1 . ^ ) is an isomorphism. It follows from the

equation above and this that ^"(a) is an isomorphism.

Next use structures (X,f) and (X,f) satisfying the conclusions

of theorem 3.4 to write

C • C , ^ AX" and C - £ , « AX" .p,n p~l»n p p,n p-l,n p

It follows that p and p induce isomorphismsp,n p,n

Z" E ^

Vc" n ker c p

p- 1 ,n

(and similarly for £.) , where X is considered as a subspace of A
P P*"

v
If we compose these with the projections onto Q(A ) andp,n

U(A ) we obtain isomorphismsp,n
i*

^/, — -"V^ and ^ / —^^
/£" , " ker r "/C" , n ker cP~ I *n p -1 .n
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These convert ^ to Q(a ), and so Q(a ) is an isomorphism.
~ P»" P »^

Since £ and E are elementary extensions, and since ^* is assumedp,n p,n P-l»n

to be an isomorphism, lemma 4.9 shows that i? is an isomorphism.p,n

It follows by induction that each ^ and each (^(a) is anp,n p

isomorphism. Now lemma 4*8 applies and shows that a is an isomorphism.

Q.E.D.

4 . ? ? . - P^oo^ o^ îzo^ejn 4.6.

Since ^ and i? are isomorphisms theorem 4.5 shows that a

and each Q^a) are isomorphisms. But now lemma 4.8 applies and allows us

to write ^ - 4; 8 a. Hence ^ is an isomorphism.

Q.E.D.
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Homotopies and liftings

5.? . - Tnfc c.g.d.a. ((C.B)1^).- Suppose U • £ ^ U11 is a graded

space. The suspension of U, ZU, is the graded space which coincides with U

as a vector space, but with degrees shifted down by 1 :

ZU • t ^ W ^p^r
and

(H^-U1^1.

The identity automorphism from U to (£U) is written £ and

called the suspension map ; we extend it to U° by setting E(U°) • 0.

Now consider a KS extension

E : B ——. c -£— A,

with augmentations £ _ , c- and e . To simplify notation denote LQ by
B c A A

^ and let As^ (? AD\^ be the contractible complex generated by Q . Denote

its augmentation by e .

Tensoring this with (C,d_) we obtain the c.g.d.a.

(C.B)1 - C 6 AQ^ H A^

whose differential is denoted by D , and which is augmented by c - c_ 6 c _ .
Because ( A ( Q • DQ ) , D ) is acyclic, the projection

it : ( ( C . B ) 1 ^ ) - (C . d ^ )

defined by » ( 1 ® Q . ) " 0 and ^(z81) • z. z e C . and the inclusion

^o : ( c • d C ) " < ( C • B ) I . D )
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(X z » z ^ 1 ) induce inverse cohomology isomorphisms. In particular ker IT

is an acyclic ideal :

(5.2) H(ker ir) • 0.

If B - k we denote (C,B)1 simply by C1.

For general KS extensions E, the projection p extends to a

projection

p 8 i : (C,B)1 -^ A1

with kernel the ideal generated by A i (ker e_) .
0 o

Next, suppose (X,f) is a structure for E and (x ) j is a

vellordered homogeneous basis for X such that ( 1 . 4 ) holds. Then C. : X -«-*• Q .
A A

The composite £ o c. s X ——f 0 will be denoted by

X »——> X X € X.

Write C • B 6 A (via f). For each a c I we have the KS extension

B - B 6 A - A . Since B 9 A^ C C and Q(A ) C Q(A) we can form<a <tt ^o <Q

( ( B « A^.B)1^) C ((C.B)1^) .

Now note that

(5.3) (C.B) 1 - B 8 AX 8 AO ® ADO .

Thus a degree -1 derivation, i, is defined in (C,B) by

i(B) - i(Q^) - i(DQ^) - 0

and

i (x ) - x . x c X.

We define a degree zero derivation, 6. in (C.B) by
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• D i+ i D.

It satisfies D9 • 9D.

Note that

(5.4) iri • 0 and vQ « 0,

and so i and 6 preserve ker e. Moreover, i and 6 restrict to derivations

in each (B » A^ ,B)1. We use (5.3) to regard X. Q^ and DQ^ as subspaces of

(C,B)1. Since, d x e B 8 A^ we obtain

8x - Dx e (B 6 A . B)1 . a c I.
a a 'a

Clearly 9Dx " i D^x + D i Dx » 0. and so• a a 01

Q2^ € (B 6 A , B)1 , a c I.
a ^

Because 6(B) *• 0 an induction on I now shows that for each a

there is an integer n^ with

u
e a x • o.a

Since 9x - 9Dx • J, x € ^. this implies that for each • c (C.B)

there is some ^ (depending on •) auch that

Q^ • • U.

nencc an automorphism eQ of the augmented c . g . d . a . ( ( C , 3 ) . D )
— A

(with inverse e ) is defined by

e ? e"e • ^ nTn«0

Ue define an inclusion of augmented c .g .d .a . 's

X : (C .d ) - ( ( C . B ) 1 . ^ )
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by setting

x! • ee ° ^0 •

(Recall X z « z « l , z £ C . )

We now give an inductive formula for \ -A . Since i is a derivation

of degree - 1 , i is a derivation of degree •2.

But i^b) • i^x) • i^x) - i^Dx) - 0 (b e B. x c X) and hence

i^O.

It follows that

611 • (Di+iD)" - (Di)11 -• (ID)".

In particular, since iDix • iDx • 0, a c I,a a

< 5 - 5 ) ^\ • ? ̂  ett(xo) - "a + ^a + ̂  ^^"(^0 n* l

set "a " ^ nT (iD)n<x^. because of ( 1 . 4 ) . ^ e (B <? A^.B)1.
n* 1

Because H c Im i, irft -0 . Thus (5.5) reads.a ex

(5.6) X , x - A x - Dx -• ft ; ^ c (B e A .B)1 0 Ker IT. a € I.1 a o a ex a & <tt

5 .7 . - Lejmna,.- The inclusions X , and A coincide in B. Moreover———— 1 o

I m ( A - X ) C Ker n .l o

* *
and so X , • > .l o

fnjpo^.- Apply (5.4) .

Q.E .D.

Next, suppose that (E.d^) and (H,d_) are c .g .d .a . ' s . If E and

t arc augmented by c- and ci, then by a homomorphisro

^ : (L.d^.eg) - (E.d^.c^)
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we mean an augmentation preserving homomorphism of c.g.d.a.'s.

Assume

^o^l : ̂ ^ ^ ̂ '^

are homooorphisms restricting to the same ^ : B -*• E.

5.S.- Pfca^uu^tcon.- ^ and î . are called homotopic (rel B)

if there is a homomorphism

* : ((C.B)1 ,?) ^ (E.dg)

such that ^ o \. -< ( ) . , i " 0 ,1 . We write <P ~ <(/. (rel B). • is called a

homotopy (rel B) from ^ ^ ^ . If B • k we say simply that ^ and <^.

are homotopic*

Next assume £ is augmented by e_, and

<^.^ : (C.d^.e^) -^ (E,dg,£g)

are homomorphisms.

r».9.- Pe^tzctcon. - ^ and ^ are called based homotopic (rel B)

if there is a homotopy, 4>, from <(/ to <p such that ^ preserves augmenta-

tions. 4» is then called a based homotopy (rel B) from ^ jto^ ^ . We write

^ ^ <(/^ (rel B).

^. 1J.- ggjna^A.-

1 . The definition above of A : C - (C,B) depends on-the choice

of structure. We shall see in prop. 5 . 1 4 that our definitions of "homotopic

(rel B)" and "based horootopic (rel B)" are independent of the choice of structure.

2. Fix a homomorphism ^ : (C,d ) - (E,d^). By restriction to

Q we obtain a bijection between homotopies (rel B) starting at ^ and linear
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maps of degree zero from Q to E.

If E is augmented and <P preserves augmentations, restriction

to Q defines a bijection from based homotopies (rel B) starting at ^ to
— o

linear maps of degree zero from Q to Ker e-,.
A &

3. If i? ~ ^, (rel B) then lemma 5.7 shows that ^ « ^.0 1 o 1

5 . ? 7 . - Leffimq.- Assume that f .̂  : (C,d ) - (E,dp) restrict to

the same ^ in B. Suppose that

Im(^-^) C I.

where I C E is a d^ stable ideal with H(I) • 0. Then

^ ~ ^(rel B)

and the homotopy 4> can be chosen so that •(Q,) c ^«

5 . 7 2 . - Cofiottcuuj. - Suppose e augments E and I C Ker e . If

<P and f preserve augmentations then 4' is a based homotopy (rel B).

^ .73 . - Pfuoo^ o^ iejnnoi 5 . 7 7 . - Set • - ^ in C. We have to cons-

truct elements •(x ) in I (a e I) such that the unique extension of •

to a homomorphism • : ((C.B) ,D) -»- (E.d^) satisfies t o X • ^ .

Assume •(Xg) € I is constructed for B < a. Then, since

d^(x^) c B « A^ , and • is defined in (B ^ A^ .B) . we can apply (5.6)

to find

d-^.x -d? x -•(^ ) ) • 4?.d.,x - ^ d,,x - •DOt i a o a a I C a o C a a

- • X . d x - • A d x - •D^I C a o C a a

- » D ( A . x -A x -^ )
i a o a a

- 0.
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Moreover, because *(x-)-c I it follows that •(Dx«) c I (6 < a).
P P

Since the x. and Dx generate Ker v as an ideal, we find •(Ker ir) C I.

hence ^x^ - ^x^ - •(0^) is a dg-cocycle in I. By hypothesis we may write

<P,x - ip x - »(ft ) - d-y ,• l a -o a a' ^-a *

some y € I. Note that if deg x • 0, then deg y • -I ; i.e. y • 0.a a a Q

Now extend * to x by setting

• x " y .a 'a

(If deg x • 0 then x » 0 - y , so we are all right.) It follows from

(5.6) and our choice of y that

<* ° V^ - ^Va^Y"^

• ̂ \ + ^a + ̂ ^

- ^a-

Hence * o X - ^ in B 6 A , and the induction on I- is complete.

Q.E.D.

5 . 1 4 . - P^topoA^tco»z. -

i) The definition (5.8) of "homotopic (rel B)" and the definition

(5.9) of "based honotopic (rel B)" are independent of the choice of structure

for £.

ii) Homotopy (rel B) is an equivalence relation on the set of

homomorphisms (C,d-) •* (E,dp) which restrict to a given 4^ in B.

iii) If E is augmented, based homotopy (rel B) is an equivalence

relation on the homomorphisms (C,d ,E ) - (E,d-,c ) which restrict to a

given ^ in B.
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i) Suppose a second homomorphism

x! '• ^^c^c? " « C • B ) I » D » C )
is defined via a second structure on 6. Lemma 5.7 shows that

Im^'-X ) C Ker TT C Ker e .1 o

Hence by cor. 5 . 1 2 , X ^ A ' (rel B) ; i.e. there is a homomorphism

V : ((C^B^.D.e) - ((C.B^D.c)

such that v ° ^o " ^o and <y 0 x! " xt!'

Hence if » : ((C.B)1^) -^ (E.d^) satisfies * o \^ • ̂  and

• o X ' • ^ for homomorphisms ^.^ : <c*dc) "" (E»dE) it follows that

• o V o X - 4> and • o f o X • ^ . Moreover, if • is augmentation preserving
o o * l

so is 4> o f.

ii) Reflexivity. Suppose ^ : (C.d^) - (E.d^). Then <P o IT : ((C,B) .D)

^ (t..d^) is a homotopy (rel B) from ^ to ((.

Syxanetry. Suppose • is a homotopy (rel B) from ^ to <P^

(^ ^ : (C,d ) - (E.dL).) Lemmas 5.7 and 5 . 1 1 show that ^ -v- X^ (rel B) ;

let f be a homotopy (rel B) from \ to ^. Then • o V is a homotopy (rel B)

from (̂  to ^.

Transitivity. Suppose ^.^.^ : (c tdC ) " (E'dE) restr ict to

the same ^ in B. Assume

^ ^ ^ (rel B) and ^ ^ i^. (rel B ) .
2 o o l

Then by symmetry, ^ ^ ^ (rel B).
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Let ^ be a homotopy (rel B) from ^ to ^. (i • 1,2) .

Let Y be an isomorphic copy of Q^ and fix an isomorphism a : Q -^ Y.

Let AY 9 ADY be the contractible complex generated by Y. and tensor it with

((C.B) ,D) to obtain a c.g.d.a. augmented by e (the tensor product of the

augmentations). Define a homomorphism of c.g.d.a.'s.

* : C 8 AQ^ e ADQ^ e AY e ADY - E
by

4>(z) • ^ z, z € C

*(x) • 4^x. x c Q^ .

and

<t(ox) - ^x, x e Q .

We may use a to identify (C.B)1 with C 8 AY 8 ADY ; then \

is identified with a homomorphism

^ : C -^ C 9 AY 6 ADY

of augmented c.g.d.a.'s. Use the obvious inclusions to regard \ and X as

homomorphisms

^ ; ^^C^c? ^ (c ® ^A e ^A ® AY ® '^^^ D. ^) •

Observe that for z c C,

^2 - ^2 • (X^z-z) - ( A ^ z - z )

c C 8 ^'''(Q^ • DQ • Y • DY) .

and this is an acyclic ideal in Ker c. Hence cor. 5 . 1 2 yields a based homotopy

(rel B) . f. from A to X .

On the other hand the homomorphism • defined above satisf ies

• o ^ - ^. i - 1 . 2 . Hence t o y is a homotopy (rel B) from ^ to ^5 .
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Hi) Note (in the proof of ii) that if ». (i • 1,2) are based

homotopies (rel B) then • is augmentation preserving, and so 4> o ^ is

a based homotopy (rel B). This proves transitivity.

Refexivity and syonetry are proved as in the proof of ii).

Q.E.D.

V y rf V
Next, suppose £ : B -»• C -»• A is a second KS extension, and

v
(E,<Lp is a second c.g.d.a. Assume

X^ : (i.dg) ^ (C,d^) and y : (E,d^) -^ (E.d^)

are homomorphisms and that x? restricts to x« : B "1> B-

Finally, assume

^1 : ̂ '^ " (E•dE)

are homomorphisms restricting to the same ^ in B.

5.J5. P^tOpOA^tcon. -

i) If ^ ^ <P, (rel B) theno l

Yoip ^ Y O ^ (rel B) and ^ o X^ ^ ^i ° X^ <^el B) •

ii) If Y* is an isomorphism then ^ ^ ^. (rel B) if and only

if -y o ^ -v- Y o (P, (rel B).o 1

v
b.?6 . - P^LOpO^^tLOn. - Assume that E and E are augmented by

e and e», and that T is augmentation preserving and that so are x^.

^ and ^,•o l

i) If ^ ^ (P,(rel B) then y o <P ^ y o 41 (rel B) and0 1 o *

^ o Xc 'v( ^i ° X^ (rel B).
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ii) If y is an isomorphism then ^ % ^ (rel B) if and only if

Y o ^ ^ Y o ^ (rel B).

5 . ? 7.- P^too^ o^ p<zop. 5. ?5.

i) If • is a homotopy (rel B) from ^ to ^ , then Y o 4>

is a homotopy (rel B) from -y o ^ to -y o i? .

On the other hand, \ o Y and \ o Y restrict to \ o Y-
o L< 1 L 0 B

v
in B, and

Im(^ o x^ - ^ o x^) C In(X^-^) C Ker TT.

Since H(Ker n) • 0, lemma 5 . 1 1 shows that \ ° Xp ^ ^. o Xp (rel S).

Hence • o X^ o ̂  ^ ^ o \^ o ̂  (rel B) ; i.e.,

^ o x^ ~ ^i o Xc (r®l B).

ii) We have only to show chat if y o ^ ^ Y O ^ , ( r e l B ) then
o 1

^ -v- <^ (rel B).

Denote by F the graded space E, regarded simply as a graded

space (i.e.. F - E without the algebra structure). It generates a contractible

complex, F 8 ADF. Tensor this with (E,d^) to obtain a c.g.d.a. (E.D) :

E - E « AF ® ADF.

Denote by

j : (E.dg) -^ (E.D) and p : (E,D) - (E.d^)

the obvious inclusion and projection. Then p o j - i. and Ker p is an

acyclic ideal in E.

Extend -y to a homomorphisci y : (E.D) -*• (E.d-.) by setting

yz • z and yDz • dpZ (z c F). Then Y is surjcctive and y is an isomorphisn
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so Her ^ is an acyclic ideal.

Now suppose Y is a homotopy (rel B) from Y<^ to Y^ .

Let • : Q -*• i be a linear map of degree zero such that

^ o * - 4'.

(This is possible because ^ is surjective.) Extend • to a (unique) homotopy

(rel B), 4», starting at j o ^ . Then

^ o 4> • f : (C.B)1 ^ E.

In particular it follows that

^ o « o X • Y o ^ - ^ o J o <(\-

rtence ^(* o X - j o ^ ) • 0 ; by lemma 5 . 1 1 • o X^ j o ^^ (rel B). On the

other hand. j o ^ ^ 4> o A (rel B) with homotopy ». Thus we obtain (cf. Prop.

5 . 1 4 ii))

j o ^ ~ j o ip (rel B).

Finally apply p to find (since p o j • 0

^ ^ 4/, (rel B ) .o i

Q . E . D .

3 . ? A . - ^LJO^ Oa p^LOp. ^. ?0.

i) The proof is word for word the same as the proof of prop. 5 . 1 5 , i).

except tuat we rely on cor. 5 . 1 2 .

ii) The proof is the same as that of prop. 5 . 1 5 . ii) except for the

following changes.

Let F - ker c; and tensor the augmentations of E and AF (» ADF

to augment fc. Note that j,p and v preserve augmentations. In particular
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ker p C ker e and ker y C ker ^.

Moreover Y : ker e -»• ker e» is surjective, and so • can be chosen so

that <K^) C ker i.

Then • extends to a based homotopy (rel B) from j o ^ to

* o \^ Moreover lm(^ o ^ - j o i? )Cker ^. and so cor. 5 . 1 2 implies that

4> o \^ is based homotopic to j o ^ (rel B). By prop. 5 . 1 4 iii)

J o ^Q ^ J o ^. (rel B). Since p is augmentation preserving we apply it

to obtain

^ ^ ^ (rel B).

Q.E.D.

We come now to the lifting theorems, which are the main results

of the chapter.

^ .?9 . - TkiO/iejn, Assume

Y v

E ———^———- E

•i I-
B———^————C———^————A

is a commutative diagram of homooorphisms of c.g.d.a.'a. Suppose that

i) Y is an isomorphism.

ii) The bottom row is a KS extensior, E.

Then there is a homomorphism ^ : (C,d.,) - (E»d_) such that

iP o i " ^ and Y o ^ ^ n (rel B).
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If ^ : (C,d^) •<• (^.dg) also satisfies these conditions, then

^ ~ ^ (rel B).

^.2i?.- ThfcOWn. Assume

E———y-————E

.1 1,
B—i—— c————A

is a commutative diagram of homomorphisms of augmented c.g.d.a.'s. Suppose

that

i) Y is an isonorphism.

i-i) The bottom row is a KS extension, E.

Then there is a homomorphism ^ : (C.d ,E^) ^ (E.d^,e^) such that

^ o i - ^ and Y o if» ?: n(rel B).

If ^ : (C,d ,e ) - (E,d_,Cp.) also satisfies these conditions, then

^ 4< (rel B).

5 . 2 ? . - P^iooj o^ the.owi 5. 19 .

Construct (E.D), j.p and Y exactly as in the proof of

prop. 5 . 1 5 ii). We first construct a homomorphism

^o : ^^(P " (L1D)

sucnthat ^ o i " j o 4/» and ^ o ^ " n.o o

Fix a structure (X,f) and a basis {x } . for X so ( 1 . 4 ) holds.a QC I

We define 4> x by induction over I.o a

Indeed if 4» x is defined (6 < a), then ^ d. x is defined.o D o C a
and

Y ^ d , , x " n d - x - d ^ n x .o C a C a t a
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Choose y c E so that "y y " n x . Then

^WcW - ̂ a - ̂  ^ ̂  - 0>

and

^^r^"5^ " ̂  4 ̂  " °-o c a a o ^ 01

Since H(ker y) " 0 we can write (for some w c ker y)

^ d- x - Dy • Dw .o C a -a a

Extend ^ to B 8 A by settingo (a

Jf x • y + w .
•o a a a

By definition D^ x^ - ^d^ x^. while

y i U x • Y V • n x .• "o a ' -a a

This completes the inductive construction of ^.

Now we define ^ by setting

^ • p o <f : C -^ E.

Then i p o i - p o i p o i « p o j o < » " ^ . Moreover. Im(jo^ ) C ker p, and

so by leioma 5 . 1 1 . j o <P ^ ̂  (rel B). Since ir o j - y while Y o ^ - n

we can apply Y to this relation to obtain

•y o ^ ^ n (rel B).

Finally, suppose ^ : (C.d^) - (E.d^) satisfies i o i • ^ and

Y O ^ ^ n ( r e l B ) . Then by prop 5 . 1 4 ii),

- y o i ^ Y O ^ ( r e l B ) .

Thus prop. 5 . 1 5 ii) implies that ^ ^ ^ (rel B).

Q.E.D.
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5.22.- P^On OjS îfco^ejn 5.20.

Construct (E.D), p,j, Y and the augmentation e : E -*• k exactly

as in the proof of prop 5 . 1 6 ii).

Then repeat the construction of ^ : (C,(L,) •* (E,D) given above,

being careful at each step to choose y e ker c.

Since ker y C ker £ , (P will preserve augmentations.o

Hence so will i p - p o ^ .

Use cor. 5 . 1 2 to conclude that j o ^ ^ ^ (rel B). Since Y

preserves augmentations this implies

Y o ^ ^ n (rel B).

Complete the proof using prop 5 . 1 4 iii) and prop 5 . 1 6 ii) , just

as above.

Q.E.D.

For the rest of this chapter we shall consider KS extensions

£ : B -*• C -»• A admitting a structure (X.f) and a well ordered homogeneous

basis {x ) , such that ( 1 . 4 ) holds and
a ad

(5.23) deg x. - 0. deg x > 0 - > 6 < a .
D Cl

A KS extension satisfying this conditions will be called 0-minimal.

Clearly minimal extensions are 0-minimal. Moreover any KS extension with

connected fibre is vacuously 0-minimal. It is easy to see that a KS extension

is 0-minimal if and only if the subalgebra C C C generated by B and C

is d -stable.

^ .24 . - Lfcmmq. Suppose t is 0-minimal and {' , ^. : (C ,d_ ) - (E.dp)

are hoootopic (rel B). Then ij) and U/. coincide in C .
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^lOOp.- Observe that the derivation i in (C,B)1 has degree -1 ,

and so i(C ) • 0. bince E is 0-minimal. C is d -stable, and it follows

tnat 6(C ) - 0.o

This implies that \, K \ in C , and so ^, • ^ in C .l o o 1 o o

Q.E.D.

If fc is 0-minimal we denote by (C,B) the augmented subalgebra

of (C,B) generated by • 1m \ («C) and Im \ . (C,B) is stable under D.

Recall from 5 . 1 . that the linear map x r»- x of X to Q. is defined

by x • ^A*' " îs extends to a linear map

^A : A+x ' ^A-

If £ is 0-minimal then d (X°) « 0 and it follows that a differential

Q(d ) is defined in Q by

Q(d^)x - £^ dA ( x ) ' x e X.

Extend Q(d ) to a derivation in AQ ; then (AQ , Q(d )) is a
A A A A

a c.g.d.a. and

Q(d^) • 0

if and only if £ is minimal.

Next define a projection of augmented c.g.d.a. 's

p : ( (C.B) 1 ^) - (AQ. . -Q(d ) )
A A

by setting

p ( z ) - c^z . z c C

p (x ) - x . x c Q^

and

p ( D x ) - -Q(d )x . x € Q^.
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Let j : (C,B)31 ^ (C,B)1 be the inclusion.

5.25.- PA.opoA t̂con.

If E is a 0-minimal extension then

(5.26) (C,B)31 -1- (C,B)1 -^ (AQ^.-O^A^

is a KS extension. If E is minimal so is (5.26).

P^OO^.- Let J be the subset of I of indices a with deg x^ > 0.

Tnen (x ) , is a well ordered homogeneous basis of X , and (x^)^j is
a aeJ

a well ordered homogeneous basis of Q^. Now let X be an isomorphic copy

of X' with isomorphism x - x. Then {x^ is a well ordered homogeneous

basis of X.

In particular we have the subalgebras

(A^)^ . (AD^a and (w^ ' a € J '

Now define an algebra homomorphism

v - I
g : B ^ AX e AX « AQ^ ————- (C,B)

by
g(b) • b. b c B , g(x) • X ^ x . x € X

— — .*
g(x) • K. X £ X . g(x) - X . X € X

It follows from lemma 5.24 that if we set x - x (x c X ) then

(5.27) g(x> - ̂  • x c X.
•

5.2^. - Leiwiq. g is an isomorphism. Moreover

g^Dx c B « AX 0 AX 8 ( A Q . ) . a c J.
Q A ^0
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P/LOO^.- Define an isomorphism

h : B « AX 6 l5i 6 AQ^ —s——> (C.B)1

by h(b) • b. h(x) • x ( xc X). h(x) • Dx (x € X ) and h(x) • x (x € X ).

Then g-h is zero in B, X and Q^.

Moreover, we obtain from (5.6) that

^a • ^a • \ ̂ a l a € J'

whence

(g-h)^ c B 6 AX 6 (AQ^ 0 (^A^a*

It follows as in lenma 1 . 7 that g is an isomorphism.

Finally, (5.6) implies that

g'^D^) - x^ - x^ - g"1^). a c J.

Thus induction on J shows that for a c J

g'^B 0 A^.B)1 C B 8 AX ® A^ e <AQA )$a

It follows that g~1^ ) c B 8 AX « AX ^ (^^a* and the rest of the lemma

is proved.

Q.E.D.

5 .29. - CofiottaAM.- g restricts to an isomorphism of B ® AX 8 AX

aionto ( C . B )

\>^0u p . - Clear ly g ( B 6 AX « AX) C (C.B) 9 1 . Formula ( 5 . 2 7 ) allows us

to reverse tne inclusion.
Q . E . D .
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5.30.- PfuDO^ oj p^op. 5.25 coyit'd.

It follows from lenma 5.28 and cor 5.29 that multiplication in

(C,B) defines an isomorphism (of augmented graded algebras)

,1(C,B)31 C AQ, (C.B)4

with respect to which

D(l 0 x ) c (C,B) e (AQ^)<a . a € J

To show that (5.26) is a KS extension we need only show that the

diagram

(C,Br

(C.B)

(C.B)91 « AQ,

commutes.

That the left triangle commutes is clear. To verify that the right
triangle conduces we show that

(5.31) p o 6 • 0

where 6 • Di + iD is the derivation in ( C , B ) used Co define > .
In fact, since 8x • 9Dx • 0 , x c X we need only prove chat

p o 9 ( x ) - 0. x c X. Now in C - B « AX

d,.(l e x) - 1 « d .x c ker c, 8 A X ,
L A 0

and so

i d-(l e x ) - i(l « dx) c ker e. e AX e AQ,
L A 0 A
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Since the restriction of p to B 9 AX 9 AQ is just e « i, we
A C

find

p i d (1 0 x) • (€„ 6 i ) i (1 6 d,x)
v- L A

• Q(^)X , X £ X.

On the other hand

p Di ( l « x) - p Dx • -Q(d^)x, x c X

and adding these relations we obtain (5 .31 ) .

But this yields p o A - p o X " £ p » since px » x the commuca-

tivity of the right triangle is proved.

Finally, if £ is minimal so is (5.26), almost by definition.

Q.E.D.

5.32.- Co^oHa^y, - An isomorphism

^ ^ r- s . ^ i^aiC 9 C ————. (C.B)1

"o

is defined by

z 6 w •——> \ z . A , w .o 1

5.33.- CofiOJJLcLA^,-

i) Suppose ^ , (p, : (C,d.,) - (E,d,,) coincide in C . Then a unique
0 I C C. 0

homomorphism

ii» : ((C.B)3 1 .^ - (E.d^)

is defined by ^ X . - 4 » . » i - 0 , 1 . The homomorphisms 4>. are homotopic

(rel B) if and only if <p extends to a homomorphism

• : ( (C .B) 1 ^) -^ (E.d^) .

ii) If E is augmented by c- then ^ preserves augmentations if

and only if ^i and ^1, do. In this case ^ ^ ^. (rel B) if and only if

• can be chosen to preserve augmentations.
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Now recall that € is assumed 0-minimal. Suppose

4< , ^. : (C,d ) -»- (K.<U are homotopic (rel B) and that * and f are both

homo topics (rel B) between them. Thus

•.4' : ((C.B^.D) ^ (E.d^)

restrict to the same ^ in (C,B)

Since the sequence (5.26) is a KS extension we can apply

definition 5.8 to define the notion of a homotopy (rel (C,B) ) between

4> and 4'. If such exists we say 4» and V are homotopic (rel (C,B) ).

Similarly if <p and ^). preserve augmentations (for some given e_)

and 4> and f are based homoiopies then we can use definition (5.9) to define

a based homotopy (rel (C,B) ) between 4> and ^ ; if such exists <fr and

Y are based homotopic (rel (C,B) ).

If t was actually minimal then so is the KS extension (5.26)

In this case we can iterate the procedure to obtain homotopies of homotopies

of homotopies.... .

5.34.- ix.ampie.. - Suppose E is 0-minimal. Then the homotopy class of

the homotopy * of lemma 5 . 1 1 (resp. the based homotopy class of the homotopy

^ of cor. 5 . 1 2 ) is uniquely determined by the condition <KQ ) C I.

Indeed if f is a second such homotopy then <» and f agree

in (C.B)31 and ImC-T) C I. Thus lemma 5 . 1 1 implies that 4> ^ f (rel ( C . B ) 9 1 ) .

5 .35 . - Ex.Cbftpie..- The hypothesis of 0-minimality is essential. Indeed

consider the contractible complex A(x,dx) generated by x with deg x - 0.

Then

A(x.dx)1 - A(x.dx.dx. Ddx)

and

i(x) • 0. i(dx) - dTx. i(dx) - i(Ddx) - 0.
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Hence

600 . dx. 9(dx) - Ddx. 9(dx) • e(Ddx) • 0.

Thus

A ^ x • x+dx and A dx • dx -̂  Ddx.

It follow that Im ^ and Im A^ generate all of A(x.dx)1, and so lenma 5.28

fails in this case.

Moreover the augmentation e : A(x,dx) •*- k and the inclusion

i ; k -»• A(x,dx) satisfy i o e ~ i . But i o e does not coincide with i

in A(x,dx)°. So lemma 5.24 fails as veil.
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Chapte.fi 6

Models

In this chapter we consider a homomorphism of c.g.d.a.'s

Y : (B.dg) •* (E.dg).

We assume B is augmented by e_ and that H°(B) - k " H°(E).b

The main result (existence and uniqueness of models) is stated in the next

three theorems.

6 . ? . - Tneo^fcm (eXzCA^&nce.). - There is a minimal KS extension

fc : B___c - ^ A

and a homomorphism ^ : (C,d ) -»• (E,dp) such that :

i) \S> o i » y .

ii) (p is an isomorphism.

Moreover, if E is augmented by c and Y preserves augmentations,

then \ll can be chosen to preserve augmentations.

Now assume there are two minimal KS extensions

'" »
I D <l 1 * D "t: : B ———> C ——<• A and t : B ——— C —— A .

and suppose,

^ : (C.d^) - (^.d^) and ^ ; ^^^ " ̂ ^

both sat is fy i) and ii) of theorem 6 . 1 .
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6.2.- JntOWA ( OJZLJ qene^). With the hypotheses above there is a

commutative diagram of homomorphisms of c.g.d.a.'s

i ¥ o ^B ——^———. c ———p——— A

z

1 p
^ ——;——^ c ————- «

^ 2

r< . A

such that ^ and a are isomorphisms, and ^ o <P ^ ^ (rel B).
v

Moreover if Y , i? and i? are augmentation preserving with respect

to an augmentation e of E, then ip can be chosen to be augmentation

preserving and so that ^ ^ and ^ are based homotopic (rel B). In this

case a is also augmentation preserving.

6.3.- "nieown (muQaene^ 0^ ^omofipki&m). With the hypotheses and

notation of theorem 6.2 assume that

i . & ^B ——-———> C ——p———- A

1 D

x

is a commutative diagram of homomorphisms of c.g.d.a. 's such that

(P o x ^ ^ (rel B).

Then x and a are isomorphipr'.s and

X ^ ^ (rel B) and a ^ a.

Moreover, if E is augmented by c , if all horooroorphisms preserve

augmentations, and if ^ o \ ^ ^ (rel B) then x and ^ are based homotopic

(rel B) and a and a are based horoocopic.
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6.4.- PfUSQ^ OQ tk^own 6 . 1 .

We shall construct C in the form C • B 6 AX where each X"

is decomposed in the form

X" • I X" . n >. 0.
p>.0 p

and d extends d and satisfies

(6.5) d^(l 8 X^) C B e ACX^ « X^) , m >. 0. q >. 0.

We shall simultaneously construct ^ : B 0 AX -»• E so that

.(6.6) ^ dc • ̂  ^

If Y preserves augmentations (for a given Cg) we shall also arrange that

(6.7) ^(1 » X°)C ker Eg. q >. 0.

6.^.- T^& Apace>A X0. Set

X0 • ker^^B) -J——^ H^E)) .
o

Define d in 1 fl X° so chat d.,0 ® x) is a cocycle in B
C o '

representing x :

[d^O « x)] - x . x c X^.

Extend <(» to X° so that ( 6 . 6 ) holds (and ( 6 . 7 ) if c^ is given).

Suppose X° has been defined for q < p and ^ and d^ have

been extended to B 9 AX^ so that ( 6 . 5 ) and ( 6 . 6 ) hold (and ( 6 . 7 ) if Cg

is given). Let

X° - ker(«'(B 6 AX° ) —e—— H^E))
P p

and further extend ^ and d^ just as we did when p - 0.
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6.9.- Lejnmq.-

i) H°(B e AX°) - k.

ii) \f* : H'(B ® AX°) ^ H^E) is injective.

Pw^-

i) We need only show that H°(B ® AX° ) • k for all p.

Assume this holds for q < p ; then H°(B % AX° ) - k. Let B - B 8 AX° and

B 8 AX° • B e AX° .
$P P

m
If 4> e (B 8 AX°)° is a cocycle write • " ^ . . *..

•. e B° 8 A-^0. 4> ^ 0. Since d-t » 0 it is clear thatj p m C

(6.10) (d. 0 i ) < ^ • 0B m

in o
It follows by our induction hypothesis that • € 1 8 A X .

Now by construction, d injects X onto a space of cocycles in

B which does not meet d-(&°). On the other hand since d^4> " 0, (6 .10)
B ^

shows that

^m + ̂  e '̂ .n-l - °-

Since • c I 8 AX° this impliesm p

d „• - 0.C m

Consider the contractible complex AX 8 ADX generated by X .

Since d : X° ——- B is injective. it follows that D<^ • 0. Because

AX° « ADX° is acycl ic, the only D-cocycles in AX° 8 I are scalars.
P P P

Hence m • 0 and <• m ^ c k.m

ii) Assume 4> c (B ® AX°) . d^ " 0, and ^ <• is a coboundary.

Then <> c (B 8 AX/ ) , some p. and so (by definition of X ) for some
P P'*' '
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X € X , »
p+1

* - d^(l 0 x) c d^(B « AX^ ) .

In particular • is a coboundary in B 0 AX .

Q.E.D.

6.?0.- The, Apac&^ X". n > 0.

Suppose that for some n > 0 X"1 is defined for m < n and

q ^ 0, and that d and ^ are extended to B 8 AX n so that (6.5) and

(6.6) hold.

Assume as well that

(6.11) ^ : H(B 6 AX ) - H(E) is (n-l)-regular.

Define spaces W^ and Y" by

W" • Coker(H^(B 0 AX^) —^- H^E))

and

Y11 • Ker^^B 6 AX^) ——^— H^^E)).o

Let X" - W" • Y" and extend d. to X" by setting
0 0 0 C O

(6.12)

( d-( l ® w) - 0. w c W"
| C o

and

d (1 9 y) is a cocycle in (B 9 AX^) representing y.

y c ̂

Extend ^ in the obvious way so that ^ is surjective in degree n and

( 6 . 6 ) holds.

Next if X" is defined for q < p and .P and d^ are extended
0

Next, if X" ii

to B e AX'" • AX" .0 that (6.5) and (6.6) hold, set (for p >. 1 )

X" - Kerd^'O « AX'" « AX" )
P •
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Extend <L, to X" so thatC p

(6 .13) d-(l 6 x) e B 6 AX^ 6 AX" is a cocycle representing x. x c X11.C <p p

Extend ^ to X11 so that (6.6) holds.
P

6.N.- Lemma.

/ : H(B e AX^) -^ H(E) is n-regular.

Since (B 0 AX^)0 - ( B e AX"11)1". m < n. it follows from ( 6 . 1 1 )

that <P is an isomorphism in degrees less than n. We show next that it is

injective in degree n.

Suppose • is a cocycle in (B 6 AX^")" and ^t is a coboundary.

Note that « e B 0 AX"" « AX" . some p. Let 6 - B 0 AX^ 6 AX" ; it<P <p
is d -stable by construction. Write B 8 AX n 9 AX" " B » AX", and writeC <p p

• • 4' ^ n . <y c B° e x". n c B".
p

Since d 4> « 0 we conclude that (da « \)f * 0. But since H°(E) " k,

( 6 . 1 1 ) shows that H°(B) « k. Hence

It follows that d- 4' c d-dl") . which, in view of our construction of X ,
C B P

implies T • 0.

Hence 4> c B. Continuing in this way we eventually obtain

• c B 8 AX^. Now ( 6 . 1 1 ) shows that • is a coboundary. Thus i? is injective

in degree n.

Finally ^ is surjective in degree n by the definition of

W C X . It is injective in degree n**-1 by the same argument as used in

lemma 6.9 ii).

Q . E . D .
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6. ?5.- P^O){ o^ th^o^ew 6 . 1 . co^t'd.

Above we have defined a c.g.d.a. (C,d-) with C • B 9 AX. We augmentc
it by £p, where e^ extends e and vanishes on X.

If I " ker e 6 AX we write A • C/I and let p : C -»• A be the

projection, d,, and e-, factor over p to make A into an augmentedc c
c.g.d.a. It follows from (6.5) that

£ : B ———— C ———— A.

is a minimal KS extension.

We also defined a homomorphism ^ : (C,d.) -»• (E,dp) ; lemma 6 . 1 4

shows that ^ is an isomorphism. Moreover ^ o i » y by definition.

Finally, if -y was augmentation preserving with respect to e ,

then (6.7) applies and shows that <P is also augmentation preserving.

Q.E.D.

6.?6. - RfcmaAfe^.

1 ) Cor 3 . 1 0 shows that

H ( A ) 2 AX° % H(AX*)

for suitable choice of X .

2) Cor 3.9 shows that ^ is n-regular if and only if A is

n~ connected.

6 . ^ 7 . - Pfioo^ o^ tniofunn 6.2.

Consider the diagram

C——— i————E

.i 1<
B — — — ; — — — — £ .

i
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Since ^ is an isomorphism, theorem 5.19 applies and yields a homomorphism

^ : (£,d^) -<• (C,d^)

such that ^ o i - i and ^ o ^ ~ j? (rel B).

In particular i?(i(ker e-).C) C i(ker e,). C.
o B

This can be rewritten as ^(ker S) C ker p. Thus i factors over p

to yield a connutative diagram of homomorphisms of c.g.d.a.'s

.———.c——-;

B ——:———„ C ———————> A.
l P

Moreover, since ^ o ^ ^ ^ (rel B), ^ o ^<t " { . Because ^*
^« —«

and <p are isomorphisms, so is 4i .
^ - ^ -

i^ext set c • c.. o ^ and c^ • e o a ; these are (possibly new)
Y «

augmentations in fc and A. It is trivial to check that B —^—»• C —2—r A,

^ ^ . )'
together with e-» e., e»,is still a minimal KS extension. Denote it by c.

(In fact if (X,f) is a structure for E set

lit » {x-^(x)l | x c X) ; then (S.f) is a structure for t. If ( 1 . 4 ) holds for

a basis (x } , for X, then it holds for the basis (x -c,,(x ) ! } , for X.)a aei a z a aci

Observe that by definition

^ '\.
O.^.a) : £ - < • £

is a morphism of minimal KS ^^nsions. Since \t> is an isomorphism, theorem

4.5 shows that a is an isomorphism. Since i and ^ are isoirorphisns,

theorem 4.6 shows that ^ is an isomorphism.

Finally, suppose £,, o -y • e for some given augmentation c- of

h<, and <P and w preserve augmentations. Then theorem 5.20 applies (just as

theorem 3 . 1 9 applied above) to yield a homomorphism
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^ : (C.d^e^) ^ (C.d^.e^)

such that ^ o i m i and ^ o i? is based homotopic (rel B) to ^.

As above ^ induces a : A -»• A and this time without making

changes

(i.^.a) : I -^ E

is a morphism. It follows exactly as above that d»^,oi) is an isomorphism.

Q.E.D.

V- ^6 . 1 & . - ^f{joo^ OQ tke.o/iejn 6.3. Change E to E by changing the
- v ^

augmentations of C and A so that d»x»o0 : E -*• E is a morphism (as in

the proof of theorem 6.2 above). Since ^ o x ^ ^ (rel B), \ is an isomorphism.

Thus theorems 4.5 and 4.6 imply that \ and a are isomorphisms.
rf «

Moreover since 0 o x ^ ^ ^ » P o < P ( r e l B ) we obtain

4 ) 0 x ^ ^ o ^ (rel B). Since ^ is an isomorphism we may use prop 5 . 1 5 ii)

to conclude \ ̂  ^(rel B). If 4> is a homotopy (rel B) from ^ to x then

^ factors over the projection

v I vi
0 6 i : (C,B) ——- A

to yield a homotopy from a to a.

Finally, if E is augmented by c , all homomorphisms preserve
«

augmentations and ^ o \ ^ ^ (rel B) then

< P o x ^ ; ^ ^ ' P o ^ ( r e l B ) .

It follows that 4 / o K '̂  4/ o (p (rel B). Since 4/ is an isomorphism

prop. 5 . 1 6 ii) yields x ^ ^ (rel B).

Again, as above, this implies a ^ a.

Q . E . D .

Theorems 6 . 1 and 6.2 motivate the following definitions.
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6. J9.- Vi^YuM.on.

Let y : (B,dg) -f (E,dg) be a homomorphism of c.g.d.a. 's such

that H°(B) • k • H°(E). Assume B is augmented by £-.
B

Then a KS extension, fc" : B ——*• C -L— A, together with a

homomorphism ^ : (C,d^) .-»- (E,dg) is called a model for y if ^ o i » y

and ^ is an isomorptiism.

If E is minimal we call (E,ip) a minimal model for y .

6.20.- Ve.^ivujUon.

Let Y : (B,d ,c ) -*• (E,d_,Cp) be a homomorphism of augmented

c.g.d.a.*s such that H°(B) • k and H°(E) • k.

Then a KS extension t : B ——- C -e—*1 A together with a

homomorphism

^ : (C.d^) - <E^,Cg)

is called a model for Y if if» o i - Y and ^> is an isomorphism. If £ is

a minimal then (E,(p) is called a minimal model for y .

In the case B « k these definitions specialize as follows :

6 . 2 1 . - Vi^nition.

Let (E.d^) be a c.g.d.a. with H°(E) - k. A model for (E.cU

is a KS complex (C.d ) together with a homomorphism ^ : (C.d ) - (E.d^)

such that i> is an isomorphism. If (C.d-) is minimal then we call this

a minimal model for (E,d_).

6.22.- RwaAk^.-

\. Theorem 6 . 1 and theorem 6.2 show chat minimal models ex is t , and

are uniquely determined up to isomorphism.

2. If (E.d^) is a c.g.d.a with H°(E) • k then the minimal model

is automatically connected. Thus if E is augmented \H automatically
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preserves augmentations.

3. By "abus de langage" we may refer to E rather than (E,i(»)

as a model for y and we may refer to (C,d ) as a model for (E,d-.).

4. Let (t.^) be a model for y : (B,dg.£g) -^ tf.d^.e^). Then it

is a model for y : (B,d«) -»• (E,d^). Thus in particular as we vary the augmen-

tation of E we do not change the isomorphism class of £ or the (unbased)

homotopy class (rel B) of \(f.

6.23.- Pfc^»ict<.on.

Let (E,d^) and (F,dp) be c.g.d.a.'s such that H°(E) " k and

H (F) » k. Then (E,<U and (F,d ) are called C-equivalent if there is

a sequence (E.,d.) of c.g.d.a.'s (i«0,1,...,n) such that

i) (E^.d^) - (E.d^) and (E^.d^) • (F,dp).

ii) For each i (i"0»...,n-l) there is either a homomorphism

iP. : (E.,d.) -- (E.^ ,d. ) such that ^. is an isomorphism, or there is

a homomorphism ^ : (E.^ ,d.^ ) - (E..d.) such that 4'* is an isomorphism.

6.24.- Tneo^gjn.

(E,dy) and (F,d ) are C-equivalcnt if and only if they have

isomorphic minimal models.

Clearly an isomorphism of models defines a C-equivalence. To prove

the converse it is enough to consider the case that there is a homomorphism

^ : (E.dp) - (F,d ) such that ^ is an isomorphism.

But then if (C,d ) ———- (E.d^) is a minimal model, by definition

(po<(<
(C.d..) ————" (F,d^) is a minimal model. Hence by theorem 6.2 it is

isomorphic with any other.

Q.E.D.
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6.25.- Mo^ip^cAffiA. Suppose

i, P, ^2 PZ
t : B —•——-C———<- A and E : B —-—^ C. —-——- A

are KS extensions. Assume ^ : (C ,d ) - (C«,d ) restricts to ^ : B -*• B .
1 c! A "2 * -

and that ^ preserves augmentations.

Then, as we observed in the proof of theorem 6.2, ip(ker p ) C ker p^

and so <F factors over p to give a commutative diagram of homomorphisms

of c.g.d.a.'s

B, ———————— C, ———————— A,

.1 1. la

^ ——————— c! ——————— *2

It is a morphism of extensions if and only if ^ preserves augmentations.

6.26.- Pe^ozdcon.

(4<,ip,a) will be called a free morphism from E to t,,.

6.27. - Rgj/KzmA.

1 . A free morphism need not be a morphism !

2. If (i(/,4»,a) is a free morphism then there are unique augmentations

(namely e 0 4 ; and e o a) in C and A such that ^ and a are
'2 -2 '

augmentation preserving.

As we observed in the proof of theorem 6.2, with these new augmenca-
*\,

tions B - C - A becomes a new KS extension E (minimal if E was) and
t

(4'.^»a) '• t "t> ^7 is a morphism.

Now consider a cononut alive diagram

Y

B, ——————'————" E,

(6.28)
4 '2 ^
^ ——————————- "2
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of homomorphisms of c . g . d . a . ' s . Assume B. is augmented by c_ ( i - 1 , 2 ) and1 6.
that ^ preserves augmentations. Assume H ° ( B . ) • k » H ° ( E . ) , i " l , 2 .

t, : B

and

be models for Y and Y^. Combining them with ( 6 . 2 8 ) we arrive at the
commutative diagram

i^o4»

^

no^.

"1 P «

Since ^ is an isomorphism we can apply theorem 5 . 1 9 and obtain

a homomorphism ^ : (C ,d ) •* (C ,d ) such that
• c! 2 "2

^ o i • i o ^i and ^^ -v- n o i? (rel B ).

Moreover the homotopy class of 4> (rel B ) is uniquely determined.

In particular ^ determines a free morphism (4;.(P,a) from £ to

f c - , and we have the diagram

(6.29) ^,

i! p!n • , f» • *

°1 ^ c

^2 " E^ ^1

^

^2 ^ . ^2

B2

^

r< - *
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in which the triangles and left and right squares connute and the central

square homotopy commutes (rel B ).

6.30.- Rejna/ife^."

1 . Assume

.,——,,
,1 i.
•,——;

is a. second commutative square of homomorphisms of c.g.d.a.'s. Suppose

B- is augmented, 4' preserves augmentations, and H°(B ) • H°(E») • k.

Let fc'^ : B^ - C^ -^ A^ and <P : C ^ E be a model for Y,.

Repeating the above construction yields a free morphism (4l,^,a) from E

to £3.

Clearly W " î . Moreover, prop. 5 . 1 5 i) shows that

^ ̂  ^ DD^I (rel B ). Hence ^ is a lift for nn. (Note that by prop. 5 . 1 5 i)

the homotopy class of ^ (rel B ) depends only on the classes of <(/ and i>.)

2. Assume in (6.28) that E and E« are augmented, and that

Y , Y^ and n respect the augmentations. Then (by definition 6.20) so do

(fl and <^. In this case we can apply theorem 5.20 to obtain a morphism

(^,^,a) : E —* E such that ^^ ?; n<P, (rel B ). The based homotopy classes

of ^ and of a are uniquely determined by n.
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Isomorphism theorems

In this chapter we consider a morphism,

-^——£—^——X

n ^ 1 1°
• B———^————C———^————A .

V

of KS extensions t and E . We always assume that

H°(B) • H°(C) • k and H°(B) - H°(C) - k.

In view of remark 6.27.2 many of the results extend to free morphism

The main theorems are as follows :

7.J.- TfefcOWn." Any two of the following three conditions implies

the third :

i) ^ is an isomorphism.

ii) i? is an isomorphism.

iii) Either a or Q(a) is an isomorphism.

If these conditions hold then both a and Q(a) are isomorphisms

v
7.2.- Thg.OA.em. - Assume E and E are minimal. Then any two of the

following three conditions implies the third :

i) ^ is an isomorphism.

ii) ^ is an isomorphism.

iii) Q(a) is an isomorphism.

If they hold. then a and each Q^a) is an isomorphism.
P
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y

7.3.- TktOWn.- Assume E and E are minimal. Then any two of the

following three conditions implies the third :

i) ^ is an isomorphism.

ii) ^ is an isomorphism.

iii) Q(a) is an isomorphism.

7.4.- Rem^ife.-

These theorems contain theorems 4.5 and 4.6, which we used in

chap. 6. Now we use the results of chap 6.

7.5.- y^ooj oj the.o^w 7.2.-

First observe that the final assertion of the theorem, as well as

i) and ii) •> iii) are proved in theorem 4.5.

i) and iii) "> ii) : Consider the minimal model,

of the homomorphism ^ : (i.d^,c^) - (C,d ,e ). Let I C E be the ideal

generated by j o I (ker eg) ; set G • E/I and let v : E - G be the

projection. Use v to make G into an augmented c.g.d.a.

It is easy to see that

E : £——U————E———=————G

is a KS extension. Moreover, because H°(B) - k and H°(E) - k (since ip* is

an isomorphism) we can apply theorem 2.2. This yields a minimal KS extension
^ ^ ^ ^ % ^ ^ _ ^»
t : B - E - C and a morphism (i.4»,a) : £ -> E such that \T is an isomorphism

and (cf. cor. 2.4)
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^9 ^
Q(o0 : Q(G) H(Q(G).Q(d^)) .

On the other hand ^ induces a morphism (^»^,a) from E to E.
^ —'\, ^

Thus (*^,^ip,aa) is a morphism between minimal KS extensions and ^ and

i? i? are isomorphisms. Hence theorem 4.5 implies that Q(aa) is an isomorphism.

But Q(aoi) " Q(aa) » Q(a) Q(a) • Since Q(a) is an isomorphism,

so is Q(a) .

Finally observe that j factors over ^ and p factors over w

to yield a commutative diagram,

(7.6)

&————3———, E

»

X . r

:———E——— F

" <—————————k F

which in fact is a morphism of minimal KS extensions.
v

Since E and E* are minimal cor 2.4 gives

Q(d^) • 0 and Q(dp) • 0 -

Thus the lower row of (7.6) gives rise to the shore exact sequence

(7.7) 0^ (Q(l).O) ^ (Q(G) ,Q(d- ) ) ^ (Q(F).0) -^ 0.(j

Moreover, it is immediate from the definitions that the diagram

Q(l) ————————> Q(G)

Q(A)

commutes.
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But Q(a) is an isomorphism by hypothesis, while Q(a)* ' has just

been shown to be an isomorphism. This implies that inclusion induces an iso-

morphism Q(A) —^ H(Q(G).Q(d^)). In view of the exact sequence (7.7) we may

conclude

Q(F) - 0.

It follows that F " k and so C m E and j is the identity map.

Hence ^ » ^ . But ^ was an isomorphism, and so ^ must be one.

ii) and iii) »> i): Consider the minimal model

of the homomorphism ^ : ( B , d ^ , e « ) - ( B , d , e ) . Let

E^ • E Og S ( - E 8 A) ;

then the sequence of augmented c . g . d . a . ' s

E, : E, < E ^ < A

is a minimal KS extension.

Combine ^ and the morphism ( ^ , ^ , a ) to get a morphism

of extensions.
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We show now that H^EJ - k. In fact, write E. - E e AX

and let x be a well ordered homogeneous basis of X satisfying ( 1 . 4 ) for

Ep Now H°(E? - H°(B) - k. Assume by induction that H°(E 9 (A^ ) , ) " k.

The existence of a non scalar degree zero cocycle in E 0 (AX)
1 (A

would imply (as in previous chapters) that deg x " 0 and

d( l 8 x^ + z) • 0 . some z € (E 9 A x <, ) o •

We may assume z is in the augmentation ideal, and so, since

H°(C) - k, ^(1 8 x + z) « 0. Thus projecting 1 « x + z to Q(X) and

following by Q(a) gives zero. Since Q(a) is an isomorphism we obtain

(^) < ^((AX),,)

which is impossible.

This proves H (E») • k, and so we can apply the second part

of the theorem ( i) and iii) '"> ii) ) to the morphism above to obtain that

^ is an isomorphism.

On the other hand, write

E. • £ Ojr E • i 0 F .
L 0 1 *

This exhibits

( ̂ -. E, ———— F,

as a minimal KS extension, where IT • e« 9 p, and j is the obvious inclusion.

Since ^j • ^ and ^ and ^ are isomorphisms, we conclude that so is j .
v — •

Hence cor. 3.9 gives F " k, B - E , 4' - ^ \ in particular ^ is an

isomorphism.

Q . E . D .
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7.&.- PfLQO^ oj thfLQftW 7 , ? . In view of theorem 2.2 we can find

minimal extensions

E! ! B) ———— c! ———— A! and E! : B! ——— c) ——— A!

and morphisms

(^.^,o^) : ̂  -^ I and (^,^,0^) : E - E^

such that ^. , <^. , a. and Q(<x.) are isomorphisms (i « 1 , 2 ) .

V
Moreover (^^. t^^N, »a^aa.) : E. -*• E is a morphism between

minimal KS extensions, to which we can apply theorem 7.2. The final assertion

together with i) and ii) -> iii) follow immediately. It also follows at once
ft ft 41 •

that if Q(a) is an isomorphism and either ^ or 4/ is. then both ^

and ^ are isomorphisms.

Finally, suppose a is an isomorphism. Define connected minimal

KS complexes F and F by

F - A / ^ and F - A /
7(ker c; )° . A, ' / (ker e )° . A

i i

Then cor 3 . 1 0 shows that

H ° ( A , ) . A^ . H ° ( A , ) - ̂

and that the sequences

0 ^ H°(ker e . ) . H ( A ) - H ( A ^ ) - H ( F ) - 0

and

0 -̂  H°(ker c . ) . H ( A ) - H(A ) - H ( F ) - 0
A! ' '

are shore exact.
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We may conclude the a«ao^ is an isomorphism in degree zero.

(and so also Q(a.aa ) is an isomorphism in degree zero.) We may also con-

clude that the homomorphism a : F - F induced from a^aa^ satisfies :

a is an isomorphism.

Applying theorem 7.2 to the morphism (i,a,a) from

k - F - F to k - F - F we conclude that Q(a) is an isomorphism. But clearly

Q(a) • Q(a«aa ) in degrees >. \. We have thus shown that QCc^aa? is an

isomorphism. It follows that so is Q(a) .

Q.E.D.

7.9.- PA.OO^ oi thtonjw 7.3.- That i) and ii) imply iii) is shown

in theorem 7.2. If i) and iii) hold then theorem 7.2 shows that <P* is an

isomorphism. Hence theorem 4.6 shows that <P is an isomorphism.

Finally, assume ii) and iii) hold. Then by theorem 7.2 each

(^(a) is an isomorphism. Thus lemma 4.8 asserts that we can write
P

4> - 4; 0 a : B e A -- B 9 A.

Since ^ and a are isomorphisms (cf lemna 4.8) it follows that so is 4» .

Q.E.D.
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The ^"honotopy spaces : -n ( y ) .

^ . ? . - Introduction.- In this chapter we consider a homomorphism

(8.2) Y : (B.dg,£g) ^ (E.dg.eg)

between augmented c.g.d.a. 's such that H°(B) • H°(E) « k. We shall associate

with y a graded space ^ , ( v ) -

& .3 . - Lejnna.- Assume a ,a, : (A.d^c^) ^ (A.d ,e ) are homomor-———— o 1 A A A A

phisms of KS complexes, and that a and a. are based homotopic. Then

Q(o^) • Q(a,) .

PA.OO/ : Let ^ : (A ,D,€) -^ (A,d ,c ) be a based homotopy from

a to a,. Since A is a KS conplex we can writeo 1

Q(o^)' • QO* o Q(A^. i - 0 , 1 .

On the other hand

Q(X1) " QA • QX • Q(D)(Q^)

and it follows that Q0»*) : H(Q(A1)) ^ H(Q(A)) is an isomorphism. Since

Q(1 1 ) o Q ( ^ . ) " i we obtain

0(A )* • (Qdt)*)'1 - 0(X )*.
o i

and so Q(a ) • Q(a ) .o i
Q . E . D .
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Now let

be a model for the homomorphism (8.2) - cf. definition 6.20. Then we set

<8 '4) ^(Y;M) • H*(Q(A).Q(d^)) .

Suppose next that

E. : B ——* C- -^ A-

,x ^

is a second model. Theorem 5.20 applies to the commutative square

^

and yields a morphism ( i , 5 , a ) : E ' - £ such that ^ is based homotopic

to <?' (rel B ) . Moreover the based homotopy classes of ? and a are uniquely

determined.

In particular there is a canonical homomorphism

Q ( a ) : H ( Q ( A ' ) , Q ( d . ) ) H ( Q ( A ) . Q ( d ^ ) )
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which is independent of the choice of \y and a. (Apply lemma 8.3.)

Moreover, because ^? ^ i?' (rel B) we have that ^ i?* • (^*)*,

and so ^ is an isomorphism. Thus theorem 7 . 1 shows that Q(a) is an

isomorphism .

We have thus a canonical isomorphism

<8 '5 ) ^(Y;E'.^) ———— ^(Y;E^),

which depends only on (E* , ^ * ) and (E,^). If CE",^") is a third model for

Y then the isomorphism

^(Y;E".r) ——!—— ^(y;Ej)

is obtained by composing the isomorphisms

^(Y;E"J") -^ ^(Y;E'.ip') and ^(Y;E'J') -^ ^(Y;E.^) .

(cf. Remark 6 .30 .1 ) . Moreover, if (E'.^') • (E.^) the isomorphism (8.5)

is the identity.

Now fix Y, and consider the family of graded spaces ^(YiE,^)

indexed by the models of Y. In view of our remarks above the isomorphisms

(8 .5 ) can be used to identify all these spaces as a single graded space.

S.6. - PeUitctcon.- The graded space obtained by identifying the

•n (v.E,^) will be denoted by r (v) and will be called the 4/-homotopv
4, 4- ————

space of Y .

&.?. - Vd^-Jyu^Lon. - If (E,d-.,c_)^ is an augmented c.g.d.a. with

o* • ̂  *H (E) " k, and if Y : k - E is the inclusion, the graded space ^(v)

will be denoted by ^(E,d ,c ) and called the »'"homotopy space for E.
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& . S . - Rcma/lfeA ? . - Let (E : B -»• C -»• A,i(?) be a model for y.

-:1We shall often say we identify H ( Q ( A ) ) with ̂  ( y ) ; note that this
identification depends on ^ !

2 . - We shall frequently further abuse notation and
write TT ( A ) « H ( Q ( A ) ) , even though it may not be the case that H ° ( A ) " k.

^

3 . - If ( E , i ( ) is a minimal model then

TT^ (y) - Q(A).

4.- We shall frequently abuse notation and write (in

definitions.?) T^(E) for TT (E,d ,£ ).

5.- Observe that the isomorphism class of ""^(E)

is independent of the choice of augmentations.

^.9. - Mo^ip^cAm^. - Suppose now that

•, —— ',
(8 .10) ,̂ | n

^ ———* ^

is a commutative square of homomorphisms augmented c . g . d .a . ' s . Assume

H ° ( B . ) » H ° ( E . ) - k. i « 1 , 2 . Let ( E . . v \ ) be a model f o r . , and ( E ^ , < f ' )1 1 1 1 ' «• <-
be a model for 'y- .

Then ( c f . remark 6.30.2 and diagram ( 6 . 2 9 ) ) there is a morphism

(,^,ij),u) : E to E» such that u)^^ a; n u) (rel B ), and this complete ly

determines the based horoocopy class of a.
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Hence by lemma 8.3 the linear map

Q(a)' = .;(Y,;E,J,) - .;(y,;E )̂

is independ nt of the choice of ^ and a. Moreover (cf. remark 6 . 3 0 . 1 ) if

(E[,i((p and (E^.^) are also models for ^ and y then the diagrams.

^ (v,;E;J;)4 / 1 1 1

O(a')
^(v,;£,,^)

W^-V
Q(a)

VY2;E^)

commute. (The vertical arrows are the isomorphisms (8 .5 ) -

It follows that the linear maps Q(a) define a linear map

TTj,(Y.) ->> ^^(Y^) which depends only on the square (8.10).

^ • ^ • - Pe^uu^ccm. - The linear map defined above will be denoted by

(u/.r.r : ^(^) - v^).

If B " B- " k we write it simply as

r ; r ( E . ) - ^ (E.) .u. I 4. 2

^ . ? 2 . - P^iopOA^tcon.- i) Assume that
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is a second commutative square of homomorphisms of augmented c.g.d.a.'s.

Assume H° (B^) • H )̂ - k. Then

(^n'n)^ - (^ ,n*)^ o (U/.n)^ .

ii) If B^ • B^. E^ • E^. Y ^ « Y^. and 4, « i , n • i

we have

d.O^ • i.

^100^ : Apply remark 6 .30 .1 .

Q.E.D.
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Chapter 9

A-extensions.

9 . 1 . - Pfc^uu^Lon." A A-extension is a KS extension

E : B -l-̂ • C -^ A such that (B,d,,,c-,) is itself a KS complex. The A-
0 0

extension is called A-minimal if B is a minimal KS complex and E is a

minimal KS extension.

^ • ^ ' ~ ^WJ^U^ ? . - A A-extension may be minimal as a KS extension,

without being A-minimal.

2.- Suppose E : B -1-*- C -̂ -»- A is a A-extension.

Let (X,f) be a structure for E and assume {x } , is a well ordereda ad

homogeneous basis for X such that ( 1 . 4 ) holds. Let Y C ker e- be ao

graded space such that B « AY and assume (y ) , is a well ordered homoge-

neous basis of Y such that ( 1 . 4 ) holds.

Then the triple (Y,X,f) determines a commutative diagram

AY —————————- AY 6 AX ———————————- AX

(9.3) 2 f

i c

of homomorphisms of graded algebras. This diagram, together with the equations

( 9 . 4 ) d y c ( A Y ) ^ and d ( 1 6 x^) € AY e (AX)^

exhibits ( C , d , c ) as a KS complex.

3 . - Suppose C is a minimal KS complex. Then by

cor. 2 . 4 Q(d ) - 0 and hence ( 9 . 3 ) implies that Q ( d . ) - 0 and Q ( d - ) • 0.c A D
Thus (again by cor. 2.4 ) B and E are minimal ; i . e . , E is A-roinimal.

The converse, however, may fail : E may be A-minimal while C is not minimal.
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Now consider a A-extension E : B —1—»• C p > A.

As in chap. 5, denote by Qo,... the suspensions of Q-,..., and suspendo o

Q(i) and Q(p) to linear maps Q(i) and Q(p). These extend uniquely

to homomorphisms

AQg C ADQg ——^ AQ^ 9 ADQ^ -p— AQ^ « ADQ^

between the contractible complexes generated by Qn»Q/, and Q . .D L A

Next, tensor this sequence with

to obtain a sequence
. 1 - 1

(9.5) E1 : B1 —^—— C1 —g-

in which i * i 8 i and o • o 0 p.

Choose now ( Y , X , f ) and well ordered homogeneous bases {y } -
V'YC-'

for Y and (x } - for X. satisfying the conditions of remark 9 . 2 . 2 .

From ( 9 . 3 ) we obtain the commutative diagram

(9.6) 5

i

^ Q(i)

«

- QC ———————————————
Q(o)

^ s ^

Thus the choice of ( Y , X , f ) determines isomorphisms

(9.7) °c ' ̂  • ̂  •"d ^ 2 ^ • ̂

1 1 0
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compatible with Q(i) and Q(p) (resp. Q(i) and Q(p)). Using (9.3 ) and

(9.7 ) we may write

C - B 8 AX 0 AQ- e ADQ. 0 AQ « ADQ.0 o A A

(9.8) • B e AX e AQ. e ADQ. .
A A

Moreover, the diagram

(9.9) a1

commutes. Thus E is exhibited as a A-extension.

We may also write

(9.10) c - AY 8 AX 8 AQ., 8 ADQ- « AQ. 8 ADQ. .
D 0 A A

Recall the degree -] derivation i and the degree 0 derivation 8

defined in chap. 5 . We apply this definition to the KS complex C to obtain

a degree -1 derivation i and a degree zero derivation 9- in C given

by

^ - 0 in O^DQg.Q^.DQ^.

ip ( y ) - y (c Q g ) . i p ( x ) - x(c Q^). y c Y . x € X

and
^ - ^c + ̂  •

Then !„ and 6- restrict to derivations i- and 6- in B ,
C C D O

1 1 1
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and project to derivations i. and 6 in A .

Next denote the standard inclusions and projections by

(\ ) : B ^ B1. ( X ) : C -»• C1. (X ) : A ^ A1
o B o C o A

and ^ : B1 -^ B. ^ : C1 ^ C. \ : A1 - A.
B L A

e.
Set (Xpg « e o (^)g.... • Then

«^ )R•<xn)^*<x« )A ) : E " EI*0 B o C o A

(TT,.TI,,.7r ) : E1 - E.
B C A

and ^i^^i^r'^^A) : E •* EI
1 D 1 ^ I A

are morphisms of extensions.

9 . ? 7 . - Rgjnfl/ife.- The ideals ker 1T-c: B and ker if C. C are
——__^————___ Q {^

acyclic, and i (ker TI-) c ker -n,,. Moreover,
D L

Im((X ) - (^,).,)C: ker ^ and Im((^ ) - (X ) ) C- ker ^ .
O B I B B O C I L L

Finally, let ((C.B) ,D) be the c.g.d.a. defined in chap. 5

with inclusions > ,X , : C - (C,B) and projection v : (C,B) -^ C.o I

Consider the projection

P : C1 - (C,B)1

defined by

P ( z ) - z. z c C.

P - 0 in Qg and DQg.

P(x ) • x and PDx • Dx, x c 0.

Evidently P is a surjective homoroorphism of augmented c . R . d . a . ' s ,
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and P is an isomorphism ; i . e .

H(ker P) • 0.

It follows from the definitions that

P o (A^ • \^ o P. i • 0.1.

Suppose now that n : (G,d-,) -^ (E,d-) is a homomorphism of
L> tl>

c . g . d . a . ' s . Assume that

( 9 . 1 2 )

B.dg) ——

C.d,)

—i— <t

-^— <•

;.d,)

n

:.d^) . j • 0 . 1 .

are commutative squares of homomorphisms.

9 . 7 3 . - Pe^ouX<.on.- The pair (^ ,<( ) is called homo topic to the

pair (4 . , <P . ) if there is a commutative square of homomorphisms

( B 1 , ? ) ( G . d ^ )

.1

( C . D ) (E .d^ )

such that ^ o (^.), - ^. and ^ o (X,),. • < ( / . . i " 0 . 1 . We write
1 0 1 I L 1

(^.^) - <»,.«,).

The pair (T,^) is called a homotopy from (\i ,'̂  ) t^ ( » - . » ' ^ . ) -

1 1 3
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Now suppose that E and G are augmented by e and c , and

that ^ , ^ , ^ , ^ and n preserve augmentations.

9 • J 4 • ' El̂ 0!̂ 0!!-' ^o'^ is called based homotopic to (4» ,i? )

if there is a homotopy (Y,^) from (^.^) to (4^.^.) such that ^

and $ preserve augmentations. The pair (»y.4>) is then called a based homotopy

from (4; ,ij) ) to (U/.,^.) and we write 4 ,^ ) ^ (^ ,ip ).

9 . 7 5 . - Rzma/ife^ 7 . - We shall see in prop. 9 . 1 7 . that these definitions

do not depend on the choice of structure used to define (A ) ,... .
1 B

2.- Assume (4; ,^ ) ^ (^..^.). Then 4, ^ 4, and

^ ^ U/, , and hence ^ » ^ and <() • <P, . However, the converse is not
0 1 0 I 0 ;

always true ; it may be the case that ^ ^ ^. and ^ ^ \) without (A ,<P )
0 1 0 1 0 0

and (4;.,^.) being homotopic.

3.- Suppose î ,^ : (C.d^) -^ (E.d^) satisfy

f_ o i.« n o 4/ , j « 0 , 1 , for some 4» : (B,d ) - (G.d.,). A homotopy (4'.4>)

from (^,i|? ) to (^,^,) is said to be constant in B ifo ' l ————————

V - ^ 0 T - .
0

It follows easily that a homotopy is constant in B if and only if

it has the form (u< o TT , P o P) where P is the projection defined above

and r; is a homotopy (rel B) from S to ^ . Moreover, if ^ is any

homotopy (rel B) from ^ to ^ then (u o TT , ^ o P) is a homotopv from
0 1 D '

(^.^ ) to (u»,il),) constant in B.o I

This defines a bijection between homotopies (rel B) and homotopies

constant in B. In particular, if ^ ^ (R (rel B) then
o I

( 4 - » C 1 ) "- (t^.), but the reverse implication does not always hold.

1 1 4
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4.- Homotopy txte.n&^.on pnxspwb^.- Assume

^o»^] : ̂ '^ ^ ^'^ and ^o : ̂ '^ '>> ^'^ are homomo^Phisms and

that ^ o i » n o ^ . Suppose further that f is a homotopy from ^ to ^

Then a bijection between homotopies (V,^) starting at (^ ,^ )
o o

(and restricting to the given f in B ) on the one hand, and degree zero

linear maps Q -»• E on the other is given by restricting ^ to Q .
A A

In particular (take ^(Q*) • 0) there is always a homomorphism

^ : (C,d ) -^ (E.dp) such that

^ o i « n o ^ and (4» ,<? ) ^ <^.,^.) .

5.- Remark 3 applies verbati® to based homotopies,

and homomorphisms of augmented c.g.d.a.'s. Remark 4 applies with the single

change that the bijection is with degree zero linear maps Q -*• ker £ .

9.76. - Lgjnma.. - Assume given the commutative squares ( 9 . 1 2 ) with

the property that

Im(ii/ - ^ ) C I and Im(^, - ^ ) d I .
1 o G 1 o E

where I- and I are acyclic ideals in G and in E. and n(I,J C 1_ .\f &• \j t.

Then (^ ,<!/ ) ^ (4/ . ,<^.) . and the homotopy (f,^) can be chosen

so that f(Qg)c: 1^ and <»(Q ) C I .

Moreover if the homoroorphisms of ( 9 . 1 2 ) preserve augmentations and

I ^ ker c and I C: ker e , then ('(',•) is a based homotopv.
U u t. t,

P^iOO^ : Use the proof of lemma 5 . 1 1 .

Q . E . D .
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9.J7. - P^opo^^Uon. -

i) Definitions 9 . 1 3 and 9 . 1 4 of homotopic and based homotopic are

independent of the choice of (Y,X,f).

ii) Homotopy and based homotopy are equivalence relations on commutative

squares of the form ( 9 . 1 2 ) (with B —^ C and G -1*- E fixed !).

P^LOOf} : Use lemma 9 . 1 6 the same way lemma 5 . 1 1 and cor. 5 . 1 2 were

used to prove prop. 5 . 1 4 .

Q.E.D.

y v ^ v g s.
Next suppose c : B —>• C —*• A is a second A-extension, and

v v v
that n : (G,d^) ->• (E,d-<) is a homomorphism of c.g.d.a.'s. Assume given com-

mutative squares of homomorphisms of c.g.d.a.'s

i and

9 .?^ . - P^poA^con.- Consider the commutative squares ( 9 . 1 2 ) in

conjunction with the squares above :

i) If (^.^) ^ (^.U^) then

^G^E^ '' ^G^E^ and (u;oxB^oxC)''^l^^l^^'

ii) If y^ and y are isomorphisms then (4' ,^ ) ^ (y- , ,^ , )
G E o o 1 I

if and only if ^G^O^E^ ^ ^G^l^E^'

iii) If all c.g.d.a. 's are augmented and all homomorphisms preserve

augmentations, then i) and ii) hold with "based homotopic" replacing "homotopic*
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P^OOj} : Part i) is trivial (cf. the proof of prop. 5 . 1 5 ). To prove ii)

we may assume (y 4'o»Yp^ ) ^ ^c^l^E^l^' Then* as "l the proof of prop. 5 . 1 5

ii) define a commutative square

G e AF e ADF

n 8 n,

E « AL 6 ADL

where F « G , L • E and n. is the obvious homomorphism extending n.

Denote the left hand side of the above square by

and let the obvious inclusions and projections be written

Now suppose (f,^) is a homotopy from (y ^ ,v ^ ) to (^pU'. *^i) •

Choose linear maps (of degree zero)

^ : Q- - G and ^ : Q, - E
o A

so that T^f • t and t_^ • <'. These extend to a unique homocopy ('t',4')
G E

starting at (JC^E^-

Use lemma 9 . 1 6 (as lemma 5 . 1 1 is used in prop. 5 . 1 5 ) to conclude

the proof .

To prove ii i ) modify the proof of prop. 5 . 1 6 the way the proof

1 1 7
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of prop. 5 . 1 5 was modified above.

Q.E.D.

Suppose that E : B -1-*' C -p-^ A is a fixed A-extension.

9.? 9. - ThWiem.- Assume

G ————n———— E

G ————^———— E

E : B —————,————— C —————^————— A

is a commutative diagram of homomorphisms of c.g.d.a.'s such that

i) Y- and -y- are isomorphisms.G L

ii) E is a A-extension.

Then there are homomorphisms ^ : (B,d ) - (G.d ) and
0 6 u

>!) : (C.d ) - (E,d ) such Chato C E

^ o i • n o U' and ( ^ 4 , ,'y 4? ) ^ (u/,^)
0 0 U 0 t 0

If (4/ . .<P.) also satisfies these conditions, then

(^.^) - (^).

P^tOO^ : Ex^Afence.- By theorem 5 . 1 9 . we can find ^ : (B.d ) - (G.d,.)

•o that Y i; ^ 4<. By remark 9. 1 5 . A we can find 3 : ^^r^ "̂  (E*dE^ so that

ii o i • ? y ^ and ( ^ 4 ; ,i) ^ (u-.'P).
b 0 u 0

1 1 8
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Now theorem 5 . 1 9 applies again and yields ^ : (C,d.,) -*• (E,d-.) such

that

^ o i • n o ^ and Y.J ^ 5 (rel B).
0 0 £ 0

By remark 9 . 1 5 . 3 this implies (y^ ,Y-.ip ) ^ (y^^ ,$) and since homo-

topy is an equivalence relation we obtain (^^> ,yy^ ) ^ (i^,^).

Un^QU.fcne^^. - Apply prop. 9 . 1 8 ii).

Q.E.D.

^•^•' T^fco^iefn.- Assume all the homomorphisms in the diagram of

theorem 9 . 1 9 are homomorphisms of augmented c.g.d.a.'s. Then (^ ,<? ) may

be chosen to preserve augmentations, as well as to satisfy

^ o i - n o ̂  and ^Q^o^^o^ ^ ^tu)) *

Moreover, these conditions determine (<(» ,^ ) up to based homotopy.o o

P^tOp^ : Modify the proof of theorem 9 . 1 9 , using theorem 5.20

and prop. 9 . 1 8 iii).

Q.E.D.

Finally, consider free morphisms

(^.^.c^) : E - E. i - 0 . 1 .

where

5 ; B — — C - ^ - A a n d E : B — » C - ~ A

are A-extensions. If (f.^) is a homotopy from 4 ,<p ) to (^. ,u?.)

then in particular

1 1 9
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Now if f is a based homotopy then we have V(ker e) c ker e-——— B
and it follows that

•(ker P1) C ker p .

Thus 4> factors over p to yield a homomorphism

which is a homotopy from a to a .

9.22. - V^wition.- If Y is a based homotopy we say that

(4/ ><P »oi ) and (^.,<?.»a.) are homo topic by the homotopy (4',^,s). We write

(^.a^) ^ (^.^.a^).

If (i^.,ij).,a.) are actual morphisms and 4> is also a based homotopy,

then

(V.O.s) : E1 - E

is a morphism. We call it a based homotopy from (^ ,ii) ,a ) and (U'. »^. »o i . )»

and write ^o^o'^o^ ^ ^ i^*3 ] ) -
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A-models.

In Chis chapter, we consider a homomorphism of c . g . d . a . ' s

n : ( G , d g ) •* ( E . d g )

such that H ° ( G ) » k and H ° ( E ) » k. We adapt the theorems of chap. 6 .

1 0 . 1 . - ThtpfiVr. (ex^(&nc&) .- There is a commutative diagram of

homomorphisms of c.g.d.a. 's

n
G ——————————- E

E : B —————^————— C ————^————— A

such that
i) £ is a A-minimal A-extension.

ii) 4' and ^ are isomorphisms.

Moreover, if c- and e- augment G and E and c-n " Ep,0 Jfc £. U

then 4' and ^ can be chosen to preserve augmentations.

P^OO^ : Let ^ : B ̂  G be the minimal model for ( C , d - ) (or for

( G , d « , e - ) ) . Let ( E , U O be the minimal model for n^ : B - E (or forG G
^ : ( B . d . , e . . ) - ( E . d , e ) ) .6 0 C. C.

Q . E . D .

1 0 . 2 . - RgmflAfc.- Note that H ° ( B ) - H ° ( C ) - k . Thus in the KS

extension k - B - B the inclusion of k is 0-regular. Thus cor. 3 . 9 .

shows that B is connected. In particular B has exactly one augmentation.
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Next suppose

E : B -^ A and E : B

are A-minimal A-extensions. Assume

n . r. r

t
, ^ 4;

(
'

n —————————r r F

; ——a——

^
a —————————».

are commutative squares of homomorphisms of c.g.d.a.'s such Chat ^ , ^ , ^

and if are isomorphisms.

?().3. - T^ieown (u^tcnaene^) .- Under the hypotheses above there is

a commutative diagram of homomorphisms of c.g.d.a.'s

U' s 4) s
i

A ,

such that ^, i? and a are isomorphisms, and (U^.iW ^ (^,4)).

v v
If n. <'» ^ 4'. ^ are augmentation preserving (for given augmentations

of G and E) then (^, !}. a) can be chosen to be augmentation preserving

and so that (u^.'N) ^ (4',^).

P/iOO^ : Apply theorem 9 . 1 9 . (or in the augmented case theorem 9.20.)

to obtain homomorphiams 4/. 5 such that (4^,(W ^ (^,U/) .

By remark 10 .2 . , i is automatically augmentation preserving.
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Hence ? factors to give a.

Now because (il̂ ,N) ^ (^.)) w^ have that ^* and ^ are isomor-

phisms. Apply theorem 7.2 to the morphism

(i.^) : ( k — — i ^ - B ) -. (k —. B -^ B)

to obtain that ^ is an isomorphism.

v «

On the other hand, (cf. remark 6.27.2) , we can reaugment C and A

so that OT,4»,a) is a morphism. Since ^ is an isomorphism and 4) is an

isomorphism, theorem 7.2. implies that a is an isomorphism. Hence theorem 7.3.

shows that so is 0.

Q . E . D .

1 0 . 4 . - T^izo^gjn (un^qu.e.n^^ o^ ^omo^pki&m).- With the hypotheses

and notation of theorem 10 .3 . assume that ^o^o'^o^ : E "" E is a free

morphism such that

(U^ ,4^ ) ^ (4',$).
0 0

Then (^ ,\0 »a ) is an isomorphism, and ('̂  ,^ ) ^ (4 / ,<^ ) .
0 0 0 0 0

Moreover, if E and G are augmented and all homomorphisms preserve
rf \ — — —

augmentations, and if (^ .u?J ) y (^.i1) then ^'o^o*01^ > (v.ij.a).

P^LOO^ : Note chat \i^ and u>* are isomorphisms and argue as above

that (u» ,^ ,Q ) is therefore an isomorphism. Prop. 9 . 1 8 . ii) implies (because
0 0 0

(4^ .n)^ ) ^ (^.i?) ^ (u/'^.4?5)) that ('-. ,^ ) '- (•'».5).
0 0 0 0

In the augmented case prop. 9 . 1 8 iii) implies that: ^^'^ ^ ( 4 l * ' ^ l )

whence (cf . definition 9 . 2 1 ) (» ,-^ ,j ) :- (» , .J . .a ) .
0 0 0 " I I I

Q . E . D .
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10.5. - Pe^uu^on.- Let n i ̂ '^ "*' ^'^ be a "onomorphism of

c.g.d.a.'s such that H°(G) m k - H°(E). Then a A-model for T} is a A-

extension E : B -1-*- C -^ A together with homomorphisms

^ : (B,dg) -. (G.dg) and ^ : (C,d^) -. (E.dg)

such that ^ o i " n o ^ and ^ and ^ are isomorphisms.

If E is A-minimal then (E,^,^) is called a A-minimal Ainodel

for n .

1 0 . 6 . •• Ve.^yuXA.on.- Let n : ^G*dG'eG^ "̂  ^^F^E^ be a holnomor"

phism of augmented c.g.d.a. 's such that H (G) «• k • H (E). Then a A'^model

for n is a A-extension E : B ——> C ——-*• A together with homomorphisms

<p : (B.dg.cg) -^ (G .dG.£G ) and ^ : ^^C'^ " ( E t d E' C E )

such that ^ o i • n o ^ and ^ and ^ are isomorphisms.

If E is A-minimal then (E,^,^) is called a A^minimal A-model

for n.

1 0 . 7 . - RejnaAk^ ? . - Theorems 1 0 . 1 and 10 .3 show that A-roiniroal

A'-models always exist, and are unique up to isomorphism.

2.- Another way of constructing the A-minimal A-model

of n is as follows (if G is augmented). Let
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be the minimal model of n. Then let

(B.dg.Eg) (G.d^)

be the minimal model of G. Finally, let

E : B

be the minimal model of j \^.

Then (E,4/,i( ^,) is a (and so the) A-minimal A-model ofo 1

Note that because ^ preserves augmentations, f. factors to yield

where a is an isomorphism by theorem 7.2 .

Thus the fibres of the A-minimal A-model of n and of the minimal model

of n coincide.

3. - Suppose (E.4;.<i>) is a A-model for n : G - E.

Then ^ : B - G is a model for C and (E,<^) is a model for '' o *. If

(E,4/,<()) is A-minimal then both these are the minimal models.

On the other hand u> : C -» E is also a model, and even if (E,,,^))

is A-minimal this model for E need not be.
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1 0 . S . - ^o^phA^m&.~ Consider a conmutative square

(10.9)

of homomorphisms of c . g . d . a . ' s . Assume H°(G^) « H ° ( E ^ ) • k. i - 1 . 2 .
Combine ( 1 0 . 9 ) with A-models (E^.,^) for n^ (i • 1 , 2 ) . This gives a

diagram

( 1 0 . 1 0 ) iM Y

N, ", . ̂

^G

^G 2 - n2 '"l «.
^ ^Y
—————————————————. c

r

'•

Here i- and 4^ are constructed so that (^l^E^ '"' ( 4 2 4 / •^2^ ) *

(cf . theorem 9 . 1 9 ). Note that all the remaining squares commute. We assume

the augmentations in B and B^ are chosen so that 4' preserves augmen-

tations (this is a vacuous assumption if B^ is minimal). Then ^ factors

to give a. Finally note that the homotopy class of (^,^) is uniquely

determined.
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10.11. - P,WfAk& 1.- Suppose

"2G, ————2———— E,

Y G ! r-
^ ————————— -3

is a second commutative square with H°(G«) • H°(E«) • k. Let (E ,̂  ,<L)

be a A-model for n~ and repeat the above construction to obtain a free

morphism (4^.!?,a) : E. - E .

Then (^,^,aa) : E -*• E- is the free morphism corresponding

to (^ o Y^ o ^).

2.- Assume in ( 1 0 . 9 ) that the c.g.d.a. 's are

augmented and that the homomorphisms preserve augmentations. Let (E.,^.,<P.)

be a A-model for n^ : (G^.d^ .c^ ) -^ (t1^.^ *^ ) * i " 1 > 2 '
i i i i

Then using theorem 9.20 , we can choose (^,<P,a) to be a morphism

such that (^ ^ . » Y r . ^.) ^ (4'^4/»<P-,^). Moreover this uniquely determines the

based homotopy class of (^,^,a).

H 1 . ? ? . - The gxac^ ^-feomD^on// Agouence.- Suppose E : B -1-* C -£-' A

is a A-extension. Then the sequence of differential spaces

0 - (Q(B) .Q(d- ) ) Q(l) • (Q(C).Q(d,,)) qo ) • ( O ( A ) . O ( d . ) ) - 0
D L A

is short exact , as follows from (9.6 ). Hence it gives rise to an exact triangle
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Q(i)*
H(Q(B)) ——————————————————- H(Q(C))

O0^) ^\ /Q(0)*

H(Q(A))

in which the connecting homomorphism, 8 , has degree • » - 1 .

A morphism of A-extensions induces a morphism of short exact sequences

and hence a morphism of exact cohomology triangles. According to lemma 8.3

this last only depends on the based homotopy class of the original morphism.

Now suppose that (E, ^,^) is a A-model for a homomorphism

n = (G.dg,^) -< (E.dg.^)

of augmented c.g.d.a.'s. Then

^ : (H.d^Eg) -. (G.d^.c^) and ^ : (C.d^.c^) -^ (E.d^.c^)

are models.

Thus, as described in chap. 8, we have canonical identifications

(10.14) H ( Q ( B ) ) ———E——. ir^(G) and H ( Q ( C ) ) ———=———— ^(E).

On the other hand, (E, l) is clearly a model for i and hence

we have a canonical identification

(10.15) H ( Q ( A ) ) ———s-———— r * < i ) •

Moreover, because ^ o i " n o 4 / we can apply definition 8 . 1 1 to obtain a

linear map
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(4^) : n^(i) —— ^(n).

Since ^)* and i?* are isomorphisms theorem 7.2 shows that so is (i^,^)".
^

Thus composing ( 1 0 . 1 5 ) with (4/,^) ' gives an isomorphism

(10.16) H(Q(A)) ———E——- TT^n) .

We can thus express the exact triangle ( 1 0 . 1 3 ) in the form

.^(G) ————^————— ^(E)

(10.17) 8

%^

If (E ' , ^ ' , 1? * ) is a second A-model then theorem 9.20 gives a

morphism (^,3.^) : E' -^ E such that (^.N) ^ (4 ' ' .<P*) . This completely

determines the based homotopy class of the morphism. Moreover, ^ and ^

are isomorphisms, and hence QW*.Q(U?)41 and (Kix)* are canonical isomorphisms.

If we identify the "primed triangle" analogous to ( 1 0 . 1 3 ) with

( 1 0 . 1 7 ) as described above then the two identifications are identified by

QW^Qd;))* and Q(a)4 '.

Finally observe that a commutative square

C, —————————— E,

^ > '»rG i ( E
i i

^ ——————————— E2

of homomor phi sins of augmented c . g . d . a . ' s defines a commutative diagram
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^- ^(G,) -^ ^(E,) — ^(T',) -3L- "r1^ 'l), '-1'

1 ^ j tt | ^ | i1

E j^G'^ ^( 1 0 . 1 8 ) YG rE ^G'̂  rc

- ^<G2) -^ ^P<E2) ——— ^^ ——.- <1(G2) ' •
^ 9

70.79 . - Exomp^fc.- Suppose the A-extension E is in fact A-minimal.

Then the short exact sequence reads

0 —- (Q(B).O) —^ (Q(C),Q(d^)) —<- (Q(A),0) —^ 0

as follows from cor. 2.4.

Thus Q(d^) (Q(B) ) « 0 and Im Q(d^)C Q(B).

Hence Q(d^) factors to produce a linear map
C

OTd^T : Q(A) -^ Q(B) .

and this by definition is exactly the connecting homomorphism 9^.

In other words. 9* • 0 if and only if Q(d^) " 0.

Thus (cf. cor. 2.4 ) 9* exactly measures the failure of the middle KS complex

in the A-minimal A-extension E to be itself a minimal KS complex.

Now if n ; G -»• E is a homomorphism of augmented c.g.d.a. 's

with H°(G) • H°(E) - k. then n has a unique A-minimal A-model. The

middle term of this will be the minimal model for E if and only if the

connecting homomorphism 9 in ( 1 0 . 1 7 ) is zero.
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Automorphisms,

In this chapter (A.d^) denotes a connected KS complex and

^ : A - Q(A) is the projection (cf. 1 . 1 ) . Thus if we write A • AX then

^ : x —L^ Q<A)•

^• y•• nle H t̂CW.cz mop. Recall (2 .1 ) that a differential, Q(d ).

is defined in Q(A) by Q(d^ - ̂  o d .̂ Thus ^ induces a map

^ ^ ^(A) ^ H(Q(A).Q(d^)) ;

this map is called the Hurevicz map.

If ^ : (A,d^) -»• (A,d^) is a homomorphisn of connected KS complexes,

then it induces a linear map QW : Q(A) -^ Q(X) and the diagram
•

H^A) —————^—————. H(Q(A))

( 1 1 . 2 ) ^ Q^)*

H^(A) —————^—————— H(Q(A))

'•v
A

connutes.

In particular, suppose ^ : (A,d^) - (E.dg.^) is a model for an

augmented c.g.d.a. (E,d^.Cg). If we use <p to identify

H(A) • H(E) and H ( Q ( A ) ) • TI , (E)

(cf 8 . 8 . 1 ) then ^ defines a map
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(11.3) H^E) ^ ir^(E).

Diagram ( 1 1 . 2 ) shows that ( 1 1 . 3 ) does not depend on the choice of model ; it is
called the Hurevicz map for ( E , d ^ , £ _ ) .

Now suppose that (A , d ) is minimal (so that Q(d ) - 0 - cf. cor 2 . 4 ) .
Then

^ : H*'(A) -. Q(A) .

On the other hand, recall from 3.2 (with B • k and C - A) the filtrations

Q"(A) C Q°(A) C .... C Q°(A) , n ^ 1 .

According totheorem 3.4 ( induces isomorphisms

^ ' Z° / S n"A • p / ———<• Q.(A)/ , P >- 1
/A" , p /Q° ,(A)^p-l.n "'p-l

(11 .4) and

;*'2:/^ ——t:(l>-
-1 ,n

By definition the second restricts to an isomorphism (cf. prop 3.8)

( 1 1 . 5 ) î  : la e —1——> 1m ^ .

H.6.- iocjaJUbj ytitpote.nt ^amiJLiu. Let {(? } - be a family of linear

transformations of a vector space W. We say the family is locally nilpotent if

there is a well ordered basis {w ) j of W such that for Y c r, a € I

^ w is a linear combination of the w with 6 < a. If V is a subspace
"Y Q b

of W which is stable under each ^ then the family is locally nilpotent in

W if and only if the induced families of transformations of V and W/V are

locally nilpotent. If W is a direct sum of subspaces W and each W is
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stable under the ^ then (ip } is locally nilpotent if and only if for each

\ « |W.} is locally nilpotent.
Y A

Finally, if [f -1} is locally nilpotent we say [^ } is locally
unipotent.

H.7.- P^tOpo^^tcon. Let (A,d ) be a minimal connected KS complex.

Assume f : (A,d ) -»• (A,d ), ^ € F, is a family of c.g.d.a. homomorphisms.

Then the following are equivalent :

i) (ip } is a locally unipotent family.

ii) (^ ) is a locally unipotent family.

iii) (Q(^ )} is a locally unipotent family.

iv) The restrictions of the (Q(<P )) to Im ^ form a locally unipo-
Y A

tent family.

P^iOO^ ~ The following implications are evident from the remarks above :

ii)

^ ^
i) iv)^ ^

iii)

It is also easy to verity that iii) •> i).

Now assume iv) holds. We apply prop. 3.8 (parts iii) and iv)) together

with the isomorphisms ( 1 1 . 4 ) and ( 1 1 . 5 ) . Together these show that if i) holds

for some A . then iii) holds for A . Since iii) -> i) the propositionp~ I ,n P »n

follows.

Q.E.D.

Next. consider a locally unipotent family (<P } of automorphisms of

a minimal connected KS complex (A,d ). Since the Q(^ ) are locally unipotent
A Y

and respect the filtration
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Q"(A) C Q^(A) C

we can find a veil ordered homogeneous basis {z ) 7 of Q(A) subject to thea aei
following conditions :

( 1 1 . 8 ) B < a •> deg z« $ deg z .
P a

( 1 1 . 9 ) B < a. deg ig - n - deg z^, z^ e Q"(A) -> Zg c Qn(A).

( 1 1 . 1 0 ) For all .Y and all a» (Q(ip )-i)z is a linear combination of the
Y a

z with 6 < a.p

n.H.- P^tOpoA^tcon. Let z satisfy the above conditions and let

x e A be homogeneous vectors such that C»x - z . Thenex A <x ex

i) The x are a basis for a graded space X C A*, and A - AX.

ii) d^ c (AX)^.

iii) For each y and each a, « -i)x c (AX) .Y a <a

P^.00^.- i) and iii) are immediate from the connectivity of A.

ii) follows from theorem 3.4 (because of ( 1 1 . 8 ) and ( 1 1 . 9 ) ) .
Q.E.D.

H.^2.- The. cUclfc CO»l6^mcX<.on. Assume (A.d ) is minimal. Fix a

locally unipotent automorphism, <(1, of (A,d ). For each z e A there is some

n such that

(<?-i) z z - 0.

Thus we can define
00 r i'»n"!

6 • log iP - ^ ^—^—— (<ir-i)1

n"l

it is a locally nilpotent derivation of A, homogeneous of degree zero. and
Q

commuting with d . Note that ^ - e .
A

We can also define a linear map of degree zero, commuting with d '•

^ : A -o A, by
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•--.I,-5W"-

It is locally unipotent, and hence « linear autoaorphisa. It satisfies

e^ - ^e - i- l̂ .

Now let ^)^j •atiify the conclusions of prop. 1 1 . 1 1 (for ^)

and let X be their span ; then A - AX. Define a c.g.d.a. (Au 9 A,Da),

(where deg u » 1) by

D.u - 0

and

^(l ® a) - 1 e d^ a •»• u C 6a. a c A.

Apply prop 1 1 . 1 1 ii) and iii) to conclude that

^a € w^ and ^a € ^a ;

it follows that (Au 0 A, D )̂ is a minimal KS conplex. It will be called the

circle construction for ^.

On the other hand denote by A(t»dt) the contractible KS complex

generated by an element t of degree zero. Define

v , IT : A(t,dt) • A -*• Ao 1

by ^(t) - 0. ir^(t) - 1 and ir^(a) - î  (a) - a, a c A.

Let (K..d) be the c.g.d.a defined by

K^-kerOr^).

Then a homomorphism of c.g.d.a.'s

( 1 1 . 1 3 ) o , : ( A u ® A.D..) - (K,,d)

is defined by o<(u) - dt, o,(a) - I — t" e en(a).
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H.N.- PA.opo^ t̂con. o» is an isomorphism. Thus ( 1 1 . 1 3 ) is the mini-

al model of (K.,d).

P^OO^.- Define a short exact sequence of differential spaces

(11.15) 0 -*- A -—»• Au e A ——- A -»• 0

by a(a) " -u 0 ^ (a) and B(u % a+19a.) • a.. On the other hand we have the

short exact sequence

i "r^o(11.16) 0 -^ K. —^ A(t ,d t ) 6 A —————— A ^ 0,0 -^ K. —^-^ A(t ,d t ) ® A

where j is the inclusion.

In the long exact cohomology sequence arising from ( 1 1 . 1 5 ) the connec-

ting map S : H^^A) -*- H^^A) is given by

^ . ,• - .

as is easy to check. On the other hand, if a c A then

• n+1
(TT -^ )(- ^ •c——— 9 6" <» a) • a.

° n-0 (n+1)!

It follows that the connecting map 9. for the long exact sequence arising from

( 1 1 . 1 6 ) is given by

Thus the diagra

^ H ^

2:

-H11

•

*\ Q uP'*'1/*..^^

l1
3! v J* ('i-^

«

°<c

6* . H1'4'1-' ^0 - ̂

5

P4. ] n-«
> It ' / A / *- J * - \ A A \ -^ "r

<-:)"

"(A) -

I

" ( A ) <

commutes and the proposition follows.
Q.E.D.
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Next recall from chap. 5 the c.g.d.a. A1. (Let B - k, C • A.) We have

the projection TT : A -»• A and the inclusions X ,\ : A ->- A . Assumeo i

• : A -»• A is a homotopy from ^ to ^. Then ^ - ^ , so ^ is also locally

unipotent. Let 6 • log ^.

Regard ir. as projections A(t,dt) % A •+ A , i • 0 ,1 , and define

P - T T O T T - ^ O T T : A(t ,dt) ® A1 -̂  A.
1 0

Then set KA " ker P; it is a sub c.g.d.a.

Consider the row exact commutative diagram

from it we deduce that Y and Y are isomorphisms.

Now identify u with dt. Then

(Au 0 A.DJ - A

and

(Au % A,D ) - A
(

are both minimal models for the inclusion Au -»• K.
u
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Hence by theorem 6 . 2 there is a c . g . d . a isomorphism

T : (Au 0 A,DJ —=-«- (Au e A.DJ

such that T(u) " u. Clearly T must have the form

T(I 0 a) • -u 0 s(a) * 1 9 T^(a). a c A,

where T is an automorphism of (A,d.).
0 A

Straightforward calculations show that

s(ab) - s(a)T^(b) ^ (-l)^8 ^^B^W

and

\ + ̂  - T09 - ^O

In particular a degree -1 derivation, s , in A is given by

-I -v,
"o 8-

It satisfies

^A + "A" - e - \>' e 'o-

We have thus proved

H.J7.- PfLOpO&^Uon. Assume ^ is homotopic to <?. Then there is a

degree -1 derivation, s, of A, and an automorphism T of ^^A^ such that

log ^ - sd^ + d^s ••• T^ log i T^.

In particular, if ^ ^ \ then

log ^ " sd ^ d s.
A —
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Next suppose 4> is a based homotopy between ^ and ^. Since A is

connected A » X and A • AX 9 AX^ . Thus (since A is minimal)

AX1 ^ A -<• AX^2

is a minimal KS extension and so we can form the c.g.d.a (A»AX ) . The projection

A1 -E-o (A.AX1)1 (of chap. 9) satisfies p o X^ - I.. i - 0.1, where

I. : A -*• ( A , A A ) are the inclusions. Since • is based and A is connected,

$ factors over p to yield a homotopy

V : (A,AX1)1 - A

such that y o ^ • <p. f o I "• î.

Now repeat the above construction with Y replacing 4 to achieve

the commutative diagram

A ( t , d t ) 8 A

Note that (A,AX ) is connected. Thus if we augment A(t,dt) by t -*• 0 then

K«.f K , K are augmented and T , T preserve the augmentations.

Moreover A ,\ agree in AX and hence so do ^, ^ and 6, 6.

Thus we can wri ce

YO . " ^o^ • n : Au 8 AX •*• K
^ 4,
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In particular

Au 9 AX Au « A AX12

and

Au 0 AX AX >.2

are both minimal models for n.

We apply theorem 6.2 to obtain an isomorphism

T : (Au 9 A,D^) (Au « A,D )

such that T « i in Au 0 AX . The resulting derivation s is thus zero in X ,

and we obtain

U.K.- P t̂OpOA t̂um. Assume ^ ^ ^. Then there is a degree -1 derivation

s of A and an automorphism T of (A,d ) such that
0 A

T • i in AX and s " 0 in AXo

and

log ((? - ^^A8 + T^ log ^ "̂

In particular, if ^ ~ i then

log ^ • •^A5'
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n * 7 9 - " ^omotor^it&. Again assume (^tU i8 minimal. For any c.g.d.a.

(E,d_) form the c.g.d.a. A(t,dt) 0 E (deg t • 0) with the inclusion and

projections

i : E - A(t,dt) 9 E » TT ,TT : A(t ,dt) 0 E - Eo 1

given by f c z « l ® z , TT t • 0, IT t • 1 .

Two c.g.d.a. homomorphisms f ,ip : A -»• E will be called lomotopic

if for some c.g.d.a. homomorphism

» : A -*• A(t ,dt) 9 E,

r. o « » i(. , i *• 0,1. If ^ ,^ preserve augmentations (for a given augmenta-L I o l

tion Ep of E) then ^ and <(. are called based lomotopic if » can be

chosen so that

(i 9 Cg)^ (A"1) - 0.

H.20.- P^opOA^tcon. Assume H°(E) " k. Then

i) <(? ~ (j». if and only if they are lomotopic

ii) f ̂  ^. if and only if they are based lomotopic.

P/LOOn.- Since lm(JlTr -i) C A (t.dt) 6 E. which is an acyclic ideal,• o

we have iir ^ i. Similarly &TT ^ i. Thus tv ^ tv and by prop 5 . 1 5 ,o l o 1

TI ^ •n.. Hence •" 4> ^ TT *. Thus ^ ,^, lomotopic " > ^ ^ ip..
0 1 0 I 0 1 0 1

r^

The identical argument shows that ^ ,^. based lomotopic •> ^ ^ ^ . »

once A(t.dt) 9 E is replaced by the augmented c.g.d.a.

[A(t,dt) 0 ker Ep] • k.

Conversely, suppose ^ ^ <P, and let ^ : A -»• E be a horootopy.o l

Recall that (Chap. 5)^

A1 - AX 9 AX 6 ADX.
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Define a degree -1 derivation, h, in A(t,dt) 9 A by

h(x) - tx ; h(t) - h(dt) - h(x) - h(Dx) - 0.

Denote the differential in A(t,dt) 0 A1 also by D.

Then an automorphism of A (t.dt) 9 A is given by e "*' .

Put

• - (i 0 V) o e0^^ o A^ : A - A(t.dt) 8 E.

Then IT * • ^ and i r . » - ^ , . Moreover if y was a based homotopy then
o o 1 1

(i e eg) tCA") - o. ;

Q.E.D.

1 1 . 2 ? . - 'nieown. Assume (A.d ) is a minimal connected KS complex

and ^ : (A,d^) ^ ^^i^ is a homomorphism of c.g.d.a.'s. Then the following

are equivalent :

i) ^ ~ i.
sd *d s

ii) ^ - e , where s is a degree -I derivation of A.

P/iOO^.- In prop 1 1 . 1 7 we proved i) "> ii). If ii) holds define a

degree -1 derivation j in A(t.dt) • A by

j ( t ) - 0, j(dt) - 0. j(a) - ts(a), a e A.

Define • : A ^ A(t ,dt) e A by

•(a) - e^^O e a) . a e A.

where d is the differential in A(t»dt) » A.

Then n • • i and n . ^ • <• Hence prop. 11.20 shows that ^ ^ \.
o 1

Q.E.D.
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The same argument gives

n.22.-Tfceown. Assume (A,d^) is a minimal connected KS complex and

^ ; ̂ ^ '*' ̂ '^ i8 a "̂ '̂ "orphism of c.g.d.a.'s. Then the following are

equivalent :

i) <P ^ r

sd^+d^s
11) ^ " ® , where s is a degree -1 derivation of A and

s(A 1 ) - 0.
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Chaptt^L 7 2

Simplicial sets and local systems.

7 2 . 7 . - S^srvptic^LcJL ^ttb. For each integer n >, 0 write

[n] - (0,1,...,n). Let Ord denote the category whose objects are the sets [o],

[l], \1\, and whose morphisms are given by

Ord([n],[m]) " {set maps f : [n] -^ [mj such that i<j">f(i)$f(

Among the elements of Ord([nj,[n+lj) we distinguish the face maps

6. : {O.....n} -»• (0,...,i-l, r. i+1,... .n+l)

and among the elements of Ord( [n^l] , |n'j ) we distinguish the degeneracy maps

o. : {0,... ,n-*-l) - (0,... ,i,i»... ,n}.

They satisfy the relations

Vi - ̂ j-i • i < -'
"j0! - "i^-l • i s •'

(12.2) and 6 - 0 - . , • i ' J

o . 6 . " < > , i • j.j*!

'i-l°j . i ' J"'-

A simplicial set is a contravariant functor, K^, from Ord to the

category of sets. We denote by K_ the set K([n]); it is called the set of

n~simp 1 ices of K. If o € j^ we write |o| " dim o - n.
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Corresponding to the 6. and o. are the face and degeneracy maps

9. : K -*- K and s. : K - K , .i -n+1 -n x -n -n+1

They satisfy the relations

^j - Wi • i^'

"i'j •'j+l'i • i s ^

(12.3) and

f l'j-l^i ' i ' j

S.Sj - ^ ' i - J^l

[ .̂ i-, . i > ̂

(A family of sets, G^» n ^ 0, together with maps 9. , s. satisfying (12 .3 )

defines a simplicial set.)
n-1

If K is a simplicial set the simplices in U s.(K ) are called
i-0 x "n"1

degenerate. The other simplices in K are called nondegcnerate.

A simplicial map JL; -» K^ is a family of set maps L - K commuting

with the face and degeneracy maps. If each L -^ K is the inclusion of a subset,~ î -ti

we say ^ is a sub simplicial set of 1^.

Suppose K is a simplicial set, and M C K are subsets such that— n "̂ i
8 . (M ) C M ,. Define subsets L C K byi n n-1 — n — n -

( 1 2 . 4 ) L " (s. s. ... s. ( T ) | T e M . l<p<n) U M .••n 1 , 1 . , i n'~p n1 A P

Using ( 1 2 . 3 ) it is easy to see that the L define a subsimplicial sec of K.

Note that the non-degenerate simplices of L are all in M ; we have only~~n n

added degenerate ones.
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If we apply this construction with

.-{ K . m $ n
~^B

^ , n > n

we obtain a subsimplicial set which we denote by K and call the n skeleton

of K. Thus

( Nondegenerate simplices in K , m $ n,

Nondegenerate simplices in K m <
t m > n.

(Note that K^ • (K^^ .) :

A simplicial map ^ -»• K restricts to simplicial maps ^ n -»• K n , n^O.

72 .5 . - Lgjnma. Let K be a simplicial set. Assume O),T e K satisfy

S . T • s.ut • o , some j $ i.

If j • i then T " (D. If j < i then

T " s .9 .< j j and u> " s. 9.oj.
j i i-l i

PfiOO^.- Using (12 .3 ) * we find

1 * 3 . , S . T » 8. ,s.o) » s.3.u),
i-^l i i+l j J i

and

U) «• 9.S.U) • 9 . S . T « S. , 9 . T .
J J J 3- 1 -1 J

Hence

o ) « s . 8 . s . 3 . u ) " s . ,9.u).
i-l j j i i-l i

Q . E . D .
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12.6.- Ewmpte.-^^unpLicAjat cowptoce^. Let K be a simplicial complex.

If K is the set of p-simplices then each element of K is a subset of K
P P °

containing p+1 elements.

An associated simplicial set ^ is given as follows :

i) K consists of all the set maps o : [n] -»• K such that Im o

is a simplex of K.

ii) For f e Ord ( [n] , [m] ) , g(f) : ̂  -*- ̂  is given by

^(f)(o) - o o f .

J2.7 . - Example. - Q^deAtd ^^inpiLc^iaJL compte.x.U. Suppose K is a simpli-

cial complex, and that the vertices of K havec been.assigned a (partial) order

in such a way that the vertices of any simplex are linearly ordered.

An associated simplicial set, K_, is given as follows :

i) K consists of all the set maps o : |n] -*- K such that

Im o is a simplex of K and such that

o(0) $ o(l) $ ... ( o(n).

ii) For f e Ord(|n'| .|m]). K(f) : K^ - K^ is defined by

K(f)(o) - o o f .

Then the set map o *-*• Im o defines a bijection :

(12 .8 ) Nondegenerate simplices of K • K .

In particular, if K^ is the n-skeleton of K then K^ - QO(n).

1 2 . 9 . - Example- the. ^tandaA.d A^mp^ex A". Denote the standard basis

(l.0,...,0) , (0,l.0,....0) , .... . (0 , . . . .0 .1 )

of R^ by v , . . . ,v . The standard n-simplex, A . is the subset of R
' o n

given by
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A" -^^ | 0 « ^ < 1 ; | ^ - 1 } .

The continuous function b. : A" -»• iR given by

^W - 'x
is called the ^ barycentric coordinate function. If f : |n| -»• [mj is any

set map we define a continuous map A( f ) : A -- A by

A(f)(J t^) . J t^).

Then
I b- i
-I,., J . f" (i) ^ ^,jef •(i)

(12.10) b. o A ( f ) • <
J O , otherwise.

A function A" -»• M (M a C" manifold) is called smooth if it extends

to a smooth function U -*• M in some neighbourhood U of A" in R" .

We shall also denote by A", and call the standard n-simp lex the

ordered simplicial complex given by

^>a m ^o9'-9^ 9 v o < " ' <v^

and

(A11) - {a l l subsets of (A") with p+1 elements).
P °

Applying example 1 2 . 7 we obtain a simplicial set ^n ; if we identify

fn] " (v , . . . ,v } then- •' o n

( 1 2 . 1 1 ) (̂ n) • Ord(|p|Jn]).

The (n-l)-skeleton of A" is just its boundary SA1 (consisting of

all simplices of dimension < n) ; clearly then BA" is the (n-1)-skeleton

of ^ :

IA" /^^"^r A"3A • (A ) C ^ •
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(We regard 3A11 as an ordered complex !)

Thus (cf. ( 1 2 . 1 1 ) or (12.8)) all the non degenerate simplices of

^ are of dimension $ n-1. ^n has a single additional non-degenerate simplex.

It has dimension n and we denote it by [A"].

Finally, let K be any sinplicial set. Each o € K determines a
~ î

simplicial map

by (using ( 1 2 . 1 1 ) )

o(f ) - K( f ) o o.

It satisfies

( 1 2 . 1 2 ) £(1^"]) " o.

7 2 . 7 3 . - Example - ^yiQuJia^. ^<jnp.tcce .̂ The singular simplices on a

topological space, M, form a simplicial set Sing(M) :

cont
Sing_(M) - {o : A" ——————- M) ;

S. (o ) - o o 6. ; s- (o) " 0 0 o..

A continuous map ^ : M •*• N defines a simplicial map

S(^i) : Sing(M) ^ Sing(N)

by S(^)o • ^ o o .

If M is a C manifold then smooth singular simplices are a

subsimplicial set. Sing (M).
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1 2 . 1 4 . - LocjaJL Ai/^fentA. Recall that all vector spaces are defined over

a given field k of characteristic zero. By the category of n-graded spaces we

mean the category whose objects are the n-graded spaces

p ,...,p
V - 5: V } n

P,.....P^O

and whose morphisms are the linear maps, homogeneous of multidegree zero.

The category of n-graded differential spaces has for objects pairs

(V,d). where V is an n-graded space, d is a linear map of total degree I,

and d " 0. The morphisms are the linear maps, homogeneous of multidegree zero,

which commute with d.

In the sequel C will always denote one of the following categories :

i) n-graded spaces.

ii) The subcategory of n-graded algebras.

^ iii) The subcategory of commutative (in jthe graded sense) n-graded algebras.

/ iv) n-graded differential spaces.

v) The subcategory of n-graded differential algebras.
II

vi) The subcategory of commutative (in the graded sense) n-graded diffe-

rential algebras.

In group 11 the differential is usually denoted by d. We shall almost

always restrict ourselves to the case n - 1 (graded spaces, etc.) and leave the

general case to the reader.

J2. I5 . - Pe^mXcon. Let K be a simplicial set. A local system F

on K with values in C is :

i) A family of objects F • T ,, Fp in C, indexed by the simpliceso p^u o

o of K.

ii) A family of morphisms (called the face and degeneracy operators)
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8, : F —- F and s. : F —- F.
1 ( 7 3.0 1 0 •.0

satisfying the relations ( 1 2 . 3 ) .

1 2 . 1 6 . - Peî uu^con. Let iP : ̂  ^ K be a siaplicial map, and F a

local system over K. The pullback of F to ^ is the local system ^*F

over ^ given by

C^o-1^ •' \-\ •' 'i-'i-

\G •
If ^c——*• K^ is a subset we say ip F is the restriction of F to

.̂

Next, let F be a local system over K with values in C. Define

a graded space FQO as follows : an element • of F^(K) is a function which

assigns to each simplex o of K an element ^ e F^ such that for all o— o o

\0 • ̂ V •nd \0 - 'i <V-

The linear structure is given by

(^"'DO - A *o + u '•'o •

If C is a category of algebras (or with differential) we put

<*-'°o - *o • '•o (or ^o - ^o^-

If C is a category of n-graded spaces then the finite decompositions

F". I F''--"'"
0 Pl'* l•••-P^l"P °

define in an obvious way an n-grading in F(K).

In this way F(K) becomes an object of C. It is called the space of

global sections of F.
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If ^ : ̂  -»• K_ is a simplicial map it determines a morphism

F(ft :(^)(L>-<- F(K) given by

(F(^ - ̂

If i<5 is an inclusion of L we denote (^ F)(L) simply by F(L),

and call the morphism F(K) -»• F(L) restriction.

Again suppose F is a local system over K. Assume M C K are— n —n

subsets (n ^ 0) such that 9. : M -»• M ,.i n n-1

Recall that (M } generates a subsimplicial set L C K (cf. ( 12 .4 ) ) .n — — .

Moreover, if s. o € M then o • 3.s .o c M .

7 2 . 1 7 . - LeJBM. Suppose * e Fp (o e M , n ^ 0) satisfy" o o n

*- • 9 . t ( o c M , n ^ l ) and * " 3 . * (if o and s. o c M , n >, 0).3 . 0 1 0 n s . o x o i n

Then there is a unique element * € F^(y extending the • .

PfiOOJ : We show by induction that there are unique elements

f € F P ( o e L , n - 0 , 1 , . . . ) such that
0 0 •Tl

^o^o if ^n

( 1 2 . 1 8 ) ^ V r - 8 ^ if ^^-1 • n>' 1 '

f. • a . ^ C if o c L . n >. 1 .3 .o 1 0 —n

In fact, for n • 0 the first condition defines the V and the

others are vacuous. Assume the T are constructed for o e L , m $ n, sucho ~m

that ( 1 2 . 1 8 ) holds for m $ n.
m

If o € L ^ then by ( 1 2 . 4 ) either o e M or o - S . T . T c _ L .

In the first case put V - t , in the second put f - s . f . To check that
0 0 0 1 T

T is well defined note first that if o • S . T £ M .then T c M and so
o i IT*"! n

• • s.« • s. f .
0 I T I T
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On the other hand, if o - S . T " s .<*» with T ^ u). T,h» e L theni j —n
i ^ j. Take j < i and apply lenma 12.5 to find

s ̂  • • .V „ • • . • . , y,
J (*) J »,.^ 9^(*) j i-l 9.(*»

• •i8:̂  • '^j^ " 8^ •

Finally, the first two parts of ( 1 2 . 1 8 ) , are true by definition,n4' l

while the third follows easily from (12.3) .

Q.E.D.

Recall (example 12.9) that if j^ is a simplicial set, each simplex

o e K determines a simplicial map ^ : ̂ n -»• K^ with ^ ([A"]) " o. In particu-

lar, if F is a local system over 1^ we can form a_ F over A".

? 2 . ? 9 . - Pe.̂ citc.tcon. F is extendable if for each o the restriction

(^F)CA11) ^ (^DO^)

is surjective.

12.20.- PfiOpo^^Uon. If ^ : ^ -«• K is a simplicial map and F is

an extendable local system over K, then ^ F is an extendable local system

over L.

P^LOO^ : Obvious.

Q.E.D.

1 2 . 2 7 . - P^iOpOA^X'con. Suppose j^C j^ is a subsimplicial set and F

is an extendable local system over ]^. Then the restriction morphism

F(K) - F(L)

is surjective.
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PftOOJ s It is sufficient to show that any « e F^ U K^"^) can

be extended to an element V of F^L U K }). Suppose that o e K , o i L~" ~ n̂ —n
and o non degenerate. Then o restricts to

^ : ̂  -.K^'0 . and

we can use 3^ to pull * back to an element of o F^OA"),

By hypothesis there is an element ^ e F^ which restricts to thiso o

pull back of ^ (use the isomorphism 12 .12 .b ) below) ;

\\ - \a 0 $ i ̂  n.

Next, set y • * if o e (L U K^"0) . m ^ 0. Finally, use teno o — — m 12.17 to

extend f to all the simplices in Ĵ  U K(n)

Q.E.D.

?2.22.- Ve.^nition. If F is an extendable local system over K

and J ^ C K we denote the kernel of F(K) - FO) by F(K,U. the space of rela-

tive global sections. Thus

0 - F(K,p - F(K) ^ FO) - 0

is a short exact sequence.

?2.23.- Examp-te. Let F be any local system over K. Put

NK • {nondegenerate simplices in K }
~TI '"n

and

a c K—o

^ -
. 0 kerO. : F13 - F15 ), o c K , D >. 1 .
0$i$n i o a .o -n
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Define an inclusion

,2NK ^——F"^)
—n

as follows. If f € ̂  , o £ NK . extend by putting V • 0, if |o| < n

and then use lemma 1 2 . 1 7 to extend to a unique element y of F^Q^ ). It is

easy to verify that the sequence

(12.24) 0 -^ n ^ -. F^K^) liill!—. F^""0)
oeNK a

—n

is exact.

In particular, if F is extendable this inclusion is an

isomorphism

(12.25) n l^———.F^10,^11'0) . p - 0 . 1 . . . . . .
oeNK °—n

On the other hand, suppose F is any local system over A .

It is an equally easy exercise to deduce that an isomorphism

(12.26.a) F(^1) —S——. F,-^ i

is defined by ^ •-»• 4> .In view of ( 12 .24 ) it restricts to an isomorphism
[A"]

(12.26.b) Ke^F^") -»• FOA")) -±——> NF
- [A"] •

In the applications we shall consider local systems satisfying certain

additional conditions. Aside from extendable we need the following definitions.

A local system F over K_ is

i) constant if for some F c C each F • F and each 9 . » s.————— o o o i i

is the identity map of F .o

ii) constant by dimension if for some sequence F c C (n >, 0).

F " F » o c K , and 3. , s. depend only on |o | .
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Hi) a. local system of coefficients (&.s.c.) if for each o and each i

3. : F -<• F, and s . : F ->- F-i o 3.0 x o S.o

are isomorphisms.

iv) a local system of differential coefficients if C is a category

with differentials and if for each o , i

^ : Wo) - "(^^ and 8! : "(^' " .̂̂
are isomorphisms (in other words if (H(F ), 9., •^} is a

local system of coefficients).

Our next goal is the following

1 2 . 2 7 . - T îeoA.em. Let F and G be extendable local systems of diffe-

rential coefficients over .̂ Assume we are given morphisms

^ : Fo - Co . ° < K ,

compatible with the face and degeneracy operators, with each ip^ an isomorphism.

Then a morphism ip : F(K) •* G(K) is given by (W^ • ^( ̂ ) . and

^ : H(F(K)) •* H(G(K))

is an isomorphism.

1 2 . 2 ^ . - lemma. Let E be an extendable local system of differential

coefficients over ^n. For m $ n let L"'" C A" be the subcomplex generated

by all simplices of dimension $ m which contain the vertex v^. Then

i) For each m ( n,

HCE^")) - iKEa"'11))

is an isomorphism.
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ii) H^E^a^)) - 0. p < n.

?fU30J :

i) If m • n there is nothing to prove and if m • 0 formula (12.26.b)

reduces the assertion to H(E ^ ) -=—(> H(E^ ). This is true by hypothesis.
[A ] °

Now assume that 0 < m < n and (by induction) that the lenna holds

for I^^ C Aq whenever p < m. Since E is extendable we need only show that

(cf. definition 12.22)

(12.29) iKEa^11.!""1'11)) - 0.

Let o,....»o,- be the m-dimensional simplices of L"'11 ; they are also
1 N

the non degenerate simplices of J"'" (of dimension m). Each a^ : ̂ m - ^m>n

pulls E back to a local 'system E. of differential coefficients on A^ and

E^ is extendable by prop. 12.20.

It is easy to check that the induced morphisms

E(^) : EO^") ^ E "̂)

define an isomorphism

Ed10'". L^1^) -^ ^ E^A111 .^1 '10).
- - i-l 1 "

Formula (12.29) follows, and so i) is proved.

ii) Use the embedding 6 : [n-l]<^ [n] to write A" C A (as the

face opposite v ) and ^"} C A". Since E is extendable we obtain the short

exact sequence

0 - E^.SA11) - E<A11. L"'1'") - E^""1.^1'1) - 0-

But i) shows that ^E^11.^""1 >n)) • 0. and so there is a linear

isomorphism of degree 1
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(12.30) HCE^'^aA11"1)) -^ IKEO^BA11)).
"""" "" """ Q.E.D.

72 .3J . - P^loo^ OfJ îzo^em 72.27 . We show first that for each n.

(12.32) iP* : IKF^10)) -.lUG^10))

is an isomorphism. Assume this is true for n-1 ; to prove it for n we

have to show only that

^ : IKFOC^.K01-0)) - ^GCK^.K^-0))

is an isomorphism.

Because of the isomorphism (12.25) it is sufficient to prove that

<?* : H(NF ) ^ H(NG ) is an isomorphism for o e NK . Use o to pull F"o <? o '•"n

and G back to ^n and obtain (cf. (12.26.b) a commutative row exact diagram

0 ——r NF ————————- F ————————> o^F^""0) ——^ 0
0 0 — •"111-. I. 1

0——- NG ———————>G ————————>• o 'GCA^" 0 )——<-0
0 0 — —H

in whicA the right hand arrow is a cohomology isomorphism by induction and the

central arrow is by hypothesis. Hence so is the left hand arrov» and (12 .32 )

follows.

Next observe that by lemma 12 .28 if o € K .
-Tl

H^^FC^1.^1)) • 0 - H^^G^11,^1)). p < n.

Equations (12.26.a) and (12.26.b) translate this to

(12 .33) H^NF ) - 0 - H^NG ) . o c K , p < n.u u •"•n
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Now the isomorphisms (12.25) yield

(12.34) H^FO00.^""0) . 0 - H^Gd^.K^0)). p < n.

In particular, let • c F^K,!̂  ), p $ n, satisfy d* « 0. Using

equations (12.34) and the extendability of F we can find a sequence

V. e F^OC.K^0), i - 0,1.... so that * - d(^ Y . ) c F^K.K^^0).
1 "" 0 x

For each o set

y • 1(4'.) (this is a finite sum !).o ^ i o

Then f e F^* (K,^^). and • • dt. Hence

(12.35) H^FQ^10)) • 0 • H^G^,^10)). p $ n.

These equations, together with (12.32), complete the proof.

Q.E.D.

Finally, suppose A and B are objects from one of the categories

C in our list. If A and B were n-graded then A 9 B is 2n-graded. If

A. B were algebras we set (a « b).(a' 0 b*) • (-1) l b l ^ ' aa ' 0 bb*. If A

and B had differentials we set d(a e b) • da 9 b •*• ( - D — ' a 8 db. With these

conventions we say.

J2 .36 . - Ve-^wjUon. The tensor product of local systems E and F

over K with values in C is 'the local system E ® F given by

( E » F ) - E e r ; a . - s . e a . ; s . - s . e s . .
0 0 0 1 1 1 1 1 1

Our next main result is

1 2 . 3 7 . - Thrown. The tensor product of extendable local systems is

extendable.

159



. S. H A L P E R I N

J2.3S.- P^LOpOA t̂con. Let E be an extendable local system over K.

Let L, L .....J^C K be subsimplicial sets.
m

i) Suppose ». e E(L,L 0 I;1) satisfy ^ ^ - 0. Then each ^
.l ~ ~ * m i"l

extends to f, € E(K,L1) such that ^ y. - 0.
i"1

ii) If r c E(K.jy and F - ^ F. . r. c E(K,^1) then also
i-1 l L ~m

r - ^ ?. with T. € E(K,^U^1).
i-1 1 1

P^tOO^ : By induction on m. Regard the assertions above as i)^ and

ii) . Note that both are trivial for m " 1 . We show that
m

î l •> ^. and ^m" ^m-

ii) , "> i) . Choose ft. e E(K.L1) extending •. for i • l,...,m-l. and__ni~ 1____ffl ^ — — 3.

m-1
set ^ • I ".- Then

i-1 1

^ni" "^L^^0^"^0^"0 '

and

m-1 ,
0 - I ̂  . ^ e E(K.^1).

i"l

m-1 • m
Hence by ii) , ft • V ft. • where ft. c E(K.^ b 00^ )).

m-l ^, i i

In particular, ft. is zero in I" n (^1 u L). Hence by the

excendability of fc we can find F. c E(K.L1 U L) so that

r . | - n . | , i • i . . . . .m- i .il^ il^m

m-1
Put ^ • ^ - r, ( i - l . - . - .m-l) and ^ • - I ^.Then
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\\,i • »i|,i - ^l.i - 0 - 0 - 0 , i - l.....m-l

and

•^T^l^^l1^!^-"!^!1",
1 L"

0.

Finally

_ , i • 1 ,... ,m-lV. - ft. - F. - ». - 0 - *.
"I 1 ! 1 ! '

and so

m-1 m-1
\ " I \ • - I ̂  - ̂ m-

^ i"l L i"l

i) -> ii) . Set *. • r. . Then ^ •. - 0 and 4>. e E(L.L 0 L1). Hencein ID i i . . 1 i — . — —"™''"""~ Li 1
m

by i) •. extends to 1. e EQ^ ) such that ^ V. - 0. Now set
x i-1 1

r. • r. - 4'..i i i

Q . E . D .

72 .39 . - Le^mq. Let E and F be extendable local systems over A"._-^_____ ^ ^ ^

Suppose Sl e (E 9 FXA11) satisfies (9. 9 9.) f t " 0, 0 ( i $ m. Then we can

write n • V H where for each a :^n r«

Either (9. 6 i)ft • 0 or (i 8 9.) f t - 0. i • O.....m.i a 1 0

P^oo^ : For each subset o • (i.,...,i } C [n] (including o " t)

define subspaces HT C E , N C F by
0 [A"] ° [̂

NE - n ker 9. and N1'̂  • 0 ker 9.o ico i o ico i
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Choose subspaces N-" C N and N C N so that for each p• 0 (J o 0

e ^ - + ^ and • V^ - ^ NF .
I I 0 i i 0 i i 0 0o|^p |o|^p |o|^p o^p

(Here 6 denotes direct sum, + denotes not necessarily direct sum.)

We show first that in E and F .
[A"] [A-1]

(12.40) ker 3. • • ^F and ker 9. - ® I?.
1 . 0 1 0

O.»l 0»1

In fact the right hand side is contained by definition in the left. Thus we

need to show that ker 3. n • ^ • 0.i , . o
0^1

Recall that 9.(A11) is its ^ face ; denote it by L1 and denote

\^j L by L . These are subcomplexes of A11 and so we can form JL^ C ^n ;
ieo

clearly ^ - E(A11. ^a) .

Now suppose ^ • I • , ^ e N , and that 9.^ • 0. Then
1 I 0 0 0 1
|o|^p
i^o

<> « 0 and 0 - 0 .

°L«1

Hence by prop. 12.38 ii) » - ^ 1' with V - 0.

l0!^ ° ^"U L1

In particular t € N , . , and since i i o we haveo o U \ i j

« € I N1^ • • N12 .
I t I ^P^ I T I T | ^P* I T

Since E » • N this gives ^ "0 , |o| - p.
[A0] ° ° 0

Continue in this way to deduce • " 0, which completes the proof of

(12 .40) .
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Finally, write ft - V f t , ft e l? 6 N^
"OT OT OT 0 T

Using (12.40) we see at once that if (9. 0 8.)ft • 0 then ft • 0
1 1 OT

unless either i c o or i e T. Hence for each o and T 0. 9 i)n • 0
1 OT

or (i 9 9.)ft " 0.
I OT

Q.E.D.

?2 .4? . - Pfjoo^ of, thrown 12.37. In view of the definition we have only

to prove that if E and F are extendable local systems over A" then

(E 9 F)(^1) ^ (E 8 F)(j^11)

is surjective.

Suppose ft e (E 0 F)(^11). If ft ^ • 0, 0 $ i $ n. then ft • 0.
? _ A

So if ft »t o there is a least r such that ft ^ 0.
a^°

In particular, for i < r,

(3 « 3 )t! - ft - ft

' l ^rAn ^r4" 'r-.3!4

• (^1 e ^r-l)", ,n • °-3. Al

By lemma 12 .39 we can write

n - V ^ . * € E e r
•S A" a a -» A" ^ A"3 A 3 A 3 Ar r r

where either ( 9 . ® i ) 4 > " 0 or ( i e 9 . ) < > - 0 , i < r , and we may obviously

assume 4» « <» 6 4» . Extend ^ and ^ to elements t € E anda a a a a a ,n
A

f € F so that 9. Y^ • 0 whenever 3. • - 0 (and similarly for F),o ,n i d i dA
i < r.

Then V 6 4^ satisfies 0. 8 B.X^ 8 f1^) - 0. i < r.
0 0 1 1 0 0

Moreover ft - ([ V 6 t ) [ n is zero in B^A" • This completes
o —

the proof (by induction on r).
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JZ.42. - P^opOA t̂con, Let E» F, G be extendable local systems over

K. Assume for o € K , n • 0,1,....

0 ^ E ———°-^ F ———a-^ G ^ 0
0 0 0

are short exact sequences,coherent with the face and degeneracy operators.

Then

0 -^ E(K) —S-^ F(K) -^ G(K) - 0

is also short exact.

VfiOO^ : Use the identical inductive technique of theorem 1 2 . 2 7 .

Q.E.D.

72.43. - A ^ptc^UJJL AfcQafcnce. Suppose G and F are local systems

over K taking values in a category with differentials. Suppose further that

i) G and F are extendable

ii) F is a local system of differential coefficients.

The bigrading on the local system G 9 F makes (G 9 F(K),d) into

a bicomplex. That is we can write

d - d^ dp

where dp, d^ are the differentials of degrees (1 .0) and ( 0 , 1 ) given by

^G^o • "G^ • W e ^) - "G *c 6 \

|» I
[^W], - d^(^) . d^ e ^) - (-D 0 ̂  e dp ̂  .
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Now filter (as usual) this bicomplex by the spaces

f - I (G3 0 F^K) - I (G3 9 F)(K).
J.^P J^P
q^O

We obtain in this way a convergent first quadrant spectral sequence

(12.44) ( E . , d . ) •> H ( ( G 9 F) (K) ,d ) .

It is standard that

(E^,d^) - ( ( G O F)(K),dp)

(E^d^ ) - ( H { ( G « F)(K) ,dp) . d^)

and

E^ - H ( H { ( G C F)(K),dy .dg).

On the other hand, note that we can define local systems

Z ( F ) , B(F) and H(F) over K by

Z(F)^ . ker d : F̂  ̂  ; B(F)^ - d ( F , )

and

H(F)^ - H(F^ ,d ) .

Moreover because F is a local system of differential coefficients,

H(F) is a local system of coefficients.

Notice that H € (G 9 F)(K) satisfies

<d^ . d,,̂ )

and so d-^ • 0 if and only if n e G 0 Z(F) for all o. Similarly forF o o o

any !i

(d 0) € G ® B(F) .r o o o
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In this way we obtain a commutative diagram

0 ——. [G 0 B(F)] (K) ——- [G 9 Z(F)] (K) ——> [G 9 H(F)] (K) ——^ 0

(12.45) 2

0 ————- Im'dy ————————> Ker dy —————<- H( [G 9 F] (K) .dp) -»• 0

in which the bottom row is exact and the top row arises from the short exact

sequences

(12.46) 0 - [G 9 B(F)]^ - [G 9 Z(F)]^ - [G 9 H(F)]^ - 0.

Our next object is to establish

12.47- T^ifco^fcin. With the hypotheses above, all the vertical arrows in

(12.45) are isomorphisms. Thus the spectral sequence (12.44) satisfies

(E^d^) - ((G 9 H(F))(K) ,d)

and

E^ • H[(G 9 H(F) ) (K) .d ] .

?2 .4& . - Lejwiq.

i) The local system G 9 Z(F) is extendable.

ii) The inclusion Im dp -» G 9 B(F)(K) is an isomorphism.

iii) The local system G 9 B(F) is extendable.

P^.00^ : We establish inductively that :

( 1 2 . 4 9 ) If K - A" then [G 9 Z(F)](_A11) - [G 9 Z(F)] (^n) is surjective.n — —

(12.50)^ [G 9 BtF)]^10.^-0) - dp([G 9 F] (K00 . K^-0)).

( 1 2 . 5 1 ) ^ LG 9 B(F)^(K (n )) - dp([G 9 p]^10)).
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In fact, (12.49) is vacuous and (12.50) coincides with ( 1 2 . 5 1 ) .
0 0 0

To prove them let • e [G • B(F)1 (K^). For each o c K write * - d-, <?- — •—o o F o

and extend the V to a (unique) element V of (G e F)(K^) via lenna 1 2 . 1 7 .

Then • - <L, V.

We now assume the three assertions proved for m < n (some n ^ 1 )

and establish them for n.

(12.49) : let » e [G 0 Z(F)](J^11). For each o of ĵ " let y e G^ 8 H(F )

be the element represented by <t> . Because H(F) is a local system of coeffi-

cients and G is extendable, G 9 H(F) is extendable. The y define ano

element in [G 0 H(F)] (3A11) , and so we can find an element

Y e [G 0 H(F)1 (A") - G 9 H(F ) which restricts to the y .
[A"] [A"]

Let r e G 9 (ZF) represent -y, and regard r as an element
[A ] [A J

in [G e Z(F)](An). Then

^ - r. c [G e B(F)](j^11).
1^ L -

Since J "̂ - (j^"/""0 we can apply ( 1 2 . 5 1 ) with K - ĵ " to obtain

» - r. ^ • dp V. some ^ c (G 9 F)OA11).
ISA

Because G and F are extendable so is G 6 F (theorem 1 2 . 3 7 ) .

Extend f to an element V c (G 9 F) (^n) ; then

r •»• dp f € [G « Z(F)](A11) and extends ••

(12.50) : Suppose ft € [G e B(F)j(K(n). K^0). For each nondegenerate

o e K write tt •" d_ T , some F € G 6 F .—n o F o o o o

Recall the simplicial map ^ : ^ -» K of example 1 2 . 9 . It pulls G

and F back to local systems over A0 satisfying the same hypotheses. We may
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write

^ e ^ e F, - ̂ n, e ̂ ^ - (^ e ^XA")

Moreover

d^(^) - ^ dp r^ - ^ ^ • o , o , i , n.

and so

r^ i ^ e ^*G e Z(^*F) (^n).
9A

By ( 1 2 . 4 9 ) r j extends to an element
9A

V € o*G e Z(o*F)(A11) • G e Z(F) .
0 — — — 0 0

Let ^ - 1^ - ^ ; then

"F *o " "o and ^ *o - 0- 0 $ i $ n.

The isomorphism (12 .25) implies now that the * define an element

^ c (G e F^K^ .K^"1^) . which by definition satisfies d 4> - ft.

( 1 2 . 5 1 ) : This is now immediate, via the extendability of G 9 F.

We finally complete the proof of the lemma.

Part i) is already established by ( 1 2 . 4 9 ) .

To prove ii) let ^ € (G 8 BF)(K). Using (12 .50) we may construct

a sequence *C .....f ,... £ (G 6 F)(K) such thato n —

• 0 and 0 " V ^ ^)!,(n) r i-0 1 L(n)

Then * • dpf, where 4' - ^ f .
n-0
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To prove iii), we may assume K " ̂ n. If • e (G 0 BF)^11) then by

ii) • • d-J. Extend f to F e (G 9 F) (̂ n) ; then d r extends ••

Q.E.D.

72 .52 . - ?nj0oi 0^ thtpfwn 12.47. Because of lemma 12.48 we know that

G 9 B(F) and G 0 Z(F) are extendable. Because G is extendable while H(F)

is a local system of coefficients, G 9 H(F) is also extendable. Hence,

because the sequences (12.46) are exact, prop. 12 .42 implies that the upper

row in (12 .45 ) is exact.

The theorem now follows trivially from part ii) of lemma 12.48.

Q.E.D.

v v
Finally, assume G and F is a second pair of extendable local

systems over K taking values in a category with differentials, and such that

F is a local system of differential coefficients. Assume

^0 : ̂  ' ̂  • ^0 ? ^ ' ̂ 0

are morphisms,compatible with the face and degeneracy operators.

Then

^ e ^ : (G e F)(K) - (£ e F)(K)

is a map of bicomplexes and so induces a map of spectral sequences

(^ 9 4»)^ ; (E^.d^) - (E^.d^) . i >. 0.

The isomorphism of theorem 1 2 . 4 7 identifies

( 1 2 . 5 3 ) (<P e 40, • i ® ^ : fG « H(F)|(K) - |G % H(F)]W.

We thus arrive at

169



12.54.- T^ifcown. Assume in addition to the above hypotheses that

G and G are also local systems of differential coefficients, and that each

f and ^ is an isomorphism. Then

(^ e ̂  : (E^) -^ (E^)

is an isomorphism for 2 $ i $ ao.

P/l00f$ : By (12.53) (^ 8 ^) is identified with the map of global

sections

^ 6 ^ : [G ® H(F)]-(K) - [G 9 H(F)] (K)

• ^determined by the morphisms ^ 6 ^ . Since G, G are extendable local
vsystems of differential coefficients, and H(F) and H(F) are local systems of

v vcoefficients, G 8 H(F) and G % H(F) are extendable local systems of
differential coefficients.

Moreover (^ 6 ^ ) • if) 6 ip is an isomorphism. Thus theorem 12.270 0 0 0
asserts that (^ 8 ̂  ) is an isomorphism, whence (^ % ^)y is.

Q . E . D .

170



Chapter 13

Differential forms.

? 3 . ? V^eAe.nUaJL ^ofw& on A". Recall that A11^ C^1

(example 1 2 . 9 . ) ; it spans an affine n-plane which for the moment we denote by

F". A C00 p-differential form on A", *, is a family of p-linear skew

symmetric maps

\ : ^x^ x • • • x V^ ——' (R' x € An'

p factors

which extends to an ordinary C" p-form on the manifold F .

These form a real vector space, A^(A11) and we have the obvious

restriction map A^(F) - A^A"), which is surjective by definition. It is a

straight forward calculation that in the direct sum

A (A") . ? A^A")
p«0

there is a unique multiplication, A » and a unique differential d such that

restriction A (F") - A (A") is a homomorphism of c.g.d.a.'s.

Moreover, the standard proofs of the Poincare lemma apply to show

that (A^A^.d) is acyclic :

IKA^A^.d) - ;R .

Next. let f : [n| -» [m| be any set map and define a linear map

f : R"*1 -* R"1'^1 by v. •* v-,... It restricts to a linear map A ( f ) : A - A

which induces in the standard way a homomorphisni of c .g .d .a . ' s

A ( f ) : A (A") - A (A"1) .
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If f is a face map 6. or a degeneracy map o^ (cf. 1 2 . 1 )

we write simply

(13.2) A^(6^) - 9^ and A,(o^) • s^.

These satisfy the relations ( 1 2 . 3 ).

Now each element of A^(A11) may be uniquely written

4> « y 4>. . db. A ... A db^ ,
!^<...<i $n '•I"*1? 1! P

where (cf. 1 2 . 9 ) b. is the j^ barycentric coordinate function and each

^ is C°°-f unction in A". If each *. , is a polynomial in
i,...ip l l••• lp

b ...,b with rational coefficients we say $ is an element of the rational
1 n

vector space A^n).

The rational vector space

A.(n) • I
" o

A^(n) • I A^(n)

is in fact the sub c.g.d.a. of A^A") generated (over ^) by b^.....b^
n

(because b - 1 - ] bj. We can write
i"l

A^(n) - A(b^....b^db,.....db^).

Hence it is a contractible KS complex and in particular acyclic :

H(A (n),d) • <?.

Note as well that if f : |n| - |m'| is a set map the induced map

A ( f ) : A" - ^ is linear, and A^( f ) restricts to a horoomorphism of

c .g .d.a. 's
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A (f) : A(n) ^ A(m)

(cf. formula 1 2 . 1 0 ). In particular, as in ( 1 3 . 2 ) we write

(13.3) V6^ " ^ and V0^"5 ! -

Finally, if k is any field extension of Q we set

(13.4) A ( n ) - A (n) 8 «k ; 9. « 9. 9 i , & » s. 0 i .

If the field k is fixed throughout we will usually suppress the k

and simply write A(n).

7 3 . 5 V^teAwUaJL ^o^imA on a ^AjnpticA.aJL ^^t.- Let K be a simplicial

set. Define local systems A and A (over ;R, or a given field k) on K by

^Jo m V^ \ m A^(6^), ^ - A^o^). o c K^.

and

A^ - A(n). ^ « A(6^ ) , s^ « A(o^), o € K .

7 3 . 6 PeUytc-tcon.- The c.g.d.a.'s of global sections of A and A :

(A^(K),d) and (A(K),d)

are called, respectively the c.g.d.a. of C differential forms and the c.g.d.a.

of polynomial differential forms on K. Because we usually consider A(K) we

often call it simply the c.g.d.a. of differential forms on J^.

1 3 . 7 P^OpO^i^um. - If ^ : L - K is simplicial then ^ A " A

and i<) A » A. In particular if) induces homomorphisms

^W : A^(L) - AJK) and A(»P) : A(U - A(K) .

PA.OO< : Clear.

Q . E . D .
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?3.^ P îopa& t̂con.' A and A are extendable local systems.

P/LOO{{ : Given prop. 1 3 . 7 we need only prove that

A(A11) - AOA") and A^A") •<- AJ9A11)

are surjective.

Now an element 4> in A^CSA") is determined by the elements

<1». « 4> e A (n-1), 0 $ i $ n which must satisfy.
9 .Al

^j " ̂ i ' £ < i-

If 4>. « 0, i < r < n, then 9.^ « 0, i < r. Write

4> « ^ P. . db. A . .. A db. .
r O^j <...<r<...j <n J l * ' ' ^ p J! '3p

where P. . is a polynomial in b ,...,b ,...,b ,. This same expressionj^ . . . jp p y o* • r* » n-1

defines an element f in A^(n) which satisfies 9 .V » 0, i < r and

9 V « * . In this way we reduce to the case *. » 0, i < n. Assume this.r r r • i

Consider the projection A" - {v ) —*• A" given by

n n-1 t.
< t^) « I ———v^ .

0 0 1- tn

Then A^(ir) : A^(A1^1) ^ A^(A11 - (v }) satisfies

b. db. b .db
A ( T r ) ( b . ) • —L- and A (db.) • ——2- * —1—!— .

00 l ^n w l ^n (l-bn)

Because <> is polynomial it follows that for some large N

(1-b ) N A OQO c A p(n) • A P C A " )n m n
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It is the desired extension.

M

In the cas of A the same proof works, except that (1-b ) hasBB n

to be replaced by a smooth function, zero near v .n

Q.E.D.

?3.9.- Rfcma/lfe.- Prop. 13 .8 and its proof are taken directly from

Sullivan [lO, p. D3J. Cf. also Grivel [7] who gives a different proof, which

he attributes to Karoubi.

Next, let F be any local system on K. We "regard" F as taking

values in a category with differentials, (which may possibily all be zero !).

Then we can form the local system A 9 F (cf. 12.36) whose space of global

sections is denoted by A(K;F).

1 3 . 1 0 Ve,^n^tA.on.- The graded differential space (or g.d.a. or

c.g.d.a.) (A(K;F),d) is called the space (algebra) of differential forms with

values in the local system F.

1 3 . 1 1 RfcffiflAJlA ? . - The canonical inclusions

i : F -^ 1 6 F C A(n) 6 F . o € K .( j o o o —n

are coherent with the face and degenerary operators. In particular they determine

a canonical inclusion

ip : F(K) ——> A(K ; F) .

Moreover, because

H ( A ( n ) e F^) • H ( A ( n ) 6 H(F^) - H ( F ^ ) .

each i is an isomorphism.
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2.- If F is a local system of differential coefficients

then so is A C F. since H((A 6 F) ) - H(F ) .

3 . - If F is extendable so is A e F (by theorem 1 2 . 3 7 ) .

4.- If F is a local system of coefficients, then
A 8 F is extendable. Indeed it is trivial that the pullback of F to A" via
any o c K is constant, and the tensor product of an extendable with a constant

local system is obviously extendable.

7 3 . 7 2 nieown.- Let F be an extendable local system of differential
coefficients on K. Then the canonical iinclusion, i-., induces an isomorphism

î  : H ( F ( K ) ) —i——- H ( A ( K ; F ) ) .

P^oof^ : According to the remarks above, A ® F is also an extendable
local system of differential coefficients. By remark 1 we can apply theorem 12.27.

Q . E . D .
Finally, consider the local system, F, of theorem 1 3 . 1 2 .

We apply the results of sec. 12.43 to the tensor product A ® F to obtain a
bicomplex. Filtering by the ideals

^ - V (A3 6 F^CK) - ^ A - ' ( K ; F )
J^P ~ J^P

all q

we obtain a convergent first quadrant spectral sequence, ( E . , d _ ) , i ^ 0 .

According to theorem 1 3 . 1 2 this spectral sequence converges to
H ( F ( K ) ) . On the other hand, theorem 12.47 gives natural isomorphisms

(E , d ) - ( [ A e H ( F ) ] ( K ) . d ) - ( A ( K ; H ( F ) ) , d )

( 1 3 . 1 3 ) and

E^ - H ( A ( K ; H ( F ) ) ) .
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As an example, assume F takes values in the category of g.d.a.'s.

Define a homomorphism \ : (A(K),d) -»• (A(K;F),d) by

(U)^ • « « 1 , o c K .

^ 3 . ? 4 P^LOpo^^Uon.- Assume H°(A(K)) - k « H°(F^), a e K.

Then H°(A(K;F)) • H°(K)) . k and

X* : H^AOO) -»- H^Aa;^)

is injective.

P^QO<{ •• Filter A(K) by the ideals ^ A3(K) to obtain a spectral

sequence (E?^.^). Then \ induces a homomorphism X. : E. -^ E. of spectral

sequences.

Because of our hypothesis on F, ( 1 3 . 1 3 ) yields

E^0 - (A^lp.d). P ^ 0,

and so \ : A(K) -JL^ E * . Hence X« is an isomorphism in degree zero and

injective in degree 1 . The standard comparison theorem for spectral sequences

now implies that \ has the same property.

Q.E.D.
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Simplicial cohomology.

1 4 . 1 . - Pfcĵ LJtU^on. - Let K be a simplicial set. Define

^ : K •» K and 3s : K •+ K
P "P^ -P q -P^q -q

by

^0 " ^p+l 0 • • • 0 ^p+q)0 and ^° - Oo o ... o 9^)o.

p factors

r in
The simplices 3 o and 9 o are called the front p-face and theP q ————c———

back q-face of o.

Now we recall the g.d.a. (C(K;k),6) of simplicial cochains on K.

C (K;k) is the vector space of all set maps f : K -»• k. It is a g.d.a. with

multiplication and differential given by

( f .g) (o) « f(^o)g(A) , f c C^k)

g £ C^k)

0 € K-p+q

and "I'
i«0

(6 f ) (o ) • I (-1)^0^0) . f £ C^Kik). o £ K . .̂  . . ^ ^ v^ .^ / . . ̂  ^^.

The identity is the constant function K -- 1 .

The cohomology algebra of (C(K;k) ,6 ) is denoted by H(K;k) and is

called the simplicial cohomology of K.

A simplicial map ^ : K -»• L determines homomorphisms

C(<H) : ca;k) * C(L;k) and C(^)* : H(K;k ) - H(L;k) given by

( C ( i D ) f ) ( o ) • f ( j )o ) .
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More generally, suppose F is a local system of coefficients on K

(cf. just before theorem 12.27) so that each 9. : F "*' ̂  „ and

s. : F -- F are isomorphisms. Define a bigraded space
J 0 SjO

C(K;F) - V C^K^)
p.q^O

as follows : an element of C^K^) is a function which assigns to each o c K

an element of T ' .o

A differential (of bidegree (1,0)) in C(K;F) is given by

(6f ) (a ) • p?, (-1)1 ^fO^o) o £ K . f e C^KSF).
i-0 :

If F takes values in a category of algebras we make C(K;F) into

a g.d.a. by putting

(f.g)(o) - (-D^EO^^fO^.Co^^gO^)].

f £ C^F^.g £ C^F8).

We call C(K;F) the space (or algebra) of simplicial cochains with

coefficients in F. Its cohomology, H(K;F) is called the simplicial cohomology

of K with coefficients in F. It is bigraded : H(K;F) • ^ H^K^).
— ~ ———————————————~ p.q^O

14.2. - The. tocaJt ^tUf\ C.- We shall interpret C(K;k) as the global

sections of a certain local system over K (if 12 .14 ). Recall ( 1 2 . 1 1 ) that A

is the simplicial set given by (^n) • Ord( [p].[nj ).

Denote (KA^k) simply by C(n) . Each a c Ord([n].[m]) defines a

simplicial map a : A" - A10 (a(o) « a o o) and so determines a g.d.a.

homomorphism C(a) : C(n) - C(m) :

(14.3) (C(a) f ) (o) - f (a o o) f € C^m)

a e Ord ( [n] . [mj )

, Hv
0 € (A )p.
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In particular we write C(6.) « 9. and C(o.) " s. where 6. and

o. are defined in ( 1 2 . 1 ) ; these homomorphisms satisfy (12 .3 ).

Now proceed exactly as in the case of differential forms to define a

local system C over every simplicial set K as follows :

C^ • C ( | o | ) . o € K . p • 0,1....

and 3.,s. are the homomorphisms just defined. The g.d.a. of global sections

is written (C(K),6). A simplicial map <|) : K -»• L determines an obsvious

homomorphism C(iP) : C(L) -»• C(K). -

More generally let F be any local system of coefficients over K,

such that the differential in each F is zero. Then the local system C e F

over K is a system of bigraded differential spaces (in which the differentials

are simply 5 8 i). We shall describe a canonical isomorphism

(14.4) r : ̂  e F^K) —2—> C^K^).

where the right hand side is defined in 1 4 . 1 . In particular (when F • k)

we may identify C(K) with C(K;k) asg.d.a. 's .

First observe that

C^n) e ̂  • Set f unctions ((A") -^ k) 9 Fq

o ~ P o
- Set functions((A") -» F^)

- C^A"^).

because (A") is a finite set. Thus if • c ̂  0 F^K) we may interpret each
~ P

<t> as a set mapo

• : (A") -» F^ o c K .

In particular ^ determines set maps
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*o ' <^)p - ^, o c Kp.

Now recall that [A^J c (A^)' is the distinguished simplex corres-

ponding to the identity map [p] -»• [p]. Define r by

(14.5) (r»)(o) • ^([^J) . * c (CP 6 F^K). o c Kp .

74.6. - T/ig.oA.zm.- The linear maps

r : (CP « F^Qp ^ CP(K;F)

defined by ( 1 4 . 5 ) are isomorphisms commuting with the differentials. If F

takes values in a category of algebras then r is an isomorphism of g.d.a.'s.

P/LOO^ : Because the face and degeneracy operators of F satisfy ( 1 2 . 3 )

we can find unique morphisms

F(a) : ̂  " ^(0)0 - ° € Sp* ° € Ord([m].[p]) .

such that F(6.) • 9.. F(o.) • s. and F(aB) • F(B) o F(a). Since F is a

local system of coefficients, each F(a) is an isomorphism.

Next, fix 4> c (CP ft Fq)(K). Because ^ is compatible with the face

and degeneracy operators we have

( 1 4 . 7 ) [C(o0 ® F(a)]^ - ^(0)0' ° € ^n * a € ord < [m] • [n] ) •

If <t> is interpreted as a function (A") ^ Fq ( |o | • n) then this reads

(14.8) F(a)[4> (a o -r)] - ^(a)o ( T ) ' T € (^m )P * ord < [p] * [m] ) *

as follows from (14 .3 ).

Since F(a) is an isomorphism we obtain, finally,

n ( Sn
( 1 4 . 9 ) ^ (a o T) - F(a)~ {<?.., . ( r ) } a c Ord ( [m7 . [n^ )

0 K, VQ / 0 "
T c Ord ( [ y ] , [m] ) .
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In particular when m " p and T • [A^J is the identity map of [p] , (14 .9 )
reads

(14.10) ^(a)-F(a)-'{(r»)(K<a)a)} ^^([p],[n])-

This equation shows that if r4> " 0 then 4> " 0 and so r is

injective. Moreover if f c C^K.̂ ) is given, define » c {(f 0 F^dp by

<^(a) « F(a) ' l {f (K(a)o)} o e K^,a c Ord([p]. [n]).

Then F4> « f and. so F is surjective.

It is easy to verify that Fofi • 6 o r and that T preserves

products if F takes values in a category of algebras.

Q.E.D.

1 4 . 1 1 . - PfiOpo^^tion.- The local system C (over K) has the following

properties :

i) If I? : L -»• K is a simplicial map then f*C • C. The induced

homomorphism C(^) : C(L) -*• C(K) coincides with that given in 1 4 . 1 .

ii) H(C(n),6) * k for all n. In particular, C is a local system

of differential coefficients.

iii) C is extendable.

P/LOO^ : i) is obvious, ii) is a classical computation and iii) is an

immediate corollary of theorem 14 .6 (with F • k).

Q . E . D . ^

1 4 . 1 2 . - TopotoQ^cai ^pace^.- Let M be a topological space and

consider the simplicial set Sing M of singular simplices on M (eg. 1 2 . 1 3 )

The g.d.a. (C(Sing M),6) will simply be denoted by (C(M),6) ; by definition

it is the g.d.a. of singular cochains on M (with coefficients k).

Its cohomology is written HQ1) or H(M;k) ; it is the singular cohomology
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of M (with coefficients k).

1 4 . 1 3 . - Inte.QWbion and de Rhan thejoftW^.- We conclude this chapter

with the simplicial version of de Rham's theorem. Recall from 1 3 . 1 the definition

of A«(A ) • Define a linear map

: W) -

by

f db, A ... A db - f(x)dx, f c ^(A"),
•A" " -A"A A

where the right hand side is the ordinary Riemann integral. Stokes'theorem reads

( 1 4 . 1 4 ) [ ^ • ! (-01 ( <^ . ^cA^A").
^n i-0 ^n-1

Now A^n) C A^A") is the subspace defined by : f is a polynomial

in the b. with rational coefficients. It follows that restricts to a
1 JA"

linear map A^n) -> <(. Tensor ing with k we obtain a linear map

f : A"(n) - k

'A"

which still satisfies ( 1 4 . 1 4 ) . If E is any vector space (over k) we also

write

| - I 6 i : A^n) e E -^ E.
J n J n

A A

Next, let F be a local system of coefficients over a simplicial set

K. Define linear maps

f : A^K ; F^ - C^K ; F^
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by

(14.15) ( *)(<?) :|.)(o)-|^ 0 € K .
-p

(Note that • e A-(p) 9 E, and so • e F .)
0 ] 0 0

maps.

If f : j^ -»• ̂  is a simplicial map and G • i? F then ^ induces

A(i(») : AO ; G) - A(K ; F) and C(^) : CO ; G) ^ C(K ; F).

It is immediate from the definitions that the diagram

AW
A(L ; G) «———————— A(K ; F)

(14.16)

C(L ; G) C(K ; F)
CW

conmutes.

Next we use ( 1 4 . 1 4 ) to prove that

(14.17) o d • 6 o .

Let • e A^K ; F*1) - (A1* 9 F q ) (K) . Then

( d^)(o) " d^ - [ (-i)1 a^ •i o,p " i-o p-1

p-1
^i .-1- I <- 1 ) a - (a, e ^X^)-

i"0 D-I
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Because * c (AP 9 F^OO, 0. « 9.)* - *. . Thus
— 1 1 0 3.0

1

(|d*)(o) - p! (-I)1 8^(f*)0^o) - (J*)(o).
J i»0 ; •'

Note, hovever, that even if F • k, is not an algebra homomorphism !
J f

In view of ( 1 4 . 1 7 ) and ( 1 4 . 1 6 ) induces natural linear maps

f : H^^A 6 F^W.d) ———> H^K ; F^.

74. ?(. Th.e.o^.W.- Suppose F is a local system of coefficients over

K (with zero differentials). Then

f : H((A 0 F)(K)) -^ W ; F)

is an isomorphism of bigraded spaces. If F takes values in a category of
f

algebras then is an isomorphism of algebras.

PfUfoj : Since A and C are extendable local systems (prop 13.8,

prop 1 4 . 1 1 ) and F is a local system of coefficients, A % F and C 8 F are

also extendable. Thus by theorem 12.37. A 6 C % F is extendable as well.

Because H(A(n)) - k • H(C(n)) and F is a local system of coeffi-

cients. A e F. C % F and A « C 6 F are all local systems of differential

coefficients.

Now consider the inclusions "opposite 1"

^ : (A « F)^ ——> (A 0 C 9 F)^

and

^ : (C C F)^ ——> (A ® C 8 F)^ . o € K^, n >. 0.

They satisfy the hypotheses of theorem 12.27. Applying this theorem we obtain

isomorphisms

^ : H [ ( A e F ) ( K ) ] —^—- H[( A e c e F ) ( K ) ]
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and

•* : H(C(K ; F)) ———^ H[(A e C 8 F)®] .

which are multiplicative if F takes values in a category of algebras. (Note

that we have used the isomorphism F of theorem 14.6 to identify (C 6 F)(K)

with C(K ; F).)

It remains to show that - (<p*)~1 o ^. Define linear maps

I : A(n) C C(n) O F - C(n) O F , o e K .
o o ^*~

as follows : since A(n) - ACA") and :C(n) - C^) the chain map

f : (A(n).d) ^ (C(n),5)

is defined. Let

I (• « f 6 z) • ( •) . f 0 z
(7 I

Because fd « 6 [ , I commutes with the differentials. BecauseJ J o J
is natural with respect to simplicial maps ( 1 4 . 1 6 ) . the 1̂  commute with the

face and degenerary operators. Hence the I define a map

I : (A 8 C 9 F ) ( K ) ——> C(K ; F ) .

Clearly I o ̂  - i and I o ^ m . Hence I - (4' ) and so
r» - . -
. (,V1 o ^.

Q.E.D.
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Topological spaces and manifolds.

7 5 . 7 . - V^^eAe.ntiaJt jofw&.- Let M be a topological space and recall

(example 1 2 . 1 3 ) that Sing M denotes the simplicial set of singular simplices

on M. Thus we can form the c.g.d.a. (A(Sing M) ,d).

If ^ : M -*• N is a continuous map it defines a simplicial map

S(i?) : Sing(M) -»• Sing(N) and so we obtain a homomorphism

A(ip) : (A(Sing M).d) ^ (A(Sing N) ,d) .

75.2 . - Pe^uu^on.- The c.g.d.a. (A (Sing M),d) will be denoted sim-

ply by

(A(M),d)

and called the c.g.d.a. of differential forms on M. If i : N -»• M is the

inclusion of a subspace then

(A(M.N).d)

denotes the ideal of forms which vanish on N (A(i)4> " 0).

75 .3 . - P^opeA^ttJ. - The map M,ij5 ^ A(M) ,A(^) is a contravariant

functor from spaces to c.g.d.a.'s.

7 5 . 4 . - P^LOpeAtu.- If N is a subspace of M then

0 - A(M,N) - A(M) A^ l ) ' A(N) - 0

is a short exact sequence.
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PtOOjj : Since N C M, Sing N is a subset of Sing M. Apply prop.

12.21 to the extendable local system A.

Q . E . D .

7 5 . 5 . - P^-opgA^.- A(point) • k. In particular the inclusion of a

point in M defines an augmentation A(M) -»• k.

P^LOO^ : Any singular simplex o e Sing (pt) can be written

o • s . o . . . o s . ( T )
1! ln

where T is the unique singular simplex of dimension zero. It follows that

A(pt) -*- A(0) defined by 4> -t $ is an isomorphism. But A(0) " k.

Q . E . D .

7 5 . 6 . - P^OpeAttj.- Integration defines a natural isomorphism of

graded algebras

H ( A ( M ) . d ) -̂  H ( M ; k ) .

where H ( M ; k ) is the singular cohomology.

PA.OOfj : By definition H ( M ; k ) - H(Sing M ; k ) . Now apply theorem 1 ^ . 1 8 .

Q . E . D .

7 5 . 7 . - PA-ope^t^.- If NC M integration defines a natural isomorphism

H ( A ( M . N ) . d ) ̂  H ( M . N ; k ) .

which identifies the long exact cohomology sequence of the differential form

cohomology with that of singular cohomology.

Because H ( A ( M ) , d ) - H ( M ; k ) it follows that H ° ( A ( M ) . d ) • k if

and only M is path connected. In this case we can apply the results of
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chap. 6 to the inclusion

k t——- (A(M).d)

to obtain a "unique" minimal model (cf theorems 6 .1 , 6.2 , 6.3 )

^ : (AX^.d) —- (A(M),d) .

7 5 . S . - Pfc^^ctcon.- The minimal model

^M : ̂ '^ ~" (A(M)td)

is called the minimal model for M. Note that AX^ is connected.

Next suppose A(M) is augmented (by the inclusion of a fixed base

point in M). Recall (definition 8.7 with A(M) • E) the ^-homotopy spaces

TT (A(M)) and note that ^ gives an explicit identification

^(A(M/. - (^(AX^) ( s X^) .

.5.9. - Pe îcUon.- The spaces ^TP(A(M)) will be written simply

^P(M) :

n^(M) - QP(AX^)

and called the ^-homotopy spaces of the path connected based space M .

Next recall that a continuous map ^ : N ^ M between path connected

spaces determines a homomorphism

A ( ^ ) : ( A ( M ) . d ) - ( A ( N ) . d ) .

We regard this as a special case of diagram ( 6 . 2 8 ) (with B^ - B^, - k

E - A ( M ) , E^ - A ( N ) , n " A ( ^ ) ) .
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Then, as described in diagram (6.29) we obtain a homomorphism

i? : (AX ,d) ^ (AX^.d)

such that the diagram

A(M)

(15.10) AW

A(N)

^

!?

^

homotopy commutes. Moreover, the homotopy class of ^ is uniquely determined.

If ip preserves base points ther the based homotopy class of ^
is uniquely determined. In particular, it determines maps between the ^-homo-
topy spaces (cf. definition 8 . 1 1 ) which we write

.rt" . -H* fM\ ——». it* fV\: ^(M)(15.11) ^(N) ;

r • Q(^).

1 5 . 1 2 . - P^opeAtij

path connected spaces. Then the induced homomorphisms

.- Assume ^ ,<P : N -*• M are homotopic maps betweeno 1

î ; "Si — ^

are homotopic.

If ^ , 4 ? , and the homotopy preserve base points (fixed in M ando 1
N) then ^ and ^ are based homotopic, and so

^ . ̂  : TT^M)o 1 4' ^(N).
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Pfuooj ; Fix a base point x c N, and consider the c.g.d.a.

A(N x I) - A(N x I,x x I) • k.

The inclusion X(N x I) •-* A ( N X I) induces a cohomology isomorphism as

follows at one from property 1 5 . 7 , and X(N x I) is naturally augmented.

The projection TT : N x I -». N induces a homomorphism of augmented

c.g.d.a.'s

A(7r) : A(N) -^ X(N x I)

which is a cohomology isomorphism. Hence we may take

A(ir) o ^ : AX^ ^ X(N x I)"N

as the minimal model ; composing with the inclusion A(N x I) c-». A(N x I)

gives the minimal model for N x I.

On the other hand the inclusions j ^ N - N x ^ } (^ « o,l)

define homomorphisms of augmented c.g.d.a.'s

A ( j ^ ) : A(N x I) -^ A(N)

and A( j^) o A(TT) - A(irj^) • i .

Now assume 4 > : N x l - » - M is a homotopy from ^ to <p which

preserves base points : 4>(x x I) • y. Then ^ determines a homomorphism of

augmented c.g.d.a. 's

A(4>) : A(N x I) -. A(M)

This in turn determines a homomorphisro

» : AX^ * AX^,
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such that AC) o ̂  ^ A(ir) o ̂  o * .

We thus have

^ ^ A(^)^ " ̂ ^^M

^ A(j^)A(TT)^5 - ̂  . X - O.I,

Now prop. 5 . 1 6 . ii) implies (because ^ is an isomorphism) that

5 ^ 5 ^ !j) whence !? ^ ?,.o ^ ^> l o " i

The "unbased" case is left to the reader.

Q.E.D.

We next consider a number of topological constructions, and find

c.g.d.a.'s which "carry" the model of the constructed space.

75.13.- rWac^A.- Let ^ '. M x N -^ M, IT : M x N - N be the——————— M N

projections, and define

A(M) C A(N) - A(M x N)

by 0 6 ^ ^ A(^)4>.A(^)<y.

This is a homomorphism of c.g.d.a.'s. Because / is a multiplica-

tive isomorphism, it identifies the induced homomorphism

H(A(M)) « H(A(N) ) -^ H(A(M x N ) )

with the homomorphism

H(M;k) 6 H ( N ; k ) ^ H(M x N;k)

given by a ® 6 •* ^u") • ^N6^ "
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If either H(M;k) or H(N;k) has finite type the Kunneth theorem

asserts that this is an isomorphism.

Assume this to be the case and let

^ : AX^ -> A(M) and i0 : fSL^ ^ A(N)

be the minimal models (supposing as well M,N path connected). Then

^M'^N : ̂  ® ̂  ^ A(M x N)

(^C^(* ® V) " A(TT^)^.A(TT^)^) induces a cohonology isomorphism. Hence it

is the minimal model for M x N.

?5.N.- WtdQU. - Let {M ,x ) - be a collection of path connected— — — a a Q€ I

spaces with base points. Their wedge, V M is the disjoint union with all——"6— a a
the x *s identified.a

On the other hand if (A. e.}. , is a collection of augmented
b * b p€ i

c.g.d.a.'s, their wedge is the augmented c.g.d.a.

Ye - k •"k e r ^ •b

In particular the inclusions M -»• V M define homomorphisms
a a a

A(V M ) -. V A(M )

and

H(V M ; k ) -̂  V H(M ; k ) .
a a

Integration identifies the second of these with the cohomology homomorphism

induced by the first : if the second is an isomorphism the first induces a
cohomology isomorphism.

Assume this to be the case. Then A(V M ) and V A(M ) havea aa a

193



S. HALPERIN

the same minimal models (cf. theorem 6.24). On the other hand if

i? : AX -»• A(M ) is the minimal model then the ^ determinea a a a

V<P : V(AX ) -^ V A(M )
a a a a a

and (V^ ) is an isomorphism. Hence (again by 6.24) the minimal model of V M
a . a a

is the minimal model of

V(AX ) « k • n A"''X .a ex aa

(Observe that the right hand side is rather horrid.)

? 5 . ? 5 . - Ajtta.c.lung mapA.- Let

i : N - M and f : N -^ P

be continuous maps, in which i is the inclusion of a subspace. We use f to
attach M to P by identifying x and f(x) (x e N) in the disjoint union
of P and M ; the resulting space is written P u - M.

Then these is an obvious map of topological pairs

( M . N ) —. (Pu^M.P)

and we shall say M is well attached to P if this map induces an isomorphism

( 1 5 . 1 6 ) H ( M . N ; k ) <-2— H ( P U . M . P ; k ) .

Consider the analogous situation for c . g . d . a . ' s . Suppose

n : R •*• G and y : L -• G

are homomorphisms of c . g . d . a . * s , . a n d n is surjective. Define the c . g . d . a .

L •„ RC L 0 R
\s

to consist of the pairs ( • • V ) such that Y^ - nf. Note that it fits into
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the short exact sequence

(15.17) G -^ 00 -»• L •Jl -»• L • "RG

(in which Y-n is not product preserving and sends 1 to zero !).

In particular, if we are in the topological situation described above

we can form the exact sequence

0 ^ A(P) •^.A(M) -^ A(P) • A(M) A < f ? ' A < i >. A(N) ^ 0.

•

Let j : P -»• P U^M, 4> : M -»• PU^M be the obvious maps and define a homomorphism

^ : A ( P U ^ M ) —. A(P) •^^A(M)

by ^ » A ( j ) 4 > 0 AW<».

1 5 . I S . - PfLOpo^^tion. - If M is well attached to P then ^ is an

isomorphism of cohomology. In particular, the minimal model for P UrW ls

the minimal model for A(P) ®./.,»A(M).

P/iOO^ : Observe that A(M.N) • 0 • A(M.N)C A(P) eA(N)A ( T O and

that the diagram

0 ——> A(P U^M.P) ——> A(P U.M)

^

A(P)

A(M,N) A(P) \^W A(P)

is commutative and row exact. By ( 1 5 . 1 6 ) and property 1 5 . 7 the left hand
arrow is a cohomology isomorphism. Hence 4/ is an isomorphism.

Q . E . D .
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1 5 . 1 9 . - MfljU^o^dA.- Let M be a smooth manifold and consider the

standard c.g.d.a. of "de Rham" differential forms, (A-^(M),d). Recall the

simplicial set Sing^M) of smooth singular siuplices on M. Define a homo-

morphism (cf. 13.6) of c.g.d.a.'s

^ : A^(M) -. A^Sing^M))

by (^)^ • A(o)».

On the other hand the inclusions Sing^M) *——>- Sing(M) •'no

A ( n ) —». A (A") define homomorphisms of c.g.d.a.'s

A^CSing'CM)) ^—— A^Sing-CM)) ^—— A^(M) .

Moreover the diagram

CCSing'CM);^) ^———————————————————————— C(Sing(M)^R)

commutes.

Now the first vertical arrow is a cohomology isomorphism. (This is

in fact the De Rham theorem of De Rham !) The other two vertical arrows induce

cohomology isomorphisms by theorem 1 2 . 2 7 . That the bottom arrow does this is

standard topology.

It follows that T. and -y^ are isomorphisms. Hence y. and y»

define a c-equivalence between A^M) and ^n(M) (cf. 6.23). Hence

(theorem 6.24) their minimal models and ip-homotopy spaces coincide.
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ff(M)-modules and singular cohomology.

7 6 . 7 . - In this chapter M denotes a fixed path connected topological

space with base point x. The fundamental group of M, based at x, is

denoted by IT. (M) .

By a TT. (M) "module we shall mean a graded vector space (over k)

F " ^ F^ together with group homomorphisms ^.(M) -- GL(F^), q >, 0.
q>.0

(GL(F^) denotes the abstract group of k-linear automorphisms of F^) We

shall regard- a e TT.(M) as an automorphism of F and write simply a.w c F,

w c F.

Given a TT .(M)-module F define submodules

F C F, c ... C F C . . . C Fo 1 p

by : w c F if and only if (a -i)(a,-0 ... (a -i)w • 0 for allp o 1 p

a ,...,a c TT.(M). This sequence is called the upper central series for F.

The quotient of a TT.(M) module by a submodule is a ^.(M) -module

(in the obvious way). In particular, the inclusions F C F C F define
P P^q

an isomorphism of modules

c6-2) Wp —— ^p^--
Next observe that if G C F is a submodule then

(16.3) G - G O F . p ^ O
P P

and so G/G is a submodule of F/F .
P P

A TT.(M) -module F is called nilpotent if for each q there is
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an integer N(q) such chat

^ - rfN(q) •

In this case we say TT (M) acts nilpotently in F.

A ir (M)-module F has finite type if it has finite type as a graded
vector space (each F* is finite dimensional). It is finitely approximable if
it is the union of its submodules of finite type.

7 6 . 4 . - Le.mmq. - Suppose F is a finitely approximable -n, (M) -module
with family {F } of submodules of finite type :

F • U F " .
y

Then

i) Each F is finitely approximable and the submodules of finite
type are exactly the F\P

ii) Each F/F is finitely approximable and the submodules of finite
type are exactly the F^/F^.

iii) Each F /F is finitely approximable and the submodules ofp+q p
finite type are exactly the F^ /F^.

P^LOO^ :

i) follows from ( 1 6 . 3 ) with G replaced by F\
ii) follows from the observation that F^/F^ is a submodule of F/F .

iii) is a special case of i i ) .
Q . E . D .

1 6 . 5 . - Local Af^fejnA 0^ COC^Cc^n^A.- Let F be a local system of

coefficients (£.s.c.) over Sing M (cf. just after ( 1 2 . 2 6 )). Each 2 c M is

a singular o-simplex and hence determines a graded vector space F . Each
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path \ : 1 -»• M is a singular 1-simplex and hence determines isomorphisms

X(0) ^(1)'

The composite isomorphism 9 o 3 will be denoted by

M --J• - ^(0) ^(1)

and called the path isomorphism determined by X.

76.6.- P^opo-A^tcon.- The path isomorphisms have the following properties

i) If X : I - z is the constant path, then [\] is the identity map

of F .

ii) [\] depends only on the homotopy class (rel. the endpoints) of X .

iii) Let \ and u be paths from y to z and from z to w, and

let u«X be the composite path from y to w. Then [y*>} m [y'] o [ \ ] .

PfLOOJ 1

i) Regard z as a 0-simplex ; then X « s z. Hence 8 » 9 »

^ — V
ii) Let • : I x I - » - M be a homotopy such that

4>(s.O) - A (s). •(s.l) - A , (s ) . •(O.t) • y. • (1.0 - z.o i

Triangulate 1 x 1 as shown :
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and let a,8 and u be the singular simplices (of dimensions 2,2 and 1 ) obtained

by restricting *.
-̂ •"•' i .

The face maps define isomorphisms

^ -s- ^u and F? ——— ^u-

Combine these with i) to achieve the proof.

iii) Construct a singular 2-simplex a such that 9 a « y,

8.a • u«X and 3«a • \ ; then argue a« in ii).

Q.E.D.

If X is a loop based at x, then [x] is an automorphism of F .

Prop. 16 .6 shows that these automorphisms make F into a ir(M)-module.

76.7.- Pfc^ui^tcon.- The TT (M) -module F is called the ^ (M) -module

associated with the t.s.c. F.

Suppose G C F is a sub -l.s.c. (i.e. G^ C F^, o e Sing M and

the face and degeneracy maps of F restrict to those of G). We define the

quotient -^.s.c., F/G by

(F/G)^ • F^/G^ . o c Sing M

with the obvious face and degeneracy operators.
In particular note that G is a submodule of F and the equality

(^x - W
is an equality of w (M) -modules.

On the other hand, let E C F be any sub TT (M)-module.
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For each o c Sing M choose a path \ from x to o(0). Restriction defines

an isomorphism F^ —^ F , Q ) and so x determines a composite isomorphism

[X] ______
^ 5 ' ^(0) s——' ^

Because E is a submodule, the image of E under this isomorphism
is a subspace E^ c F which is independent of the choice of X. Thus the
E define a sub ^ . s . c . of F. In this way we obtain

1 6 . & . - P^iopo^ct'con.- The correspondence G ^r*- G defines a bi-
jection between sub local coefficient systems of F and sub T T ( M ) •modules
of F .x

? 6 . 9 . - Example..- The upper central series of F :

< F x > o c • • • c < F x ) p c • • •

determines a sequence of local systems of coefficients

F C . . . C F C . . .o p

such that (F ) • (F ) . It is called the upper central series for F.

Next recall that the ^ . s . c . F determines the graded space
F(Sing M) of global sections whose elements 4> are the families • € F—— o o
(o c Sing M) compatible with the face and degeneracy operators. For simpli-
city we write

F(Sing M) - F ( M ) .

Then the correspondence 4> •- 4> is a linear map

e : F(M) •» F , o c Sing M.o o ••
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If o and (D are faces of a simplex T then the face maps define

isomorphisms F -1-*- F ,F and the diagram

(16.10) F(M) -

commutes•
Since M is path connected each o is a face of a simplex T which

contains x as a vertex. Setting o» « x in ( 1 6 . 1 0 ) we see that e 4> « 0

if and only if e 4> m 0 . But in this case e ̂  m 0 for all o and so <> " 0.• x o
Hence each e is injective.

Next consider ( 1 6 . 1 0 ) when T is a loop based at x and

o » oj « x. It shows that [r] o e " e and henceL J x x

Im e C (F ) .x x o

On the other hand, if w c (F ) an argument similar to the proof of prop. 1 6 . 8

extends w to an element of F ( M ) . Thus

( 1 6 . 1 1 ) e^ : F(M) ——— (F^.

Since (F ) • (F ) a final application of ( 1 6 . 1 0 ) shows thatX 0 O X

( 1 6 . 1 2 ) e : F ( M ) -i-̂  (F )^ . o € Sing M .

The isomorphisms ( 1 6 . 1 2 ) exhibit F as a constant system of coefficients.
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1 6 . 1 3 . - S^nguJLa^ cohomotoQtf.- Let F be a local system of coefficients

over Sing M (with zero differentials !). In 1 4 . 1 . we defined the bigraded

differential space (C(Sing M;F),6) which we shall denote simply by (C(M;F).6).

It is called the space of singular cochains on M with coefficients in F.

Because 6 is homogeneous of bidegree (1,0) the cohomology space

H(C(M;F),6) is also bigraded : it is written simply

H(M;F) • V H^M^)
P.q^O

and called the singular cohomology of ,M with coefficients in F.

On the other hand if E is a graded vector space we have the bigraded

differential space (C(Sing M;E),6) of singular cochains on M with values in

E, which we write (C(M;E),6). Its cohomology,

H(M;E) « ^ H^MiE^.
p.q^O

is the ordinary singular cohomology of M with values in E. When E » k

we write simply H(M) » H(M;k) - cf. example 1 4 . 1 2 . - and call this e.g.a.

the singular cohomology algebra of M.

Suppose F is, as above, an t.s.c. Then we have the d i f ferent ia l

spaces C ( M ; F ( M ) ) , C(M;(F ) ) and C(M;F ) obtained by taking E - F(M).(F )
X 0 0 X 0

and replacing F by the ^.s.c. F^. If f c C^M^OO) define

e f c C^M^) ) and ef c C^h^F )

by

(e f ) ( o ) « e ( f ( o ) ) - f ( o ) and ( e f ) ( c ) - e ( f ( o ) ) - f ( " ) ^ , o c Sing ( M ) .

In this way, we obtain isomorphisms of differential spaces

e
( 1 6 . 1 4 ) C ( M ; F ) —e—— C ( M ; F ( M ) ) ——x— C ( M ; ( F ) ) ,

O S 2 X 0
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as follows from ( 1 6 . 1 0 ) , ( 1 6 . 1 1 ) and ( 1 6 . 1 2 ) . These isomorphisms induce isomor-

phisms

(16.15) H(M;F^) ^—— H(M;F(M)) ——^ H(M;(F^).

Finally, recall that an element f c C^(M;F4) associates with each

p-simplex a an element f(o) e F4. Since 6 is homogeneous of bidegree

(I,0) we have

H°(M;F4) • C°(M;F4) U ker 6.

In particular the linear map C°(M;F4) -»• F^ given by f -*• f(x) restricts

;°(M;F4) - F^.

We show that this map is in fact an isomorphism

to a linear map H (M;F 4) -^ F4.

(16.16) H°(M;F) -^ (F^.

Indeed, suppose f € H ° ( M ; F j . Let A be a path from x to y , with face maps

^ : ̂  —— V 3! : ̂  —— ^ Then

o • (6f ) (X) - a^ f(y) - a, f(x)

and hence

f (y) • ^a^f(x) - [x]f(x). y c M.

This shows that f(x) " 0 if and only if f • 0, and that

f(x) .- (F ) . Finally, if v c (F4) extend v to an element • c F^M)

and observe that y -*• • is a cocycle in C°(M;F4) which restricts to v.

Thus ( 1 6 . 1 6 ) is established.

1 6 . 1 7 . ' O^AfcC-t tuwjL&.~ Let G be an ^.s.c. over Sing M (with

zero differentials). Denote by GY C G the family of sub v.(M)-modules of

finite type ; each G^ entends to a unique sub t.s.c. G^ C G.
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The modules G^ are directed by inclusion, and if G^ c Gx then

G^ C G , so we have an inclusion (KM^) C COl^). Denote the direct limit

by (lim (KM^7)^). The inclusions G^ C G define inclusions

i : CCM^^) •*• C(M;G) and so we obtain an inclusion

i : (1^ (KMsG^M) -o (C(M;G)»6)

of bigraded differential spaces.

7 6 . 7 ^ . - P^opo^^tcon.- Suppose that

i) G is a nilpotent TT.(H) -module.
v

ii) G is finitely approximable : G • ^j G .

iii) Either G or H(M) has finite type.

Then i is an isomorphism.

76 .79 . - Lejrma.- The proposition is correct when G • (G ) .

P/LOO^ : When G • (G ) then the same is true for each G^. In this

case we use the isomorphisms ( 1 6 . 1 4 ) to identify i with the inclusion

lim (^MiG^) ——- C(M;G^)

Now because G^ has finite type there is a canonical isomorphism

C(M) 6 G^ -JL^ COl^). Extend to direct limits and use hypothesis ii) to

write

lim C(M;G^) • C(M) e G^.

We are thus reduced to proving that the inclusion
- C ( M ; G ) induces a cohomology isomorphism. Tli

consequence of hypothesis i i i ) .

C(M) e G - C ( M ; G ) induces a cohomology isomorphism. This is a direct

Q . E . D .
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16.20.- 'Pn.ooj 0^ the. p^topo^ctcon.- Consider the short exact sequences

of ^.s.c.'s

0 " s ^ ^i " ^ i^p '" 0

Because C is an extendable local system, tensoring with an t.s.c.. yields an

extendable local system. Hence prop. 1 2 . 4 2 applies to yield the short exact

sequences

0 -. C(M;Gp) ^ C(M;G^) ^ C(M;G^/Gp) - 0.

We make the same construction for each G^ and pass to direct limits

to obtain the commutative row exact diagram of differential spaces

0 -^ Urn CCM^) —- l^mC(M;G^) —. ]^m C(M;G_^/G^) -. 0
Y p Y Y

(16.21) | |

0 . c(M;Gp) ———————— ^^i) ————— ^^p^V " ° •

According to lenna 1 6 . 4 the TT (M)-modules (G ) and (G ̂  /G )

are finitely approximable, and their submodules of finite type are exactly

the (G^) and the (G^ ,/G^) . Moreover ( 1 6 . 2 ) (with q • 1 ) shows thatp x p+1 p x -

<WGP)x ' l̂ l̂ o •p+1 p x ^ p+1 p x-o

Thus lemma 1 6 . 1 9 implies that the vertical arrow on the right of

( 1 6 . 2 1 ) is always a cohomology isomorphism, and the one on the left is when

p • 0. It follows by induction that for each p -s, 0

i* : Hdirn (KM^)) ———<• H(M;G ).

The proposition follows now from the nilpotence of G and the

equations
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H(M;G) • I IKM^)
q

Q.E.D.

76.22. - CoftoitaA.U. - Under the hypotheses of prop. 1 6 . 1 8 the linear

maps i define an isomorphism

lim i* : l^m IKM^) —£-^ H(M;G) .

76.23 . - The. rvun ^ifcOWn.- Suppose now that G and F are local

systems of coefficients (with zero differentials) over Sing M, where M is,

as always our fixed path connected topological space with base point x. Assume

given linear maps *

^ : G -^ F . o c Sing M,o o o ——fc

homogeneous of degree zero and compatible with the face and degeneracy operators.

Define a linear map of bigraded differential spaces,*

^ : ( C ( M ; G ) , 6 ) -»• ( C ( M ; F ) , 5 )

by ( < i ) f ) ( o ) - ̂  ( f ( o ) ) . Denote by *̂ : H ( M ; G ) ^ H ( M ; F ) the induced map ofo
bigraded spaces.

As above let G^ C G be the sub local systems of coefficients such

that GY has finite type. Write

^ : ^ o i : CCM^) -. C ( M ; F )

and
4/ - (P o i : lim C ( M ; G ^ ) -̂  C ( M ; F ) ;

then U» • lim \^ and ^/ m lim 4; .
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16.24.- Hieown.- With the notation and hypotheses above, assume further

that

i) F and each G^ are nilpotent ^. (M)-modules.

ii) G is finitely approximable : G " <J G^.
X X X

iii) Either F or H(M) has finite type.

iv) H* : lim H°(M;G^) - H°(M;F) is an isomorphism and

^* : lim H'CM^) -^ H^M;^ is injective.

Then ^ ,^ and each ^ are isomorphisms. In particular, G iso x

nilpotent. *

PA.OO^ : It is enough to prove the theorem separately for each Fq

and G*2 and so we lose no generality in assuming F - F*1, G • G*1. We assume

this henceforth. In particular, because F is nilpotent,

F " F , some n.n

We show next that ^ restricts to isomorphisms

^p : ̂ p — (^p • P ^ °-
In fact we obtain from ( 1 6 . 1 6 ) the commutative diagram

lim H^M^) ———5———> llS^o " ̂ o

I /^

H°(M;F) ———,———— (F^)^

Thus hypothesis iv) implies that (<|( ) is an isomorphism.

Suppose we have proved that (^ ) is an isomorphism. It follows

at once (because M is path connected) that >P restricts to isomorphisms
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(^ ) ; (G ) —s-*' (F ) and so î  restricts to an isomorphismp o p o p o -
^ : C(M;Gp) -£̂  C(M;F ) .

By hypothesis ii) and lemma 1 6 . 4 (G ) is finitely approximable
with submodules of finite type exactly the (G ) • (G ) . Because (^ ) isx p p x x p
an isomorphism either (G ) has finite type or H(M) has finite type. Since
(G ) is (trivially) nilpotent we may apply prop. 1 6 . 1 8 and conclude thatx P

H(lim (KM^)) -^ H(M;G ) .^ p py
Because ^ was an isomorphism this implies that the restriction

\l> : lim (KM^) ——^ C(M;F )P "y P P

also induces a cohomology isomorphism, ^ .

Next, exactly as in the proof of prop. 1 6 . 1 8 , we have the commutative
row exact diagram of differential spaces

0 ——> lim CCM^) —»• lim (KM^) —> lim CCM^/G^ —- 0—> p —> p

^ ^ ^

Q —————, c(M;F ) —————> C(M;F) ——————> C(M;F/F ) ——> 0

where \l/ is defined in the obvious way.P

Since ^ is an isomorphism in all degrees we can pass to cohomologyP
and use hypothesis iv) to conclude that

î  : lia H^M'.G^/G^) -L- H ° ( M ; F / F ) .P ~~- P P

As above use the isomorphisms ( 1 6 . 1 6 ) to identify this with an isomorphism

209



S. H A L P E R I N

^ ̂ /^^ -^ C^x^o

induced by ^ .

On the other hand by lemma 16 .4 G^CG^) is a submodule ofx x p

G /(G ) , and the left hand side is exactly HS /(G ) 1 . By (16 .2 ) we mayx x p - x x p - o

identify this isomorphism with an isomorphism

( l̂̂ p ———— <Fx)p.l/<Fx)p

(induced by ^ ). Since (^ ) is already shown to be an isomorphism it follows

that so is (^) .

We have now shown that each (^ ) is an isomorphism. Since

\ • ̂ n we have (^n - ̂ n^ and 80 <Gx)n " (Gx)n+l• This impues

that (G^) » (GY) ,. Since G^ is assumed to be nilpotent we conclude thatx n x n4' l x

G^ • (G^) for all y and sox x n

G « U (G^) - (G ) .x x n x n

It follows that i? and each i? (and hence ^ and ^ ) arex o
isomorphisms. Moreover G is nilpotent and so i and 4; are also
isomorphisms (prop. 1 6 . 1 8 ) .

Q . E . D .
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A Converse to theorem 1 2 . 2 7

? 7 . ? . - Iwl^oduiction. Fix a path connected topological space M with

base point x. For any local system, F, over Sing M denote the space of global

sections, F(Sing M) simply by F(M) . If G is a second local system over

Sing M with values in the same category C then a morphism

is a family of morphisms ^ : G -»• F . compatible with the face and degeneracy

operators. It determines a morphism

<(? : G(M) ^ F(M)

via (^ - ^ ^.

Next, recall (chap. 13) the local system A whose global sections are

the c.g.d.a A(M) of differential forms on M. Tensor ^ with the identity

to obtain a morphism of local systems :

^ - i 6 ^ : A 6 G ^ A 9 F.

The induced morphism,

? : A(M ; G) -* A(M ; F).

is homogeneous of bidegree zero.

Suppose now that G and F are extendable local systems of differen-

tial coefficients. Then local systems of coefficients H(G) and H(F) over

Sing M are given by
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H(F) - H ( F ) .o oH(G)^ - H(G^) and

The morphisms f define morphisms ^ : H(G^) -" H(F^), which it is convenient

to denote by H(^). Then the H(^) define a morphism

H(^) : H(G) -<- H(F)

of local systems. Proceeding as above obtain a moxphism of local systems :

5(1 )̂ • i • H(^) l A 6 H(G) -^ A 6 H(F)

and hence a linear map of bigraded differential spaces :

5??)' : A(M ; H(G)) -^ A(M ; H(F)).

- On the other hand. as in 16.23 (replace ^ by H(^)) the morphisms

H(^ ) define a linear map of bigraded differential spaces,o

H(<P) : C(M ; H(G)) - C(M ; H(F».

It is trivial to cherk that the diagram

"HW
A^M ; mo^ —————

/

rrM • u(r.\\ —————————————»• CfM : HCF))

J

H«?)

conoutes.

Next, filter A(M ; G) and A(M ; F) by the subspaces

^ . V . A^M ; G) and ^ • I.. A3 (M ; F).. " 13*o r j »PJ^PG ^J^P
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This defines spectral sequences

^E?^ -> H(A(M ; G)) and yE?^ -> H(A(M ; F)).

as described in 12.43 and the end of chap. 13. Because ^ is homogeneous of

bidegree zero it defines a homomorphism of spectral sequences

^G^-F^ • i >, 0.

Since ^ is homogeneous of bidegree zero we can identify 9 • ^ »

E - A(M ; G) ; -E • A(M ; F ) . Thus theorem 12.47 yields the commutativeG o F o
diagram

^ ———————- A in ;

iW

ii/t?\'\ ,& rfM

n.\\ffj

H(<(7)

H(F))

(17.2) <P.

Finally, theorem 1 4 . 1 8 shows that J is an isomorphism. Thus (17 .2 )

yields the commutative diagram

G6

y^
F1

P.q S
2

^p.a
2 2

. uP/M •

» W^/M

Hq(G))

(H(^•)p t q

H q (F)) .

(17.3)

?7 .4 . - P^A£C^ ^unctA. Let r be a partially ordered set such that

for any y . Y. e T there is some Y c r with Y > ^r, and Y ^ Y^ . Assume

given :

i) A family of local systems {G^} .. over Sing M with values in

the same category C.
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ii) A family of morphisms

^1 Y! Y2
^» : G ——»• G , ^ $ Y^ .

vv ^3^7 ^7^1 ^1^1
such that ^y- i and S, o S, - S,3 1 .

Y ^1
Then {G ; S ) is called a directed family of local systems.

Because all our categories C have direct limits we can form.the

direct limit of such a directed family ; it is the local system G • lim GY

—^
given by

G,-M$(G\ ; \ --1^3, ; .j-ls''j •

The morphisms G^ -*- G define morphisms
0 <T

^ : G^ ^ G.

YoY, Y, Y^
The morphisms ^ : G (M) -»• G (M) define a directed system of

objects in C • and the morphisms C : G^M) -»• G(M) define a morphism

^ : lily G^W - G(M).

However, S need not be an isomorphism.

Next, assume G and each G^ are extendable local systems of diffe-
y2y\ Yrential coefficients. As in 1 7 . 1 the morphisms ^ and E, determine morphisa

.Y.Y, Y , Y.
^ - : A(M ; G ') ^ A(M ; G ')

and

y : A(M ; GY) ^ A(M ; G).

The first collection of morphisms makes (A(M ; G )) inco a directed

family, and the second collection determines a morphism
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C : lln A(M ; G " ) - A(M ; G ) .r
-̂ iSince the ^ are homogeneous of bidegree zero we can bigrade

the limit by

film A(M ; G^]?^ - l̂ m AP(M ; (G^).
r r

With this bigradation C is homogeneous of bidegree zero.

Moreover, if we set ?F • I- [ĵ m A(M ; G^]3'*. we define a filtration
-"• r

which determines a spectral sequence

E?^ -> H(lim A(M ; G ^ ) ) .

Since ^ is homogeneous of bidegree zero it preserves filtrations and induces

a map

^•q : E^ ,.P»q
G^i

of spectral sequences.

Y^i ^1
As in 1 7 . 1 the morphisms £ determine morphisms H(^ ) and

V-,Y,' 2 ' 1 v v
H(C ) which make { A ( M ; H ( G ' ) ) } and { C ( M ; H(G ' 1 ) )} into directed families.

Moreover theorem 12 .47 yields the commutative diagram

(17.5) ^

/ = v '
] ~T

r t A fw

lis H(^)
r

n /^\ \

—' lilp C
r

» f t * CM

(M ; HCG^))

lim H(^)
T^

; H(G) )
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(in which H^) and IK^) are the morphisns induced from C^. ag»in a«

described in 1 7 . 1 ) .

Paring to cohomology and using the fact that / is an isomorphism

we obtain the commutative diagram

pp.q

(17.6) ^q

-2———————r lim, HP(M ; HW))
r

^ , p»q
lim[H(̂ ) ]

^ H^M ; Hq(G)).

Finally recall that Gy - li® G^. It follows that for o e Sing M

the H(^) define an isomorphismo

(17.7) li$ H(^) : tin H(G^) -———— H(G^).

p-&•• P< t̂fc ^Pfc* Suppose as in 1 7 . 4 that G • l̂ m G^. where G

and each G^ (v e D is an extendable local system of differential coefficients

over Sing M. Then H(G) and IKG^) are^.s.c. 's.

As in 1 6 . 1 7 let (H1 | T c T) be the family of sub -C.s.c. 's of H(G)

such that H^ has finite type. Then we have the inclusions

i : C(H ; H1) - C(M ; H(G)) which yield the inclusion

i : ijLm C(M ; H1) - C(M ; H ( G ) ) .-Y^

Now assume that for each ^ c F. H((^) has finite type. Since

H(^) : IKG^) -^ H(G) is a morphism of ^.s.c' s. a sub Z.s.c. H^ C H(C) is

defined by

(H^) • Im HO^) . o e ^in& M.
o o
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Moreover V^ has finite type ; hence H^ is one of the H1 *s consi-

dered above.
^i ^->If Y , $ ̂  then H(C ) o H(r ) - H(C ) and so H C H .* A • * • •

Moreover ( 1 7 . 7 ) shows that H(G ) - \j H'ycr
Thus we have the conmutativc diagram

lilp C(M ; H ' )
r

lilp C(M ; H 1 )
T /

(17.9)

C(M ; H(G))

On the other hand. the morphisms H(C,) determine morphisins
t^ : H(G^) -^ Ĥ  by the requirement that the composite

IKG^) -^ ^f ^ H(G)

be IK^). The morphism Jl̂  defines a linear nap

A^ : C(M ; H(C^)) -^ C(M ; H^)

and, passing to the limit we obtain the linear map (of differential spaces)

t - ĵ m i 1 : lj.m C(M ; IKG')) -^ l̂ m C(M ; H").
r r r

?7 .?0 . - Lejmia. The linear map t is an isomorphism and makes the

diagra

l^m C(M ; H(GY)) ———t————^ lilp C(M ; H^)
r \ s r /

C(M ; H(G))
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P^O^. It is obvious that the diagram commutes. By definition

^ : H(G^) ^ ̂  . Y e r . o e Sing M.

is surjective ; hence so is &V and it follows that so is A.

On the other hand, suppose A* • 0. Then • comes from some

• e C(M ; H(G )), and by choosing -y large enough we can arrange that

fc^V - 0. We lose no generality'in assuming ^Y e C(M ; H^G^).

Now since H(^) : HCG^) - H(G) is a morphism of &.s .c . 's an

&.s.c. N^C IKG^ is defined by

(NY)^ - ker H(^) . o e Sing M.

Since A^ - 0 we have •Y e C(M ; (N^).

On the other hand, recall from (17 .7 ) that

H(G ) - Urn iKGL.x ^ x

It follows that if z c ker H(^) then H(^ Y)z - 0 for some

Y' >. Y. Since (N^)*1 has finite dimension (because H^G^) does) there is

some y >, y such that

HO^ )(N^)q • 0.

•y Y
This yields H(^ q )(NY)q - 0, o £ Sing M. whenceo o •

HO q )^ - 0.

It follows that • • 0 and A is injective.

Q.E.D.

If we combine ( 1 7 . 6 ) , lemma 1 7 . 1 0 , and ( 1 7 . 9 ) , we arrive at the

commutative diagram
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E^ ————————S———————————j^HP(M; (H^)

( 1 7 . 1 1 ) î  (i*)^

G^ —————————^—————————— H^M ; H^G))

in which the direct limit is over all sub Jl .s.c.*s H1 C H(G) such that H1

has finite type. and i* is the linear map defined in 1 6 . 1 7 .

y 7 - 7 2 - - Tk<L m<u-n ^O^effl. Recall that M is a path connected topolo-

gical space with base point x . Assume that

^ : G - F

is a morphism of local systems over Sing M. Assume further that

Y ^1
^G » ^« ^^ is a directed family of local systems over Sing M and that

pV . pY . „
-«

T^ Y2Y1 Y!are morphisms such that ^ o ^ • ^ , and

lim ^ : lim Gy —S-^ G.r "r
Recall from 1 7 . 1 and 1 7 . 4 that ^ and the ^ determine morphisms

^ : G(M) -^ F(M) and ^ : Urn G^(M) -^ G(M).

The main theorem of this chapter reads.

1 7 . 1 3 . - Th.e.O^LW. With the hypotheses and notation above, suppose that

i) F,G and each G are extendable local systems of differential

coefficients.

ii) H(F^) is a nilpocent v.(M)-module.
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iii) Each H(G^) is a nilpotent TT. (M)-module of finite type.

iv) Either H(M) or H(F^) has finite type.

v) There are isomorphisms

H°(^) 2 H°(G^ ^ H°(G;) ^ k Y c r , o c Sing M,

compatible with the face and degeneracy operators.

vi) The composite ^* o ^ : lim HCG^M)) -*• H(F(M)) is an isomorphism.
r

Then C » ^ and each ^ : H(G ) -»• H(F ) are isomorphisms.
0 0 0

Pnjooj.- We adopt all the notation defined earlier in this chapter.

In particular we have morphisms

1 : lin A(M r^) - A(M ; G) and ^ : A(M ; G) - A(M ; F) .

Moreover (cf. 1 3 . 1 1 and theorem 1 3 . 1 2 ) we have a commutative diagram

^m G^M) ————S——————- G(M) ————^—————. p(M)
r

lim A(M ; G^) A(M ; G) A(M ; F)
f. <P

in which the vertical arrows are cohomology isomorphisms. It follows that

If o r : lim H(A(M ; G^)) -1-̂  H(A(M ; F ) )r
On the other hand ^ and i define morphisms of convergent spectral

sequences. Combining ( 1 7 . 1 1 ) and ( 1 7 . 3 ) we have the commutative diagram
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^
?P.<1
h gp^ v^(^2 2 F^

(17.14) 5

Jl^m HP(M ; (H^) HP(M ; Hq(G)) HP(M ; Hq(F)).

(i )p»q (H^)*)^

P.?5.- Lemma. Assume that for some q, ^09q o i0^ is an

isomorphism and ^ > q o 1 ~ is injective. Then

i) ^9q and H^ are isomorphisms for all p.

ii) <T : Hq(G ) •<- Hq(F ) is an isomorphism, o e Sing M.

PftOO^- First consider the v .(M)-module ^(G^). Formula ( 1 7 . 7 )

shows that

H^G,) - j^m H^G^).

Since each Hq(G^) is a nilpotent v.(M)-lBodule of finite dimension it follows

that H^G^) is finitely approximable, and each finite dimensional submodule

is nilpotent.

Moreover, by hypothesis H^F^) is a nilpotent IT (M)-module, and

either H(M) has finite type or H^Fx) has finite dimension.

Finally, ( 1 7 . 1 4 ) shows chat

H(^' o i* : Urn H°(M ; (H^) ^ H°(M ; H^F))

is an isomorphism, and

HW* o i* : J^m H\M ; (H^) ^ H1 (M ; H^F))

is injective.
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We may thus apply theorem 16.24 to the morphism

H(lP ) : H^G) ^ H^F)

and conclude that H(̂  is an isomorphism (in degree q) for all o and

that

H(iP)* : H(M ; H^G)) ^ H(M ; Hq(F))

and

i* : j^m H(M ; (HT)q) -^ H(M ; Hq(G))

are isomorphisms. :

Part i) of the lemma now follows via ( 1 7 . 1 4 ) while part ii) follows

from the definition H(<P ) - ^* .o o

Q.E.D.

7 7 . 7 6 . - LejMPiq. ^-' o S'0 is an isomorphism for each p ^ 0.

P^OOlS. Hypothesis v) of the theorem and ( 1 7 . 1 4 ) identify 'K90 o î 0

with the identity map of H^M ; k).

Q.E.D.

Theorem 1 7 . 1 3 follows now from the Zeeman •Moore comparison theorem

( 1 7 . 1 7 ) below. Indeed, since ^ oi is an isomorphism, lemmas 1 7 . 1 5 and 1 7 . 1 6

allow us to apply the comparison theorem (with n?^ - SP^O^^) to conclude

that TR.^o^9^ is an isomorphism for all i >. 2 and all p,q ^ 0 .

A second application of lemma 1 7 . 1 5 gives that ^, ̂  and each ^
—• —ft ,« *

are isomorphisms. Hence so are ^ , ^ . 4/ and ^ .
Q.E.D.

We complete the chapter by establishing the Zeeman-Moore theorem.

Suppose n?^ : E?^ - E?^ (i >. 2) is a morphism of first quadrant

spectral sequences in which the 1 t h differentials are homogeneous of degree

(i, 1-i). We put

n?^ • n^ . E?^ - ̂  . E?^ • E^
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if i >, p+q+2.
• v s

Next assume n : H —=—»• H is an isomorphism of graded spaces.

Suppose n^F^S^C F^H^ where

^ - F0^) DF1^) D ... DF^1^) - 0 . q >, 0

and similarly for H . We say n. converges to the isomorphism n if there

are isomorphisms ^•q ̂  ̂  H^/F^* H^ and E^ ^ Fp HP^/FP^ H^

which identify n^^ with the map induced by n*.

The comparison theorem we need reads as follows :

1 7 . 1 7 , - Tkzown. Suppose n . : E . - » • £ . , 2 ( i $ < " is a map of

first quadrant spectral sequences, as described above. Assume chat

i) n?'0 !• always an isomorphism (p > 0).

ii) If for some q, n0^ is an isomorphism and n^^ is injective,

then n^'^ is an isomorphism for all p > 0.

iii) n. converges to an isomorphism.

Then n'9^ is an isomorphism for all P.q ^ 0 and i >, 1.

The proof proceeds by a number of lenoas.

?7 .J< . - Lejma.

i) n ' is injective.

ii) If n^'1^ is an isomorphism for p > m then ^tt•r~B ig injective.

iii) If n^'^'P is an isomorphism for p > 0 then n0'1' is an

isomorphism.

PA.00^.- Apply hypothesis iii) of the theorem.

Q.E.D.
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1 7 . 1 9 . - Lejnma. n?'0 is surjective for all i >. 2. In particular

n^'° is an isomorphism.

VfUSOi.- Apply hypothesis i) of the theorem, and lenma 1 7 . 1 8 i).

Q.E.D.

For the rest of this chapter (only) we establish the notation :

B?^ • d.CE?"1^1"1) ; Z?^ - E?^ H ker d^

and we denote the restrictions of n^ by

BCn)?^ : B?^ - ̂

and

ZCn)^ : ̂ 9q - Z?^ .

We also adopt the convention that p and q always denote integers >. 0.

J7.20.- lejrona. Suppose for some m ^ 0 that n^ is an isomorphism.

q < a. Then for i ̂  2 :

isomorphism if p-»-q $ m+1. q ^ m+1.

n?'^ is an ^ isomorphism if p+q • m+2. p >. i.

injection if p+q • m+3. p >, max(3,2i-2).

PfiOO^- By induction on i. The lemma is true by hypothesis when i • 2.

Assume it is proved for some i ̂ 2 . We show that :

/ p+q $ m+1

( 1 7 . 2 1 ) BCn)?^ is surjectivieif< p-*-q " m+2. p ^ i
1 r1'^ p-»-q - Br*-3, p >. 2i.
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( p+q $ m+1, q ^ m+1
or

(17.22) n" is injective if p+q " m+2, p ^ i
or

p-f-q • m+3, p >. max(3.2i-2).

{ p-»-q $ m+1.. q ^ -mfl
or

(17.23) B^)"'- is an isomorphism if p+q • n*2, p ^ i+1
1 or

p+q - m+3, p ^ max(3.2i).

- - ( P+q ^ m+1. q ^ m-'-l
(17.24) Z(n)^>q is an isomorphism ifJ or

; j p+q - m+2, p ^ i.

Indeed by induction n? x'^ 1 is an isomorphism when (p,q) satis-

fy one of the conditions of ( 1 7 . 2 1 ) . Thus ( 1 7 . 2 1 ) follows from the surjections

d. : E?"1'^1"1 -. B?^ .1 1 i

Equation (17.22) simply restates part of the induction hypothesis.

Since B^)?^ is a restriction of n?'11 , (17.23) follows from ( 1 7 . 2 1 ) and

(17.22).

To prove (17.24) consider the exact sequence

o -. z^ -^E^ di . Ep^'q"^1
i i i

By our induction hypothesis n?'^ is an isomorphism and n? ltq 1 is injective

when (p.q) satisfy one of the conditions of (17 .24) . Equation (17 .24 ) follows.

Finally, consider the exact sequence

0 - B?^ -^ Z?^ ^ E?^ -. 0.i i i+l

In view of this sequence equations ( 1 7 . 2 3 ) and ( 1 7 . 2 4 ) imply that

r ' " is an isomorphism if p+q < m+1, q ^ m+1 or if p+q " m+2, p >. i +1 .
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Equations (17.22) and (17.23) •how that n?^ is injective if p+q • m^3 and

p z max(3,2i).

This closes the induction, and completes the proof.

Q.E.D.

J7.25.- Lejrriq. Suppose r^'^ is an isomorphism for q < m, all p.

Then n^^ is an isomorphism for p-»-q $ m+l.

?fi.OO^.- If q ^ m+1, this is lemma 17.20. Thus tha lemma follows

from lemma 1 7 . 1 8 iii).

: Q.E.D.

P.26.- Lgfflmft. Fix integers m ^ 0 and i >. 2. Suppose that n^^

is an isomorphism if q $ m (all p), and n0'111*1 is, an isomorphism, j ^ i.

Then for A ^ 0 • and j ^ i :

i) n2^.(m^3)-(2j^) „ injective.

ii) B^)2^^3^23^ is an isomorphism.

iii) n3^2^ is an isomorphism.

iv) ^;^3)-(2j.t) ^ective.

P^oo^.- We use induction on fc. When 1 m 0, ii) is equation ( 1 7 . 2 3 )

and the other three parts are lemma 17.20. Now assume the lemma proved for

j z i and &' $ A . some fixed i >. 0. We prove it for j >. i ^"d A+l

2i+l ,(m+3)-(2j-*-l)
Part i) : If & • 0 then lemma l7.20shows that n J

is injective. If & > 0 then i). ̂  coincides with iv) ^^ and so is true

by induction.

Part iii) : Consider the short e^cact sequence

. -j.m^-j , eJ.m^-j d^ 2j^.(m^3)-(2j^) ^ ^
j^t J-11 J--^

>
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Because of iii). and ii). , we may conclude that
j »* J»*

(17.27) Z(r\)3^2"3 is an isomorphism.

If . > 0 then E^f-i - Z|̂  and so n^ is an

isomorphism. If A » 0 we have the exact sequence

0 - E0^1 ^ . z3'^2"3 —. E^2"3 — 0.
J J J-*-!

We have assumed that n . * is an isomorphism (hypothesis of lemma).

Thus (17.27) shows that ^3fa ^ ^s an isomorphism, and iii) is proved for

A+l. :

part ii) : Observe that Z3^2"3 • ̂ T '̂'1 and consider the exact

sequence.

j,m^2-j j,m+2-j _^jj^_^ 2J+A+1 ,(nr»-3)-(2j^+l) „
j+A+2 j+A+l j-»-&+l

By iii). . , and i). „ . (which are now proved) we have an isomorphismj ,&+i j ,x,'»-i

in the middle of this sequence and an injection at the right. Hence we have an

isomorphism at the right, which proves ii). ...
J i1 '**

Part iv) : Let r " 2j+&-»-l and consider the exact sequence

0 ^ B1'*1"*3'1' - Z1^3"1' - E^^3^ ^ 0.u j t-Afl j-A+1 jfA+2

By ii). we have an isomorphism at the left and by i). ̂  we

have an injection at the centre. Thus we have an injection at the right ;

i.e.. n^^"1' is injective.

The induction is now closed and the proof complete.

Q.E .D .

77 .2^ . - Lejnma. Assume n" is an isomorphism for q $ m and all p.

Then n - ' is an isomorphism for all i >. 2.
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?fi00^- By lemma 17.25 n^1 - ̂ +1 is an isomorphism.

Now assume n.' is an isomorphism for all j ^ i+1. some i ̂  2.
3 \

We show that

(17.29) ^.(m*3)-(2i.t) „ ^ective. 1 , 0

and

- «.»4.0«.<

(17.30) \^ i8 injective. A ^ 1 .

In fact (17.29) is lemma 17.20 if t - 0,1 or 2. If t > 2 we write

2i^.(m+3)-(2i+Jt) 2(i*l)+A-2.(m+3)-(2i^Jl)
^i-t^ " n(i+l)•^•(A-2)•»•l

and apply lemma 17.26, iv). This proves (17.29).

Next, consider the exact sequences

^ -,i,m+2-i ^ pi.m+2-i ^i 2i+A, (m+3)-(2i^A)
i+Jl-*-! i+A it-A * 1 , 1 .

By (17.29) we have an injection on the right. Hence

( 1 7 . 3 1 ) îr1 injective "> ^^r2"1 ^i®0^^. SL > - 1 *
On the other hand for j > i+1 lemma 17 .26 iii) shows that

^.m*2-j ^ ^ isomorphism. Hence lemma 1 7 . 1 8 ii) shows that n '̂"'1'2'1 is

injective. Now (17.30) follows from ( 1 7 . 3 1 ) .

Finally, consider the exact sequence

0 ^ E0;0*1 -. E0'"*1 di . Z1^2"1 - E1^2"1 - 0.

Since we have assumed (by induction) that ^ • * i is an isomorphism,

and since Z^)^* x is an isomorphism by ( 1 7 . 2 4 ) and since ^•^a ls

injective by (17.30) , we conclude that n0* is an isomorphism. The lemma

follows by induction.
Q.E.D.
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?7.32.- Lejnmq. Assume n^ is an isomorphism for q $ m (all p)
o m^ 1

and n, is also an isomorphism. Then for i >, 2 :

f isomorphism if p*q $ m*l.

rf.^ is an ^ isomorphism if p-t-q • m+2, p ^ 2.

, injection if p+q " m+3, p >. i+1.

P^LOOj[.- The proof is identical with that of lemma 17.20.

Q.E.D.

?7.33.- P^LOO^ o{, the.o^im ? 7 . ? 7 . We show by induction on q that

P Q . •
n^ is an isomorphism (all p). When q » 0 this is hypothesis i) of the

theorem. Assume we have proved it for q $ m.

By lemma 1 7 . 2 8 r}09^ is an isomorphism, i ̂ 2 . In particular

n^' is an isomorphism. Moreover, by lemma 17.26 iii) n1'11^ -1 is an
1 m4- 1

isomorphism for i ̂  2. Hence by lemma 1 7 . 1 8 ii), n * is injective.

Consider the exact sequences (for i ̂  2)

^ ^ gl.n^l ^E^.^I .Ĵ L̂  i-H,(m+3)-(i+l)
i+1 i i

Since n f is an isomorphism, lemma 1 7 . 3 2 applies and shows we

have an injection on the right. Hence

1 ,m-»-1 . . . 1 ,m+1 . .n . . injective -> n. injective

Since n^* is injective we conclude that n f is injective.

Now hypothesis ii) of the theorem shows that n^^^ is an isomorphism

for all p. This closes the induction.

Q.E.D.
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Chapt^t H

The local system of a KS extension.

7 ^ . 7 . - In^todac^om." In this chapter M denotes a fixed path con-
nected topological space with base point m. Recall (definition 1 5 . 2 ) the
c . g . d . a . ( A ( M ) , d ) and (property 1 5 . 5 ) the augmentation A(M) -»• k determined
by m. If F is any local system over Sing M we adopt the same convention
as for A and denote F (Sing M) simply by F ( M ) .

Since A(M) - A(Sing M) each singular simplex o : A ^ M deter-
mines the evaluation homomorphism *(of c . g . d . a . ' s )

e : A(M) - A(n)

given by ê  - ̂  (cf. 1 3 . 5 ) .

Now assume

E : A(M) -J-* R -p-̂  T

is a KS extension (c f . chap. 1 ) . Use the c . g . d . a . homomorphisms

A(M) —°^ A(n) and A(M) -^ R

to tensor A(n) with R over A(M) : denote the resulting c . g . d . a . by

(R o . d ) • ( A ( n ) ^(M)^^'

(Note the dependence on o comes from the homomorphism e^ . )

Next observe that by definition the diagrams
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A(M)

(18.2)

A(n-l) Ad^l)

commute. It follows that 3. and s . extend to c . g . d . a . homomorphisms

3, 9 i : A(n) e^R -. A(n-l) (»^R and s^ 9 i ; A(n) O^R - A(n+l) 9^R.

We denote these simply by

9 . : R -»• R and s . : R -»• Ri o 9 . o j o . s . o

Formulae ( 1 2 . 3 ) are clearly satisfied and so (R , a . , s . ) is a localo i J
system over Sing M. Since it is a local system of c . g . d . a . ' s we can pass to
cohomology and obtain the local system { H ( R ) , 9 . , s . } .o i j

7 S . 3 . - Pe^jzctcon.- The local system (R , 9 . , s . ) will be denoted by
R^ and called the local system determined by E. The local system (H(R ) , 8 * , s * }
will be denoted by H(R ) .

The canonical homomorphisms

( 1 8 . 4 ) A : A(n) -* A(n) fi./.,xR - R , o c Sing M,c A(M) c ———

are compatible with the face and degeneracy operators. Hence the A define ao
c . g . d . a . homomorphism

( 1 8 . 5 ) > : ( A ( M ) , d ) - ( R ( M ) , d ) ,

by ( > ^ ) » - :
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On the other hand the canonical homomorphisms

(18.6) v^ : R - A(n) ®^)R - P^ , o e Sing M

satisfy 9. o u • u^ and s. o u • y o. Thus a c.g.d.a. homomorphismi o o.o J o s _

(18.7) y : (R.d) -. (R^(M),d)

is defined by (u*) " u t.o o

A short calculation yields p o i " \, Since e : A(M) -r k is

the augmentation and E is a KS extension, ker p is generated by i(ker e^).

Thus p factors to yields the commutative diagram of c.g.d.a. 's

R —————^————— T

(18.8) A(M) u F

^^" ̂ w ———e-T——— \

(Here ^m : * "" •m ; cle&Tly ^m 0 x • ̂  •

7 ( . 9 . - PA.opo^^tam.- With the hypotheses and notation above, suppose

T is connected. Then
i) R is an extendable local system of differential coefficients.

ii) H(R ) is a local system of coefficients.

iii) u : T -*• R is an isomorphism.
iv) If T has finite type (as a graded space) then u : R -«• R^(M)

is an isomorphism.

P/tOO^ : Since M is path connected H ° ( M ) • k and so by theorem 14. 1 8

(with F - k) H ° ( A ( M ) ) - k. We can thus write
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R - A(M) 0 T

so that p - e C i and d ( l 0 a) - 1 e d_a e A (M) 0 T. a e T, ( c f . 1 . 1 4 ) .
Moreover we can write T • AX and find a well ordered homogeneous basis { x }
for X such that (cf. 1 . 4 )

(18.11) d ( l C x^) c A(M) « (AX)^

Use the isomorphism ( 1 8 . 1 0 ) to identify

R^ - A(n) ^(M)^^ e T " A(n) e T*(18.12)

Thus an augmentation A(n) -*• k determines a c . g . d . a . homomorphism R ^ T
and, by ( 1 8 . 1 1 )

\
A(n) ——°-^ R^ ————> T

is a KS extension. For suitable augmentations of A(n) and A ( n - l ) , 9 .
preserves augmentations, and so there is a commutative diagram

A(n)

A(n-l)

\°
9.0

This diagram is a morphism of KS extensions. Since T is connected

H°(R ) - H°(R. ) - k. Since (trivially) 8* : H(A(n)) —L— H(A(n-D).
0 a . 0 Lh°'

theorem 7 . 1 implies that 3. : H(Rg) H(R^ ^ ) . Since ^ o ̂  - > .
1

each s . is also an isomorphism. This proves i i ) .

To complete the proof of i) we need only show that R is extendable.
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Regard T as a constant local system over Sing M. The isomorphisms ( 1 8 , 1 2 )

identity R with A S T (in the category of graded spaces), Since T is

constant and A is extendable, A 9 T (and so R ) is extendable.

Part iii) follows from ( 1 8 . 1 2 ) with o m m. To prove iv) let

a.,...,a be a basis of I T . If H e R^(M) use the isomorphisms ( 1 8 . 1 2 )
t^P

to write

»a-j, "a.^9^ • Y^A(M).

The isomorphisms ( 1 8 . 1 2 ) convert 9. and s. to 8. 8 T. and s. % i and
' v / i - j i j

so the equations ft. " 3 . 0 and ft • s.ft yield9.0 1 0 s.o J O

\o.Z - ^o.^ and V,a.Z " ̂ o^ ' ^ 1. . . . .P .

It follows that elements H» e A(M). t m 1,...,r are defined by

(^a) * n ». Clearly ft • u(^ ^» 9 a«). Thus u is surjective. On the other

hand if u(^ <>a ® a») • 0 for elements 4>» £ A(M) then

o - u^(I ̂  e a^) - y<^)^ e a^.

Hence (4>a) » 0 for all ^.,0. This implies that 4>« • 0, t • 1 ,. . . ,r , and

so u is injective.

Q.E.D.

1 ^ . 1 3 . - Rema/ife.- Suppose E : A(M) -^ R -^ T is a KS extension

with T connected. Since H(R ) is a £.s.c., a canonical TT(M)-module

structure is defined in H(R )_ « H(R ) - cf. definition 1 6 . 7 .» TO m

Now by part iii) of prop. 1 8 . 9 u is an isomorphism :

^* : H(T) ^-^ H ( R ).m
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Thus H(T) becomes a canonical TT(M)-module.

We shall now make this ^(M) -module structure explicit. Fix an

isomorphism R « A(M) 8 T, a graded subspace X c 1^, and a well ordered
homogeneous basis <x^}^j of X such that

i) p • ê  6 i

( 1 8 . 1 4 ) ii) T « AX

iii) d ( l 6 x ) e A(M) 6 (AX) , a c I .a <tt

We also need the following conventions. We regard S1 as the unit

interval I with endpoints identified, and let o : I -o S1 be the projection.

We put o(0) • o ( l ) • b ; it is a base point for S 1 . Note that o is a
1-simplex on S .

Next write A ( l ) « A ( t , d t ) , where t is the barycentric coordinate

function b^ ( c f . example 1 2 . 9 ) . Then A(0) • k and the face maps
3 , 9 . : A ( l ) -»- k are given by

( 1 8 . 1 5 ) 8̂ t • 1 and 9 t - 0.

It is easy to construct a cocycle u e A ^ S ' ) such that u - d t .o
Clearly the inclusion

( A u , 0 ) ——. ( A C S ^ . d )

induces a cohomology isomorphism.

Now suppose T : I - M is a loop based at m :

T ( O ) " T ( 1 ) " m . Then T factors over c to yield a continuous map

^ : ( S ' , b ) - ( M , m ) .

The base point b determines an augmentation e : A ( S ' ) < k andb
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AW : A(M) -. A(S1)

is a homomorphism of augmented c . g . d . a . ' s .

In particular we can form the commutative diagram of homomorphisms
of augmented c . g . d . a . ' s :

A(M) ———1—————- R ————2—————> A X

-I 1 !•
A(S') ————. A(S') e^R ———^——— AX

in which j* - * 0 1 and n - e, ® p .b

Our fixed isomorphism R " A(H) 6 AX defines an isomorphism
A(S ) ̂ /w^ • A(S ) C AX. Because of ( 1 8 . 1 4 ) this identifies the lover row
above as a KS extension.

We now apply prop. 1 . 1 1 and its corollary to the inclusion
Au *-»• A(S ) . This yields a second isomorphism

f : A ( S 1 ) e AX —2̂  A ( S 1 ) «A/W)R

with respect to which

i) n - e. 6 i .o
ii) d ( l C x ) c A ( S 1 ) e (AX) . a c I .a <a

iii) Au 9 AX is stable under d .

Identify A(S ) 0 AX with A(S ) ® . , ^ R via f . Then iii) impliesA\rl;
that

d ( l 0 a) - 1 e d a -»• u 0 6 ( a ) . a c AX.

where 6 is a degree zero derivation of AX. The equation d " 0 yields
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d^6 • 9d^ and so e induces a derivation 8* in H(T). Moreover, because

of ii) we have

9x^ c (AX)^ . a c I.

This shows that for any a c T, 6^ • 0 if n is large enough.

Thus e » 5"" e^n! is an automorphism of (T,d-) and

(e8)* • e<e*) .

^.^.- P^topo^tcon.- The TT (M) -module structure of H(T) is given

by '

[r] • e9 : H(T) -^ H(T) .

P^LOO^ : Since ^ o o • T the homomorphisms

e : A(M) - A(l) and e : A(S 1 ) ^ A(l)
T 0

are connected by e " e o A(iP). Thus we can write

^ - Ao) ^(M)11 • A(l) •AO1)^1) \W)^ '

where we use e to make A( l ) into an algebra over A(S ).

Next, use the isomorphism f above, together with this equation to

wri.te

R^ • A ( l ) e AX • A ( t . d t ) « AX.

Because u • dt the differential in B^ is then given explicitly by

d(l « a) • 1 « d a -»• dt e ea. a c AX.

It follows that a homomorphisa ^ : (T,d_) -»• (R ,d) is given by
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^ • I t^n! 8 eY
a n-0

On the other hand, because o(0) • o ( l ) « b we have

9, o e - 8 o e_ • e : A(S ) -1> k.l o o ° b

It follows that the diagrams

A( l ) \^ A ( l ) e .^ l . [A(S 1 ) 8 , .R] " A O ) » AX

9.8i 9.ee,®ii b ^

^ m k ^(M)1^
k \w^ AX

commute. Thus the TT (M)-module structure of H(T) is given by

[rj - (9 6 l)" o [0, e l)']' : H(T) ——^ H(T).

Now use ( 1 8 . 1 5 ) to conclude (^ ® i)^ • ^ , (9^ » i ) U ' « e and

hence

[r] - (^eoV - e 6 .

Q.E .D .

? & . ? ? . - C^iOttcULU,- If T is connected and finitely generated (as

an algebra) then H(T) is a nilpotent T T ^ (M)-module.

PfLOO^ : We can write (in this case)

R - A ( M ) e A ( x , . . . . . x ^ )

with d ( 1 0 x . ) € A ( M ) 8 A(x , . . . , x . _ ) . For each loop T in M based at m

we have
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[r] • (e ̂  : H(T) -. H(T)

where 6 is a derivation of (T,d_) and

e^(x? - 0. e^(x^) e A(x^,....x^), i >

These equations imply that if a e T then for some integer N

(depending on a)

6 o ... o 9 (a) » 0
T! ^

for any sequence of N loops T.,...,T...

Since T (and hence H(T)) has finite type, it follows that H(T)

is a nilpotent TT (M)-module.

Q.E.D.

H.H.- VVitct Umitb.- Again consider the KS extension

E : A(M) -J-^ R —£-^ T

of 1 8 . 1 . Assume T is connected. Fix an isomorphism

( 1 8 . 1 9 ) R - A(M) e T .

a graded subspace X C T and a well ordered homogeneous basis (x } ,

of X such that ( 1 8 . 1 4 ) holds.

If Y is a subset of I denote by T^ C T the subalgebra generated

by the x , a e -y and denote by X^ C X the subspace spanned by the x .

O C T . Then

Let r be the collection of finite subsets y C I such that
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RY - A(M) 0 T̂  is stable under d. Then F is ordered by inclusion. The

properties ( 1 8 . 1 4 ) exhibit

Ê  : A(M) —r RY —- T̂

as a sub KS extension of E. Moreover I - U y and so the inclusionsvcr
R^ ̂  R define an isomorphism,

(18.20) lim ̂  ———2———(t R •
r

Y. Y,
Similarly the inclusions R ——- R ———- K define morphisms

of local systems

^2
Y. ^ ^«

R; —————— R.2 —————— R.

(cf. 1 7 . 1 ) . In particular ^\^ " a directed family of local systems over

Sing M (cf. 17 .4 ) and the morphisms ^ : R ,̂ -(> R, define a morphism of

local systems

^ •• li5 ̂  ——— R.
r

J ^ . 2 ? . - P^iopoA^tcon.- With the notation above :
i) R and each R^ are extendable local systems of differential

coefficients.

ii) For each Y . IKR^) is a nilpotent ^(M) -module of finite type.

iii) The morphism l̂ m R^ -̂  R, is an isomorphism of local systems.
r

iv) The diagram below commutes, with isomorphisms as shown :
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lim R"
T"

lim u^ ?

lim R^(M) R(M)

P̂ lOOli :

i) is prop. 1 8 . 9 i ) . ii) is cor. 18.17 (with remark 1 8 . 1 3 ) .
iii) is immediate from the definitions. The commutativity of iv) is obvious
and each u^ is an isomorphism by prop. 1 8 . 9 i v ) .

Q . E . D .
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Serre fibrations

79 .7 . - SWie. ^cb^tt'com. A Serre fibration is a continuous surjective

map of topological spaces,

which has the following homotopy lifting property : if

^ x {0} ————^—————. P

A" x I ———————————> M
o

is a commutative square of continuous maps, then T extends to a continuous

map T : A11 x I -»• P such that TTT • o.

The spaces P and M are the total space and base space of the fibra-

tion. If x c M the fibre. P , at x is the subspace TT (x) of P.

7 9 . 2 . - F^b^a^onA OVCA a. A^cmp^ex. Recall ( 1 2 . 9 ) that the vertices of

the p-simplex ^p are denoted by v , . . . ,v . Further, the order preserving maps

a c Ord([p],[q]) define continuous maps A(a) : if - ^..In this section it will,

in particular, be convenient to denote the face and degeneracy maps respectively

by

( 1 9 . 3 ) n. - A ( < 5 . ) : ^p~} ^ ̂  and C. - A ( o . ) : ̂  - & p ~ } .

We recall now the standard triangulation of A x I. It is given by

the continuous maps

a : A1^1 ———^ A x l . 0 $ m ( p .m
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defined by

p-1

c^(z) • (^(z), I b^(z)). z c A'
iin+1

JP-'1

.thwhere b.(z) is the i barycentric coordinate.

Let o : if -»• A° be any continuous map. Denote by
— p ^
o : A x I -»• A the continuous map given by

\.

P;1

(19.4) o o a ( "[ \^v^ "
i"0

(l-^)o ( I —— v.) + Av , X »t 1 .
i-0 'A 1 n

\ - li

P;1
where X « ^ x . . Thus

iin+1

(19.5) o(z.O) - o(z) and o(z.l) - v , z c A*'n

The relations ( 1 2 . 2 ) imply that the diagrams

(19.6)

commute, where (as usual) 9 . o • o o n . .
Now consider a Serre fibration

Using the homotopy lifting property, and (19 .6 ) we obtain

1 9 . 7 , - Lejrynfl. There are continuous maps

? . A?^ : ^ x I —— P T c Sing (P ) . p >, 0.
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•uch that

i) T(i.O) - T(i).

ii) IT o ^ • WOT, where HOT is defined from IT o T by ( 1 9 . 4 ) .

iii) If v-c(lf) - v . then ?(».t) - T(»)» t c I.n

iv) T o (r^xi) • T7 , 0 $ i < p.

Recall next from 19 .2 (or 12.9) that an inclusion of simplicial •ef

^ C Sing(A")

is defined by a »-*• A(a). Thus a subsinplicial •et P_ C Sing P is defined by

(19.8) T e P^ <-> IT o T € A".

We have thus the sequence of inclusions of sioplicial sets

^2 Y!
Sing(P ) ——-—*- ̂  ——•——- Sing (P) .

19.9. - Lemma. The hoBoaorphisos

A(Y,) A(Y,)
A(P^ ) -——————S—— A(P) <•—————'—— A(P)

n

induce isomorphisms of cohomology.

P^IOO($.- In view of theorem 1 4 . 1 8 it is enough to prove that

C(-rJ COr,)
C(P^ ) -•—————-——— CW -—————•———— C(P)

n

induce cohomology isomorphisms. For each T c Sing(P) (p >, 0) let

^ : ^p x I -»• P be a continuous map such that the conclusions of lemma 1 9 . 7

hold. Define ? c Sing (P ) by T(x) - ^(z,l) - cf. 1 9 . 7 ii) and 1 9 . 5 .——Bp y
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Define linear aapa

> ; C^ ) ^ (^(P). p >. 0 ,
n

by (Xf)(r) - f(T). It follow froB 19 .7 iii) that

( 1 9 . 1 0 ) C(^) o C(^) o \ - i.

Recall the linear aapa a : A^ -»• A1* x i defined above.

Put h (T) - ? o a : A^ -*• P, T c Sing (P). Define linear aape

h : C^P) -. cFCP). p >. 0,

by
(hf)(T) - ^ (-1)" f(h (T)) . T c Sing (P).

••0 r

Then a claaaical calculation (via 19.7i^) yieldt

(19.11) h6 - 6h - X o C(T^) o C(Y? - i .

This, together with (19 .10 ) •nova that C(^)* o C(v )* ia an

i«oaQrphi«&.

Finally, auppoae o c Sing (A ) ia actually in (̂  ) .

Then formula (19 .4 ) ahova that o o a c (A") ,, m i 0. HenceB — p-n
if T C P . h (T) aatiafiea (by 19.7 ii))— B

IT o h (T) • WOT o a c (̂ n) ..

Thil ahov that if T C P ao doea each h (r) and ao h reatricf to an operator

in C(P^). It follow that C(Y«) ia an iaoaorphiaa .

Q.E.D.

245



S. HALPERIN

?9 .?2 . - Pqg^bAcfeA. Consider continuous maps

"I <P

and suppose ir is a Serre fibration. Define a subspace ^ P C M. x P by

^ P « {(x,y)|<(?x -IT y).

The projections of M xP onto M and P , when restricted to ^ P , give the

coamut alive square

A

M .

Evidently IT is again a Serre fibration ; it is called the pullback of

to M via ^.

Let ^ : M- -»• M be another continuous map. Then 4» (<P P) is the

subspace of M^xM xp of points of the form (x,4»x,z) with ^ • as. Thus pro-

jection M x M xp -»• M^xp restricts to a homeomorphism

(19.13) ^(^P) (^) (P).

We often identify these spaces via this homeomorphism.

If ^ : x - M is the inclusion of a single point then the pullback

is just the constant projection P^ - x. More generally, if o : A" - M is any

singular simplex on M we denote the pullback of TT to A via o by

IT
_ o .n

(19.14) P —————- A .
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In particular, if 9. ans s . are the face and degeneracy operators

in Sing M (cf. 1 2 . 1 3 ) then the identifications ( 1 9 . 1 3 ) yield commutative

squares of continuous maps

E.
P

h°

A1

A! ,,
?.<J

a"——————— z

"i

P Po s

\ and \.o

^ A1

— — — J P
'1°

tt+1
————]

( 1 9 . 1 5 ) TT

(n. and ^. are defined in (19.3) . ) Moreover A . ,Z . satisfy the equations

(12.2) .

J 9 . J 6 . LOCO^ Af/^fcfti Oj$ i$o^unA. Consider a Serre fibration

P———=————M.

For each o e Sing (M) the pullback

-a——— A0

is a Serre fibration over A . We can thus apply definition (19 .8 ) to define a

simplicial subset P C Sing(P).

It follows from the diagrams ( 1 9 . 1 5 ) that the simplicial maps

Sme(P. ) •» Sing(P ) and Sing(P ) •» Sing(P ) defined by A. and £.—— 3. o " o ~ s .0 o i j

restrict to simplicial maps

'•0 and "S.O '•0 •' 3 . oi

Hence they determine c.g.d.a. homomorphisms

^ : A<p^o) ' ̂  and ^ : A(p..o) ' A(^-
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Became ^ and I. satisfy ( 1 2 . 2 ) , a. and •. satisfy (12 .3 ) .

Hence a local system of c.g.d.a.'s, F, over Sing(M) it defined by

F^ - A(P^), 3^, • . o c Sing(M).

It i« called the local system of the fibration.

? 9 - 7 7 * ' Lewmft* The local system, F, of a fibration it an extendable

local system of differential coefficients.

P^oo^.' That F is a local system of differential coefficients is

an easy consequence of lemma 19•9. '

To show it is extendable, fix o e Sing (M). Denote by P. the

•implicial subset of these T such that IT o T c ̂  . It is easy to identify

the homomorphism

^(A11) •«• ^F^)

with the restriction A(P ) -^ A(P, ), -cf. definition 1 2 . 1 9 . But the latter
0 _90

is surjective (prop. 13.8).

Q.E.D.

Since P is the pullback of P we have commutative squareso

(19.18)

o c Sing (M).

Equations ( 1 9 . 1 3 ) yield the relations

(19.19) ^^i-^.o and ^o^j^s.a •
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Next, denote by

•o : ̂  * ̂ y

A ( C )
the composite hoaoaorphisa A(P) ———2——»• A(P ) -»• A(P ). Froa (19.19) we have

(19.20) ^ o ̂  - a^ and ^ o a^ - a^ . o c ^n^(M).

These relations show that a c.g.d.a. hoaoaorphisa •

a : A(P) -^ F(M)

is defined by (at) - * • , o e Sing(M). (F(M) is the c.g.d.a. of global

sections of the local systea F.)

? 9 . Z ? . - Lemma.. The hoaoaorphisa, a» is an isoaorphisa of c.g.d.a. *s

a : A(P) ——^——^ F(M).

P^o^.- If o c Sing (M) and a c Ord([a],[n]) then A(a) : A® - A"

is a continuous map, and we obtain the cooautative diagram

A(,)^)—^—— ̂  —is—— p

^ —————————^ A" ——————————- M
A(a) o

If we use ( 1 9 . 1 3 ) to identify A(a)*(P^) with P ^,, then

^o ° ^a " SoA(a)'

(This generalizes ( 1 9 . 1 9 ) . )

Moreover the siaplicial map Sing(P , .) - Sing(P ) induced by A^

restricts to a •ioplicial aap
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\ : P ., . -^ Pa ooA(a) o

and hence determines a homomorphism

^V : ̂ ^(a^ ' ^o)-

(Note that 3. and s. are special cases !) Notice that \ is given by
i J -S

X (i) - ^ o T T € P , ^.a a ooA^a,?

Furthermore if ft e F(M) it is coherent with respect to all the A(X ) ; i.e.

(19.22) A(^)^ - ft^^ : a c S^W.

a c Ord([m].[n]).

Now consider a singular simplex u> : A -^ P.

It determines the singular simplices

o : A" -» M and T : A" ^ Pu) u) au)

given by

o (z) - TT(jo(z) and T (z) - (z,ax(z)) , z e A .
(j0 UJ

Observe that T satisfies (and is determined by) the relations
0)

(19.23) „ o T^ - x and ^ o T^ - » .
U) t^

Hence T C P . Moreover, for u £ Smg(P) and a e Ord ([m] , [n]) ,
0) 0 ———^1

o o A(a) * o „ / \oj (jjoA(a)

(19 .24 ) and

T 0 A(a) " > 0 T . „ . • > (T , .) ,u) a uioA(a) a a)oA(a)
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as is easily verified. These equations specialize to

8.0 • o. • s .0 • o
1 ti) 3.b) j u s.b)

(19.25) and

9 .T • A. 0 T. , S .T • Z . 0 T
1 U 1 8.(i) J O ) J S.te)

From (19.23) we deduce (for * e A(P), u) e Sing(P)) that

<^o ̂  • ^a ^^^ • ̂ a0^ • ̂  ;
U) U) U)

i.e.,

<^>o <Ta,> - *„ • a)cS^&(P).
U)

Hence a is injective.

On the other hand, let H c F(M). For each o» € Sing (P) define

<» e A(n) by

^ • "a <T.)(i)

It follows from (19.25) that the • are compatible with the face

and degeneracy operators, and so define an element ^ € A(P).

Now if T € P , some o € Sing (M) then IT OT " A(a) , some

a c Ord([m].[n]) and we can define T ' € Sing^(P^^.) by the equations

IT T ' • i and A o T ' - T.ooA(a) a

Let u) • ^ o T - ̂ (^ o T ' . Then (cf. (19 .23) ) T ' • T^ and

o^ - o o A(a) . T - ^ o T^.

Equations (19 .22 ) yield

» (T) • n (T ) • * .
0 0 0) U)

251



S. HALPERIff

But by definition

(••)^(T) - [A(^)<|(T) - •(^OT) - ̂ .

Hence «4 • Q and a i« turjectivc.
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Chapter 20

The fundamental theore

20,1.- Ivu^toduaUon.- Suppose

is a Serre fibration in which M is a path connected space with base point m.
We adopt the notation of chap. 1 9 . The diagrams ( 1 9 . 1 5 ) show that

(H(P^) ; ^ ; I;),,̂ ,

is a local system over Sing M. Integration (cf. theorem 14. 1 8 ) identifies
this with the local system

(H( A ( P ^ ) ) ; ACA^)* ; A d . ) * } .

Thus by lemma 1 9 . 9 it is identified with the local system

(H(A(P^)) ; 9^ ; s . )

and is in particular a local system of coefficients, (cf. also lemma 1 9 . 1 7 I)

Since M is path connected H ( P A ) becomes a v (M)-module ( c f . 1 6 . 5 )
and the identifications

H(P^:k)-H(A(P^)) - H(A(P^))

are isomorphisms of v (M)-modules.

Next, let j : P - P be the inclusion. Then w o j is the constant*m
map P - m and so

TO

A ( j ) 0 A(ir) - e : A(M) -^ A(P ) .
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where e is the augmentation of A(M) at m. It is given explicitly by

e $ « $ , $ e A ( M ) .m TO

Finally, assume P is also path connected. Then
H ° ( A ( M ) ) • H ° ( A ( P ) ) « k and so by theorem 6 . 1 and theorem 6 . 2 there is a

unique minimal model :

A (P)

E : A(M) ———^———— R ———^————— T

for A(TT) ; the row denotes a minimal KS extension. Because ker p is the

ideal generated by i (ker e ) we can complete this diagram to a commutative

diagram

A(M) ——A^———. A(P) ——A^———— A(P^)

(20.2) 6

A(M) ———^————— R ————^————— T

in which a is a homomorphism of c . g . d . a . ' s .
The main theorem of these notes reads

2 0 . 3 . - Theown.- With the notation and hypotheses above suppose that

i) P is path connected.m
ii) H(P ;k) is a nilpotent ir(M)-module.m i

iii) Either H(P ;l0 or H(M;IQ has finite type.m
Then a* : H ( T ) - H(A(P ) ) is an isomorphism, and so ( T . a ) ism

the minimal model for P .m
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P^LpOfj : Let o € Sing (M). Then TT : Ty -»• A" defines a simplicial

map Sing(P ) -*• Sing (A11) which by definition (cf. 19.8) restricts to a simpli-

cial map

TT : P ^ A" .__o^ _j^ _

Since ( 1 2 . 2 6 a)) A(A11) • A(n), the resulting homomorphism of diffe-

rential forms is a homomorphism

A(^)
A(p ) -,———————— A(n) .

o

Now denote by

e : A(M) ^ A(n)o

the homomorphism ^ ^ <t> . Then a computation shows that the diagram

A(P ) <•——ao———— A(P)o

(20.4) ^c^ A(7r)

A(n) ^———————— A(M)
o

commutes.

Next , recall the local system R^ • { R ; 8. ; s . } determined by E,

as defined in 18.3. Since R - A(n) ®^)R» the diagrams (20.4) show that

homomorphisms of c .g .d .a . ' s

^ : R ——> A(P ). o e Sing(M) ,
C O C ———

are defined by

^ - A(- ) 8 (a o 6 ) ,c c c

As in 1 9 . 1 6 denote the local system ( A ( P ^ ) } by F .

Relations ( 1 9 . 2 0 ) imply that the ^ are compatible with the face and degeneracy

operators. Hence they define a morphism
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^ : R. - F

of local systems. We wish to apply theorem 17*13 to this morphism.

First observe that since P is path connected the homomorphism
IT : H (M) -»• H (P) is injective. This is therefore also true for A(ir) ,
and it follows by cor. 3 . 9 that T is connected.

Since T is connected we can apply the results of 1 8 . 1 8 . In parti-
cular (cf. prop. 1 8 . 2 1 ) R is expressed as the direct limit of a directed
family R^ of local systems over Sing M. We now verify the hypotheses of9 •
theorem 1 7 . 1 3 (with R playing the role of G) :

i) F is an extendable local system of differential coefficients by
lemma 1 9 . 1 7 . R and R^ are extendable local systems of differential coef-
ficients (prop. 18.21 i ) ) .

ii) Note that F - A(P ) and so H(F ) - H(A(P ) ) is a nilpotentm a m vi
T (M)-module by hypothesis.

iii) Each IKR^) is a nilpotent IT. (M)-module of finite type
(prop. 18.21 i i ) ) .

iv) Either H(M;k)or H(F ) ( • H ( P . k ) ) has finite type by hypothesis.m m
v) Since ( H ( F ) ) is a local system of coefficients, and P is path

connected, clearly H°(F ) - H°(P ) - k and these isomorphisms are compatibleo m
ywith the face and degeneracy operators. The same is true for R and R^

because T is connected.

vi) By prop. 18.21 iv) the composite H(lim R^(M)) -̂  H ( F ( M ) ) can be
identified with the composite

• .9
H ( R ) ——u———- H ( R , ( M ) ) —L——- H ( F ( M ) ) .
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By definition, for i c R

^a • W^

- [A(i^) C (a^ o e)](l % l)

- a^t) - [«e(»)]^.

Hence ^ o u • a o 0.

Now a is an isomorphism (leana 1 9 . 2 1 ) and 6* i« an isomorphism by

hypothesis. Hence <? u is an isomorphism.

We have now verified all the,hypo theses of theorem 1 7 . 1 3 . We nay thus

conclude that

^ : H(R ) ——s—«- H(A(P )).

But

R - T (prop 18.9), A(P ) - A ( P ) (definition)ffl m u»

and, clearly. ^ m a. This coapletes the proof.
m

Q.E.D.

20.5.- Tke.QfiW. Let M be a path connected space with base point m

and suppose P ff > M is a Serre fibration satisfying the hypotheses of theoren

20.3. Assume that

A(ir) A( j )
A(M) —————————" A(P) ——————————> A(P )

II _____ I6- _____ 1°-
Aw———^—————— R! —————F,————T!

ii a connuftivt diagram of c.g.d.a.'t, in which the bottom row i» a KS extension.

Suppoae al«o that a* : H(T ) —2-— H(A(P ) ) . Then

6* : H ( R ^ ) —2——- H<A(P».
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P/LOO^.- Combine (20.2) with the diagram above to achieve the commutative

diagra

A(M)
A(TT)

1
)——rn-"—A

6!

——————————————^ •]

A(P )

By construction 6 is an isomorphism.
Hence we can apply theorem 5 . 1 9 to obtain a c . g . d . a . homomorphism

such that 8 o i. • i and 6 0 6 ^ 6 (rel A(M)).

The first condition shows that 8 i^ (ker e^) - i(ker e^) and so

1 (ker p ) C ker p. Thus B factors to yield the commutative diagram

A(M) ————^———— R ———°———— T

A(M) -, T - -
By changing the augmentation in T^ (if necessary) we can arrange

that a preserves augmentations. Hence so does 5 : (i.B.a) is a morphism of

KS extensions.

Now (cf. definition 5.8) the homotopy from 6 o i to 6 ^ is a

homomorphism • : (R^.A(M))1 ^ A(P) such that

• o X m 6 o i. • o \, - 6,. 4> o i - A(n) .o i i i
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In 5 .1 is defined a projection (R.,A(M)) -»• T.. The equations above

show that A(j) o * factors over this projection to yield a homotopy

r\ ——— A(P^)

from a o a to a..

It follows that a o a - a.. Since a. is an isomorphism by hypo-

thesis, and a is (by theorem 20.3) so is a . Now theorem 7 .1 implies that

8 is an isomorphism.

Since 0. ^ 8 o i and 0 and 6 are isomorphisms,

6 - 6 o 1 is also an isomorphism.-'

Q.E.D.

20.6,- PoUba.cfeA. - Consider a commutative square of continuous maps

^*P ——————————- P

<2 0-7) IT,

M! ————?————'M

in which TT is a Serrefibration and 7^ is the pullback via ^.

Choose basepoints m £ M and m € M so that ^ m - m ; then

^m, - p.-

Now suppose that

i) M and M are path connected.

ii) n.(M) acts nilpotently on H(P »k)

iii) Either H(P ;k)or both H(M;k)and H(M ;k)have finite type.m i

Let the model of A ( w ) be denoted by

259



S. HALPERIH

(20.8) e

E : A(M) T ;

then B is an isomorphism by construction and a is an isomorphism by

theorem 20.3.

On the other hand A(^) : A(M) -»• A(M ) is a c.g.d.a. homomorphisn

which preserves augmentations (because ^m, - a).

Thus we can use A(^) to define the c.g.d.a.

- A(M,) e^ R.

Diagrams (20.7) and (20.8) produce in the obvious way the diagra

A(M^) A(0) A((<P P) )

A(Mp

in which the bottom row is a KS extension. Moreover the hoaeomorphism P ^ (<^P)
gives an isomorphism A(P ) ^ A((^P) ) which identifies a and a . Hence
a is an isomorphism.

New theorem 20.5 applies and shows that 6 , is an isomorphism :

(20.9) B, : H(A(M,) e^ R) H(A(iP P)).
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