S. HALPERIN

Lectures on minimal models

Mémoires de la S. M. F. 2^{e} série, tome 9-10 (1983)
http://www.numdam.org/item?id=MSMF_1983_2_9-10__1_0
© Mémoires de la S. M. F., 1983, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

LECTURES ON MINIMAL MODELS
S. Halperin

INTRODUCTION

Algebraic topology has, classically, meant the study of algebraic invariants associated with topological spaces. These invariants (homology, homotopy,...) are normally not "geometric" in the sense that one cannot recover a space from them.

Although there is still no satisfactory algebraic description of homotopy theory (over Z), the rational homotopy theory of Quillen and Sullivan is a practical and complete solution - if one is willing to forget torsion. Here one models the homotopy category by the category of commutative graded differential algebras (c.g.d.a.'s). Then to each c.g.d.a. one associates a "minimal model" with the property that if two c.g.d.a.'s are connected by a homomorphism which is an isomorphism of cohomology then the minimal models are isomorphic.

The process space \rightarrow c.g.d.a. \rightarrow minimal model gives the minimal model of a space. Its isomorphism class is an invariant of the weak homotopy type of the space, S. Moreover, if S is a l-connected CW complex of finite type then from the model one can recover a space S_{Q} and a continuous map $S \rightarrow S_{Q}$ which induces isomorphisms $\pi_{i}(S) \bullet Q \cong \pi_{i}\left(S_{Q}\right)$.

Minimal models have proved to be a powerful tool in the solution of geometric problems. While the fact that one can indeed recover $S_{\text {f }}$ from the model is undoubtedly the philosophic reason for the power of the machine, this fact plays little direct role in the applications. Rather the two key ingredients turn out to be:
(a) A detailed understanding of the algebraic behaviour of the models, and
(b) A dictionary from classical topological invariants to invariants of the models.

My aim in these notes has been to provide a self-contained reference for many of the basic theorems needed for (a) and (b), in which complete, formal proofs were given down to the last technical detail. I have also tried to make the hypotheses as weak as possible and the conclusions as strong as possible. While this approach tends to make for difficult reading, it does (or so I hope!) result in a safely quoteable source for those whose main interest is the applications.

For the sake of completeness I have also included (with proofs!) many well known results and definitions (eg. simplicial sets in chap. 12 , $\pi_{1}(M)$-modules in chap. 16 and Serre fibrations in chap. 19). In fact, the only prerequisite is some multilinear algebra and a little basic topology.

The material presented here divides naturally into three parts.
The first (chaps. 1 to 11) is pure differential algebra: suppose

$$
\eta:\left(B, d_{B}\right) \rightarrow\left(E, d_{E}\right)
$$

is a homomorphism of c.g.d.a.'s (over a field k of characteristic zero).
Assume $H^{\circ}(B)=H^{0}(E)=K$, and B is augmented.
Then there is a commutative diagram of c.g.d.a. homomorphisms

in which:
i) φ^{*} is an isomorphism.

1i) ΛX is the f ree commutative graded algebra over the graded space X
iii) A certain "nilpotence-type" condition and a certain minimality

LECTURES ON MINIMAL MODELS

condition (cf. chap. 1) are satisfied by d.
Moreover the bottom row is uniquely determined (up to isomorphism).
The diagram above is called the minimal model for η (cf. chap. 6).
When $B=k$ we have simply

$$
\varphi:\left(\Lambda X, d_{A}\right) \rightarrow\left(E, d_{E}\right) ;
$$

it is called the minimal model for ($E, \mathrm{~d}_{\mathrm{E}}$).
The second part of the theory is a functor $M \sim \longrightarrow(A(M), d)$ from topological spaces to c.g.d.a.'s (over k) such that $H(A(M)$) is naturally isomorphic with the singular cohomology $H(M ; k)$. This is described in chaps. 13 to 15. The minimal model of $(A(M), d)$ is called the minimal model for M.

The third part is the study of fibrations (chaps. 16 to 20). Suppose $F \xrightarrow{\text { f }} E \xrightarrow{\pi} B$ is a Serre fibration in which F, E, B are path connected. Then we can form the model of $A(\pi): A(B) \rightarrow A(E)$, obtaining the commutative diagram:

in which φ^{*} is an isomorphism. The fundamental theorem of this part reads
20.3. - Theorem. Assume that
i) Either $\mathrm{H}(\mathrm{B} ; \mathrm{k})$ or $\mathrm{H}(\mathrm{F} ; \mathrm{k})$ has finite type.

1i) $\pi_{1}(B)$ acts nilpotently in each $H^{P}(F ; k)$.
Then α^{*} is an isomorphism, and so $\alpha: \Lambda X \rightarrow A(F)$ is the minimal
model for F.

S. HALPERIN

This theorem was proved first by P. Grivel [G] in the case B is 1-connected. Another proof was given independently a little later by J.C. Thomas (unpublished), again for the case B is l-connected. The proof given In these notes follows the general idea of Grivel's proof, but the technicalities are substantially more complex. In particular, heavy use is made of the notion of "local system over a simplicial set" (chap. 12) which is a simplicial analogue of a sheaf.

Let $\Lambda X \rightarrow A(M)$ be the minimal model (over Q) of a path connected
space M. There are obvious linear maps

$$
X^{P} \rightarrow \operatorname{Hom}_{z}\left(\pi_{p}(M) ; Q\right), \quad p \geq 2
$$

Using theorem 20.3 it is easy to deduce the
Theorem. - Assume that

1) Each $\pi_{p}(M)$ Q is a nilpotent finite dimensional $\pi_{1}(M)$ module for $p \geq 2$).
2) The minimal model for $K\left(\pi_{1}(M)\right.$; 1) has generators only in degree 1.

Then the linear maps $X^{p} \rightarrow \operatorname{Hom}_{Z}\left(\pi_{p}(M) ; Q\right), p \geq 2$, are isomorphisms.
I had originally planned to include this and other applications, but ran out of time. They will appear elsewhere.

The theory of minimal models is due to Dennis Sullivan, and his paper "Infinitesimal Computations in Topology" [S] is the fundamental work on the subject. Indeed the first two parts of these notes (chaps. 1 to 11 and 13 to 15) follow [S] very closely.

The reader who makes this comparison will discover that aside from the occasional modification in the assertions of [S] I have frequently merely expanded the ideas there into formal proofs. (One exception is "de Rham's theorem" in chap. 14 whose proof is based on that of Chris Watkiss [W]; another
version of this proof is given by Cartan [C]. Other proofs abound in the literature.) Of course the overlap of these notes with [S] covers only part of [S]. I haven't touched solvable models, let alone the latter half of [S].

Another approach to minimal models is via localizations and Postnikov towers. If M is a nilpotent space it can be localized to produce a rational space $M_{\text {. }}$. The data which define the Postnikov decomposition of M are exactly the data which define the minimal model of M, and so it follows that the minimal model of M determines its rational homotopy type. The theorem above on homotopy groups follows at once, at least for nilpotent spaces. This approach is that of Friedlander et al. [F] and Lehmann [L_{2}]. The resumé by Lehmann $\left[L_{1}\right]$ is particularly elegant and readable.

A different approach is taken by Bousfield and Gugenheim [B-G] who provide a complete exposition in the context of the closed model categories of Quillen. Other expositions (eg. [W-T]) are also available.

At least two other algebraic categories have been successfully used to model rational homotopy theory: the iterated integrals of Chen [Ch] and the category of graded differential Lie algebras. In the latter category the notion of minimal model was introduced by Baues and Lemaire [B-L].

The recent book of Tanré [Ta] provides a clear description of the relation between these categories and goes very much further than the present notes in describing topological invariants in terms of the model.

These notes are a greatly expanded version of lectures I gave at Lille in 1976 and 1977 in the seminar on algebraic topology and differential geometry. They first appeared in 1977 in the Publications Internes of the U.E.R. de Mathématiques, Université de Lille I and are presented here unchanged, except for changes to the introduction.

The seminar discussions were, naturally, enormously helpful - I want particularly to mention Daniel Lehmann and Chris Watkiss. My thanks also
go to Mmes Tatti and Bérat for their careful typing of the manuscript, and to the Université de Lille I, whose hospitality made the whole thing possible. It is a great pleasure to be able, now, to say thank you to my Lille colleagues not only for their hospitality that year, but for all the subsequent years as well.

Finally, I should like to take this opportunity to express my warm gratitude to my teacher, friend and colleague Werner Greub from whom I first learned about commutative graded differential algebras and Koszul complexes.

TABLE OF CONTENTS

Introduction	
Table of contents	
Chapter 0	Notation and conventions.
Chapter 1	: KS extensions : Definitions, space of indecomposables, contractible KS complexes, pullbacks.
Chapter 2	: Reduction to a minimal extension.
Chapter 3	: The structure of a minimal extension.
Chapter 4	: Morphisms of extensions.
Chapter 5	: Homotopies and Iiftings : The c.g.d.a. ($\left.(C, B)^{I}, D\right)$, the inclusions $\lambda_{0}, \lambda_{1}: C \rightarrow(C, B)^{I}$, homotopy and based homotopy (rel B), lifting of morphisms (thms 5.19, 5.20), the extension $(C, B)^{\partial I} \rightarrow(C, B)^{I} \rightarrow \Lambda \bar{Q}_{A}$.
Chapter 6	: Models : Existence and uniqueness (thms 6.1,6.2,6.3), induced morphisms (diagram 6.29).
Chapter 7	: Isomorphism theorems.
Chapter 8	: The ψ-homotopy spaces : $\pi_{\psi}(\gamma)$: Definition, the linear maps $(\psi, \eta)^{\#}$ and $\eta^{\#}$.
Chapter 9	: A-extensions : Definition, homotopies and based homotopies of pairs, homotopy extension property, lifting of pairs of morphisms (thms 9.19 and 9.20).
Chapter 10	: 1 -models : Existence and uniqueness (thms 10.1,10.3,10.4), induced morphisms, the exact \downarrow-homotopy sequence
Chapter 11	: Automorphisms : Locally nilpotent families, the circle construction, lomotopies, inner automorphisms (thm 11.21).
Chapter 12	: Simplicial sets and local systems : Definitions, global sections, extendable local systems, local systems of coefficients and differential coefficients, local isomorphism => global isomorphism (thm 12.27), tensor product of extendable is extendable (thm 12.37), the associated spectral sequence (thm 12.47).
Chapter 13	Differential forms.
Chapter 14	: Simplicial cohomology : De Rham's theorem with local coefficients (thm 14.18).
Chapter 15	: Topological spaces and manifolds : The functor $A(M)$, the functor $\pi_{\psi}(M)$, products, wedges, attaching maps.
Chapter 16	$: \underline{m}_{-1}(M)$-modules and singular cohomology.
Chapter 17	A Converse to theorem 12.27 .

S. HALPERIN

Chapter 18
Chapter 19
Chapter 20
: The local system of a KS extension.
: Serre fibrations.
: The fundamental theorem.
References.

Notation and conventions

All vector spaces, algebras, multilinear operátions, ... in these notes are defined over a fixed field k of characteristic zero. Occasionally we specify $k=Q, R$ or C.

All algebras are associative, and have an identity, 1 , which is preserved by homomorphisms.

By a graded vector space we mean 3 direct sum $V=\Sigma_{p \geqslant 0} v^{p}$ (note that the sum is over the non negative integers). We write $\mathbf{v}^{+}=\Sigma_{p>0} v^{p}$. Elements of V^{P} are homogeneous of degree p. V has finite type if each \mathbf{V}^{P} has finite dimension. If W is a second graded space then a linear map $\psi: V \rightarrow W$ has degree r if $\varphi\left(V^{p}\right) \subset W^{p+r}, p \geqslant 0$.

A graded algebra $A=\sum_{p \geqslant 0} A^{p}$ is one which satisfies $A^{p} \cdot A^{q} \subset A^{p+q}$. An augmentation of A is a homomorphism $\varepsilon_{A}: A \rightarrow k$ such that $\varepsilon_{A}\left(A^{+}\right)=0$. A derivation of degree p in A is a linear map, θ, of degree p such that $\theta(a b)=\theta(a) \cdot b+(-1)^{P q} a \cdot \theta(b), a \in A^{q}, b \in A . A$ is called n-connected if $A^{0}=k$ and $A^{P}=0,1 \leqslant P \leqslant n$. By a homomorphism of graded algebras we mean a homomorphism of degree zero. A homomorphism $\cup\left(A, \varepsilon_{A}\right) \rightarrow\left(B, \varepsilon_{B}\right)$ of augmented graded algebras satisfies $\varepsilon_{A}=\varepsilon_{B}{ }^{\dagger}$.

A homomorphism of graded algebras is called n-regular if it is an isomorphism in degrees $\leq n$ and injective in degree n. The tensor product of graded algebras A and B is the graded algebra A B with product

$$
(a \oplus b) \cdot\left(a^{\prime} \oplus b^{\prime}\right)=(-1)^{p q} a a^{\prime} \bullet b b^{\prime} \quad, \quad \begin{aligned}
& a \\
& b \in B^{p} \\
& a^{\prime} \\
& a^{\prime} \in A^{q} \\
& b^{\prime} \in B .
\end{aligned}
$$

A commative graded algebra（c．g．a．），A，is one which satisfies $a b=(-1)^{p q} b a, \quad a \in A^{p}, b \in A^{q}$ ．If $\downarrow: C \rightarrow A$ and $\psi: C \rightarrow B$ are homomor－
 $b \in B)$ span a graded subspace $I C A O B$ ．In fact I is an ideal and we write

$$
A \theta_{C} B=(A \otimes B) / I ;
$$

it is again a c．g．a．
A graded differential algebra is a graded algebra A together with a derivation d_{A} of degree 1 such that $d_{A}^{2}=0$ ．The spaces ker d_{A} ， Im d_{A} are called the cocycle and coboundary spaces and the graded algebra

$$
H\left(A, d_{A}\right)=\operatorname{ker} d_{A} / \operatorname{Im} d_{A}
$$

is called the cohomology algebra．It is sometimes written $H(A)$ ．A homomor－ phism $\emptyset:\left(A, d_{A}\right) \rightarrow\left(B, d_{B}\right)$ of g．d．a．＇s is a homomorphism of graded algebras which satisfies $\int_{A}=d_{B} \psi$ ．It induces a homomorphism of cohomology algebras， written


```
                            If 片访 an isomorphism we sometimes write }\psi:(A,\mp@subsup{d}{A}{\prime})\xrightarrow{}{\simeq}(B,\mp@subsup{d}{B}{})\mathrm{ .
(Note that }f~~|\mathrm{ is a covariant functor !).
    A is called acyclic if H(A)=k. An ideal JC A (which is d
stable) is called acyclic if H(J)=0.
    The tensor product of g.d.a.'s A and B is again a g.d.a. with
        d
    Multiplication defines an isomorphism H(A 日 B = H(A) 日 H(B).
```


LECTURES ON MINIMAL MODELS

[^0]
Chapter 1

KS-extensions

1.1.- Definitions. - Let X be a graded space. $A X$ will denote the free graded comutative algebra over X :
$\Lambda X=$ Exterior algebra ($X^{\text {odd }}$) © Symmetric algebra ($X^{\text {even }}$)
$\left(\Lambda^{k} X\right)^{p}$ is the subspace generated by $x_{1} \Lambda \ldots \Lambda x_{k}$ with \sum_{i} deg $x_{i}=p$; we say the elements in $(\Lambda X)^{p}$ have degree p.

Let $A \xrightarrow{\varepsilon} k$ be an augmented graded algebra. We define a graded
space $Q(A)=\sum_{P \geqslant 0} Q^{P}(A)$ (also written Q_{A}) by

$$
Q(A)=\operatorname{ker} \varepsilon / \text { ker } \varepsilon \text {.ker } \varepsilon \text {; }
$$

it is the space of indecomposables of A. We denote the canonical projection (of graded spaces) by $\zeta_{A}: \operatorname{ker} \varepsilon \rightarrow Q(A)$.

An extension is a sequence of augmented c.g.d.a.'s

$$
E:\left(B, d_{B}\right) \xrightarrow{i}\left(C, d_{C}\right) \xrightarrow{D}\left(A, d_{A}\right)
$$

such that i and p preserve the augmentations and
i) $A=\Lambda X$ for some graded subspace $X \subset A$, and $\Lambda^{+} X$ is the augmentation ideal.
ii) There is a commutative diagram of algebra homomorphisms

S. HALPERIN

```
where f is an isomorphism and \varepsilon is the augmentation for B. (We make no
requirement about how f behaves with the differentials). Note that
f(ker \varepsilon O A + B O A
    We call the c.g.d.a.'s (B, d}\mp@subsup{A}{B}{\prime}),(C,\mp@subsup{d}{C}{\prime})\mathrm{ and (A, d ( ) the base;
total space, and fibre of the extension.
The above definition involves the existence of two "non-canonical
objects", namely X and f. The extension E, together with (X,f) will
be called a structured extension. We often use the structure to identify
C with b A. In this case the elements b O 1 (= i(b)) and l a a
(=f(l © a)) will often be denoted simply by b and by a.
    An extension is called elementary if there is a structure (X,f)
such that
\[
\begin{equation*}
\mathrm{d}_{\mathrm{C}}(\mathrm{X}) \subset \mathrm{B} \tag{1.2}
\end{equation*}
\]
Suppose \(\left\{x_{\alpha}\right\}_{\alpha \varepsilon I}\) is an ordered homogeneous basis for \(X\). Then we will write \(A_{<\alpha}\) and \(A_{\leqslant \alpha}\) for the subalgebras generated by the \(x_{B}\) with \(B<\alpha\) (resp. \(\beta \leqslant \alpha\) ). Note that
\[
\begin{equation*}
A_{\leqslant \alpha} \cong A_{<\alpha} \Theta \Lambda x_{\alpha} \tag{1.3}
\end{equation*}
\]
the isomorphism being multiplication in \(A_{\leqslant \alpha}\).
An extension \(E\) is called a Koszul-Sullivan (KS) extension if it
admits a structure ( \(X, f\) ) and a homogeneous basis \(\left\{x_{a}\right\}_{a \varepsilon} I\) of \(X\), indexed ty a well-ordered set \(I\) such that
\[
d_{C}\left(x_{\alpha}\right) \in B \in A_{<\alpha}, \quad a \in I
\]
An extension \(E\) is called positive if \(A\) is connected : \(\left(X=\sum_{p \geqslant 1} X^{P}\right)\).
A KS-extension \(E\) is called minimal if there is a structure
( \(X, f\) ) and a well ordered homogeneous basis \(\left\{x_{\alpha}\right\}_{a \in l}\) for \(X\) such that
```

```
deg \mp@subsup{x}{B}{}<\operatorname{deg}\mp@subsup{x}{\alpha}{}=>>\beta<\alpha, and such that (1.4) holds.
    If }B=k\mathrm{ we replace "extension" by "complex" in the definitions,
```

obtaining KS-complex, minimal KS-complex.
1.5. - Remarks.-
1) If $B \rightarrow C \rightarrow A$ is a $K S$ extension (resp, minimal KS)
then A is a KS complex (resp. minimal KS).
2) A KS-extension is a generalized sequence of elementary extensions.
Finally, a morphism between two extensions is a commutative diagram

of homomorphisms of augmented c.g.d.a.'s ; it is written (ψ, φ, α) : $E \rightarrow E^{\prime}$.
1.6.- Example. - contractible extensions.

A contractible KS extension $B \rightarrow C \rightarrow A$ is one which admits a struc-
ture (X, f) and a decomposition $X=X_{1} \oplus X_{2}$ such that

$$
d_{c}: x_{1} \xrightarrow{\cong} x_{2}
$$

Thus we can write

$$
\begin{aligned}
& C=B \theta\left(\Lambda X_{1} \theta \Lambda X_{2}\right) \\
& d_{C}=d_{B} \theta 1+\omega_{B} \theta d_{A}
\end{aligned}
$$

$\left(\omega_{B} b=(-1)^{P} b, b \in B^{P}\right)$ and $\left(A, d_{A}\right)$ is the free c.g.d.a. generated by X_{1}. The ideal $J \subset C$ generated by X_{1} and X_{2} is acyclic:

$$
H^{*}(J)=0
$$

S. HALPERIN

and this shows that the projection $C \rightarrow B$ with kernel J induces an isomorphism of cohomology inverse to i^{*}.

If $B=k$ we call $C(=A)$ a contractible KS complex.
Suppose next that (X, f) is a structure for an extension
$E: B \rightarrow C \rightarrow A$, and that $\left\{x_{\alpha}\right\}_{\alpha \in I}$ is a well ordered homogeneous basis for X.
1.7.- Lemma.- Let $y_{\alpha} \in C$ be homogeneous elements such that
i) $p y_{\alpha}=x_{\alpha}$
ii) $y_{\alpha}-f\left(1 \theta x_{\alpha}\right) \in f\left(B \theta A_{<\alpha}\right), \quad \alpha \in I$.

Then a second structure (X, g) is defined by

$$
g\left(\begin{array}{lll}
1 & 0 & x_{\alpha}
\end{array}\right)=y_{\alpha} .
$$

Proof : A unique homomorphism $g: B \in A \rightarrow C$ is defined by $g(b \otimes 1)=i(b)$ and $g\left(10 x_{\alpha}\right)=y_{\alpha}$. Because of i) we have $\rho \circ g=\varepsilon \theta$; it remains to show that g is an isomorphism.

Set $\ell=f^{-1} \circ g$. Then $\psi(b \theta 1)=b \theta 1$ and ii) implies that

$$
\begin{equation*}
\ell\left(1 \theta x_{\alpha}\right)-1 \theta x_{\alpha} \in B \theta A_{<\alpha} \tag{1.8}
\end{equation*}
$$

We show now that $\emptyset: B \theta A_{\leqslant \alpha} \cong B \theta A_{\leqslant \alpha}$ for all α.
If not there is a least a for which it fails ; since
$B \ominus A_{<a}=\frac{\lim _{B<a} B \otimes A_{\leqslant B} \text {, we have }}{}$

$$
\emptyset: B \theta A_{<\alpha} \xrightarrow{\cong} B \otimes A_{<\alpha} .
$$

Write $B \theta A_{6 \alpha}=\left(B \theta A_{<\alpha}\right) \theta \Lambda x_{\alpha}$ and use (1.8) to complete the proof.
Q.E.D.

Consider next a morphism

$$
(\psi, \psi, 1):\left(B^{\prime} \rightarrow C^{\prime} \rightarrow A\right) \rightarrow(B \rightarrow C \rightarrow A)
$$

between Λ-extensions E^{\prime} and E. Assume that E^{\prime} and E admit structures $\left(X, f^{\prime}\right)$ and (X, f) and that $\left\{x_{\alpha}\right\}_{\alpha \in I}$ is a well ordered homogeneous basis for X such that :
i) $d_{C^{\prime}} f^{\prime}\left(1 \theta x_{\alpha}\right) \in B^{\prime} \otimes A_{<\alpha}$
and
ii) $\quad \| f_{f}^{\prime}\left(1 \theta x_{\alpha}\right)-\tilde{f}\left(1 \theta x_{\alpha}\right) \in \tilde{f}\left(B \in A_{<\alpha}\right)$.
1.9.- Lerma.- With the hypotheses above :
i) There is a second structure (X, f) for E such that $\emptyset_{f^{\prime}}\left(1 \quad \theta \quad x_{\alpha}\right)=f\left(\begin{array}{lll}1 & 0 & x_{\alpha}\end{array}\right)$.
ii) With respect to this second structure E satisfies (1.4) and ψ is given by $\ell=\psi \theta$.
iii) If ψ (resp. ψ^{*}) is an isomorphism then ψ (resp. ψ^{*}) is an isomorphism.

Proof :

i) Define f by $f\left(1 \theta x_{\alpha}\right)=\| f^{\prime}\left(1 \theta x_{\alpha}\right)$. Then

$$
\rho f\left(1 \theta x_{\alpha}\right)=\rho \| f^{\prime}\left(1 \theta x_{\alpha}\right)=\rho^{\prime} f^{\prime}\left(1 \theta x_{\alpha}\right)=x_{\alpha}
$$

and

$$
f\left(\begin{array}{lll}
1 & 0 & x_{\alpha}
\end{array}\right)-\tilde{f}\left(1 \quad 0 \quad x_{\alpha}\right) \in \tilde{f}\left(B \in A_{<\alpha}\right) .
$$

It follows that (X, f) is a structure on E (lemma 1.7).
ii) Note that

$$
\begin{aligned}
& d_{C} f\left(\begin{array}{lll}
1 & \theta & x_{a}
\end{array}\right)=d_{C} \| f^{\prime}\left(\begin{array}{lll}
1 & \theta & x_{a}
\end{array}\right) \\
& =\|_{C^{\prime}} f^{\prime}\left(1 \otimes x_{\alpha}\right) \in \varphi\left(B^{\prime} \otimes A_{<\alpha}\right) \subset f\left(B \otimes A_{<\alpha}\right) .
\end{aligned}
$$

iii) We may assume by i) and ii) that both E^{\prime} and E satisfy equation (1.4) with respect to (X, f^{\prime}) and (X, f), and that $\downarrow=\psi 0$.

S. HALPERIN

Thus if ψ is an isomorphism, so is ψ. Now assume ψ is an isomorphism. It is enough to show that ($\psi=1$) : B' $0 A_{\leqslant \alpha} \rightarrow B \operatorname{A} A_{\leqslant \alpha}$ induces a cohomology isomorphism for each α. If not, let α be the least α for which it fails. Since ψ is an isomorphism and
a direct limit argument shows that $\left(\begin{array}{lll}\psi & 0 & 1\end{array}\right): H\left(B^{\prime} \otimes A_{<\alpha}\right) \xrightarrow{\equiv} H\left(B \quad A_{<\alpha}\right)$.

$$
\text { Set } E^{\prime}=B^{\prime} \theta A_{<\alpha}, E=B \otimes A_{<\alpha}, \gamma=\psi \theta: E^{\prime} \rightarrow E
$$

Then $\psi \theta$: $B^{\prime} A_{\leqslant \alpha} \rightarrow B \theta A_{\leqslant \alpha}$ can be identified with

$$
\gamma \theta: E^{\prime} \theta \Lambda x_{\alpha} \rightarrow E \theta \Lambda x_{\alpha}
$$

Moreover $d^{\prime} x_{\alpha} \in E^{\prime}, \quad d x_{\alpha} \in E$.
Set $F_{k}^{\prime}=\sum_{j \leqslant k} E^{\prime} \theta \Lambda^{j} x_{\alpha}$ and $F_{k}=\sum_{j \leqslant k} E \theta \Lambda^{j} x_{\alpha}$.

Then $E^{\prime} 0 \Lambda x_{\alpha}=\underline{\lim _{k}} F_{k}^{\prime}, E \theta \Lambda x_{\alpha}=\underline{\lim } F_{k}$ and so we need only prove that $(\gamma \in i): H\left(F_{k}^{\prime}\right) \xrightarrow{\cong} H\left(F_{k}\right)$.

Define (for $k=0,1$ when $\operatorname{deg} x_{\alpha}$ is odd and for all k when
deg x_{α} is even) projections $F_{k}^{\prime} \rightarrow E^{\prime}\left(\right.$ and $\left.F_{k} \rightarrow E\right)$ by

$$
\sum_{j=0}^{k} \Phi_{j} \theta x_{\alpha}^{j} \longrightarrow \Phi_{k}
$$

Then we have the commutative row exact diagrams of differential
spaces

Now the 5-lema, plus induction complete the proof. Q.E.D.
1.10.- Pullbacks. - We consider now a KS-extension $B \rightarrow C \rightarrow A$ which satisfies (1.4) for a structure (X,f) and a well ordered homogeneous basis $\left\{x_{\alpha}\right\}_{\alpha \in I}$ for X. Suppose in addition that

$$
\psi:\left(B^{\prime}, d_{B}\right) \longrightarrow\left(B, d_{B}\right)
$$

is a homomorphism of augmented c.g.d.a.'s such that ψ is an isomorphism.
1.11.- Proposition. - There is a KS-extension $B^{\prime} \rightarrow C^{\prime} \rightarrow A$ and a morphism $(\psi, \vartheta, 1): E^{\prime} \rightarrow \dot{E}$ such that
i) E^{\prime} admits a structure (X, f^{\prime}) such that

$$
d_{C^{\prime}}\left(1 \theta x_{\alpha}\right) \in B^{\prime} \otimes A_{<\alpha}
$$

and

$$
\psi\left(1 \theta x_{\alpha}\right)-1 \theta x_{\alpha} \in B \otimes A_{<\alpha}, \quad \alpha \in I
$$

ii) φ^{*} is an isomorphism.

Proof. - We set $C^{\prime}=B^{\prime} \otimes A, f^{\prime}=1$. We have to construct d_{C} and φ so that $B^{\prime} \rightarrow C^{\prime} \xrightarrow{\varepsilon^{\prime} \theta!} A^{\prime}$ is a sequence of c.g.d.a.'s and so that \forall is a morphism of extensions with i) holding.

We induct over I, as usual, starting off by setting $\downarrow=\psi$ in B^{\prime} and $d_{C}=d_{B}$, in B^{\prime}. Now assume \emptyset and d_{C} are constructed in $B^{\prime} \quad A_{<\alpha}$ so that φ and d_{C}, satisfy i) for all $B, B<a$. Then by lema 1.9,

$$
\varphi: H\left(B^{\prime} \otimes A_{<\alpha}\right) \stackrel{\cong}{\rightrightarrows} H\left(B \otimes A_{<\alpha}\right) .
$$

But $d_{C}\left(10 x_{\alpha}\right)$ is a d_{C}-cocycle in $B \theta A_{<\alpha}$. Thus there is a
$d_{C^{\prime}}$-cocycle $\Phi \in B^{\prime} \theta A_{<\alpha}$ and an element $\Omega \in B \in A_{<\alpha}$ such that

S. HALPERIN

$$
\mathrm{d}_{\mathrm{c}}\left(1 \theta x_{\alpha}\right)=\emptyset(\Phi)-\mathrm{d}_{\mathrm{c}} \Omega .
$$

In particular, $\rho \Omega \in A_{<\alpha}$.
Extend d_{C}, and ψ to $B^{\prime} \theta A_{\leqslant \alpha}$ by setting

$$
d_{C^{\prime}}\left(1 \theta x_{\alpha}\right)=\phi-d_{C^{\prime}}\left(\begin{array}{lll}
1 & \theta & \rho \Omega
\end{array}\right)
$$

and

$$
\dot{\psi}\left(\begin{array}{lll}
1 & \theta & x_{\alpha}
\end{array}\right)=1 \theta x_{\alpha}+\left(\Omega-\ell\left(\begin{array}{lll}
1 & 0 & \rho
\end{array}\right)\right) .
$$

Then i) holds by definition. Straightfoward calculations show that $\rho \hat{\psi}=\varepsilon^{\prime} \theta$ i, $\psi d_{C^{\prime}}=d_{C} \psi, \quad\left(\varepsilon^{\prime} \theta \quad 1\right) \circ d_{C^{\prime}}=d_{A} \circ\left(\varepsilon^{\prime} \theta \quad 1\right)$. The existence of $d_{C^{\prime}}$ and ψ^{\prime} in $B^{\prime} \theta A$ now follows by induction.

Finally, lemma 1.9. yields ii).
Q.E.D.

Corollary.- E admits a structure (X, \tilde{f}) such that with respect to this structure and $\left.(X, f)^{\prime}\right), \psi=\psi \otimes 1$ and

$$
d_{c}\left(1 \otimes x_{\alpha}\right) \in B \otimes A_{<\alpha} \quad ; d_{C^{\prime}}\left(1 \theta x_{\alpha}\right) \in B^{\prime} \theta A_{<\alpha}
$$

Proof : Apply lemma 1.9.

Q.E.D.
1.12.-Example.- Suppose $E: B \rightarrow C \rightarrow A$ is a KS-extension,
and $H^{0}(B)=k$ and $H^{q}(B)=0,0<q<m$ (where we allow $m=\infty$).
Let $\bar{B}^{m} \subset B^{m}$ satisfy $\bar{B}^{m} \bullet d_{B}\left(B^{m-1}\right)=B^{m}$ and define a sub. c.g.d.a.
$\overline{\mathrm{B}}=\mathrm{B}$ by

$$
\begin{aligned}
\bar{B}^{\circ}=k, \quad \bar{B}^{q}=0, \quad 0<q<m, \quad \bar{B}^{\mathrm{m}}=\text { space just chosen } \\
\bar{B}^{q}=B^{q}, q>m .
\end{aligned}
$$

Then $H^{*}(\bar{B})=H^{*}(B)$.

lectures on minimal models

```
    Now we can apply the corollary to prop. 1.ll to obtain a structure
(X,f) on E such that
            i) \overline{B}0A is d
            ii) }\mp@subsup{d}{C}{(1|
and
            iii) H*
            This will be called a normalized structure for E.
                            1.13. - Corollary.- Assume H(B) is connected and let }\overline{B}\mathrm{ ,
(X,f) be as above. Then
(1.14)
\[
d_{C}(1 \theta a)-10 d_{A} a \in B^{+} \theta A, \quad a \in A .
\]
Proof.- The left hand side is in \((\bar{B} \theta A) \cap\) ker \(\rho=B^{+} \theta A\).
Q.E.D.
1.15. - Corollary.- Assume \(H(B)\) is 1 -connected and let \(\bar{B}\), \((X, f)\) be as above. Then
\[
\begin{equation*}
d_{C}(1 \theta a)-1 \theta d_{A} a \in \dot{L}_{j \geqslant 2} B^{j} \theta A, \quad a \in A . \tag{1.16}
\end{equation*}
\]
```


Chapter 2

Reduction to a minimal extension

2.1.- Introduction.- In this chapter we consider a KS extension

$$
E: B \xrightarrow{i} C \xrightarrow{D} A
$$

with augmentations $\varepsilon_{B}, \varepsilon_{C}$ and ε_{A}. We always assume $H^{\circ}(C)=k$; then $H^{\circ}(B)=k$ as well. However, we do not suppose $H^{\circ}(A)=k$.

Recall from (1.1) the projection $\zeta_{A}: \operatorname{ker} \varepsilon_{A} \rightarrow Q(A)$. If (X,f) is any structure for E then ζ_{A} restricts to an isomorphism

$$
\zeta_{A}: X \xrightarrow{\cong} Q(A)
$$

Hence if $\Phi \in \operatorname{ker} \varepsilon_{A}\left(=\Lambda^{+} X\right)$ we may regard Φ as a polynomial with no constant term in the elements of X, and then $\zeta_{A} \phi$ can be interpreted as the "linear part" of Φ.

Observe that a differential $Q\left(d_{A}\right)$ is defined in $Q(A)$ by

$$
Q\left(d_{A}\right) \zeta_{A}=\zeta_{A} d_{A}
$$

The object of this chapter is to prove
2.2. - Theorem.- There is a minimal KS extension

$$
\mathbf{B} \xrightarrow{\tilde{i}} \stackrel{\sim}{\mathrm{C}} \xrightarrow{\stackrel{\sim}{\mathrm{D}}} \underset{\mathrm{~A}}{\sim}
$$

and a contractible KS-complex $R=\Lambda T \theta \Lambda d T$ such that if $\tilde{C} \theta R$ and $\tilde{A} \theta R$ denote the tensor products (as augmented c.g.d.a.'s) then there is a commutative diagram of homomorphisms of augmented c.g.d.a.'s

LECTURES ON MINIMAL MODELS

in which the vertical arrows are isomorphisms.
2.3. - Corollary. - ψ induces an isomorphism

$$
Q(\psi): Q(A) \cdot Q(R) \xrightarrow{\cong} Q(A)
$$

2.4.- Coroliary. - E is minimal if and only if $Q\left(d_{A}\right)=0$; i.e., if and only if $I m d_{A}$ consists of polynomials with no linear term.

In particular the isomorphism of cor. 2.3 induces an isomorphism

$$
Q(\tilde{A}) \xrightarrow{\cong} H\left(Q(A), Q\left(d_{A}\right)\right) .
$$

Prooh. - If E is minimal it follows directly from the definitions that $Q\left(d_{A}\right)=0$. Conversely, assume $Q\left(d_{A}\right)=0$. Then because $Q(\psi)$ is an isomorphism and R is a contractible complex we conclude that $R=k$ and so E is minimal.
Q.E.D.

The rest of the chapter is devoted to the proof of theorem 2.2 .
2.5.- Conventions. - We fix a connected c.g.d.a. $\bar{B} \subset B$ such that $H(\bar{B})=H(B) \quad$ (cf. example 1.12). By a normalized structure we shall always mean normalized with respect to \bar{B}.

If $U=\sum_{j \geqslant 0} U^{j}$ is a graded space, then we write

$$
U^{\geqslant P}=\sum_{j \geqslant P} U^{j}
$$

The spaces $U^{>P}, U^{<P}, U^{\leqslant P}$ are defined analogously. Note that $\Lambda U^{\leq P}$ is the free c.g.a. on $U^{S P}$, while $(\Lambda U)^{\leqslant P}$ is the subspace of ΛU of elements of degree $\leqslant \mathrm{P}$!

If K is contained in an ordered set I then for a $\in I$
$K_{<a}=\{r \in K \mid r<a\} . K_{<a}, K_{>a}, K_{\geq a}$ are defined analogously.
2.6. - Lenma. - Suppose $Q\left(d_{A}\right)=0$. Let (X,f) be a normalized structure for E satisfying (1.4) with respect to a well ordered homogeneous basis $\left\{x_{\alpha}\right\}_{\alpha \in I}$ Then if $q=\operatorname{deg} x_{\alpha}$,

$$
\begin{equation*}
d_{A} x_{\alpha} \in\left(\Lambda X^{\leqslant q}\right)_{<\alpha} \quad, \quad \alpha \in I \tag{2.7}
\end{equation*}
$$

Moreover if $\Phi \in C^{p+1} \quad(p \geqslant 0)$ is a d_{C}-cocycle and

$$
\rho \Phi=\Phi_{1} x_{B_{1}}+\ldots+\Phi_{n} x_{B_{n}}+\Psi
$$

where

$$
\begin{array}{r}
x_{B_{i}} \in X^{p+1}, B_{1}>\ldots>B_{n}, \text { and } \Psi \in \Lambda X^{\leqslant p} \text {, then } \\
\Phi_{1} \text { is a scalar }: \Phi_{1} \in k .
\end{array}
$$

Proof.- We show first that (2.7) implies the rest of the lemma. In view of (1.14) it does imply that

$$
\begin{equation*}
d_{C}\left(1 \theta x_{\alpha}\right) \in \bar{B} \theta\left(\Lambda x^{\leq q}\right)_{<\alpha} \quad, \quad \alpha \in I \tag{2.8}
\end{equation*}
$$

where $q=\operatorname{deg} x_{\alpha}$. Hence $\bar{B} \otimes \Lambda x^{\leqslant q}$ is $d_{C}-s t a b l e, q=0,1, \ldots$.
Now we recall that $\bar{B} \otimes A \rightarrow B \theta A$ induces a cohomology isomorphism, and so $\Phi=\bar{\Phi}+d_{C} \Omega$, with $\bar{\Phi} \in \bar{B} \in A$ and $\Omega \in B \in A$. Then $\rho \Omega \in A^{P} \in \Lambda X^{\leq P}$, which is $d_{A}-s t a b l e$ by (2.7). Thus $d_{A} \rho \Omega \in \Lambda X^{\leqslant p}$, and so

$$
D \bar{\phi}=\sum_{i=1}^{n} \oplus_{i} x_{B_{i}}+\bar{\psi} \quad \bar{\psi} \in \Lambda X^{\leq p}
$$

We may thus, without loss of generality, assume that $\in \bar{B} \theta A$, and we do.
In view of (2.8) this implies that

$$
\begin{aligned}
d_{C}(10 \rho \Phi) & =d_{C}(10 \rho \oplus-\emptyset) \\
& \in d_{C}\left(\bar{B} \otimes \Lambda X^{\leqslant P}\right) \\
& \subset \bar{B} \otimes \Lambda X^{\leqslant P}
\end{aligned}
$$

Again because of (2.8) we conclude from this that

LECTURES ON MINIMAL MODELS

$$
d_{C}\left(1 \theta \sum_{i=1}^{n} \Phi_{i} x_{B_{i}}\right) \in \bar{B} \theta \Lambda x^{\leq p}
$$

A degree calculation shows that each $\Phi_{i} \in \Lambda X^{0}$, and so because of (2.8)

$$
d_{C} \Phi_{i} \in \bar{B}^{1} \in \Lambda X^{0} \quad, \quad i=1, \ldots, n
$$

Let $Y \subset X$ be the subspace spanned by the $X_{\gamma}, \gamma \neq \beta_{1}$. Since $\beta_{i}<\beta_{1}$ ($i>1$) we have $d_{C}\left(1 \theta x_{B_{i}}\right) \varepsilon \bar{B} \theta \Lambda Y$. Together with the relations above, this yields

$$
\mathrm{d}_{\mathrm{C}}\left(\begin{array}{lll}
1 & \theta & \Phi_{1}
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & \theta & \mathrm{x}_{B_{1}}
\end{array}\right) \in \overline{\mathrm{B}} \theta \Lambda Y
$$

In view of the isomorphism

$$
\bar{B} \otimes \Lambda X=\bar{B} \otimes \Lambda Y \odot \Lambda x_{B_{1}}
$$

we obtain $d_{C}\left(\begin{array}{lll}1 & \theta & \Phi_{1}\end{array}\right)=0$, and $80 \quad \Phi_{1} \in k$ as desired.
It remains to prove (2.7). Assume it holds for all $\alpha<\gamma$, some γ
with $\operatorname{deg} x_{\gamma}=q$. Then $d_{C}\left(1-x_{\gamma}\right)$ is a cocycle in $B \theta A_{<\gamma}$. Since (2.7) holds for $\alpha<\gamma$ we can apply the second half of the lema to this cocycle. This gives

$$
d_{A} x_{Y}=\rho d_{C}\left(10 x_{Y}\right)=\lambda x_{B_{1}}+\sum_{B_{i}<B_{1}} \Phi_{i} x_{B_{i}}+\Psi
$$

where $\lambda \in k, \Phi_{i} \in\left(\Lambda X^{0}\right)_{<\gamma}, \psi \in\left(\Lambda X^{\leq q}\right)_{<y}$.
Hence (since $Q\left(d_{A}\right)=0$)

$$
0=Q\left(d_{A}\right) \zeta_{A} x_{Y}=\lambda \zeta_{A} x_{B_{1}}+\sum_{B_{i}<B_{1}}\left(\varepsilon_{A} \Phi_{i}\right) \zeta_{A} x_{B_{i}} .
$$

It follows that $\lambda=0$. Hence Φ_{2} is ascalar and so zero. In this way we find all the \oplus_{i} are zero:

$$
d_{A} x_{Y}=\psi \in\left(\Lambda x^{\leqslant} q_{<\gamma} .\right.
$$

Q.E.D.

```
Again consider the \(K S\) extension \(E\). Choose a normalized structure (X,f) satisfying (1.4) with respect to a well ordered homogeneous basis \(\left\{x_{\alpha}\right\}_{\alpha \in I}\). It is easy to arrange that the following condition hold as well : There is a disjoint decomposition \(I=J U J^{\prime} \cup H\) and a bijection ': \(J \rightarrow J^{\prime}\) such that
\[
\mathrm{Q}\left(\mathrm{~d}_{\mathrm{A}}\right) \zeta_{\mathrm{A}} \mathrm{x}_{\alpha}=\zeta_{\mathrm{A}} \mathrm{x}_{\alpha}, \quad, \quad \alpha \in J
\]
(2.9) and
```

$$
Q\left(d_{A}\right) \zeta_{A} x_{\alpha}=0 \quad, \quad \alpha \in J^{\prime} \cup H
$$

Note that necessarily $\alpha^{\prime}<\alpha, \alpha \in J$.
iJe shall assume henceforth that (2.9) holds.
2.10.- Lemma. - There are elements $z_{\alpha} \varepsilon$ ker $\varepsilon_{C}(\alpha \in I)$ such that
i) $z_{\alpha}-10 x_{\alpha} \in \vec{B} \theta A_{<\alpha}$.
ii) $\zeta_{A} \rho z_{\alpha}=\zeta_{A} x_{\alpha}$.
iii) If $\alpha \not J$ then $d_{C} z_{\alpha}$ is in the subalgebra generated by $\bar{B} \otimes A_{<\alpha}^{\leq p_{\alpha}}\left(\operatorname{deg} z_{\alpha}=P_{\alpha}\right)$.
(iv) If $\alpha \in J$ then $d_{C} z_{\alpha}-z_{\alpha}$, is in the subalgebra E_{α} defined as follows : E_{α} is generated by $\bar{B} 0 A_{<\alpha}^{\leqslant P_{\alpha}}\left(p_{c}=\operatorname{deg} z_{\alpha}\right)$ and by the elements z_{B} such that $\operatorname{deg} z_{B}=p_{a}+1$ and $B<a^{\prime}$, and by the elements $z_{B},{ }^{d_{C}} z_{B}$ with $B \in J_{<Q}$.

Proof. - We assume z_{γ} has been constructed for $\gamma<a$ and construct z_{a}. First note that if we change the definition of x_{B} to $O z_{S}$ and if we change the definition of $f\left(1 \otimes x_{B}\right)$ to $f\left(1 \otimes x_{B}\right)=z_{E}(B<a)$ then we obtain a new structure (X, f) and basis $\left\{X_{Y}\right\}_{Y \in I}$ for X which still satisfy (1.4.) cf. lemma 1.7.

Moreover, the algebras $A_{<\gamma}$ are unaffected by this change, as are the algebras generated by $A_{<\gamma}^{\leq q}$. Finally, it follows from ii) that the elements $\zeta_{A} X_{Y}$ are also unchanged, and so (2.9) remains valid, as does the statement of the lemma for $\gamma<a$.

Thus without loss of generality we may assume that

$$
\begin{equation*}
z_{B}=10 x_{B} \quad, \quad B<\alpha, \tag{2.11}
\end{equation*}
$$

and we make this assumption henceforth.

Now write $\left(J_{<\alpha}\right)^{\prime}=\left\{\beta^{\prime} \in J^{\prime} / \beta<\alpha\right\}$. Then $\left(J_{<\alpha}\right)^{\prime} C J_{<\alpha}^{\prime}$, but equality may fail. Let K be the complement of $J_{<\alpha} \cup\left(J_{<\alpha}\right)^{\prime}$ in $I_{<\alpha}$:

$$
I_{<\alpha}=J_{<\alpha} U\left(J_{<\alpha}\right)^{\prime} \cup K
$$

Let Y and U be graded spaces with bases $\left\{y_{\gamma}\right\}_{\gamma \in K}$ and

KS-complex) -cf. example 1.6. Set

$W=U \odot d U \subset Y$ and $S=U \oplus d U$.

Then an algebra homomorphism

$$
g: B \otimes W \rightarrow B \Theta A_{<\alpha}
$$

is given by $g(b)=b, g\left(u_{\gamma}\right)=10 x_{\gamma}, g\left(d u_{\gamma}\right)=d_{C}\left(10 x_{\gamma}\right)$ and $g\left(y_{\gamma}\right)=10 x_{\gamma}$.
2.12.- Lemna. g is an isomorphism.

Prooi.- g is surjective. We need only show $1 \theta x_{\gamma} \in \operatorname{Im} g, \quad \gamma<a$.
Suppose for scme $\lambda<a$ with deg $X_{\lambda}=P$ we know that $1 \quad 0 x_{Y} \in \operatorname{Im} g$
whenever deg $x_{\gamma}<p$ or deg $x_{y}=P$ and $Y<\lambda$. Then we show $1 \theta x_{\lambda} \in \operatorname{Im} g$, and the result follows by induction.

But $10 x_{\lambda} \in \operatorname{Im} g$ by definition, unless $\lambda=\mu^{\prime}$, some $\mu \in J_{<a^{*}}$
But then lemma 2.10 (iv) shows that $1 \theta x_{\lambda}-g\left(d u_{\mu}\right) \in \operatorname{Im} g ; i . e . ; 1 \theta x_{\lambda} \in \operatorname{Im} g$.

```
    g is injective. Define \sigma:AW\xrightarrow{#}{#}\mp@subsup{A}{<\alpha}{}\mathrm{ by }\sigma\mp@subsup{u}{Y}{}=\mp@subsup{x}{\gamma}{}\mathrm{ ,}
\sigma(d\mp@subsup{u}{\gamma}{}})=\mp@subsup{x}{\gamma}{},\sigma(\mp@subsup{y}{\gamma}{})=\mp@subsup{x}{\gamma}{}.\mathrm{ . Then
                                100:B O AW\longrightarrow E
    Moreover (g-ie\sigma) }\Phi=0\mathrm{ if }\Phi\inB\mathrm{ or }U\mathrm{ or Y. Now because
g(\LambdaW)\subset \overline{B}0\LambdaW we can write
\[
(g-10 \sigma) d_{u_{Y}}=1 \theta \phi+\Psi \quad, \quad \Psi \in B^{+} \theta A_{<\alpha}
\]
\[
\text { Moreover, } \Phi \in \text { ker } \varepsilon_{A} \text { and by (2.9) }
\]
\[
\begin{aligned}
\zeta_{A} \Phi & =\zeta_{A} \rho(8-1 \theta \sigma) d u_{Y} \\
& =Q\left(d_{A}\right) \zeta_{A} x_{Y}-\zeta_{A} x_{Y} \\
& =0
\end{aligned}
\]
```


It follows that

$$
\begin{equation*}
\operatorname{Im}\left(g-1 \theta^{\sigma}\right) \subset B^{+} \theta A_{<\alpha}+B \theta \operatorname{ker} \zeta_{A} \tag{2.13}
\end{equation*}
$$

Now suppose g fails to be injective, and let $\Omega(\neq 0)$ be in ker g.
Write

$$
\Omega=\left[\mathrm{b}_{\mathrm{i}} \boldsymbol{\theta} \Phi_{\mathrm{i}}+\psi\right.
$$

where $b_{i} \in B^{p}$ are linearly independent, $\Phi_{i} \in \Lambda^{q} W$ are non zero, and $\psi \in \sum_{j>P} B^{j} \otimes \Lambda W+B^{P} \theta \sum_{j>q} \Lambda^{j} W$.

In view of (2.13), and the fact that $(100) \Omega=(100-g) \Omega$, we have

$$
\left(1 \theta_{\sigma}\right) \Omega \in \sum_{j>p} B^{j} \theta \Lambda X+B^{p} \theta \sum_{j>q} A^{j} X
$$

Since this relation is also satisfied by (100) w it is satisfied by
$\left[b_{i} \theta 0 \oplus_{i}\right.$; hence for each i

$$
\sigma \Phi_{i} \in \Lambda^{q} X \cap \sum_{j>q} \Lambda^{j} x=0
$$

a contradiction.
Q.E.D.
2.14.- Corollary.- A differential, d, is induced in $B \geqslant \Lambda W$ by $d=g^{-1} d_{C} g$. It coincides with d_{B} in B and with the originally defined d in $\Lambda(U \cup d U)$.
2.15.- Remark. -Since $\bar{B} \otimes A_{<\alpha}$ is d_{C}-stable, g restricts to a
homomorphism

$$
\overline{\mathrm{g}}: \overline{\mathrm{B}} \otimes \Lambda W \rightarrow \bar{B} \otimes A_{<\alpha},
$$

which, by the proof of lemma 2.12, is an isomorphism. In particular, $\bar{B} \oplus \Lambda W$ is d-stable, and $\overline{\mathrm{g}} \mathrm{d}=\mathrm{d}_{\mathrm{C}} \overline{\mathrm{g}}$.

Now reorder l by putting $B \ll \gamma$ if deg $x_{\beta}<\operatorname{deg} x_{\gamma}$ or if $\operatorname{deg} x_{B}=\operatorname{deg} x_{\gamma}$ and $B<\gamma$. This is a new well ordering.
2.16. Lemma.- $\mathrm{dy}_{\gamma} \in \mathrm{B}_{\mathrm{O}} \Lambda \mathrm{S} \theta(\Lambda \mathrm{Y})_{\ll \gamma}$. In particular $B \theta \Lambda S \xrightarrow{j} B \operatorname{A} \Lambda \boldsymbol{S} \Lambda Y \xrightarrow{\pi} \Lambda Y$
is a minimal $K S$ extension (with Y having the differential \bar{d} given by $\overline{\mathrm{d}} \pi=\pi \mathrm{d}$.) .

Proof:- We show first that for $\gamma \varepsilon I_{<a}$

$$
\begin{equation*}
g^{-1}\left(1 \theta x_{\gamma}\right) \in B \theta \Lambda S \theta(\Lambda Y)_{\ll \gamma} \tag{2.17}
\end{equation*}
$$

Suppose this is proved for all $B<\gamma$. If $\gamma \in J$ then $g^{-1}\left(1 \theta x_{\gamma}\right)=u_{\gamma}$, and (2.17) is clear. If $Y \in K, g^{-1}\left(10 x_{\gamma}\right)=y_{\gamma}$ and (2.17) is clear.

Suppose $\gamma=\mu^{\prime}, \mu \in J_{<a}$. Suppose deg $x_{r}=p+1$.
Then by lemma 2.10 (iv) $g^{-1}\left(10 x_{\gamma}\right)$ is in the subalgebra generated by $d u_{\mu}, \bar{B}$, elements of degree $\leq p$, elements of the form $g^{-1}\left(10 x_{\lambda}\right)$ with $\lambda \ll \gamma$, and elements in ΛS. All these elements are in $B \otimes \Lambda S \theta(\Lambda Y)^{\leq \ll}$.

S. HALPERIN

Thus (2.17) is proved.
But now if $\gamma \in K$ then by lemma 2.10 (iii) $d_{C}\left(10 x_{\gamma}\right)$ is in the subalgebra generated by $\bar{B} O A_{<\gamma}^{\leqslant P}$. Hence by (2.17),

$$
\begin{aligned}
& d y_{\gamma}=g^{-1} d_{C}\left(1 \otimes x_{\gamma}\right) \\
& \epsilon B \in \Lambda S \otimes(\Lambda Y)_{\ll \gamma} .
\end{aligned}
$$

Q.E.D.
2.17. Proof of lemma 2.10 cont'd. Consider the extension of lemma 2.16. Since S is contractible, the inclusion $\bar{B} \hookrightarrow \bar{B} \Theta \Lambda S$ induces an isomorphism of cohomology. Thus we can apply prop. 1.11 to obtain a KS extension

$$
\begin{equation*}
\bar{B} \rightarrow \bar{B} \otimes \Lambda Y \rightarrow \Lambda Y \tag{2.18}
\end{equation*}
$$

and a homomorphism $h: \bar{B} \theta \Lambda Y \rightarrow \bar{B} \theta \Lambda S \theta \Lambda Y$ (of.c.g.d.a.'s) such that $h(b)=b$, and

$$
h\left(10 y_{\gamma}\right)-1 \theta y_{\gamma} \in \bar{B} \theta \Lambda S \theta(\Lambda Y)_{\ll \gamma}
$$

and

$$
D\left(1 \otimes y_{\gamma}\right) \in \bar{B} \otimes(\Lambda Y)_{\ll \gamma} .
$$

(D is the differential in $\bar{B} \theta$). Moreover, h^{*} is an isomorphism.
In particular we can write

$$
\begin{equation*}
d_{c}\left(1 \theta x_{a}\right)=(g h) \phi+d_{c} \Omega, \tag{2.19}
\end{equation*}
$$

for some $\Omega \in \bar{B} \theta A_{<\alpha}$ and $\oplus \in \bar{B} \Theta \Lambda$, with $D \varnothing=0$.
Now the extension 2.18 is minimal by the definition of < . Hence obviously $Q(\bar{d})=0$, so we can apply lemme 2.6 to . We obtain

$$
\pi \Phi=\Phi_{1} y_{B_{1}}+\ldots+\Phi_{n} y_{B_{n}}+\psi,
$$

where $y_{B_{i}} \in Y^{p+1}\left(p=\operatorname{deg} x_{a}\right), B_{1}>\ldots>B_{n}, \psi \in \Lambda Y^{\leq P}$, and Φ_{1} is a scalar.

We choose Φ and Ω so that either all the Φ_{i} are zero, or so that $\phi_{1} \neq 0$ and B_{1} is as small as possible.

$$
\text { Next recall that } \zeta_{A} \rho\left(\psi_{i} \cdot \psi_{2}\right)=0 \text { for } \psi_{i} \in \operatorname{ker} \varepsilon_{C} \text {. }
$$

This yielis

$$
\zeta_{A} \rho g h\left(10 y_{\gamma}\right)=\zeta_{A} x_{\gamma}+\sum_{B \in K_{<\gamma}} \lambda_{B} \zeta_{A} x_{B}+\sum_{B \in J_{<\alpha}} \sum_{\left(J_{<\alpha}\right)^{\prime} \lambda_{B} \zeta_{A} x_{B} .} .
$$

Hence

$$
\left(\zeta_{A} \rho g h\right) \Phi=\sum_{i=1}^{n} \varepsilon\left(\Phi_{i}\right) \zeta_{A} \circ g h\left(y_{B_{i}}\right)
$$

$$
\begin{equation*}
=\Phi_{1} \cdot{ }^{\zeta} A x_{B}+\sum_{B \in K_{<\beta_{1}}} \mu_{B}^{\zeta} x_{B}+\sum_{B \in J_{<\alpha} \cup\left(J_{<\alpha}\right)^{\prime}}^{\mu_{B}^{\zeta} x_{B}}, \tag{2.20}
\end{equation*}
$$

if $\Phi_{1} \neq 0$. (ε is the augmentation for ΛY.).
On the other hand, if all the Φ_{i} are zero then
(2.21)

$$
\left(\zeta_{A} \rho g h\right) \Phi=0
$$

Now define scalars $\sigma_{B} \quad\left(B \in I_{<\alpha}\right)$ by

$$
\zeta_{A} \rho \Omega=\sum_{B \in I_{<\alpha}} \sigma_{B} \zeta_{A} x_{B} .
$$

We define (finally) the element z_{α} by

$$
z_{\alpha}=1 \theta x_{\alpha}-\Omega+\sum_{B \in I_{<\alpha}} 1 \theta o_{B} x_{B} .
$$

Then i) and ii) are satisfied by definition. It remains to verify
iii) if $a<J$ and iv) if $a \in J$.

Case 1: a d J. In this case by (2.9)

$$
\zeta_{A} \circ d_{C}\left(1 \theta x_{a}\right)=Q\left(d_{A}\right) \zeta_{A} x_{a}=0
$$

Were $\Phi_{1} \notin 0$ we would combine (2.20) and (2.19) to obtain

$$
\begin{aligned}
\Phi_{1} \cdot \zeta_{A} x_{B_{1}} & +{ }_{\beta \in K_{<B_{1}} \cup J_{<\alpha} U\left(J_{<\alpha}\right)^{\prime}}^{\mu_{B} \zeta_{A} x_{B}} \\
& =-Q\left(d_{A}\right) \zeta_{A} \rho \Omega \\
& =-\sum_{B \varepsilon J_{<\alpha}} \sigma_{B} \zeta_{A} x_{B},
\end{aligned}
$$

which implies $\Phi_{1}=0$. Hence all the Φ_{i} are zero (since $\beta_{1} \varepsilon K$ by definition) This implies that $\Phi \in \bar{B} \theta \quad \Lambda Y^{\leqslant P}$ and so $(g h) \Phi$ is in the subalgebra generated by $\bar{B} \otimes A_{<\alpha}^{\leqslant p}$. On the other hand, since all the $\Phi_{i}=0$, (2.21) and (2.19) imply that $Q\left(d_{A}\right) \zeta_{A} \rho \Omega=0$, whence

$$
\sigma_{B}=0 \quad, \quad B \in J_{<\alpha}
$$

Thus

$$
d_{C} z_{\alpha}=d_{C}\left(1 \theta x_{\alpha}-\Omega\right)+\sum_{\beta \in\}, B<\alpha} \quad d_{C}\left(1 \theta \sigma_{B} x_{B}\right) .
$$

The first term on the right is $g h(\Phi)$, while the second is also in the subalgebra generated by $\bar{B} \Theta A_{<\alpha}^{\leqslant p}$, by the induction hypothesis.

It follows that iii) holds for z_{a}.
Case 2 : a \in J. In this case

$$
\zeta_{A} \circ d_{C}\left(10 x_{\alpha}\right)=\zeta_{A} x_{\alpha}
$$

Thus were the ${ }_{i}$ all to vanish we would obtain via (2.19) and (2.21) that $\zeta_{A} x_{\alpha}, Q\left(d_{A}\right) \zeta_{A} D \Omega=\sum_{B \in J} J_{<Q} \sigma_{B} \zeta_{A} X_{B}$, which is impossible. It follows that $\oplus_{1} \neq 0$.

Now (2.19) and (2.20) yield

Since $\Phi_{1} \neq 0$ we can conclude that $\Phi_{1}=1$ and $\beta_{1}=\alpha^{\prime}$.
Next observe that

$$
d_{C} z_{\alpha}=(g h) \phi+\sum_{B \varepsilon I_{<\alpha}} d_{C}\left(1 \theta \sigma_{B} x_{\beta}\right) .
$$

Since $\Phi_{1}=1$, and $\beta_{1}=a^{\prime}$,

$$
\phi-1 \theta y_{\alpha^{\prime}} \varepsilon \bar{B} \otimes \Lambda Y^{\leq P}+1 \theta Y_{<\alpha^{\prime}}^{p+1} \theta \Lambda Y^{0}
$$

Hence

$$
h \phi-1 \theta y_{\alpha^{\prime}} \varepsilon \bar{B} \theta \Lambda S \theta\left[\Lambda Y^{\leq P}+\Lambda Y^{0} \theta Y_{<\alpha^{\prime}}^{p+1}\right] .
$$

Hence

$$
\text { gh } \Phi-1 \theta x_{\alpha^{\prime}} \varepsilon E_{\alpha} .
$$

Let $B \in I_{<\alpha}$. Then $d_{C}\left(1 \theta x_{B}\right) \in E_{\alpha}$ by definition if $B \in J_{<\alpha}$, and $d_{C}\left(1 \theta x_{B}\right) \varepsilon E_{\alpha}$ by leman 2.10 iii). Otherwise (by induction). Hence ${ }^{d_{C} z_{\alpha}}-1 \theta x_{\alpha}, \varepsilon E_{\alpha}$, and iv) is proved. Q.E.D.
2.22. Proof of theorem 2.2.

Let $z_{\alpha}(\alpha \in I)$ be the elements of lema 2.10. As at the start of the proof of lemma 2.10 we can change the definition of $x_{\alpha}(\alpha \in I)$ and of f so that

$$
f\left(1 \otimes x_{\alpha}\right)=z_{\alpha} \quad, \quad \alpha \in I,
$$

while retaining the conditions of the lemma and formula (2.9). We do this.
Let V and T be graded spaces with bases $\left\{v_{Y}\right\}_{Y \in H}$ and $\left\{e_{Y}\right\}_{Y \varepsilon}$ J respectively, with $\operatorname{deg} v_{Y}=\operatorname{deg} X_{Y}$ and $\operatorname{deg} e_{Y}=\operatorname{deg} x_{Y}$. Let $\Lambda T \theta \Lambda d T$ be the free c.g.d.a. over T and set $W=T \bullet d T \bullet V$ and $R=T \bullet d T$.

Define an algebra homomorphism $8: B 0 N W \rightarrow C$ by $g(b)=b$,
$g\left(e_{Y}\right)=1 \theta x_{Y}, g\left(d_{Y}\right)=d_{C}\left(1 \theta x_{\gamma}\right)$ and $g\left(v_{Y}\right)=10 x_{Y}$.

Then lemma 2.12 shows that g is an isomorphism, while corollary 2.14 shows that the differentials d_{B} in B and d in ΛR extend to a differential d in $B O$ such that $g d=d_{C}$.

Reorder I by puting $\beta<\alpha$ if deg $x_{\beta}<\operatorname{deg} x_{\alpha}$ or if
$\operatorname{deg} x_{B}=\operatorname{deg} x_{\alpha}$ and $B<\alpha$. This is a second well ordering. It follows from lemma 2.16 that

$$
d v_{Y} \in B \otimes \Lambda R \otimes(\Lambda V)_{\ll \gamma} \quad, \quad Y \in H
$$

Hence if we endow ΛV with the differential \bar{d} given by $\pi d=\bar{d} \pi$, where $\pi: B \theta \Lambda R \theta \Lambda V \rightarrow \Lambda V$ is the projection, then

$$
B \oplus \Lambda R \xrightarrow{j} B \otimes \Lambda R \theta \Lambda V \xrightarrow{\pi} \Lambda V
$$

is a minimal $K S$ extension.
Since the inclusion $B \rightarrow B \Theta \Lambda R$ induces a cohomology isomorphism, prop. 1.11 yields a minimal extension

$$
B \xrightarrow{\tilde{i}} B \operatorname{B} \theta \xrightarrow{\tilde{0}} \Lambda V
$$

where, (if D is the differential in $B \operatorname{OV}$)

$$
D\left(1 \in v_{\gamma}\right) \in B \theta(\Lambda V)_{\ll \gamma}, \quad r \in H .
$$

We also obtain a homomorphism of c.g.d.a.'s

$$
h: B \ominus \Lambda V \rightarrow B \ominus \Lambda R \Theta \Lambda V
$$

such that

$$
h(b)=b
$$

and

$$
h\left(10 v_{r}\right)-1 \theta v_{r} \in B \theta A R \theta(\Lambda v)_{\ll r}, \quad r \in H .
$$

$$
\text { Put }(B \in A V, D)=(\tilde{C}, d \underline{C}) \text { and }(\Lambda V, \bar{d})=(\tilde{A}, d \tilde{A})
$$

Then the above minimal extension becomes

$$
B \xrightarrow{\tilde{i}} \tilde{C} \xrightarrow{\tilde{\rho}} \tilde{A} .
$$

Extend h to a homomorphism of c.g.d.a.'s

$$
h: \tilde{C} \theta \Lambda R \longrightarrow B \Theta \Lambda R \theta \Lambda V
$$

by putting $h\left(e_{\gamma}\right)=e_{\gamma}, e_{\gamma} \in T$. Lemma 1.7 implies that h is an isomorphism. Finally, let $\varphi=8 \circ \mathrm{~h}: \tilde{\mathrm{C}} \theta \Lambda \mathrm{R} \cong \mathrm{C}$.
Since φ is the identity in B it carries the ideal generated by i (ker ε_{B}) isomorphically to the ideal generated by i (ker ε_{B}). These ideals are respectively ker $\tilde{\rho} \theta \Lambda R$ and ker ρ. Thus φ induces an isomorphism of c.g.d.a.'s $\psi: \tilde{A} \theta A R \xrightarrow{\cong} A$ such that the diagram of the theorem commutes. Q.E.D.

Chapter 3

The structure of a minimal extension

3.1.- Introduction.- In this chapter we consider a minimal KS extension

$$
E: B \xrightarrow{i} C \xrightarrow{\rho} A
$$

with augmentations $\varepsilon_{B}, \varepsilon_{C}, \varepsilon_{A}$. We assume $H^{0}(C)=k$, and it follows that $H^{0}(B)=k$. We do not assume $H^{0}(A)=k$, and indeed this may fail to be the case.

> We shall show how to decompose E into a countable family of elementary extensions natural with respect to morphisms of extensions.
> 3.2.- The canonical filtrations.- Define c.g.d.a.'s $C_{p, n}$ $(p \geqslant-1, n \geqslant 0)$ contained in C, and subspaces $z_{p}^{n} \subset c^{n}(p \geqslant 0, n \geqslant 0)$ inductively as follows :
> i) $C_{-1,0}=B$
> ii) $z_{p}^{n}=d_{C}^{-1}\left(C_{p-1, n}\right) \cap\left(\text { ker } \varepsilon_{C}\right)^{n}$
> iii) $C_{p, n}=$ subalgebra generated by $C_{p-1, n}$ and $Z_{p}^{n}, p \geqslant 0, n \geqslant 0$. iv) $C_{-1, n}=\bigcup_{p} C_{p, n-1}, \quad n>0$.
> Thus for each n,

$$
c_{-1, n} \subset c_{0, n} \subset \ldots \subset c_{p, n} \subset \ldots c c .
$$

and

$$
z_{0}^{n} \subset z_{1}^{n} \subset \ldots \subset z_{p}^{n} \subset \ldots \subset\left(\operatorname{ker} \varepsilon_{c}\right)^{n}
$$

We set

$$
z^{n}=u_{p}^{u} z_{p}^{n}, \quad n \geqslant 0
$$

Now recall the projection $\zeta_{A}: \operatorname{ker} \varepsilon_{A} \rightarrow Q(A) \quad$ (from 1.1) and define subspaces

$$
Q_{p}^{n}(A) \subset Q^{n}(A) \quad \text { by }
$$

$$
Q_{p}^{n}(A)=\zeta_{A} \rho\left(Z_{p}^{n}\right) \quad, p \geqslant 0, n \geqslant 0 .
$$

Thus

$$
Q_{0}^{n}(A) \subset \ldots \subset Q_{p}^{n}(A) \subset \ldots \quad Q^{n}(A)
$$

Next, for $p \geqslant 0, n \geqslant 0$ let $I_{p, n} \subset C_{p, n}$ be the ideal generated by $C_{p-1, n} n$ ker ε_{c}. Since $C_{p, n}$ is generated by z_{p}^{n} and $C_{p-1, n}$, and since $d_{c}\left(z_{p}^{n}\right) \subset c_{p-1, n}$, it follows that

$$
d_{c}\left(C_{p, n}\right) \subset I_{p, n} .
$$

Set

$$
\begin{equation*}
A_{p, n}=C_{p, n} / I_{p, n} . \tag{3.3}
\end{equation*}
$$

Then (giving $A_{p, n}$ the zero differential) we obtain a sequence of augmented c.g.d.a.'s

$$
E_{p, n}: c_{p-1, n} \xrightarrow{j} c_{p, n} \xrightarrow{\pi} A_{p, n} \quad, \quad p \geqslant 0, n \geqslant 0 .
$$

The main goal of this chapter is
3.4.- Theorem. - The extension E admits a structure (X, f) in which each x^{n} is decomposed as a direct sum $x^{n}=\sum_{p \geqslant 0} x_{p}^{n}$, such that with respect to (X, f) :

$$
\begin{array}{ll}
\text { i) } z_{p}^{n}=c_{p-1, n}^{n} \cap \operatorname{ker} \varepsilon_{c} \bullet\left(1 \bullet x_{p}^{n}\right) & n \geqslant 0, p \geqslant 0 . \\
\text { ii) } c_{p, n}=B \bullet \wedge\left(x^{<n} \bullet x_{\{p}^{n}\right) & , n \geqslant 0, p \geqslant-1 . \\
\text { iii) } \zeta_{A}: x_{\& p}^{n} \equiv Q_{p}^{n}(A) & , n \geqslant 0, p \geqslant 0 .
\end{array}
$$

Before proving the theorem we establish some consequences.

$$
\text { 3.5.- Corollary.- The sequences } E_{p, n} \text { are elementary extensions. }
$$

S. HALPERIN

Proof.- Use the structure of theorem 3.4 to write $C_{p, n}=C_{p-1, n} \odot \Lambda x_{p}^{n}, p \geqslant 0, n \geqslant 0$. Since $1 \theta X_{p}^{n} \subset z_{p}^{n}$ we have

$$
d_{c}\left(1 \in x_{p}^{n}\right) \in c_{p-1, n}
$$

Moreover $I_{p, n}=\left(C_{p-1, n} \cap \operatorname{ker} \varepsilon_{C}\right) \ominus \Lambda X_{p}^{n}$. This yields the commutative diagrams

Q.E.D.
3.7.- Corollary.- Fix $n \geqslant 0$ and $p \geqslant-1$. Let $Q_{-1}^{n}(A)=0$. Then the following are equivalent :
i) $Q_{p+1}^{n}(A)=Q_{p}^{n}(A)$.
ii) $Q^{n}(A)=Q_{p}^{n}(A)$.
iii) ${\underset{p}{p+1}}_{n}^{c} c_{p, n}$.
iv) $C_{-1, n+1}=C_{p, n}$.

Prooh.- In view of theorem 3.4 we have iv) \Leftrightarrow ii) and iii) $<=$ i).
Clearly ii) $=>$ i). On the other hand, if iii) holds then by definition, $C_{p+1, n}=C_{p, n}$, and so $z_{p+2}^{n}=z_{p+1}^{n}$. Continuing this way we obtain iv).
Q.E.D.

Now observe that ${ }^{d} C$ restricts to a linear map

$$
\overline{\mathrm{d}}_{\mathrm{C}}: z_{p}^{n} \longrightarrow c_{p-1, n}^{n+1} \cap \text { ker } d_{c} .
$$

This map induces (in the obvious way) a linear map

$$
\alpha_{p, n}: z_{p}^{n} / C_{p-1, n}^{n}{ }^{n} \text { ker } \varepsilon_{C} \longrightarrow \operatorname{Ker}\left(H^{n+1}\left(C_{p-1, n}\right) \rightarrow H^{n+1}(C)\right)
$$

On the other hand the inclusion $c^{n} \cap \operatorname{ker} d_{C} \sim_{0}^{n}(n>0)$ induces a linear map

$$
B_{n}: \operatorname{Coker}\left(H^{n}\left(C_{-1, n}\right) \rightarrow H^{n}(C)\right) \rightarrow z_{0}^{n} / C_{-1, n}^{n}
$$

To simplify notations write

$$
\operatorname{Ker}_{p}^{n+1}=\operatorname{Ker}\left(H^{n+1}\left(C_{p-1, n}\right) \rightarrow H^{n+1}(C)\right) \quad, \quad n \geqslant 0, p \geqslant 0
$$

and

$$
\operatorname{Coker}^{n}=\operatorname{Coker}\left(H^{n}\left(C_{-1, n}\right) \rightarrow H^{n}(C)\right) \quad, \quad n>0
$$

3.8. - Proposition.
i) The homomorphism $H\left(C_{-1, n}\right) \rightarrow H(C)$ is an isomorphism in degrees less than n and injective in degree n. If $n=0$ it is an isomorphism in degree n.
ii) The homomorphism $H\left(C_{P, n}\right) \rightarrow H(C)$ is an isomorphism in degrees $\leqslant \mathrm{n}$, if $\mathrm{p}>0$.
iii) The sequences

$$
0 \rightarrow \operatorname{Coker}^{n} \xrightarrow{B} z_{0}^{n} /_{-1, n}^{n} \xrightarrow{\alpha} \operatorname{Ker}_{0}^{n+1} \rightarrow 0 \quad, n>0
$$

are short exact.
iv) The linear maps

$$
a_{p, n}: z_{p}^{n} / c_{p-1, n}^{n} n^{n e r} c_{c} \xrightarrow{\geqq} \operatorname{Ker}_{p}^{n+1}
$$

are isomorphisms if $p>0$ or if $p=0$ and $n=0$.

Prooh.- Theorem 3.4 ii) shows that $C_{p, n}^{q}=C^{q}$ if $q<n$. It follows chat $H\left(C_{p, n}\right) \rightarrow H(C)$ is an isomorphism in degrees $\sim n$ and injective in degree n. Moreover, by definition if $n>0$

$$
c^{n} \cap \text { ker } d_{C} \subset z_{0}^{n} \subset c_{p, n} \quad, \quad p \geqslant 0
$$

Thus for $p>0, H^{n}\left(C_{p, n}\right) \xrightarrow{\cong} H^{n}(C)$. This proves $\left.i\right)$ and $\left.i i\right)$.
Finally, iii) and iv) follow at once from the definitions.
Q.E.D.
3.9.- Corollary. - The homomorphism $i^{*}: H(B) \rightarrow H(C)$ is n regular (i.e., an isomorphism in degrees $\leqslant n$ and injective in degree $n+1$) if and only if A is n-connected.

Prook. - If A is n-connected then $B^{p}=C^{p}(p \leqslant n)$, whence i^{*} is n-regular.

Conversely, suppose i^{*} is n-regular. We show that $B=C_{-1, n+1}$.
In view of theorem 3.4 ii) this implies A is n-connected.
Indeed if we know $B=C_{-1, m}$ (some $m \leqslant n$) then our hypothesis implies $\operatorname{Ker}_{0}^{m+1}=0$ and Coker ${ }^{m}=0$. Thus by prop. 3.8 iii) and iv)

$$
z_{0}^{m} \subset c_{-1, m}
$$

Hence by cor. $3.7 B=C_{-1, m}=C_{-1, m+1} \quad$ Q.E.D.
3.10.- Corollary. - The structure (X,f) of theorem 3.4 can be chosen so that $A X^{+}$is d_{A} stable. In particular, since $d_{A}\left(X^{0}\right)=0$ we obtain

$$
H(A) \equiv \Lambda X^{0} \theta H\left(\Lambda X^{+}, d_{A}\right)
$$

Proof.- Let (Y, g) be a structure satisfying the conclusions of the theorem. Let $E \subset B \theta A Y^{\circ}$ be a sub c.g.d.a. such that E is connected and $H(E)=H\left(B \theta \Lambda Y^{\circ}\right)$. Use the procedure of prop. 1.11 to construct a new structure (X, f) such that:
i) $X^{0}=Y^{0}$ and $f(10 x)=g(1<x), x \in X^{\circ}$.
ii) There are isomorphisms of bigraded spaces,
$\sigma: X_{p}^{n} \xrightarrow{\tilde{B}} y_{p}^{n}(n>0)$ such that

$$
x-\sigma(x) \in Y^{<n} \bullet Y_{<p}^{n} \quad, \quad x \in X_{p}^{n}
$$

and

$$
\begin{aligned}
& f(10 x)-g(10 \sigma x) \in g\left[B \geqslant \Lambda\left(Y^{\{n} \in Y_{<p}^{n}\right)\right] \quad, \quad x \in X_{p}^{n} . \\
& \text { iii) If we use } f \text { to write } C=B \theta \Lambda X^{0} \theta \Lambda X^{+} \text {, then } E \theta \Lambda X^{+} \text {is }
\end{aligned}
$$ d_{C}-stable.

$$
\text { Then } f\left(B \otimes \Lambda X^{<n} \otimes \Lambda X_{\leqslant p}^{n}\right)=g\left(B \otimes \Lambda Y^{n} \otimes \Lambda Y_{\leqslant p}^{n}\right)=C_{p, n} \quad(p \geqslant-1, n \geqslant 0) \text {, }
$$

and

$$
f\left(1 \odot X_{p}^{n}\right) \subset g\left(1 \odot Y_{p}^{n}\right) \bullet C_{p-1, n}^{n}=z_{p}^{n}, n>0 .
$$

It follows that i) and ii) of theorem 3.4 are satisfied by (X,f).
Part iii) follows at once from i).
Moreover, if $x \in X^{+}$then

$$
\begin{aligned}
d_{C} f(10 x) & \in f\left(E \ominus \Lambda x^{+}\right)=f\left(10 \Lambda x^{+}\right)+f\left(E^{+} \theta \Lambda x^{+}\right) \\
& \subset f\left(10 \Lambda x^{+}\right)+f\left(B^{+} \theta \Lambda x^{0} \otimes \Lambda x^{+}\right) .
\end{aligned}
$$

It follows that $d_{A} x \in \rho f\left(10 \Lambda X^{+}\right)=\Lambda X^{+}$. Q.E.D.
3.11.- Corollary.- Assume $H(B)$ is 1 -connected, and that $i *$ is

1-regular. Then

$$
Q^{n}(A)=Q_{0}^{n}(A) \quad, \quad n \geqslant 0 .
$$

Proof.- First note that A is 1 -connected by cor.3.9. Let $\bar{B} \subset B$ be a 1 -connected sub c.g.d.a. such that $H(\bar{B})=H(B)$. Using the method of prop. 1.11, choose a structure (X, f) satisfying the conclusions of theorem 3.4 so that $\bar{B} \theta \wedge X$ is $d_{C}-s t a b l e$.

Then $\bar{B} \theta \Lambda x^{\leq n}$ is 1 -connected. Hence for $x \in X^{n} \quad d_{C}\left(\begin{array}{ll}1 & 0\end{array}\right)$ is a polynomial in elements x_{i} with $2 \leqslant \operatorname{deg} x_{i} \leqslant n$ andelements $b_{i} \in \bar{B}$ with $2 \leqslant$ deg b_{i}. Since deg $d_{C}(10 x)=n+1$ this yields

$$
d_{C}(1 \otimes x) \in \bar{B} \otimes \Lambda X^{\leq n-1}
$$

Hence $10 x^{n} \subset Z_{0}^{n}$ and so

$$
Q^{n}(A)=\zeta_{A} X^{n}=\zeta_{A} \rho Z_{0}^{n}=Q_{0}^{n}(A)
$$

Q.E.D.
3.12. - Remark. - The extension E is called nilpotent if
$\operatorname{dim} Q^{n}(A)<\infty, n=0,1,2, \ldots$. In view of cor. 3.7 this is equivalent to

$$
\begin{equation*}
\operatorname{dim} Q_{p}^{n}(A)<\infty \tag{3.13}
\end{equation*}
$$

all $n \geqslant 0, p \geqslant 0$
and
(3.14) For each $n \geqslant 0$ there is some $p \geqslant 0$ such that

$$
Q_{p+1}^{n}(A)=Q_{p}^{n}(A)
$$

If the hypotheses of cor. 3.11 hold then (3.14) is automatic and nilpotence is equivalent to (3.13).
3.15.- Conollary. - Suppose $H(B)$ has finite type. Assume A is connected and (3.14) holds. Then $H(C)$ has finite type if and only if E is nilpotent.

Thus if the hypotheses of cor. 3.11 hold (and $H(B)$ has finite type)
then $H(C)$ has finite type if and only if E is nilpotent.

Proon.- Consider the elementary extensions $E_{p, n}$. Diagram (3.6)
shows that $\left.Q_{p, n}\right) \equiv Q_{p}^{n}(A) / Q_{p-1}^{n}(A)$.
Now suppose $\operatorname{dim} Q_{P}^{n}(A)<\infty$ for all n and P. Then so does
$Q\left(A_{p, n}\right)$, and hence $A_{p, n}$ has finite type. It follows that if $H\left(C_{p-1, n}\right)$ has finite type, so does $H\left(C_{p, n}\right)$. Since (3.14) holds, cor 3.7 implies that $C_{-1, n+1}=C_{p, n}$ some P. Now by induction we obtain that $H\left(C_{p, n}\right)$ always has finite type. But by prop. 3.8,

$$
\begin{aligned}
& \text { LECTURES ON MINIMAL MODEELS } \\
& \mathrm{H}^{\mathrm{n}}\left(\mathrm{C}_{-1, \mathrm{n}+1}\right)=\mathrm{H}^{\mathrm{n}}(\mathrm{C}) \text {. }
\end{aligned}
$$

Hence $H(C)$ has finite type.
Conversely, assume $H(C)$ has finite type. If $H\left(C_{p-1, n}\right)$ has finite
type then prop. 3.8 (iii) and iv)) shows that

$$
\begin{equation*}
\operatorname{dim} z_{p}^{n} \int_{C_{p-1, n}^{n}} \cap \operatorname{ker} \varepsilon_{C}<\infty \tag{3.16}
\end{equation*}
$$

Hance (cf. Theorem 3.4) $\operatorname{dim} Q_{p}^{n}(A) / Q_{p-1}^{n}(A)<\infty$, and so $\operatorname{dim} Q\left(A_{p, n}\right)<\infty$. It follows in this way that $H\left(C_{p, n}\right)$ has finite type. Since $C_{-1, n+1}=C_{p, n}$, some $p, H\left(C_{-1, n+1}\right)$ also has finite type. Thus each $H\left(C_{p, n}\right)$ has finite type, and so each $Q_{p}^{n}(A) / Q_{p-1}^{n}(A)$ has finite dimension.
Q.E.D.

We turn now to the proof of theorem 3.4. It proceeds via several
lemmas.
3.17. - Lemma.- Let (X, f) be a structure for E and let $\left\{x_{\alpha}\right\}_{\alpha \in I}$ be a well ordered homogeneous basis for X such that (1.4) holds and $\operatorname{deg} x_{\alpha}<\operatorname{deg} x_{B} \Rightarrow a<B$. Then
i) $1 \theta x^{n} \subset z^{n}, n \geqslant 0$
ii) B $\theta \Lambda x^{\leqslant n}=C_{-1, n+1} \quad, n \geqslant-1$.
iii) $\int_{p} Q_{p}^{n}(A)=Q^{n}(A) \quad, n \geqslant 0$.

Proof. -
i) Assume $1 \theta x_{B} \in Z^{n_{B}}, B<a$, where $n_{B}=\operatorname{deg} x_{B}$. Let $n=\operatorname{deg} x_{0}$

Then $d_{C}\left(1 \Theta x_{a}\right)$ is a polynomial in elements from B and elements $1 \theta x_{B}$ ($i=1, \ldots, m$) with deg $x_{B_{i}}=n_{i} \leqslant n$. By hypothesis for some $p_{i}(i=1, \ldots, m)$ and $P>P_{i}$,

$$
1 \theta x_{B_{i}} \in z_{p_{i}}^{n_{i}} \subset c_{p, n}
$$

Hence $d_{C}\left(1 \otimes x_{a}\right) \in C_{p, n}$, and so $1 \otimes x_{a} \in z_{p+1}^{n} \subset z^{n}$.
ii) $C_{-1, n+1}$ is generated by B and $\sum_{m \leqslant n} z^{m}$.

Since $z^{m} \subset C^{m} \subset$ b $\theta \Lambda x^{S^{m}} \subset$ b $\theta \Lambda x^{\leq n}$, we have

$$
C_{-1, n+1} \text { C в } \Theta \Lambda x^{\leq n}
$$

The reverse inclusion follows from i).
iii) Apply i).
Q.E.D.

Now suppose (Y, g) is a structure for E, and $\left\{y_{\alpha}\right\}_{\alpha \in I}$ is a basis for Y such that the hypotheses of lemma 3.17 hold.

If $\operatorname{deg} y_{\alpha}=n$ we will say $\alpha \in I_{p, n}$ if p is the least integer such that for some scalars $\lambda_{B} \quad(\beta<\alpha)$

$$
\zeta_{A} y_{\alpha}+\sum_{B} \lambda_{B} \zeta_{A} y_{B} \in Q_{P}^{n}(A)
$$

Lemma 3.17 iii) shows that
(3.18)

$$
I=\bigcup_{P, n} I_{P, n} ;
$$

this union is disjoint by definition. We define Y_{p}^{n} to be the span of the y_{α} with $\alpha \in I_{p}^{n}$.
3.19.- Lemma.- For each $p \geqslant-1$ and $n \geqslant 0$ an isomorphism

$$
\delta_{p, n}: c_{p, n} \oplus \wedge\left(Y_{>p}^{n} \bullet Y^{>n}\right) \xrightarrow{\cong} c
$$

is given by $g_{p, n}(\oplus \psi)=. g(1 \theta \psi)$. Moreover, with respect to this isomorphism

$$
d_{c}\left(1 \otimes y_{\alpha}\right) \in C_{p, n} \ominus\left(\Lambda\left(Y_{>p}^{n} \bullet y^{>n}\right)\right)_{<\alpha} .
$$

if $y_{a} \in Y_{>_{p}}^{n} \bullet y^{>n}$.
Proof.- By induction. When $p=-1$, the statement follows at once from lema 3.17 ii . Now we assume it holds for some pair ($p-1, n$), and prove it for (p, n).

LECTURES ON MINIMAL MODELS

To simplify notation denote $Y_{\geqslant p}^{n} \odot Y^{>n}$ by U, and write

$$
\bigcup_{q \geqslant p} I_{q, n} \cup \bigcup_{\substack{m \geq n \\ \text { all } q}} I_{q, m}=J .
$$

Then $\left\{y_{\alpha}\right\}_{\alpha \in J}$ is a basis for u. Use $g_{p-1, n}$ to identify

$$
\begin{equation*}
C_{p-1, n} \Theta \Lambda U=C . \tag{3.20}
\end{equation*}
$$

Let ($\left.E_{p-1, n}, d\right)$ be the c.g.d.a. defined by

$$
E_{p-1, n}=C / \text { ideal generated by } C_{p-1, n} \cap \text { ker } \varepsilon_{C}
$$

Then by hypothesis

$$
\begin{equation*}
d_{C}\left(1 \otimes y_{\alpha}\right) \in C_{p-1, n}{ }^{\theta(\Lambda U)_{<\alpha}} \quad, \alpha \in J \tag{3.21}
\end{equation*}
$$

and so

$$
\begin{equation*}
C_{p-1, n} \xrightarrow{\ell} C \xrightarrow{n} E_{p-1, n} \tag{3.22}
\end{equation*}
$$

is a minimal extension.
3.23. - Sublemma. - Let $\Phi \in Z_{p}^{n}$ and assume $\phi \& C_{p-1, n}^{n}$. With the notation above, for some $\alpha \in J$,

$$
\phi=\lambda\left(\begin{array}{lll}
1 & 0 & y_{\alpha}
\end{array}\right)+\Psi
$$

where λ is a non-zero scalar and $\Psi \in C_{p-1, n} \otimes(\Lambda U)<a \cdot$

Prooj.- We distinguish two cases.

Case 1:n=0. Choose the least a such that $\oplus_{p-1,0} C^{0(\Lambda U)} \leqslant \alpha^{\circ}$ Write

$$
C_{p-1,0}{ }^{\theta(\Lambda U)_{\leqslant a}=C_{p-1,0} \theta(\Lambda U)_{<a} \theta \Lambda y_{\alpha}}
$$

and note that by $(3.21) \quad C_{p-1,0} \otimes(\Lambda U)_{<\alpha}$ is $d_{C}-s t a b l e$ and contains $d_{C}\left(1 \quad y_{\alpha}\right)$.

$$
\Phi=\sum_{i=0}^{m} \Phi_{i} \oplus y_{\alpha}^{i} \quad, \quad \Phi_{i} \in C_{p-1,0}^{0} \ominus\left(\Lambda U^{0}\right)_{<\alpha}
$$

where $\Phi_{m} \neq 0$ and $m \geqslant 1$. (Note that each Φ_{i} has degree zero). Applying d_{c} we find that

$$
\begin{aligned}
& d_{C} \Phi_{m} \theta y_{\alpha}^{m}+\sum_{i=0}^{m-1}\left[d_{C} \Phi_{i}+(i+1) \phi_{i} d_{C}\left(1 \theta y_{\alpha}\right)\right] \theta y_{\alpha}^{i} \in C_{p-1,0} \cdot \\
& \text { This implies that } \left.d_{C} \Phi_{m}=0 \text { and so (because } H^{0}(C)=k\right) \quad \Phi_{m} \text { is a }
\end{aligned}
$$ non-zero scalar, λ. Were $m>1$ we would also have

$$
d_{C}\left(\Phi_{m-1}+m \lambda \theta y_{\alpha}\right)=0
$$

which would imply $\Phi_{\underline{u}=1}+m \lambda \quad \theta y_{\alpha} \in k ;$ i.e., $\lambda=0$. Thus $m=1$ and so $\Phi=\lambda\left(\begin{array}{lll}1 & 0 & y_{\alpha}\end{array}\right)+\Phi_{0}$ with $\oplus_{0} \in C_{p-1,0}{ }^{(\Lambda U)}{ }_{<\alpha}$.

Case 2: n > 0 . Again choose the least a such that
$\Phi \in C_{p-1, n}{ }^{\ominus}(\Lambda U){ }_{\varepsilon Q}$. Then (for degree reasons) $\phi=\oplus_{0}{ }^{\theta} y_{\alpha}+\psi \quad$,
 of degree zero.

As in case 1 this yields

$$
\left(d_{c} \phi_{0}\right) \theta y_{\alpha}+\Phi_{0} \cdot d_{c}\left(1 \theta y_{\alpha}\right)+\psi \in C_{p-1, n},
$$

whence ${ }^{d}{ }_{C}=0$ and so 0_{0} is a non zero scalar.
Q.E.D.
3.24. - Proof of Remma 3.19 cont'd.- Let K be the set of indices
$a \in J$ such that for some $\psi_{\alpha} \in C_{p-1, n}{ }^{\ominus(\Lambda U)}{ }_{<\alpha}$.

$$
1 \theta y_{a}+\psi_{a} \in z_{p}^{n}
$$

Denote $10 y_{\alpha}+\Psi_{\alpha}$ by z_{α} and set $w_{\alpha}=\eta z_{\alpha}$. We extend the definition by setting $w_{\alpha}=y_{\alpha} \quad(\alpha \in J$ but $a \& K)$.

By lemma 1.7 a new structure (W, h) for the extension (3.22) is given as follows : W has as basis the $w_{\alpha}, a \in J$ and

$$
h\left(10 w_{\alpha}\right)= \begin{cases}z_{\alpha} & , \alpha \in K \\ 10 y_{\alpha} & , \text { otherwise. }\end{cases}
$$

Moreover, we have

$$
\begin{equation*}
d_{C} h\left(10 w_{\alpha}\right)=d_{C}^{z} \alpha_{\alpha} \in C_{p-1, n} \quad, \quad \alpha \in K \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{C} h\left(1 \otimes w_{\alpha}\right)=d_{C}\left(1 \otimes y_{\alpha}\right) \in C_{p-1, n} \theta(\Lambda U)_{<\alpha} \text {, otherwise. } \tag{3.26}
\end{equation*}
$$

Let W_{p}^{n} be the span of the $w_{\alpha}(\alpha \in K)$ and let \tilde{U} be the span of the $y_{\alpha}(\alpha \in J$ but $\alpha \in K)$. Then

$$
W=W_{p}^{n} \bullet \tilde{U}
$$

Since $h: C_{p-1, n} \quad(A W)_{<\alpha} \longrightarrow C_{p-1, n} \quad 0(\Lambda U)_{<a} \quad a \in J ;$ and since

$$
(\Lambda W)_{<\alpha} \subset \Lambda W_{p}^{n} 0(\Lambda \tilde{U})_{<\alpha} \quad, \quad \alpha \in J \text {, }
$$

it follows from (3.26) that

$$
\begin{equation*}
d_{C} h\left(1 \theta y_{\alpha}\right) \in h\left(C_{p-1, n} \theta A W_{p}^{n} \otimes(\Lambda \tilde{U})_{<\alpha}\right), \quad a \in J \text { but } \alpha<K . \tag{3.27}
\end{equation*}
$$

Next observe that sublemma 3.23 yields

$$
\begin{equation*}
\left.z_{p}^{n}=C_{p-1, n}^{n} n \text { ker } \varepsilon_{c} \text { oh(l } 0 W_{p}^{n}\right) \tag{3.28}
\end{equation*}
$$

Since $C_{p-1, n}$ is generated by B and $Z_{p-1}^{n} \bullet \sum_{m<n} Z^{m}$, we obtain

S. HALPERIN

$$
\begin{equation*}
\zeta_{A} \rho\left(C_{p-1, n}^{n} \cap \operatorname{ker} \varepsilon_{C}\right)=Q_{p-1}^{n}(A) . \tag{3.29}
\end{equation*}
$$

We show now that

$$
K=I_{p, n}
$$

First suppose $\alpha \in K$. Then $z_{\alpha}=10 y_{\alpha}+\psi_{\alpha} \in z_{p}^{n}$, where $\Psi_{\alpha} \in C_{p-1, n}{ }^{\ominus(\Lambda U)}{ }_{<\alpha}$. Since, clearly, $\psi_{\alpha} \in \operatorname{ker} \varepsilon_{C}$ (3.29) implies that

$$
\zeta_{A} y_{\alpha}+\sum_{B<\alpha} \lambda_{B} \zeta_{A} y_{B} \in Q_{p}^{n}(A) .
$$

Hence $\alpha \in \bigcup_{q \leqslant p} I_{q, n}$. But also $a \in J$, whence $a \in I_{p, n}$:

$$
K \subset I_{p, n} .
$$

On the other hand, suppose $\alpha \in I_{p, n}$. Then

$$
\zeta_{A} y_{\alpha}+\sum_{B<\alpha} \lambda_{B} \zeta_{A} y_{B} \in Q_{P}^{n}(A) .
$$

It follows from (3.28) and (3.29) that

$$
Q_{p}^{n}(A)=\zeta_{A} \rho h\left(\begin{array}{ll}
1 & \theta
\end{array} W_{p}^{n}\right)+Q_{p-1}^{n}(A)
$$

Moreover, for $\gamma \in K$,

$$
\begin{aligned}
\zeta_{A} \circ h\left(10 w_{Y}\right) & =\zeta_{A} D\left(10 y_{\gamma}\right)+\zeta_{A} D \psi_{Y} \\
& =\zeta_{A} y_{Y}+\sum_{\mu<\gamma} o_{\gamma H} \zeta_{A} y_{H}+\zeta_{A} \Omega_{Y},
\end{aligned}
$$

where ${ }^{\sigma_{A}} \Omega_{Y} \in Q_{P-1}^{n}(A)$.

This yields

$$
\zeta_{A} y_{a}+\sum_{B<a} \lambda_{B} \zeta_{A} y_{B}+\sum_{\gamma \in K}{ }^{T} \gamma_{\gamma}\left\{\zeta_{A} y_{\gamma}+\sum_{\mu<\gamma} 0_{\gamma H} \zeta_{A} y_{H}\right\} \in Q_{P-1}^{n}(A) .
$$

Suppose a K. If $a>\gamma$ for each $r \in K$ such that ${ }^{T} Y \neq 0$, then this equation shows that

$$
\zeta_{A}^{y_{\alpha}}+\sum_{B<\alpha} \lambda_{B}^{\prime} \zeta_{A} y_{B} \in Q_{p-1}^{n}(A)
$$

This would give $\alpha \in \bigcup_{q<p} I_{q, n}$, which is impossible.
But if $\gamma>\alpha$ for some $\gamma \in K$ for which $\tau_{\gamma} \neq 0$ we conclude in the same way that the largest such r is in ${\underset{q}{ }<p} I_{q, n}$, which is equally impossible. Hence $\alpha=Y$, some $Y \in K$; i.e.

$$
I_{p, n} \subset K
$$

$$
\text { Since } \begin{aligned}
K=I_{p, n} & \\
& \tilde{U}=Y_{>p}^{n} \bullet Y^{n}
\end{aligned}
$$

Moreover, (3.28) shows that h carries $C_{p-1, n} \otimes \Lambda W_{p}^{n}$ (isomorphically) onto $C_{p, n}$. If we denote this restricted isomorphism by \bar{h} then

$$
g_{p, n}=h \circ(\bar{h} \theta 1)^{-1}: C_{p, n} \odot \Lambda\left(Y_{>p}^{n} \odot Y^{>n}\right) \rightarrow C
$$

Hence $g_{p, n}$ is an isomorphism.

$$
\text { Finally, if } y_{\alpha} \in Y_{>p}^{n} \text { © } Y^{>n} \text { then }
$$

$$
g_{p, n}\left(\begin{array}{lll}
1 & 0 & y_{\alpha}
\end{array}\right)=h\left(\begin{array}{lll}
1 & 0 & y_{\alpha}
\end{array}\right)
$$

and so (3.27) reads

$$
d_{C} \delta_{p, n}\left(1 \quad \theta_{\alpha}\right) \in g_{p, n}\left(C_{p, n} \otimes\left[\Lambda\left(Y_{p}^{n} \otimes Y^{>n}\right)\right]_{<\alpha}\right)
$$

3.30.- Proo; of theorem 3.4.- Consider the spaces W_{P}^{n} constructed in sec. 3.24 above and set

$$
L_{p}^{n}=h\left(1 \quad 0 W_{p}^{n}\right) \subset c, \quad n \geqslant 0, p \geqslant 0
$$

(where h is the isomorphism depending on p and n defined in sec. 3.24).

S. HALPERIN

Then formula (3.28) reads

$$
\begin{equation*}
z_{p}^{n}=C_{p-1, n}^{n} \cap \text { ker } \varepsilon_{c} \odot L_{p}^{n} . \tag{3.31}
\end{equation*}
$$

It follows that the spaces L_{p}^{n} are linearly independent ; denote their direct sum by

$$
\begin{gathered}
L^{n}=\sum_{p \geqslant 0} L_{p}^{n} \in c^{n} \cap \text { ker } \varepsilon_{C} . \\
\text { Let } L=\sum_{n \geqslant 0, p \geqslant 0} L_{p}^{n} \subset C \quad \text { (direct } s u m \text {). The inclusion } L \leftrightarrow C \text { induces }
\end{gathered}
$$

an obvious homomorphism

$$
\varphi: B \odot \Lambda L \rightarrow C
$$

We show that \emptyset restricts to isomorphisms

$$
\varphi_{p, n}: B \Theta \Lambda\left(L^{<n} \bullet L_{\leqslant p}^{n}\right) \xrightarrow{\cong} C_{p, n}, \quad \begin{aligned}
& p \geqslant-1, \\
& n \geqslant 0
\end{aligned}
$$

When $p=-1$ and $n=0$ this is true by definition.
If it holds for some n and all p then by direct limits it holds for
$\varphi_{-1, n+1}$. Thus we may assume $p \geqslant 0$ and that $\varphi_{p-1, n}$ is an isomorphism, and have only to prove that $\varphi_{p, n}$ is.

But in the notation of sec 3.24 we have an isomorphism

$$
\bar{h}: C_{p-1, n} \text { • } \Lambda W_{p}^{n} \longrightarrow C_{p, n}
$$

It restricts to an isomorphism

$$
\psi: W_{p}^{n} \xrightarrow{\cong} L_{p}^{n}
$$

Moreover, the diagram

50
commutes. Hence $\emptyset_{p, n}$ is an isomorphism.
Since each $\psi_{p, n}$ is an isomorphism, so is φ. Thus ρ restricts
to an isomorphism $\bar{\rho}: \Lambda L \longrightarrow A$, which carries $\Lambda^{+} L$ to $\operatorname{ker} \varepsilon_{A}$.
Define $X=\bar{\rho}(L)$ and $X_{p}^{n}=\bar{\rho}\left(L_{p}^{n}\right)$.
Define f by

$$
f(1 \otimes x)=\varphi\left(1 \otimes \bar{\rho}^{-1} x\right) \quad, \quad x \in X
$$

Then f restricts to isomorphisms

$$
f: B \oplus \Lambda\left(x^{<n} \bullet x_{\leqslant p}^{n}\right) \stackrel{\cong}{\Longrightarrow} C_{p, n} \quad, \quad \begin{aligned}
& p \geqslant-1, \\
& n \geqslant 0 .
\end{aligned}
$$

Moreover formula (3.31) reads

$$
z_{p}^{n}=\left(\operatorname{ker} \varepsilon_{c} r C_{p-1, n}^{n}\right) \oplus f\left(1 \otimes x_{p}^{n}\right)
$$

Thus parts i) and ii) of theorem 3.4 are proved. Part iii) follows at once from i).
Q.E.D.

Chapter 4

Morphisms of extensions

4.1.- Introduction.- In this chapter we consider a morphism.

$(\psi, \downarrow, \alpha): \check{E} \rightarrow E \quad$ between $K S$ extensions :

We assume $H^{\circ}(C)=k=H^{0}(C)$. All augmentations are denoted by ε. Note that a linear map $Q(\alpha): Q\left(\begin{array}{l}(x)\end{array} \rightarrow Q(A)\right.$ is defined by

$$
Q(\alpha) \circ \zeta_{X}=\zeta_{A} \circ \alpha .
$$

It satisfies $Q(\alpha) \circ Q\left(d_{X}\right)=Q\left(d_{A}\right) \circ \alpha$.
Henceforth we assume that \check{E} and E are minimal, and we use the notation developed in chapter 3. Then our morphism induces morphisms $v_{p, n} \rightarrow \ddot{E}_{p, n}(p \geqslant 0, n \geqslant 0)$, written

where $\psi_{p, n}$ is the restriction of ν. Moreover \downarrow restricts to linear maps $\sum_{p}^{n} \rightarrow z_{p}^{n}$, and hence induces
linear maps

$$
\Psi_{2}: z_{p / \chi_{p-1, n}^{n} n \text { jer } \varepsilon}^{n} \rightarrow z_{p / C_{p-1, n}^{n} n \text { ger } \varepsilon} \quad n \geqslant 0, p \geqslant 0 .
$$

LECTURES ON MINIMAL MODELS

Further note that $\psi_{p-1, n}^{*}$ restricts to a linear map

$$
\varphi_{K e r}: \stackrel{v}{\operatorname{Ker}} \underset{p}{n+1} \rightarrow \operatorname{Ker}_{p}^{n+1}, \quad n \geqslant 0, \quad p \geqslant 0
$$

while φ^{*} factors to give a linear map

$$
\varphi_{\text {Coker }}: \operatorname{Coker}^{\mathrm{n}} \rightarrow \text { Coker }^{n} \quad, \quad n>0
$$

Clearly the diagrams

commute, as do the diagrams
(4.3)

Finally, observe that the linear maps

$$
\zeta_{A} O: z_{P}^{n} \longrightarrow Q_{P}^{n}(A)
$$

factor to yield isomorphisms

$$
n_{A}^{n_{p}}: z_{p}^{n} C_{p-1, n}^{n} \operatorname{Ker} \varepsilon^{\equiv} Q_{p}^{n}(A) /_{Q_{p-1}^{n}}(A)
$$

S. HALPERIN

Clearly $Q(\alpha)$ restricts to linear maps

$$
Q_{p}^{n}(\alpha): Q_{p}^{n}(A) \rightarrow Q_{p}^{n}(A)
$$

Hence it induces maps

$$
\overline{Q(\alpha)}: Q_{p}^{n}(A) / Q_{p-1}^{n}(A) \longrightarrow Q_{p}^{n}(A) / Q_{p-1}^{n}(A)
$$

$n \geqslant 0, p \geqslant 0$. (iNote $:$ we set $U_{-1}^{n}(A)=0=Q_{-1}^{n}(\tilde{A})!$) the diagrams
(4.4)

commute.
Our main aim is to prove
4.5. - Theorem.- Assume that ψ^{*} and ψ^{*} are isomorphisms. Then a is an isomorphism and each $Q_{p}^{n}(\alpha)(n \geqslant U, p \geqslant 0)$ is an isomorphism.

We also prove:
4.6.- Tneorem. - Assume ψ is an isomorphism, and ψ^{*} is an isomor-
phism. Then ψ is an isomorphism.
4.7.- Kemark.-

1) We remind the reader we are dealing with minimal extensions.
2) Further isomorphism theorems are established in chapter 7 .
4.8.- Lemma.- Assume that the morphism ($\psi, \downarrow, a)$ satisfies that
each $\psi_{p}^{n}(\alpha)$ is an isomorphism. (We do not assume ψ^{n} or is an isomorphism.)

Then α is an isomorphism. Moreover \dot{E} and E have structures $(\dot{X}, \stackrel{V}{f})$ and (X,f) which satisfy the conclusions of theorem 3.4 and with respect to winch

$$
\psi=\psi \theta a
$$

Prook.-
It follows from (4.4) that each ψ_{2} is an isomorphism. Now let $(\stackrel{V}{X}, \stackrel{v}{f})$ and (Y, g) be structures for $\stackrel{v}{E}$ and E which satisfy the conclusions of theorem 3.4. Then

$$
{\underset{z}{p}}_{n}^{n}=\left(\begin{array}{lll}
v_{n}^{n} \\
p-1, n & n & \operatorname{ker} \varepsilon
\end{array}\right) \bullet\left(\begin{array}{lll}
1 & 0 & {\underset{x}{p}}_{n}^{p}
\end{array}\right)
$$

and

$$
\begin{aligned}
& \qquad Z_{p}^{n}=\left(C_{p-1, n}^{n} n \text { ker } \varepsilon\right)^{n}\left(\left.\begin{array}{lll}
1 & 0 & Y_{p}^{n}
\end{array} \right\rvert\,\right. \\
& \text { Hence an isomorphism } 0: X_{p}^{n} \longrightarrow Y_{p}^{n} \quad(n \geqslant 0, p \geqslant 0) \text { is defined }
\end{aligned}
$$

by

$$
\varphi(1 \otimes \check{x})-10 \sigma \check{x} \in C_{p-1, n}^{n} n \operatorname{ker} \varepsilon, \quad \ddot{x} \in \ddot{x}_{p}^{n}
$$

Clearly (apply $口$)

$$
a(\dot{x})-\sigma \check{x} \in \Lambda^{+}\left(Y^{<n} \otimes Y_{<p}^{n}\right) \quad, \quad \dot{x} \in \check{X}_{p}^{n}
$$

This implies (same argument as in lemma 1.7) that a is an isomorphism.
iNow set

$$
X_{p}^{n}=a\left(X_{p}^{n}\right) \quad \text { and } \quad x=\varepsilon_{n, p} X_{p}^{n}
$$

Then $A=\Lambda X$. Define

$$
f: B \Theta \wedge X \rightarrow C
$$

by $\quad \mathbf{f}(b)=b$ and

$$
f(1 \theta x)=\varphi\left(1 \theta \alpha^{-1} x\right) \quad, \quad x \in X
$$

It follows that

$$
f(1 \otimes x)-1 \otimes \sigma \alpha^{-1}(x) \in C_{p-1, n}^{n} \cap \operatorname{ker} \varepsilon, \quad x \in X_{p}^{n}
$$

Because $\sigma \alpha^{-1}: X_{p}^{n} \xrightarrow{\tilde{E}} Y_{p}^{n}$ this implies (again as in lemma 1.7) that f is an isomorphism. It also implies that (X, f) satisfies the conditions of theorem 3.4. It is clear from the definitions that f converts \downarrow to $\psi \theta$.
Q.E.D.
4.9.- Lemma. Suppose \check{E} and E are elementary extensions, and ψ^{*} and $Q(\alpha)$ are isomorphisms. Then φ^{*} is an isomorphism.

Prooń.-
Since \tilde{E} and E are elementary,
$\psi^{n}(\dot{A})=\psi_{0}^{n}\left(\underset{A}{\check{n}} \quad\right.$ and $\quad Q^{n}(A)=U_{0}^{n}(A), \quad n \geqslant 0$.

It follows trivially that each $Q_{p}^{n}(\alpha)$ is an isomorphism. Thus by lemma 4.8 we can choose structures (\grave{X}, \check{f}) and (X, f) such that $d_{C}\left(1 \otimes \chi^{n}\right) \subset \bar{B} \otimes \Lambda x^{<n}$, $d_{C}\left(1 \cup x^{n}\right) \subset B \otimes \Lambda \lambda^{<n}$, and $\downarrow=\psi \in \alpha$.

Now tive method of proof of lemma 1.9 shows that ϕ^{*} is an isomorphism.
Q.E.D.
4.10. - Prooi of theorem 4.5.

We shall show by induction that each $\varphi_{p, n}$ and each $Q_{p}^{n}(a)$ is
an isomorphisu. Indeed if $\oint_{p, n}^{*}$ is an isomorphism for all P, then $\psi_{-1, n+1}^{*}=\xrightarrow{\text { lim }} \psi_{p, n}^{*}$ is an isomorphism. Thus we may assume that for some $p \geqslant 0$, $n \geqslant 0, \varphi_{p-1, n}^{m}$ and $Q_{p-1}^{n}(a)$ are isomorphisms, and we have to show that $\varphi_{p, n}$ and $Q_{p}^{n}(a)$ are isomorphisms.

LECTURES ON MINIMAL MODELS

Since $\varphi_{p-1, n}^{*}$ and φ^{*} are isomorphisms it follows that

$$
\psi_{\text {Ger }}: \operatorname{Ker}_{p}^{n+1} \xlongequal{\cong} \operatorname{Ker}_{p}^{n+1}
$$

and (if $p=0, n>0$)

$$
\varphi_{\text {Coker }}: \operatorname{coker}^{n} \xrightarrow{\tilde{z}} \text { Coper }^{n}
$$

Thus (4.2) and (4.3) show that

Hence (4.4) implies that

$$
\overline{U(\alpha)}: Q_{p}^{n}(\tilde{A}) /_{Q_{p-1}^{n}(A)} \xrightarrow{\cong} Q_{p}^{n}(A) /_{Q_{p-1}^{n}}(A)
$$

We have assumed $Q_{p-1}^{n}(\alpha)$ is an isomorphism. It follows from the equation above and this that $Q_{p}^{n}(\alpha)$ is an isomorphism.

Next use structures (X, f) and (X, X) satisfying the conclusions of theorem 3.4 to write

$$
C_{p, n}=C_{p-1, n} \Theta \Lambda X_{p}^{n} \text { and } \check{C}_{p, n}=\stackrel{v}{C}_{p-1, n} \otimes \Lambda{\underset{X}{p}}_{p}^{n} .
$$

It follows that $\rho_{P, n}$ and $\hat{D}_{p, n}$ induce isomorphisms

$$
L_{p}^{n} / C_{p-1, n}^{n} n^{n}{ }^{\equiv} x_{p}^{n}
$$

(and similarly for $\quad \stackrel{V}{E}$), where X_{p}^{n} is considered as a subspace of A, n. If we compose these with the projections onto $Q\left(\tilde{A}_{p, n}\right)$ and $U\left(A_{p, n}\right)$ we obtain isomorphisms

S. HALPERIN

These convert φ_{Z} to $Q\left(\alpha_{p, n}\right)$, and so $Q\left(\alpha_{p, n}\right)$ is an isomorphism. Since $E_{p, n}$ and $E_{p, n}$ are elementary extensions, and since $\varphi_{p-1, n}^{n}$ is assumed to be an isomorphism, lemma 4.9 shows that $\varphi_{p, n}^{*}$ is an isomorphism.

It follows by induction that each $\varphi_{p, n}^{*}$ and each $Q_{p}^{n}(\alpha)$ is an isomorphism. Now lemma 4.8 applies and shows that α is an isomorphism.
Q.E.D.
4.11.- Prook of theorem 4.6.

Since ψ and ψ^{*} are isomorphisms theorem 4.5 shows that a and each $Q_{p}^{n}(\alpha)$ are isomorphisms. But now lemma 4.8 applies and allows us to write $\psi=\psi 0 \alpha$. Hence ψ is an isomorphism.
Q.E.D.

Chapter s

Homotopies and lifting

5.1.- The c.g.d.a. $\left((C, B)^{I}, D\right)$.- Suppose $U=\sum_{p \geqslant 0} U^{P}$ is a graded space. The suspension of $U, ~ \Sigma U$, is the graded space which coincides with U^{+} as a vector space, but with degrees shifted down by 1 :

$$
\Sigma U=\Sigma_{p \geqslant 0}(\Sigma U)^{P},
$$

and

$$
(\Sigma U)^{p}=U^{p+1} .
$$

The identity automorphism from U^{p+1} to $(\Sigma U)^{p}$ is written Σ and called the suspension map ; we extend it to U^{0} by setting $\Sigma\left(U^{0}\right)=0$. Now consider a KS extension

$$
E: B \xrightarrow{i} C \xrightarrow{\rho} A \text {, }
$$

with augmentations $\varepsilon_{B}, \varepsilon_{C}$ and ε_{A}. To simplify notation denote ΣQ_{A} by $\bar{\psi}_{A}$ and let $\Lambda \bar{\psi}_{A} \otimes \Lambda D \bar{\psi}_{A}$ be the contractible complex generated by $\bar{\psi}_{A}$. Denote its augmentation by $\varepsilon_{\dot{U}}$.

$$
\text { Tensuring this with }\left(C, d_{C}\right) \text { we obtain the c.g.d.a. }
$$

$$
(C, B)^{I}=C \otimes \Lambda \bar{u}_{A} \otimes \Lambda \Lambda \bar{u}_{A}
$$

whose differential is denoted by D, and which is augmented by $\varepsilon=\varepsilon_{C}{ }^{0} \varepsilon_{Q}$. Because $\left(\Lambda\left(\bar{Q}_{A} \bullet D \bar{Q}_{A}\right), D\right)$ is acyclic, the projection

$$
\pi:\left((C, B)^{I}, D\right) \rightarrow\left(C, d_{C}\right)
$$

defined by $\pi\left(1 \theta \bar{Q}_{A}\right)=0$ and $\pi(z \theta 1)=z, z \varepsilon C$, and the inclusion

$$
\lambda_{0}:\left(C, d_{C}\right)-\left((C, B)^{I}, D\right)
$$

S. HALPERIN

```
(\lambda}\mp@subsup{|}{2}{\prime=z&1) induce inverse cohomology isomorphisms. In particular ker \pi
is an acyclic ideal :
(5.2)
    H(ker \pi) = O.
    If }B=k\mathrm{ we denote (C,B) simply by C C .
    For general KS extensions }E\mathrm{ , the projection }\rho\mathrm{ extends to a
projection
                O : : (C,B) ' }\mp@subsup{|}{}{I
with kernel the ideal generated by }\mp@subsup{\lambda}{0}{}i(ker ( ह B ).
    Next, suppose (X,f) is a structure for E and ( }\mp@subsup{x}{\alpha}{\prime}\mp@subsup{)}{\alpha\inI}{}\mathrm{ is a
wellordered homogeneous basis for X such that (1.4) holds. Then 胧: X \tilde{~}}\mp@subsup{|}{A}{
The composite \Sigma& \zeta
    x\longmapsto\overline{x}}\quadx\inX
    Write C = B O A (via f). For each a c I we have the KS extension
B->B&A
    ((B|A<C,B)}\mp@subsup{}{}{I},D)C((C,B\mp@subsup{)}{}{I},D)
    Now note that
\[
\begin{equation*}
(C, B)^{I}=B \otimes \Lambda X \otimes \Lambda \bar{Q}_{A} \otimes \Lambda D \bar{Q}_{A} \tag{5.3}
\end{equation*}
\]
Thus a degree -1 derivation, \(i\), is defined in \((C, B)^{I}\) by
\[
i(B)=i\left(\bar{Q}_{A}\right)=i\left(\bar{D}_{A}\right)=0
\]
```

and

$$
i(x)=\bar{x} \quad, \quad x \in x
$$

We define a degree zero derivation, θ, in $(C, B)^{I}$ by

It satisfies $D \theta=\theta D$.
Note that

$$
\begin{equation*}
\pi i=0 \quad \text { and } \quad \pi \theta=0 \tag{5.4}
\end{equation*}
$$

and so i and θ preserve ker ε. Noreover, i and θ restrict to derivations in each $\left(B \not A_{<\alpha}, B\right)^{I}$. We use (5.3) to regard X, \bar{Q}_{A} and $\overline{D Q}_{A}$ as subspaces of $(C, B)^{I}$. Since, $d_{C} x_{\alpha} \in B \otimes A_{<\alpha}$ we obtain

$$
\theta x_{\alpha}-D \bar{x}_{\alpha} \in\left(B \theta A_{<\alpha}, B\right)^{I} \quad, \quad \alpha \in I
$$

Clearly $\theta D \bar{x}_{\alpha}=$ i $\nu^{L} \bar{x}_{\alpha}+D$ i $D \bar{x}_{\alpha}=0$, and so

$$
\theta^{2} x_{\alpha} \in\left(B \Theta A_{<\alpha}, B\right)^{I} \quad, \quad \alpha \in l
$$

because $\theta(B)=U$ an induction on I now shows that for eacn α
there is an integer n_{n} with

$$
\theta^{n_{\alpha}} x_{\alpha}=0
$$

Since $\theta \bar{x}=\theta \bar{x}=U, \bar{x} \in \bar{U}_{A}$, this implies that for each $\emptyset \in(C, B)^{I}$
there is some N (depending on Φ) such that

nence an autoworphism e^{θ} of the augmented c.g.d.a. ($\left.\left.C, B\right)^{I}, D\right)$
(with inverse $e^{-\theta}$) is defined by

$$
e^{\theta}=\sum_{n=0}^{\infty} \frac{\theta^{n}}{n!}
$$

We define an inclusion of augmented c.g.d.a.'s

$$
\lambda_{1}:\left(c, d_{C}\right) \rightarrow\left((C, b)^{I}, D\right)
$$

by setting

$$
\lambda_{1}=e^{\theta} \circ \lambda_{0}
$$

(Recall $\left.\lambda_{u} z=201, z \in C.\right)$
We now give an inductive formula for $\lambda_{1}{ }^{-\lambda_{0}}$. Since i is a derivation
of degree $-1, i^{2}$ is a derivation of degree -2 .
But $i^{2}(b)=i^{2}(x)=i^{2}(\bar{x})=i^{2}(D \bar{x})=0 \quad(b \in B, x \in X)$ and hence

$$
\mathrm{i}^{2}=0
$$

It follows that

$$
\theta^{n}=(D i+i D)^{n}=(D i)^{n}+(i D)^{n}
$$

In particular, since iDix $=i \overline{D x}_{\alpha}=0, \alpha \in I$,
(5.5)

$$
\lambda_{1} x_{\alpha}=\sum_{u}^{\infty} \frac{1}{n!} \theta^{n}\left(x_{\alpha}\right)=x_{\alpha}+D \bar{x}_{\alpha}+\sum_{n=1}^{\infty} \frac{1}{n!}(i D)^{n}\left(x_{n}\right)
$$

Set $\Omega_{\alpha}=\sum_{n=1}^{\infty} \frac{1}{n!}(i D)^{n}\left(x_{\alpha}\right)$. because of (1.4), $\delta_{\alpha} \in\left(B \Leftrightarrow A_{<\alpha}, B\right)^{I}$.
Because $\Omega_{\alpha} \in$ Im $i, \pi \Omega_{\alpha}=0$. Thus (5.5) reads.

$$
\begin{equation*}
\lambda_{1} x_{\alpha}-\lambda_{0} x_{\alpha}=D \bar{x}_{\alpha}+\Omega_{\alpha} ; \Omega_{\alpha} \varepsilon\left(B \otimes A_{<\alpha}, B\right)^{I} \cap \operatorname{Ker} \pi, \quad \alpha \in I \tag{5.6}
\end{equation*}
$$

5.7.- Lemma. - The inclusions λ_{1} and λ_{0} coincide in B. iloreover

$$
\operatorname{Im}\left(\lambda_{1}-\lambda_{0}\right) \subset \operatorname{Ker} \pi
$$

and so $\lambda_{1}=\lambda_{0}^{*}$.
proo6.-Apply (5.4).
U.E.D.

Next, suppose that $\left(\bar{E}, d_{E}\right)$ and $\left(\dot{E}, d_{\dot{E}}\right)$ are c.g.d.a.'s. If \bar{E} and i are augmented by ε_{E} and E, then by a homomorphism

$$
\vartheta:\left(\check{E}, d_{E}, \varepsilon_{E}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)
$$

LECTURES ON MINIMAL MODELS

we mean an augmentation preserving homomorphism of c.g.d.a.'s.
Ass ume

$$
\varphi_{0}, \varphi_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)
$$

are homomorphisms restricting to the same $\psi: B \rightarrow E$.

$$
\text { 5.8.- Déjinition. - } \varphi_{0} \text { and } \varphi_{1} \text { are called homotopic (rel B) }
$$

if there is a homomorphism

$$
\phi:\left((C, B)^{I}, D\right) \rightarrow\left(E, d_{E}\right)
$$

such that $\Phi 0 \lambda_{i}=\varphi_{i}, i=0,1$. We write $\psi_{0} \sim \psi_{1}($ rel $B)$. Φ is called a nomotopy (rel B) from ψ_{0} to ψ_{1}. If $B=k$ we say simply that ψ_{0} and ψ_{1} are homotopic.

Next assume E is augmented by ε_{E}, and

$$
\psi_{0}, \psi_{1}:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)
$$

are nomomorphisms.

```
    5.9.- Vefinition.- }\mp@subsup{\psi}{0}{}\mathrm{ and }\mp@subsup{\psi}{1}{}\mathrm{ are called based homotopic (rel B)
if there is a homotopy, }\Phi,\mathrm{ from }\mp@subsup{\psi}{0}{}\mathrm{ to }\mp@subsup{|}{|}{}\mathrm{ such that }|\mathrm{ preserves augmenta-
tions. }\Phi\mathrm{ is then called a based homotopy (rel B) from }\mp@subsup{|}{0}{}\mathrm{ to }\mp@subsup{|}{1}{}\mathrm{ . We write \(\psi_{0} \approx \psi_{1}(\operatorname{rel} B)\).
3.1J. - Remarks. -
1. The definition above of \(\lambda_{1}: C \rightarrow(C, B)^{I}\) depends on the choice of structure. We shall see in prop. 5.14 that our definitions of "homotopic (rel B)" and "based homotopic (rel B)" are independent of the choice of structure.
2. Fix a homomorphism \(\psi_{0}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\). By restriction to
``` \(\bar{Q}_{A}\) we obtain a bijection between homotopies (rel B) starting at \(\psi_{0}\) and linear
```

S. HALPERIN

```
maps of degree zero from \(\bar{Q}_{A}\) to \(E\).
If \(E\) is augmented and \(\psi_{0}\) preserves augmentations, restriction to \(\bar{\psi}_{A}\) defines a bijection from based homotopies (rel B) starting at \(\psi_{0}\) to linear maps of degree zero from \(\bar{Q}_{A}\) to \(\operatorname{Ker} \varepsilon_{E}\).
3. If \(\psi_{0} \sim \psi_{1}(\) rel \(B)\) then lemma 5.7 shows that \(\psi_{0}^{*}=\psi_{1}^{*}\).
5.11.- Lemma.- Assume that \(\psi_{0}, \psi_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) restrict to the same \(\psi\) in \(B\). Suppose that
\[
\operatorname{Im}\left(\psi_{1}-\psi_{0}\right) \subset I
\]
where \(I \subset E\) is a \(d_{E}-s t a b l e\) ideal with \(H(I)=0\). Then
\[
\varphi_{0} \sim \varphi_{1}(\text { rel } B)
\]
and the homotopy \(\Phi\) can be chosen 80 that \(\phi\left(\bar{Q}_{A}\right) \subset I\).
5.12.- Corollary. - Suppose \(\varepsilon_{E}\) augments \(E\) and \(I \subset K e r \varepsilon_{E}\). If \(\psi_{0}\) and \(\Psi_{1}\) preserve augmentations chen \(\Phi\) is a based homotopy (rel B).
5.13. - Proof of Lemma 5.11.- Set \(\Phi=\varphi_{0}\) in \(C\). We have to construct elements \(\phi\left(\bar{x}_{\alpha}\right)\) in \(I(\alpha \in I)\) such that the unique extension of \(\phi\) to a homomorphism \(\phi:\left((C, B)^{I}, D\right) \rightarrow\left(E, d_{E}\right)\) satisfies \(40 \lambda_{1}=ण_{1}\).

Assume \(\Phi\left(\bar{x}_{B}\right) \in I\) is constructed for \(B<\alpha\). Then, since
\(d_{C}\left(x_{\alpha}\right) \in B \in A_{<\alpha}\), and \(\Phi\) is defined in \(\left(B \otimes A_{<\alpha}, B\right)^{I}\), we can apply (5.6) to find
\[
\begin{aligned}
d_{E}\left(\psi_{1} x_{a}-\psi_{0} x_{a}-\phi\left(\Omega_{a}\right)\right) & =\dot{\psi}_{1} d_{c} x_{a}-\psi_{0} d_{c} x_{a}-\oplus D \Omega_{a} \\
& =\Phi \lambda_{1} d_{c} x_{a}-\Phi \lambda_{0} d_{c} x_{a}-\Phi D \Omega_{a} \\
& =\oplus D\left(\lambda_{1} x_{a}-\lambda_{0} x_{a}-\Omega_{a}\right) \\
& =0 .
\end{aligned}
\]

Moreover, because \(\Phi\left(\bar{x}_{B}\right)-\in I\) it follows that \(\Phi\left(\bar{D}_{B}\right) \in I \quad(B<\alpha)\). Since the \(\bar{x}_{B}\) and \(\bar{D} \bar{x}_{B}\) generate Ker \(\pi\) as an ideal, we find \(\Phi(\) Ker \(\pi) C I\). Hence \(\oplus_{1} x_{\alpha}-\bigoplus_{0} x_{\alpha}-\Phi\left(\Omega_{\alpha}\right)\) is a \(d_{E}\)-cocycle in I. By hypothesis we may write
\[
\varphi_{1} x_{\alpha}-\varphi_{0} x_{\alpha}-\varphi\left(\Omega_{\alpha}\right)=d_{E} y_{\alpha}
\]
some \(y_{\alpha} \in I\). Note that if \(\operatorname{deg} x_{\alpha}=0\), then \(\operatorname{deg} y_{\alpha}=-1\) i.e. \(y_{\alpha}=0\). Now extend \(\phi\) to \(\bar{x}_{\alpha}\) by setting
\[
\phi \bar{x}_{\alpha}=y_{\alpha}
\]
(If deg \(x_{\alpha}=0\) then \(\bar{x}_{\alpha}=0=y_{\alpha}\), so we are all right.) It follows from (5.6) and our choice of \(y_{\alpha}\) that
\[
\begin{aligned}
\left(\Phi \circ \lambda_{1}\right) x_{\alpha} & =\Phi\left(\lambda_{0} x_{\alpha}+D \bar{x}_{\alpha}+\Omega_{\alpha}\right) \\
& =\varphi_{0} x_{\alpha}+{d_{E}}_{\alpha}+\Phi\left(\Omega_{\alpha}\right) \\
& =\bigoplus_{1} x_{\alpha} .
\end{aligned}
\]

Hence \(\Phi_{0} \lambda_{1}=\|_{1}\) in \(B O A_{\leqslant \alpha}\), and the induction on \(I\) is complete.
Q.E.D.
5.14.- Proposition.-
i) The definition (5.8) of "homotopic (rel B)" and the definition (5.9) of "based homotopic (rel B)" are independent of the choice of structure for \(E\).
ii) Homotopy (rel B) is an equivalence relation on the set of homomorphisms \(\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) which restrict to a given \(\psi\) in \(B\).
iii) If \(E\) is augmented, based homotopy (rel B) is an equivalence relation on the homomorphisms \(\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\) which restrict to a given \(\psi\) in \(B\).

\section*{S. HALPERIN}

\section*{Proob.-}
i) Suppose a second homomorphism
\[
\lambda_{1}^{\prime}:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left((C, B)^{I}, D, \varepsilon\right)
\]
is defined via a second structure on \(E\). Lemma 5.7 shows that
\[
\operatorname{Im}\left(\lambda_{1}^{\prime}-\lambda_{0}\right) \subset \operatorname{Ker} \pi \subset \operatorname{Ker} \varepsilon .
\]

Hence by cor. 5.12, \(\lambda_{0} \tilde{\sim}_{1}^{\prime}(\) rel B) ; i.e. there is a homomorphism
\[
\psi:\left((C, B)^{I}, D, \varepsilon\right) \rightarrow\left((C, B)^{I}, D, \varepsilon\right)
\]
such that \(\psi \circ \lambda_{0}=\lambda_{0}\) and \(\psi \circ \lambda_{1}=\lambda_{1}\).
Hence if \(\oplus:\left((C, B)^{I}, D\right) \rightarrow\left(E, d_{E}\right)\) satisfies \(\Phi \circ \lambda_{0}=\psi_{0}\) and \(\oplus 0 \lambda_{i}^{\prime}=\psi_{1}\) for homomorphisms \(\psi_{0}, \varphi_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) it follows that \(\oplus \circ \psi \circ \lambda_{0}=\psi_{0}\) and \(\Phi \circ \psi \circ \lambda_{1}=\psi_{1}\). Moreover, if \(\phi\) is augmentation preserving so is \(\Phi\). \(\psi\).
ii) Reflexivity. Suppose \(\psi:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\). Then \(\downarrow \circ \pi:\left((C, B)^{I}, D\right)\)
\(\rightarrow\left(t, d_{E}\right)\) is a homotopy (rel B) from \(\psi\) to \(\psi\).
Symmetry. Suppose is a homotopy (rel B) from \(\emptyset_{0}\) to \(\downarrow_{1}\)
\(\left(\emptyset_{0}, \phi_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right).\right)\) Lemmas 5.7 and 5.11 show that \(\lambda_{1} \sim \lambda_{0}\) (rel B) ; let \(\psi\) be a homotopy (rel B) from \(\lambda_{1}\) to \(\lambda_{0}\). Then \(\phi\) o is a homotopy (rel B) frow \(\varphi_{1}\) to \(\varphi_{0}\).

Transitivity. Suppose \(\dot{\psi}_{0}, \varphi_{1}, \varphi_{2}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) restrict to
the same \(\psi\) in B. Assume
\[
\varphi_{2} \sim \varphi_{0}\left(\text { rel B) and } \psi_{0} \sim \vartheta_{1}(\text { rel B). }\right.
\]

Then by symmetry, \(\varphi_{0} \sim \downarrow_{2}(\) rel B).

\section*{LECTURES ON MINIMAL MODELS}

Let \(\Phi_{i}\) be a homotopy (rel B) from \(\psi_{0}\) to \(\psi_{i}(i=1,2)\).
Let \(Y\) be an isomorphic copy of \(\bar{Q}_{A}\) and fix an isomorphism \(\alpha: \bar{Q}_{A} \xrightarrow{\cong} Y\). Let \(\Lambda Y 0\) (0 b be the contractible complex generated by \(Y\), and tensor it with \(\left((C, B)^{I}, D\right)\) to obtain a c.g.d.a. augmented by \(\bar{\varepsilon}\). (the tensor product of the augmentations). Define a homomorphism of c.g.d.a.'s.
\[
\Phi: C \ominus \Lambda \bar{Q}_{A} \ominus \Lambda D \bar{Q}_{A} \otimes \Lambda Y \otimes \Lambda D Y \rightarrow E
\]
by
\[
\begin{array}{ll}
\Phi(z)=\varphi_{0} z, & z \in C \\
\Phi(\bar{x})=\Phi_{1} \bar{x}, & \bar{x} \in \bar{Q}_{A},
\end{array}
\]
and
\[
\begin{gathered}
\Phi(\alpha \bar{x})=\Phi_{2} \bar{x}, \quad \bar{x} \in \bar{Q}_{A} \cdot \\
\text { We may use } a \text { to identify } \quad(C, B)^{I} \text { with } C \theta \Lambda Y O \Lambda D Y \text {; then } \lambda_{1}
\end{gathered}
\] is identified with a homomorphism
\[
\lambda_{2}: C \rightarrow C \theta \Lambda Y \otimes \Lambda D Y
\]
of augmented c.g.d.a.'s. Use the obvious inclusions to regard \(\lambda_{1}\) and \(\lambda_{2}\) as homomorphisms
\[
\begin{aligned}
& \lambda_{i}:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(C \otimes \Lambda \bar{Q}_{A} \otimes \Lambda D \bar{Q}_{A} \otimes \Lambda Y \otimes \Lambda D Y, D, \bar{\varepsilon}\right) . \\
& \text { Observe that for } z \in C \text {, } \\
& \lambda_{2} z-\lambda_{1} z=\left(\lambda_{2} z-z\right)-\left(\lambda_{1} z-z\right) \\
& \in C \ominus \Lambda^{+}\left(\bar{Q}_{A} \bullet D \bar{Q}_{A} \bullet Y \bullet D Y\right) \text {, }
\end{aligned}
\]
and this is an acyclic ideal in Ker \(\bar{\varepsilon}\). Hence cor. 5.12 yields a based homotopy (rel B), \(\%\), from \(\lambda_{1}\) to \(\lambda_{2}\).

Un the other hand the homomorphism defined above satisfies \(\oplus \circ \lambda_{i}=\emptyset_{i}, i=1,2\). Hence \(\uparrow \circ \psi\) is a homotopy (rel B) from \(\psi_{1}\) to \(\psi_{2}\).
iii) Note (in the proof of ii) that if \(\Phi_{i}(i=1,2)\) are based homotopies (rel B) then \(\Phi\) is augmentation preserving, and so \(\Phi \circ \Psi\) is a based homotopy (rel B). This proves transitivity.

Refexivity and symmetry are proved as in the proof of ii).
Q.E.D.

Next, suppose \(\check{E}: \check{B} \rightarrow \check{C} \rightarrow \check{A}\) is a second KS extension, and \((\underset{E}{(x)} \underset{E}{x})\) is a second c.g.d.a. Assume
\[
x_{C}:(\check{C}, d y) \rightarrow\left(C, d_{C}\right) \text { and } \gamma:\left(E, d_{E}\right) \rightarrow\left(\check{E}, d_{E}\right)
\]
are homomorphisms and that \(X_{C}\) restricts to \(X_{B}: \dot{B} \rightarrow B\).

Finally, assume
\[
\varphi_{0}, \psi_{1}:\left(C, d_{c}\right) \rightarrow\left(E, d_{E}\right)
\]
are homomorphisms restricting to the same \(\psi\) in \(B\).
5.15. Proposition. -
i) If \(\psi_{0} \sim \rrbracket_{1}(\) rel B) then
\[
Y \circ \rrbracket_{0} \sim_{Y} \circ \Downarrow_{1}\left(\text { rel B) and } \varphi_{0} \circ x_{C} \sim \emptyset_{1} \circ x_{C}(\text { rel B) }) .\right.
\]
ii) If \(r\) is an isomorphism then \(\psi_{0} \sim \vartheta_{1}\) (rel B) if and only if \(\quad r \circ \emptyset_{0} \sim r \circ \emptyset_{1}(\) rel B).
5.16.- Proposition. - Assume that \(E\) and \(\check{E}\) are augmented by \(\varepsilon_{E}\) and \(\varepsilon_{E}\), and that \(\gamma\) is augmentation preserving and that so are \(x_{C}\), \(\nu_{0}\) and \(\varphi_{1}\).
i) If \(\psi_{0} \tilde{\sim} \|_{1}\left(\right.\) rel B) then \(\gamma \circ \emptyset_{0} \tilde{\sim} \circ \psi_{1}(\) rel B) and \(\omega_{0} \circ x_{C} \tilde{\sim} \varphi_{1} \circ x_{C}(\) rel B) .

\section*{LECTURES ON MINIMAL MODELS}
ii) If \(\gamma^{*}\) is an isomorphism then \(\psi_{0} \tilde{\sim} \hat{\psi}_{1}(\) rel B) if and only if \(\gamma \circ \psi_{0} \approx \gamma \circ \varphi_{1}(\) rel B).
5.17. - Proof of prop. 5.15.
i) If \(\Phi\) is a homotopy (rel B) from \(\psi_{0}\) to \(\psi_{1}\), then \(\gamma \quad \phi\)
is a nomotopy (rel B) from \(\gamma \circ \varphi_{0}\) to \(\gamma \circ \varphi_{1}\).
Un the other hand, \(\lambda_{0} \circ x_{C}\) and \(\lambda_{1} \circ x_{C}\) restrict to \(\lambda_{0} \circ x_{B}\) in \(\stackrel{V}{B}\), and
\[
\operatorname{Im}\left(\lambda_{1} \circ x_{C}-\lambda_{0} \circ x_{C}\right) \subset \operatorname{Im}\left(\lambda_{1}-\lambda_{0}\right) \subset \operatorname{Ker} \pi
\]

Since \(H(\operatorname{Ker} \pi)=0\), lemma 5.11 shows that \(\lambda_{0} 0 X_{C} \sim \lambda_{1} \circ X_{C} \quad(\) rel B). Hence \(\oplus \circ \lambda_{0} \circ X_{C} \sim \phi \circ \lambda_{1} \circ X_{C}(\) rel \(\bar{B}) ;\) i.e.,
\[
\psi_{0} \circ x_{C} \sim \dot{\psi}_{1} \circ x_{C} \quad(\text { rel } \dot{B})
\]
ii) We have only to show that if \(\gamma \circ \varphi_{0} \sim \gamma 0 \psi_{1}\) (rel B) then \(\psi_{0} \sim \psi_{1}(\) rel \(B)\).

Denote by \(F\) the graded space \(\dot{E}\), regarded simply as a graded space (i.e., \(F=\dot{E}\) without the algebra structure). It generates a contractible complex, \(F \in \Lambda \bar{D} F\). Tensor this with (,\(d_{E}\)) to obtain a c.g.d.a. (\(\bar{E}, \bar{D}\)):
\[
\bar{E}=E \otimes \Lambda F \otimes \Lambda \bar{D} F
\]

Denote by
\[
j:\left(E, d_{E}\right) \rightarrow(\bar{E}, \bar{D}) \text { and } p:(\bar{E}, \bar{D}) \rightarrow\left(E, d_{E}\right)
\]
the obvious inclusion and projection. Then \(p o j=1\), and Ker \(p\) is an acyclic ideal in \(\bar{E}\).

Extend \(Y\) to a homomorphisen \(\bar{Y}:(\bar{E}, \bar{D}) \rightarrow\left(E, d_{E}\right)\) by setting \(\bar{Y} \bar{z}=\bar{z}\) and \(\bar{\gamma} \overline{D z}=d_{F} \bar{z}(\bar{z} \in F)\). Then \(\bar{\gamma}\) is surjective and \(\bar{r}\) is an isomorphism,

\section*{S. HALPERIN}
so Ger \(\bar{\gamma}\) is an acyclic ideal.
Now suppose \(\Psi\) is a homotopy (rel B) from \(\gamma \varphi_{0}\) to \(\gamma \psi_{1}\).
Let \(\Phi: \bar{U}_{A} \rightarrow \bar{E}\) be a linear map of degree zero such that
\(\bar{\gamma} \circ \Phi=\Psi\).
(This is possible because \(\bar{\gamma}\) is surjective.) Extend \(\Phi\) to a (unique) homotopy (rel \(B\)), \(\Phi\), starting at \(j \circ \Psi_{0}\). Then
\[
\bar{\gamma} \circ \Phi=\psi:(C, B)^{I} \rightarrow E
\]

In particular it follows that
\[
\bar{\gamma} \circ \Phi 0 \lambda_{1}=\gamma \circ \psi_{1}=\bar{\gamma} 0 j 0 \varphi_{1}
\]

Hence \(\bar{\gamma}\left(\Phi \circ \lambda_{1}-j \circ \psi_{1}\right)=0\); by lemma \(5.11 \quad \phi 0 \lambda_{1} \sim j \circ \varphi_{1}(\) rel \(B)\). On the other hand, \(j 0\rangle_{0} \sim \Phi \circ \lambda_{1}(r e l b)\) with homotopy \(\Phi\). Thus we obtain (cf. Prop. 5.14 ii))
\[
j \circ \psi_{0} \sim j \circ \psi_{1}(\text { rel } B)
\]

Finally apply \(p\) to find (since \(p \circ j=1\))
\[
\psi_{0} \sim \psi_{1}(\operatorname{rel} B) .
\]
3.10.- Proof oi prop. 3.10.
i) The proof is word for word the same as the proof of prop. 5.15, i), except that we rely on cor. 5. 12 .
ii) The proof is the same as that of prop. 5.15 , ii) except for the following changes.

Let \(F=\operatorname{ker} \varepsilon_{E}\) and censor the augmentations of \(E\) and \(\Lambda F \in \bar{D} F\) to augment \(\quad\). Note that \(j, p\) and \(\bar{\gamma}\) preserve augmentations. In particular
```

ker pC ker \overline{\varepsilon}}\mathrm{ and ker }\overline{Y}\subset\mathrm{ ker }\overline{\varepsilon}\mathrm{ .

```
```

Moreover \overline{\gamma}:ker \overline{E}->ker \varepsilong
that }\Phi(\mp@subsup{\overline{\psi}}{A}{})\subset\mathrm{ ker }\overline{\varepsilon}\mathrm{ .
Then © extends to a based homotopy (rel B) from j o |
\Phi o \mp@subsup{\lambda}{1}{}. Moreover lm(\Phi o \mp@subsup{\lambda}{1}{}-j 0 \varphi )Cker }\overline{Y}\mathrm{ , and so cor. 5. 12 implies that
\$0 \mp@subsup{\lambda}{1}{}}\mathrm{ is vased homotopic to jo \#, (rel B). By prop. 5.14 iii)
jo \psi
to obtain

```
\[
\psi_{0} \approx \psi_{1}(\text { rel } B) .
\]
Q.E.D.

We come now to the lifting tineorems, which are the main results of the chapter.
3.19. - Theorem. Assume

is a commutative diagram of homomorphisms of c.g.d.a.'s. Suppose that
i) \(\gamma^{\prime \prime}\) is an isomorphism.
ii) The botrom row is a \(K S\) extensior, \(E\).

Then there is a homomorphism \(\emptyset:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) such that \(\vartheta 0 i=\psi \quad\) and \(\quad Y \circ \downarrow \sim n \quad(\) rel \(B)\).

If \(\bar{\psi}:\left(C, d_{C}\right) \rightarrow\left(\bar{E}, d_{E}\right)\) also satisfies these conditions, then \(\bar{\psi} \sim \downarrow(\) rel \(B)\).
3.20.- Theorem. Ass ume

is a commutative diagram of homomorphisms of augmented c.g.d.a.'s. Suppose that
i) \(\gamma^{\text {is an isororphism. }}\)
ii) The bottom row is a KS extension, \(E\).

Then there is a homomorphism \(\varphi:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\) such that \(\psi \circ i=\psi\) and \(y \circ \psi \tilde{\sim} n(\) rel \(B)\).

If \(\bar{\psi}:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\) also satisfies these conditions, then \(\bar{\psi} \approx \psi(\operatorname{rel} \mathrm{B})\).
5.21. - Proos of theorem 5.19.

Construct \((\bar{E}, \bar{D}), j, p\) and \(\bar{r}\) exactly as in the proof of
prop. 5.15 ii). We first construct a homomorphism
\[
\psi_{0}:\left(C, d_{C}\right) \rightarrow(\bar{E}, \bar{D})
\]
sucnthat \(\psi_{0} \circ i=j 0 \psi\), and \(\bar{\gamma} 0 \psi_{0}=n\).
Fix a structure \((X, f)\) and a basis \(\left\{X_{a}\right\}_{a \in l}\) for \(X\) so (1.4) holds.
We define \(\psi_{0} x_{a}\) by induction over \(I\).
Indeed if \(\psi_{0} x_{B}\) is defined \((B<a)\), then \(\psi_{0} d_{C} x_{a}\) is defined,
and
\[
\bar{\gamma} \varphi_{0} d_{C} x_{\alpha}=n d_{C} x_{\alpha}=\frac{d_{E}}{E} n x_{a}
\]
\[
\begin{array}{r}
\text { LECTURES ON MINIMAL MODELS } \\
\text { Choose } y_{\alpha} \in \bar{E} \text { so that } \bar{\gamma} y_{\alpha}=\eta x_{\alpha} . \text { Then } \\
\bar{\gamma}\left(\psi_{0} d_{c} x_{\alpha}-\bar{D} y_{\alpha}\right)=\frac{d_{E} n:_{\alpha}}{}-\frac{d y}{E} \bar{\gamma} y_{\alpha}=0,
\end{array}
\]
and
\[
\begin{aligned}
& \bar{D}\left(\varphi_{0} d_{C} x_{a}-\bar{D} y_{\alpha}\right)=\psi_{0} d_{C}^{2} x_{\alpha}=0 . \\
& \text { Since } H(k e r \bar{\gamma})=0 \text { we can write (for some } w_{\alpha} \in \text { jer } \bar{\gamma} \text {) }
\end{aligned}
\]
\[
\psi_{0} d_{c} x_{\alpha}-\bar{D}_{y_{\alpha}}=\bar{D}_{w_{\alpha}} .
\]

Extend \(\psi_{0}\) to \(B O A_{\& \alpha}\) by setting
\[
\hat{\psi}_{0} x_{\alpha}=y_{\alpha}+w_{\alpha} .
\]

By definition \(\bar{D} \varphi_{0} x_{\alpha}=\psi_{0} d_{c} x_{a}\), while
\[
\bar{r} \psi_{0} x_{\alpha}=\bar{y} y_{\alpha}=n x_{\alpha} .
\]

This completes the inductive construction of \(\psi_{0} \cdot\)
Now we define \(\dot{\psi}\) by setting
\[
\psi=p \circ \psi_{0}: C \rightarrow E .
\]

Then \(\downarrow \circ i=p \circ \psi_{0} \circ i=p \circ j \circ \psi=\psi\). Moreover, \(\operatorname{Im}\left(j \circ \psi \psi_{0}\right) \subset\) jer \(p\), and so by lemma \(5.11, j \circ \emptyset \sim \varphi_{0}\left(\right.\) rel B). Since \(\bar{\gamma} \circ j=\gamma\) while \(\bar{\gamma} \circ \psi_{0}=n\) we can apply \(\bar{\gamma}\) to this relation to obtain
\[
\gamma \circ \downarrow \sim n \quad(\text { rel } B) .
\]

Finally, suppose \(\bar{\psi}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) satisfies \(\bar{\psi} \circ i=\psi\) and \(y \circ \bar{\emptyset} \sim n(\) rel B). Then by prop 5.14 ii\()\).
\[
r \circ \bar{\psi} \sim r \circ \emptyset(\text { rel B). }
\]

Thus prop. 5.15 ii) implies that \(\bar{\psi} \sim \emptyset\) (rel B).

> Q.E.D.
5.22. - Proof of theorem 5.20.

Construct \((\bar{E}, \bar{D}), p, j, \bar{\gamma}\) and the augmentation \(\bar{\varepsilon}: \bar{E} \rightarrow k\) exactly as in the proof of prop 5.16 ii).

Then repeat the construction of \(\psi_{0}:\left(C, d_{C}\right) \rightarrow(\bar{E}, \bar{D})\) given above, being careful at each step to choose \(y_{\alpha} \in\) ker \(\bar{\varepsilon}\).

Since ker \(\bar{\gamma} \subset\) ker \(\bar{\varepsilon}, \varphi_{0}\) will preserve augmentations.
Hence so will \(\psi=p \circ \psi_{0}\).
Use cor. 5.12 to conclude that \(\mathrm{j} \circ \psi \tilde{\sim}_{\mathrm{o}}\) (rel B). Since \(\bar{\gamma}\)
preserves augmentations this implies
\[
\gamma \circ \uplus \approx n(\text { rel } B) .
\]

Complete the proof using prop 5.14 iii) and prop 5.16 ii), just as above.
Q.E.D.

For the rest of this chapter we shall consider KS extensions
\(E: B \rightarrow C \rightarrow A\) admitting a structure \((X, f)\) and a well ordered homogeneous basis \(\left\{x_{\alpha}\right\}_{\alpha \in I}\) such that (1.4) holds and
\[
\begin{equation*}
\operatorname{deg} x_{B}=0, \quad \operatorname{deg} x_{\alpha}>0 \Rightarrow B<a . \tag{5.23}
\end{equation*}
\]

A KS extension satisfying this conditions will be called 0 -minimal. Clearly minimal extensions are 0 -minimal. Horeover any \(K S\) extension with connected fibre is vacuously \(u\)-minimal. It is easy to see that a \(k S\) extension is 0 -minimal if and only if the subalgebra \(C_{0} C \quad C\) generated by \(B\) and \(C^{\circ}\) is \(\mathrm{d}_{\mathrm{C}}\)-stable.
```

    3.24.- Lemma. Suppose E is O-minimal and }\mp@subsup{\psi}{0}{},\mp@subsup{\psi}{1}{}:(C,\mp@subsup{d}{C}{})->(E,\mp@subsup{d}{E}{}
    are homotopic (rel B). Then }\mp@subsup{\psi}{0}{}\mathrm{ and }\mp@subsup{\psi}{1}{}\mathrm{ coincide in }\mp@subsup{C}{0}{}\mathrm{ .

```

Proon-- Observe that the derivation \(i\) in \((C, B)^{I}\) has degree -1 , and so \(i\left(C_{0}\right)=0\). since \(E\) is 0 -minimal, \(C_{0}\) is \(d_{C}-s t a b l e\), and it follows tnat \(\theta\left(C_{0}\right)=0\).

This inplies that \(\lambda_{1}=\lambda_{0}\) in \(C_{0}\), and so \(\psi_{1}=\psi_{0}\) in \(C_{0}\).
Q.E.D.

If \(E\) is 0 -minimal we denote by \((C, B)^{\partial I}\) the augmented subalgebra of \((C, B)^{I}\) generated by \(\operatorname{Im} \lambda_{0}(=C)\) and \(\operatorname{Im} \lambda_{1} .(C, B)^{\partial I}\) is stable under \(D\). Recall from 5.1. that the linear map \(x \rightarrow \bar{x}\) of \(X\) to \(\bar{Q}_{A}\) is defined by \(x=\sum \zeta_{A} x\). This extends to a linear map
\[
{ }^{\Sigma \zeta_{A}}: \Lambda^{+} X \rightarrow \bar{Q}_{A}
\]

If \(E\) is 0 -minimal then \(d_{A}\left(X^{0}\right)=0\) and it follows that a differential \(\bar{Q}\left(d_{A}\right)\) is defined in \(\bar{Q}_{A}\) by
\[
\bar{Q}\left(d_{A}\right) \bar{x}=\sum \zeta_{A} d_{A}(x), \quad x \in x
\]

Extend \(\bar{Q}\left(d_{A}\right)\) to a derivation in \(\Lambda \bar{Q}_{A}\); then \(\left(\Lambda Q_{A}, \bar{Q}_{\left(d_{A}\right)}\right)\) is a
a c.g.d.a. and
\[
\bar{Q}\left(d_{A}\right)=0
\]
if and only if \(E\) is minimal.
Next define a projection of augmented c.g.d.a.'s
\[
p:\left((C, B)^{I}, D\right) \rightarrow\left(\Lambda \bar{Q}_{A},-\bar{Q}\left(d_{A}\right)\right)
\]
by setting
\[
\begin{array}{lll}
p(z)=\varepsilon C^{z} & , & z \in C \\
p(\bar{x})=\bar{x} & , & \bar{x} \in \bar{Q}_{A}
\end{array}
\]
and
\[
p(D \bar{x})=-\bar{Q}\left(d_{A}\right) \bar{x}, \quad \bar{x} \in \bar{Q}_{A}
\]

\section*{S. HALPERIN}

Let \(j:(C, B)^{\partial I} \rightarrow(C, B)^{I}\) be the inclusion.
5.25.- Proposition.

If \(E\) is a 0 -minimal extension then
\[
\begin{equation*}
(C, B)^{\partial I} \xrightarrow{j}(C, B)^{I} \xrightarrow{\rho}\left(\Lambda \bar{Q}_{A},-\bar{Q}\left(d_{A}\right)\right) \tag{5.26}
\end{equation*}
\]
is a KS extension. If \(E\) is minimal so is (5.26).

Prooh.- Let \(J\) be the subset of \(I\) of indices \(a\) with deg \(x_{\alpha}>0\). Tnen \(\left\{x_{\alpha}\right\}_{\alpha \in J}\) is a well ordered homogeneous basis of \(x^{+}\), and \(\left\{\bar{x}_{\alpha}\right\}_{\alpha \in J}\) is a well ordered homogeneous basis of \(\bar{Q}_{A}\). Now let \(X\) be an isomorphic copy of \(X^{+}\)with isomorphism \(x \rightarrow \check{x}\). Then \(\left\{\check{x}_{\alpha}\right\}_{\alpha \varepsilon J}\) is a well ordered homogeneous basis of In particular we have the subalgebras
\[
\left(\Lambda \bar{u}_{A}\right)_{<\alpha} \quad, \quad\left(\Lambda D \bar{U}_{A}\right)_{<\alpha} \quad \text { and } \quad(\Lambda \dot{x})_{<\alpha} \quad, \quad a \in J .
\]

Now define an algebra homomorphism
\[
8: B \bullet \Lambda X \otimes \Lambda \check{x} \cup \Lambda \bar{u}_{A} \longrightarrow(C, B)^{I}
\]
by
\[
\begin{array}{lllll}
g(b)=b, & b \in B & g(\dot{x})=\lambda_{1} x, & x \in x^{+} \\
g(x)=x, & x \in X \quad, & g(\bar{x})=\bar{x}, & x \in x^{+} .
\end{array}
\]

It follows from lemma 5.24 that if we set \(\check{x}=x \quad\left(x \in X^{0}\right)\) then
\[
\begin{equation*}
g(\grave{x})=\lambda_{1} x \quad, \quad x \in X \tag{5.27}
\end{equation*}
\]
5.28.- Lerma. 8 is an isomorphism. Moreover
\[
g^{-1} D \bar{x}_{\alpha} \in B \cup \Lambda x \in \Lambda \check{x} \theta\left(\Lambda \bar{Q}_{A}\right)_{<a} \quad, \quad a \in J .
\]

Proof.- Define an isomorphism
\[
h: B \otimes \Lambda X \otimes \Lambda \tilde{X} \in \Lambda \bar{Q}_{A} \xrightarrow{\cong}(C, B)^{I}
\]
by \(h(b)=j, h(x)=x(x \in X), h\left(x^{\prime}\right)=D \bar{x} \quad\left(x \in X^{+}\right)\)and \(h(\bar{x})=\bar{x} \quad\left(x \in X^{+}\right)\).
Then \(g\)-h is zero in \(B, X\) and \(\bar{Q}_{A}\).
Moreover, we obtain from (5.6) that
\[
g \check{x}_{\alpha}-h \check{x}_{\alpha}=x_{\alpha}+\Omega_{\alpha} \quad, \quad \alpha \in J,
\]
whence
\[
(g-h) \check{x}_{\alpha} \in B \theta \Lambda X \theta\left(\Lambda \bar{Q}_{A}\right)_{<\alpha} \ominus\left(\Lambda D \bar{Q}_{A}\right)_{<\alpha} .
\]

It follows as in lemma 1.7 that \(g\) is an isomorphism.
Finally, (5.6) implies that
\[
g^{-1}\left(D_{x_{\alpha}}\right)=\check{x}_{\alpha}-x_{\alpha}-g^{-1}\left(\Omega_{\alpha}\right), \quad a \in J
\]

Thus induction on \(J\) shows that for \(\propto \in J\)
\[
g^{-1}\left(B \cup A_{\leqslant}, B\right)^{I} C B \theta \Lambda x \in \Lambda x \in\left(\Lambda \bar{Q}_{A}\right) \leqslant a
\]

It follows that \(g^{-1}\left(\Omega_{\alpha}\right) \in B O \Lambda X \Leftrightarrow \Lambda X O\left(\Lambda \bar{Q}_{A}\right)_{<\alpha}\), and the rest of the lemma is proved.
Q.E.D.
5.29.- Corollary. - 8 restricts to an isomorphism of Be \(\Lambda X \theta \Lambda X\) onto \((C, B)^{\partial I}\).

Prooń- Clearly \(g(B \cap \Lambda X \otimes \Lambda \check{X}) C(C, B)^{\partial I}\). Formula (5.27) allows us to reverse tne inclusion.
Q.E.D.

\subsection*{5.30.- Proof of prop. 5.25 cont'd.}

It follows from lemma 5.28 and cor 5.29 that multiplication in \((C, B)^{I}\) defines an isomorphism (of augmented graded algebras)
\[
(C, B)^{\partial I} \oplus \Lambda \bar{Q}_{A} \xrightarrow{\cong}(C, B)^{I}
\]
with respect to which
\[
D(1 \otimes \bar{x}) \varepsilon(C, B)^{I} \ominus\left(\Lambda \bar{Q}_{A}\right)_{<\alpha}, \quad \alpha \in J
\]

To show that (5.26) is a KS extension we need only show that the diagram

commutes.
That the left triangle commutes is clear. To verify that the right triangle coumutes we show that
\(p \circ \theta=0\)
where \(\theta=D_{i}+i D\) is the derivation in \((C, B)^{I}\) used to define \(\lambda_{1}\). In fact, since \(\theta \bar{x}=\theta D_{\bar{x}}=0, x \in X\) we need only prove that \(p \circ \theta(x)=0, x \in X\). Now in \(C=B \in \Lambda X\)
\[
d_{C}(1 \theta x)-1 \theta d_{A} x \in \operatorname{ker} \varepsilon_{B} \theta A X,
\]
and so
\[
i d_{C}(1 \theta x)-i\left(\begin{array}{lll}
1 & d_{A} x
\end{array}\right) \in \operatorname{ker} \varepsilon_{B} \theta \Lambda x \theta \wedge \bar{Q}_{A} .
\]

\section*{LECTURES ON MINIMAL MODELS}

Since the restriction of \(p\) to \(B \theta \Lambda X \theta \Lambda \bar{Q}_{A}\) is just \(\varepsilon_{C} \theta\), we find
\[
\begin{aligned}
p i d_{C}(1 \ominus x) & =\left(\varepsilon_{C} \otimes 1\right) i\left(1 \otimes d_{A} x\right) \\
& =\bar{Q}\left(d_{A}\right) \bar{x},
\end{aligned}
\]

On the other hand
\[
P \operatorname{Di}(1 \otimes x)=P D \bar{x}=-\bar{Q}\left(d_{A}\right) \bar{x}, \quad \quad x \in X
\]
and adding these relations we ohtain (5.31).
But this yields \(p \circ \lambda_{1}=p \circ \lambda_{0}=\varepsilon_{C}\); since \(p \bar{x}=\bar{x}\) the commutativity of the right triangle is proved.

Finally, if \(E\) is minimal so is (5.26), almost by definition.
Q.E.D.
5.32.- Corollary.- An isomorphism
\[
C \theta_{C_{0}} C \xrightarrow{\cong}(C, B)^{\partial I}
\]
is defined by
\[
2 \theta \mathrm{w} \longmapsto \lambda_{0} 2 \cdot \lambda_{1} w .
\]
5.33.- Corollary.-
i) Suppose \(\psi_{0}, \psi_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) coincide in \(C_{0}\). Then a unique homomorphisw
\[
\psi:\left((C, B)^{\partial I}, D\right) \rightarrow\left(E, C_{E}\right)
\]
is defined by \(\dot{\psi}_{0} \lambda_{i}=\psi_{i}, i=0,1\). The homomorphisms \(\psi_{i}\) are homotopic (rel B) if and only if \(\psi\) extends to a homomorphism
\[
\oplus:\left((C, B)^{I}, D\right) \rightarrow\left(E, d_{E}\right)
\]
ii) If \(E\) is augmented by \(E_{E}\) then preserves augmentations if and only if \(\psi_{0}\) and \(\psi_{1}\) do. In this case \(\psi_{0} \tilde{\sim} \psi_{1}(r e l B)\) if and only if - can be chosen to preserve augmentations.

\section*{S. HALPERIN}

Now recall that \(\dot{E}\) is assumed 0 -minimal. Suppose
\(\dot{\psi}_{0}, \dot{\psi}_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) are homotopic \((\) rel \(B)\) and that \(\phi\) and \(\psi\) are both homotopies (rel B) between them. Thus
\[
\Phi, \Psi:\left((C, B)^{I}, D\right) \rightarrow\left(E, d_{E}\right)
\]
restrict to the same \(\downarrow\) in \((C, B)^{\partial I}\).

Since the sequence (5.26) is a KS extension we can apply
definition 5.8 to define the notion of a homotopy (rel (C,B) \({ }^{\partial I}\)) between \(\Phi\) and \(\Psi\). If such exists we say \(\Phi\) and \(\Psi\) are homotopic (rel (C,B) \(\partial \mathrm{I}\)).

Similarly if \(\psi_{0}\) and \(\psi_{1}\) preserve augmentations (for some given \(\varepsilon_{E}\)) and \(\Phi\) and \(\Psi\) are based homotopies then we can use definition (5.9) to define a based homotopy (rel (C,B) \({ }^{\partial I}\)) between \(\Phi\) and \(\Psi\); if such exists \(\Phi\) and \(\Psi\) are based homotopic (rel (C,B) \({ }^{\partial I}\)).

If \(E\) was actually minimal then so is the KS extension (5.26)
In this case we can iterate the procedure to cbtain homotopies of homotopies of homotopies.... .
5.34. - Example.- Suppose \(E\) is 0-minimal. Then the homotopy class of the homotopy \(\Phi\) of lemma 5.11 (resp. the based homotopy class of the homotopy \(\Phi\) of cor. 5.12) is uniquely determined by the condition \(\Phi\left(\bar{Q}_{A}\right) \subset I\).

Indeed if \(\psi\) is a second such homotopy then \(\Phi\) and \(\psi\) agree
in \((C, B)^{\partial I}\) and \(\operatorname{Im}(\phi-\Psi) \subset I\). Thus lemma 5.11 implies that \(\phi \sim \psi \quad\left(\right.\) rel \((C, B)^{\partial I}\)).
5.35. - Exauple.- The hypothesis of 0 -minimality is essential. Indeed
consider the contractible complex \(\Lambda(x, d x)\) generated by \(x\) with deg \(x=0\).
Then
\[
\Lambda(x, d x)^{I}=\Lambda(x, d x, \overline{d x}, D \overline{d x})
\]
and
\[
i(x)=0, \quad i(d x)=\overline{d x}, \quad i(\overline{d x})=i(D \overline{d x})=0
\]

Hence
\[
\theta(x)=\overline{d x}, \quad \theta(d x)=D \overline{d x}, \quad \theta(\overline{d x})=\theta(D \overline{d x})=0 .
\]

\section*{Thus}
\[
\lambda_{1} x=x+\overline{d x} \quad \text { and } \quad \lambda_{1} d x=d x+D \overline{d x}
\]

It follow that \(\operatorname{Im} \lambda_{1}\) and \(\operatorname{Im} \lambda_{0}\) generate all of \(\Lambda(x, d x)^{I}\), and 80 lemma 5.28 fails in this case.

Moreover the augmentation \(\varepsilon: \Lambda(x, d x) \rightarrow k\) and the inclusion
i : \(k \rightarrow \Lambda(x, d x)\) satisfy \(i \circ \varepsilon \sim 1\). But \(i \circ \varepsilon\) does not coincide with 1 in \(\Lambda(x, d x)^{0}\). So lemma 5.24 fails as well.

\section*{Chapter 6}

\section*{Models}

In this chapter we consider a homomorphism of c.g.d.a.'s
\[
\gamma:\left(B, d_{B}\right) \rightarrow\left(E, d_{E}\right)
\]

We assume \(B\) is augmented by \(\varepsilon_{B}\) and that \(H^{\circ}(B)=k=H^{0}(E)\). The main result (existence and uniqueness of models) is stated in the next three theorems.
0.1. - Theorem (existence). - There is a minimal KS extension
\[
t: B \xrightarrow{i} C \xrightarrow{p} A
\]
and a homomorphism \(\psi:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) such that:
i) \(\hat{\psi} \circ \mathrm{i}=\gamma\).
ii) \(\psi^{*}\) is an isomorphism.
```

            Moreover, if E is augmented by E E and }Y\mathrm{ preserves augmentations,
    then }\psi\mathrm{ can be chosen to preserve augmentations.
Now assume there are two minimal KS extensions
L B H

```
and suppose,
\[
\theta:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right) \quad \text { and } \quad \ddot{\psi}:\left(\dot{C}, d_{\dot{C}}\right) \rightarrow\left(E, d_{E}\right)
\]
both satisfy i) and ii) of theorem 6.1.
0.2. - Theorem (uniqueness). With the hypotheses above there is a
commutative diagram of homomorphisms of c.g.d.a.'s

such that \(\bar{\psi}\) and \(\dot{\alpha}\) are isomorphisms, and \(\psi \circ \bar{\psi} \sim \dot{\psi}\) (rel B).
Moreover if \(\gamma, \varphi\) and \(\stackrel{\psi}{\psi}\) are augmentation preserving with respect to an augmentation \(\varepsilon_{E}\) of \(E\), then \(\bar{\psi}\) can be chosen to be augmentation preserving and so that \(\varphi \bar{\psi}\) and \(\dot{\psi}\) are based homotopic (rel B). In this case \(\bar{\alpha}\) is also augmentation preserving.
6.3. - Theorem (uniqueness of isomorphism). With the hypotheses and notation of theoren 6.2 assume that

is a commutative diagram of homomorphisms of c.g.d.a.'s such that \(\downarrow 0 x=\forall \quad(\) rel \(B)\).

Then \(x\) and a are isomorphisms and
\[
x^{\sim} \bar{\psi}(\text { rel } B) \quad \text { and } a \sim \bar{\alpha} .
\]

Moreover, if \(E\) is augmented by \(\varepsilon_{E}\), if all homomorphisms preserve augmentations, and if \(\psi \circ \times \approx \bar{\psi}(\) rel \(B)\) then \(x\) and \(\bar{\psi}\) are based homotopic (rel \(B\)) and \(a\) and \(\bar{a}\) are based homotopic.

\section*{S. HALPERIN}
6.4. - Proof of theorem 6.1.

We shall construct \(C\) in the form \(C=B 0 \Lambda X\) where each \(X^{n}\)
is decomposed in the form
\[
x^{n}=\sum_{p \geqslant 0} X_{p}^{n} \quad, \quad n \geqslant 0
\]
and \(d_{C}\) extends \(d_{B}\) and satisfies
\[
\begin{equation*}
d_{C}\left(1 \otimes x_{q}^{m}\right) \subset B \otimes \Lambda\left(x^{<m} \oplus x_{<q}^{m}\right), \quad m \geqslant 0, \quad q \geqslant 0 \tag{6.5}
\end{equation*}
\]

We shall simultaneously construct \(\varphi: B 0 \Lambda X \rightarrow E\) so that
-(6.6)
\[
\psi d_{C}=d_{E} \psi
\]

If \(Y\) preserves augmentations (for a given \(\varepsilon_{E}\)) we shall also arrange that
\[
\begin{equation*}
\psi\left(1 \quad X_{q}^{0}\right) \subset \operatorname{ker} \varepsilon_{E}, \quad q \geqslant 0 \tag{6.7}
\end{equation*}
\]
6.8. - The spaces \(X_{P}^{0}\). Set
\[
x_{0}^{0}=\operatorname{ker}\left(H^{\prime}(B) \xrightarrow{Y^{\prime}} H^{\prime}(E)\right)
\]

Define \(d_{C}\) in \(10 X_{0}^{0}\) so that \(d_{C}(10 x)\) is a cocycle in \(B\) representing \(x\) :
\[
\left[d_{C}(10 x)\right]=x, \quad x \in x_{0}^{0}
\]

Extend \(\psi\) to \(X_{0}^{0}\) so that (6.6) holds (and (6.7) if \(E_{E}\) is given).
Suppose \(X_{q}^{0}\) has been defined for \(q<p\) and \(\psi\) and \(d_{C}\) have been extended to \(B\) e \(A X_{<p}^{0}\) so that (6.5) and (6.6) hold (and (6.7) if \(\varepsilon_{E}\) is given). Let
\[
x_{p}^{0}=\operatorname{ker}\left(i^{\prime}\left(B \quad A X_{<p}^{0}\right) \xrightarrow{\psi} H^{\prime}(E)\right)
\]
and further extend \(\psi\) and \(d_{C}\) just as we did when \(p=0\).
6.9.- Lemma.-
i) \(H^{0}\left(B \Theta \Lambda X^{0}\right)=k\).
ii) \(\psi^{*}: H^{1}\left(B \theta A X^{0}\right) \rightarrow H^{1}(E)\) is infective.

\section*{Proof.-}
i) We need only show that \(H^{0}\left(B \theta \Lambda X_{\leqslant P}^{0}\right)=k\) for all \(p\).

Assume this holds for \(q<p\); then \(H^{\circ}\left(B \Theta \Lambda X_{<p}^{0}\right)=k\). Let \(\dot{B}=B \theta \Lambda X_{<p}^{0}\) and write
\[
\text { B } \theta \Lambda X_{\leqslant P}^{\circ}=\check{B} \theta \Delta X_{p}^{\circ} \text {. }
\]

If \(\Phi \in\left(\dot{B} \otimes \Lambda X_{p}^{0}\right)^{0}\) is a cocycle write \(\phi=\sum_{j=0}^{m} \Phi_{j}\),
\(\Phi_{j} \in \check{B}^{0} \otimes \Lambda^{j} X_{p}^{0}, \quad \Phi_{m} \neq 0\). Since \(d_{C} \Phi=0\) it is clear that
\[
\begin{equation*}
\left(d_{B} \theta \quad 1\right) \Phi_{m}=0 \tag{6.10}
\end{equation*}
\]

It follows by our induction hypothesis that \(\Phi_{m} \in 1 \theta \Lambda^{m} X_{p}^{0}\).
Now by construction, \(d_{C}\) injects \(X_{p}^{0}\) onto a space of cocycles in \(\stackrel{V}{B}^{1}\) which does not meet \(d_{\dot{B}}\left(\mathcal{B}^{0}\right)\). On the other hand since \(d_{C} \Phi=0,(6.10)\) shows that
\[
d_{C} \Phi_{m}+\left(d_{\mathrm{B}} \otimes 1\right) \Phi_{\mathrm{m}}-1=0
\]

Since \(\Phi_{m} \in 1 \otimes \wedge X_{p}^{\circ}\) this implies
\[
d_{c} \Phi_{m}=0 .
\]

Consider the contractible complex \(\Lambda X_{p}^{\circ} \Theta \Lambda D X_{p}^{\circ}\) generated by \(X_{p}^{0}\). Since \(d_{C}: X_{p}^{O} \longrightarrow \bar{B}\) is infective, it follows that \(D \Phi_{m}=0\). Because \(\Lambda X_{p}^{0} \cup \Lambda \nu X_{p}^{\circ}\) is acyclic, the only \(D\)-cocycles in \(\Lambda X_{p}^{0} \Theta 1\) are scalars. Hence \(m=0\) and \(\mathbb{Q}=\Phi_{m} \in k\).
ii) Assume \(₫ \in\left(B \theta \Lambda x^{\circ}\right)^{\prime}, d_{C}=0\), and \(\psi \Phi\) is a coboundary. Then \(\quad \in\left(B \quad \Lambda X_{p}^{\circ}\right)^{\prime}\), some \(p\), and so (by definition of \(X_{p+1}^{0}\)) for some

\section*{S. HALPERIN}
\(x \in \mathrm{x}_{\mathrm{p}+1}^{\text {" }}\),
\[
\Phi-d_{C}(1 \theta x) \in d_{C}\left(B \theta \Lambda x_{\leqslant p}^{\circ}\right) .
\]

In particular \(\Phi\) is a coboundary in \(B \theta \Lambda X^{\circ}\).
Q.E.D.
6.10. - The spaces \(X_{p}^{n}, n>0\).

Suppose that for some \(n>0 \quad X_{q}^{m}\) is defined for \(m<n\) and \(q \geqslant 0\), and that \(d_{C}\) and \(\psi\) are extended to \(B \in \Lambda x^{<n}\) so that (6.5) and (6.6) hold.

Assume as well that
(6.11)
\[
\psi^{*}: H\left(B \theta \Lambda X^{<n}\right) \rightarrow H(E) \text { is }(n-1) \text {-regular. }
\]

Define spaces \(W_{0}^{n}\) and \(Y_{0}^{n}\) by
\[
W_{0}^{n}=\operatorname{Coker}\left(H^{n}\left(B \otimes \Lambda X^{<n}\right) \xrightarrow{\psi^{n}} H^{n}(E)\right)
\]
and
\[
Y_{0}^{n}=\operatorname{Ker}\left(H^{n+1}\left(B \otimes \Lambda X^{<n}\right) \xrightarrow{\psi^{*}} H^{n+1}(E)\right)
\]
\[
\text { Let } X_{0}^{n}=W_{0}^{n} \oplus Y_{0}^{n} \text { and extend } d_{c} \text { to } X_{0}^{n} \text { by setting }
\]
(6.12) \(\quad\left\{\begin{array}{l}d_{C}(10 w)=0, \quad w \in W_{0}^{n} \\ \text { and } \\ d_{C}(1 \theta y) \text { is a cocycle in }\left(B \theta A X^{<n}\right) \text { representing } y, \\ y \in Y_{0}^{n} .\end{array}\right.\)

Extend in the obvious way so that \(\|^{*}\) is surjective in degree \(n\) and (6.6) holds.

Next, if \(X_{q}^{n}\) is defined for \(q<p\) and \(Q\) and \(d_{C}\) are extended to \(B \theta \Lambda x^{<n} \oplus \Lambda x_{<p}^{n}\) so that (6.5) and (6.6) hold, set (for \(p \geqslant 1\))
\[
X_{p}^{n}=\operatorname{Ker}\left(H^{n+1}\left(B \otimes \Lambda x^{<n} \ominus \Lambda x_{<p}^{n}\right) \xrightarrow{\varphi} H^{n+1}(E)\right) .
\]

Extend \(d_{c}\) to \(X_{p}{ }_{p}\) so that
(6.13) \(\quad d_{C}(1 \theta x) \in B \in \Lambda X^{<n} \theta \Lambda X_{<p}^{n}\) is a cocycle representing \(x, x \in X_{p}^{n}\). Extend \(\psi\) to \(X_{p}^{n}\) so that (6.6) holds.
6.14. - Lernma.
\(\psi^{*}: H\left(B \theta \Lambda X^{\leq n}\right) \rightarrow H(E)\) is n-regular.

Proot.-
Since \(\left(B \theta \Lambda x^{\leq n}\right)^{m}=\left(B \theta \Lambda x^{<n}\right)^{m}, m<n\), it follows from (6.11)
that \(\varphi^{*}\) is an isomorphism in degrees less than \(n\). We show next that it is injective in degree \(n\).

Suppose \(\phi\) is a cocycle in \(\left(B \theta \Lambda x^{\leq n}\right)^{n}\) and \(\psi \phi\) is a coboundary.
Note that \(\quad \subset \in B \theta \Lambda x^{<n} \otimes \Lambda X_{\leqslant p}^{n}\), some \(p\). Let \(B=B \theta \Lambda X^{<n} \theta \Lambda x_{<p}^{n}\); it is \(d_{C}\)-stable by construction. Write \(B \theta \Lambda X^{<n} \theta \Lambda x_{s p}^{n}=B \theta \Lambda X_{p}^{n}\), and write
\[
\phi=\psi+\Omega, \quad \psi \in \mathrm{B}^{0} \theta \mathrm{X}_{\mathrm{p}}^{\mathrm{n}}, \quad \Omega \in \dot{B}^{n}
\]

Since \(d_{C} \Phi=0\) we conclude that \(\left(d_{B} \otimes\right.\) i) \(\psi=0\). But since \(H^{0}(E)=k\), (6.11) shows that \(H^{0}(B)=k\). Hence
\[
\psi \in 1 \otimes x_{p}^{n}
\]

It follows that \(d_{C} \psi \in d_{\dot{B}}\left(B^{n}\right)\), which, in view of our construction of \(X_{p}^{n}\), implies \(\psi=0\).

Hence \(\Phi \in\) B. Continuing in this way we eventually obtain \(\Phi \in B \wedge X^{<n}\). Now (6.11) shows that \(\phi\) is a coboundary. Thus \(\varphi^{*}\) is injective in degree \(n\).

Finally \(\|^{*}\) is surjective in degree \(n\) by the definition of \(W_{0}^{n} \subset x_{0}^{n}\). It is injective in degree \(n+1\) by the same argument as used in lemma 6.9 ii).
Q.E.D.

\section*{S. HALPERIN}
6.15.- Proof of theorem 6.1. cont'd.

Above we have defined a c.g.d.a. (\(C, d_{C}\)) with \(C=B O A X\). We augment
it by \(\varepsilon_{C}\), where \(\varepsilon_{C}\) extends \(\varepsilon_{B}\) and vanishes on \(X\).
If \(I=\) ker \(\varepsilon_{B} \otimes \Lambda X\) we write \(A=C / I\) and let \(p: C \rightarrow A\) be the projection. \({ }^{d} C\) and \({ }_{C}{ }_{C}\) factor over \(\rho\) to make \(A\) into an augmented c.g.d.a. It follows from (6.5) that
\[
E: B \xrightarrow{i} C \xrightarrow{\rho} A .
\]
is a minimal KS extension.
We also defined a homomorphism \(\vartheta:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\); lemma 6.14
shows that \(\varphi^{*}\) is an isomorphism. Moreover \(\varphi \rho i=\gamma\) by definition.
Finally, if \(\gamma\) was augmentation preserving with respect to \(\varepsilon_{E}\),
then (6.7) applies and shows that \(\emptyset\) is also augmentation preserving.
6.16.- Remarks.
1) Cor 3.10 shows that
\[
H(A) \cong \Lambda X^{0} \Theta H\left(\Lambda X^{+}\right)
\]
for suitable choice of \(\mathrm{X}^{+}\).
2) Cor 3.9 shows that \(\gamma^{*}\) is n-regular if and only if \(A\) is
n-connected.
6.17. - Proof of theorem 0.2.

Consider the diagram

Since
is an isomorphism, theorem 5.19 applies and yields a homomorphism
\[
\bar{\psi}:\left(\stackrel{v}{C}, d_{X}\right) \rightarrow\left(C, d_{C}\right)
\]
such that \(\bar{\psi} \circ \dot{i}=i\) and \(\varphi 0 \bar{\psi} \sim \bar{\psi}(\) rel \(B)\).
In particular \(\bar{\Psi}\left(\dot{i}\left(\operatorname{ker} \varepsilon_{B}\right) . \dot{C}\right) \mathcal{C} i\left(\operatorname{ker} \varepsilon_{B}\right)\). C.
This can be rewritten as \(\bar{\psi}(k e r\) pf) \(こ\) jer \(\rho\). Thus \(\bar{\psi}\) factors over \(\dot{\rho}\) to yield a commutative diagram of homomorphisms of c.g.d.a.'s

Moreover, since \(\psi 0 \bar{\psi} \sim \psi(\) rel \(B), \quad \psi^{*} \circ \bar{\psi}^{*}=\psi^{*}\). Because and \(\psi\) are isomorphisms, so is

Next set \(\varepsilon_{1}=\varepsilon_{C} \circ \bar{\psi}\) and \(\tilde{\varepsilon}_{2}=\varepsilon_{A} \circ \bar{\alpha}\); these are (possibly new) augmentations in \(\dot{C}\) and \(\dot{A}\). It is trivial to check that \(B \xrightarrow{\dot{i}} \dot{C} \xrightarrow{\dot{D}} \dot{A}\), together with \(\varepsilon_{B}, \tilde{\varepsilon}_{1}, \tilde{\varepsilon}_{2}\), is still a minimal KS extension. Denote it by \(E\).
(In fact if \((X, f)\) is a structure for \(\underset{E}{V}\) set
\(\tilde{X}=\left\{x-\tilde{\varepsilon}_{2}(x)| | x \in X\right\}\); then \((\tilde{X}, f)\) is a structure for \(\tilde{t}\). If (1.4) holds for a basis \(\left\{x_{\alpha}\right\}_{\alpha \in I}\) for \(X\), then it holds for the basis \(\left\{x_{\alpha}-\varepsilon_{2}\left(x_{\alpha}\right)!\right\}_{a \in I}\) for \(X\).)

Observe that by definition
\[
(1, \bar{\psi}, \bar{a}): \tilde{E} \rightarrow E
\]
is a morphism of minimal KS extensions. Since \(\psi\) is an isomorphism, theorem 4.5 shows that \(\bar{a}\) is an isomorphism. Since, and \(\bar{\psi}\) are isomorphisms, theorem 4.6 shows that \(\bar{\psi}\) is an isomorphism.

Finally, suppose \(\varepsilon_{E} \circ \gamma=\varepsilon_{b}\) for some given augmentation \(\varepsilon_{E}\) of \(E\), and \(\downarrow\) and \(\psi\) preserve augmentations. Then theorem 5.20 applies (just as theorem 5.19 applied above) to yield a homomorphism
\[
\bar{\psi}:\left(\dot{\mathrm{C}}, \mathrm{~d}_{\mathrm{C}}, \varepsilon_{\dot{\mathrm{C}}}\right) \rightarrow\left(\mathrm{c}, \mathrm{~d}_{\mathrm{C}}, \varepsilon_{\mathrm{c}}\right)
\]
such that \(\bar{\psi} \circ i=i\) and \(\psi \circ \bar{\psi}\) is based homotopic (rel B) to \(\bar{\psi}\). As above \(\bar{\psi}\) induces \(\bar{\alpha}: \AA \rightarrow A\) and this time without making changes
\[
(1, \bar{\varphi}, \bar{\alpha}): \stackrel{v}{E} \rightarrow E
\]
is a morphisin. It follows exactly as above that (\(1, \bar{\psi}, \bar{\alpha}\)) is an isomorphism.
6.18.- Proof of theorem 0.3. Change \(\neq\) to \(\tilde{E}\) by changing the augmentations of \(\dot{C}\) and \(\check{A}\) so that \((i, x, \alpha): \tilde{E} \rightarrow E\) is a morphism (as in the proof of theorem 6.2 above). Since \(\varphi \circ x^{\sim} \downarrow\) (rel B), \(x^{*}\) is an isomorphism. Thus theorems 4.5 and 4.6 imply that \(x\) and \(\alpha\) are isomorphisms.

Moreover since \(\psi \circ x \sim \check{\wp} \sim \bar{\varphi}\) (rel B) we obtain \(\psi \circ x \sim \downarrow \circ \bar{\psi}\left(\right.\) rel B). Since \(\psi^{*}\) is an isomorphism we may use prop 5.15 ii) to conclude \(x \sim \bar{\varphi}(\) rel \(B)\). If \(\Phi\) is a homotopy (rel B) from \(\bar{\psi}\) to \(x\) then - factors over the projection
\[
0 \theta 1:(\check{C}, B)^{I} \longrightarrow \tilde{A}^{I}
\]
to yield a homotopy from \(\alpha\) to \(\bar{\alpha}\).
Finally, if \(E\) is augmented by \(\varepsilon_{E}\), all homomorphisms preserve augmentations and \(\psi 0 x \approx \dot{\psi}\) (rel B) then
\[
\dot{\psi} \circ x \approx \dot{\psi} \approx \varphi \circ \bar{\psi}(\text { rel B) }
\]

It follows that \(\psi 0 \times i \psi 0 \bar{\psi}\) (rel B). Since \(\psi^{*}\) is an isomorphism prop. 5.16 ii\()\) yields \(x \approx \bar{\psi}\) (rel B).

Again, as above, this implies \(\alpha \underset{\sim}{\alpha}\).
Q.E.D.

Theorems 6.1 and 6.2 motivate the following definitions.
6.19.- Dejinition.

Let \(\gamma:\left(B, d_{B}\right) \rightarrow\left(E, d_{E}\right)\) be a homomorphism of c.g.d.a.'s such that \(H^{0}(B)=k=H^{0}(E)\). Assume \(B\) is augmented by \(\varepsilon_{B}\).

Then a KS extension, \(E: B \xrightarrow{i} C \xrightarrow{\rho} A\), together with \(a\) homomorphism \(\dot{\psi}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) is called a model for \(Y\) if \(\psi 0 i=\gamma\) and \(\varphi^{\text {* }}\) is an isomorphism.

If \(E\) is minimal we call (\(E, \psi\) a minimal model for \(y\).
6.20.- Definition.

Let \(\gamma:\left(B, d_{B}, \varepsilon_{B}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\) be a homomorphism of augmented c.g.d.a.'s such that \(H^{0}(B)=k\) and \(H^{0}(E)=k\).

Then a KS extension \(E: B \xrightarrow{i} C \xrightarrow{\rho} A\) together with \(a\)
homomorphism
\[
\varphi:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)
\]
is called a model for \(\gamma\) if \(\psi 0 i=\gamma\) and \(\psi\) is an isomorphism. If \(E\) is a minimal then \((E, \psi)\) is called a minimal model for \(\gamma\).

In the case \(B=k\) these definitions specialize as follows:
6.21.- Dépinition.

Let (\(E, d_{E}\)) be a c.g.d.a. with \(H^{\circ}(E)=k\). A model for (\(E, d_{E}\)) is a KS complex (\(C, d_{C}\)) together with a homomorphism \(i:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) such that \(\psi^{*}\) is an isonorphism. If (\(C, d_{C}\)) is minimal then we call this a minimal model for (\(E, d_{E}\)).
6.22.- Remarks.-
1. Theorem 6.1 and theorem 6.2 show that minimal models exist, and are uniquely determined up to isomorphism.

\footnotetext{
2. If (\(E, \mathrm{~d}_{\mathrm{E}}\)) is a c.g.d.a with \(H^{\circ}(E)=k\) then the minimal model is automatically connected. Thus if \(E\) is augmented \(\vartheta\) automatically
}
preserves augmentations.
3. By "abus de langage" we may refer to \(E\) rather than \((E, \psi)\) as a model for \(\gamma\) and we may refer to (\(C, d_{C}\)) as a model for (\(E, d_{E}\)).
4. Let \((\dot{\varepsilon}, \varphi)\) be a model for \(\gamma:\left(B, d_{B}, \varepsilon_{B}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\). Then it is a model for \(\gamma:\left(B, d_{B}\right) \rightarrow\left(E, d_{E}\right)\). Thus in particular as we vary the augmentation of \(E\) we do not change the isomorphism class of \(E\) or the (unbased) homotopy class (rel B) of \(\psi\).

\subsection*{6.23.- Vefinition.}

Let (\(E, d_{E}\)) and (\(F, d_{F}\)) be c.g.d.a.'s such that \(H^{0}(E)=k\) and \(H^{\circ}(F)=k\). Then (\(E, d_{E}\)) and (\(F, d_{F}\)) are called C-equivalent if there is a sequence \(\left(E_{i}, d_{i}\right)\) of c.g.d.a.'s \((i=0,1, \ldots, n)\) such that
i) \(\left(E_{0}, d_{0}\right)=\left(E, d_{E}\right)\) and \(\left(E_{n}, d_{n}\right)=\left(F, d_{F}\right)\).
ii) For each \(i\) (\(i=0, \ldots, n-1\)) there is either a homomorphism \(\psi_{i}:\left(E_{i}, d_{i}\right) \rightarrow\left(E_{i+1}, d_{i+1}\right)\) such that \(\psi_{i}^{*}\) is an isomorphism, or there is a homomorphism \(\psi_{i}:\left(E_{i+1}, d_{i+1}\right) \rightarrow\left(E_{i}, d_{i}\right)\) such that \(\psi\) is an isomorphism.
6.24.- Theorem.
(\(E, d_{E}\)) and (\(F, d_{F}\)) are C-equivalent if and only if they have isomorphic minimal models.

\section*{Prook.-}

Clearly an isomorphism of models defines a C-equivalence. To prove the converse it is enough to consider the case that there is a homomorphism \(\psi:\left(E, d_{E}\right) \rightarrow\left(F, d_{F}\right)\) such that \(\psi^{*}\) is an isomorphism.

But then if \(\left(C, d_{C}\right) \xrightarrow{\psi_{E}}\left(E, d_{E}\right)\) is a minimal model, by definition \(\left(C, d_{C}\right) \xrightarrow{W_{E}}\left(F, d_{F}\right)\) is a minimal model. Hence by theoren 6.2 it is isoworphic with any other.
Q.E.D.
6.25.- Morphisms. Suppose
\[
t_{1}: B_{1} \xrightarrow{i_{1}} C_{1} \xrightarrow{\rho_{1}} A_{1} \text { and } E_{2}: B_{2} \xrightarrow{i_{2}} C_{2} \xrightarrow{\rho_{2}} A_{2}
\]
are KS extensions. Assume \(\psi:\left(C_{1}, d_{C_{1}}\right) \rightarrow\left(C_{2}, d_{C_{2}}\right)\) restricts to \(\psi: B_{1} \rightarrow B_{2}\), and that \(\psi\) preserves augmentations.

Then, as we observed in the proof of theorem 6.2, \(\varphi\left(\right.\) ker \(\left.\rho_{1}\right) \subset\) ker \(\rho_{2}\) and so \(\psi\) factors over \(\rho_{1}\) to give a commutative diagram of homomorphisms of c.g.d.a.'s

It is a morphism of extensions if and only if \(\psi\) preserves augmentations.
6.20.- Definition.
(\(\psi, \psi, \alpha\)) will be called a free morphism from \(E_{1}\) to \(E_{2}\).
6.27. - Renarrs.
1. A free morphism need not be a morphism !
2. If \((\psi, \psi, \alpha)\) is a free morphism then there are unique augmentations
(namely \(\varepsilon_{C_{2}} \circ \psi\) and \(\varepsilon_{A_{2}} \circ \alpha\)) in \(C_{1}\) and \(A_{1}\) such that \(\psi\) and a are augmentation preserving.

As we observed in the proof of theorem 6.2, with these new augmentations \(B_{1} \rightarrow C_{1} \rightarrow A_{1}\) becomes a new KS extension \(\tilde{E}_{1}\) (minimal if \(E_{1}\) was) and \((\psi, \psi, \alpha): \tilde{t}_{1} \rightarrow t_{2}\) is a morphism.

Now consider a commutative diagram

\section*{S. HALPERIN}
of homomorphisms of c.g.d.a.'s. Assume \(B_{i}\) is augmented by \(\varepsilon_{B_{i}} \quad(i=1,2)\) and that \(\psi\) preserves augmentations. Assume \(H^{0}\left(B_{i}\right)=k=H^{0}\left(E_{i}\right), i=1,2\).

Let
 and

be models for \(\gamma_{1}\) and \(\gamma_{2}\). Combining them with (6.28) we arrive at the commutative diagram

Since \(\psi_{2}^{*}\) is an isomorphism we can apply theorem 5.19 and obtain
a homomorphisu \(\psi:\left(C_{1}, d_{C_{1}}\right) \rightarrow\left(C_{2}, d_{C_{2}}\right)\) such that
\[
\psi \circ i_{1}=i_{2} \circ \psi \quad \text { and } \quad \psi_{2} \downarrow \sim n \circ \psi_{1}\left(\text { rel } B_{1}\right)
\]

Moreover the homotopy class of \(\psi\left(\right.\) rel \(\left.B_{1}\right)\) is uniquely determined.
In particular \(\psi\) detemines a free morphism (\(\psi, \psi, \alpha\)) from \(E_{\text {, }}\) to \(E_{2}\), and we have the diagram

\section*{LECTURES ON MINIMAL MODELS}
in which the triangles and left and right squares commute and the central square homotopy commutes (rel \(\mathrm{B}_{1}\)).
6.30. - Remarks. -
1. As sume

is a second commutative square of homomorphisms of c.g.d.a.'s. Suppose
\(B_{3}\) is augmented, \(\bar{\psi}\) preserves augmentations, and \(H^{\circ}\left(B_{3}\right)=H^{0}\left(E_{3}\right)=k\).
Let \(E_{3}: B_{3} \rightarrow C_{3} \rightarrow A_{3}\) and \(\varphi_{3}: C_{3} \rightarrow E_{3}\) be a model for \(\gamma_{3}\). Repeating the above construction yields a free morphism (\(\bar{\psi}, \bar{\psi}, \bar{\alpha}\)) from \(E_{2}\) to \(E_{3}\).

Clearly \(\bar{\psi} \psi i_{1}=i_{3} \bar{\psi} \psi\). Moreover, prop. 5.15 i) shows that \(\psi_{3} \bar{\sim} \sim \bar{n} n \psi_{1}\left(r e l B_{1}\right)\). Hence \(\overline{i n j}\) is a lift for \(\bar{n} \eta\). (Note that by prop. 5.15 i) the homotopy class of \(\bar{\psi} \psi\) (rel \(B_{1}\)) depends only on the classes of \(\psi\) and \(\bar{\psi}\).)
2. Assume in (6.28) that \(E_{1}\) and \(E_{2}\) are augmented, and that \(\gamma_{1}, \gamma_{2}\) and \(\eta\) respect the augmentations. Then (by definition 6.20) so do \(\varphi_{1}\) and \(\dot{\psi}_{2}\). In this case we can apply theorem 5.20 to obtain a morphism
 of and of a are uniquely determined by \(n\).

\section*{Chapter 7}

\section*{Isomorphism theorems}

In this chapter we consider a morphism,

of KS extensions \(\stackrel{\check{t}}{ }\) and \(E\). We always assume that
\[
H^{\circ}(\dot{B})=H^{\circ}(\dot{C})=k \quad \text { and } \quad H^{\circ}(B)=H^{\circ}(C)=k \text {. }
\]

In view of remark 6.27 .2 many of the results extend to free morphisms. The main theorems are as follows :
7.1.- Theorem.- Any two of the following three conditions implies the third :
i) \(\psi^{*}\) is an isomorphism.
ii) \(\emptyset^{\text {(s }}\) an isomorphism.
iii) Either \(\alpha^{*}\) or \(Q(\alpha)^{*}\) is an isomorphism.

If these conditions hold then both \(a^{*}\) and \(Q(a)^{*}\) are isomorphisms.
7.2.- Theorem.- Assume \(\stackrel{V}{E}\) and \(E\) are minimal. Then any two of the following three conditions implies the third :
i) \(\psi^{*}\) is an isomorphism.
ii) \(\psi^{*}\) is an isomorphism.
iii) \(Q(\alpha)\) is an isomorphism.

If they hold, then \(a\) and each \(Q_{p}^{n}(\alpha)\) is an isomorphism.

\section*{LECTURES ON MINIMAL MODELS}
7.3.- Theorem. - Assume \(\stackrel{v}{E}\) and \(E\) are minimal. Then any two of the following three conditions implies the third :
i) \(\psi\) is an isomorphism.
ii) is an isomorphism.
iii) \(Q(\alpha)\) is an isomorphism.
7.4. - Remark. -

These theorems contain theorems 4.5 and 4.6 , which we used in chap. 6. Now we use the results of chap 6 .
7.5.- Proof of theorem 7.2.-

First observe that the final assertion of the theorem, as well as
i) and ii) \(\Rightarrow\) iii) are proved in theorem 4.5.
i) and \(i i i) \Rightarrow\) ii) \(:\) Consider the minimal model,

```

of the homomorphism \psi: (䪨, d
generated by joiv (ker عV,
projection. Use }\pi\mathrm{ to make G into an augmented c.g.d.a.
It is easy to see that
E}:\check{B}\longrightarrow\mathbf{j口̌
is a KS extension. Moreover, because H}\mp@subsup{H}{}{\circ}(\stackrel{B}{B})=k\mathrm{ and }\mp@subsup{H}{}{\circ}(E)=k\mathrm{ (since
an isomorphism) we can apply theorem 2.2. This yields a minimal KS extension
\tilde{E}}:\stackrel{\bullet}{B}->\tilde{E}->\tilde{G}\mathrm{ and a morphism (i, थ, थ
and (cf. cor. 2.4)

```
\[
\begin{gathered}
\text { S. HALPERIN } \\
Q(\tilde{\alpha}):(\tilde{G}) \xrightarrow{\cong} H\left(Q(G), Q\left(d_{G}\right)\right) .
\end{gathered}
\]

On the other hand \(\bar{\psi}\) induces a morphism (\(\psi, \bar{\psi}, \bar{\alpha}\)) from \(\bar{E}\) to \(E\). Thus (\(\psi, \bar{\psi} \tilde{\mathcal{H}}, \tilde{\alpha} \tilde{\alpha}\)) is a morphism between minimal kS extensions and \(\psi^{*}\) and \(\bar{\psi}^{*} \psi^{*}\) are isomorphisms. Hence theorem 4.5 implies that \(Q(\bar{\alpha} \tilde{\alpha})\) is an isomorphism. But \(Q(\bar{\alpha} \tilde{\alpha})=Q(\bar{\alpha} \tilde{\alpha})^{*}=Q(\bar{\alpha})^{*} Q(\tilde{\alpha})^{*}\). Since \(Q(\tilde{\alpha})^{*}\) is an isomorphism, so is \(Q(\bar{\alpha})\) ".

Finally observe that \(j\) factors over \(\gamma\) and \(p\) factors over \(\pi\) to yield a commutative diagram,
(7.6)

which in fact is a morphism of minimal KS extensions.
Since \(\dot{E}\) and \(E\) are minimal cor 2.4 gives
\(Q\left(d V_{A}\right)=0 \quad\) and \(\quad Q\left(d_{F}\right)=0\).

Thus the lower row of (7.6) gives rise to the short exact sequence
\[
\begin{equation*}
0 \rightarrow(Q(\stackrel{A}{\wedge}), 0) \rightarrow\left(Q(G), Q\left(d_{G}\right)\right) \rightarrow(Q(F), 0) \rightarrow 0 \tag{7.7}
\end{equation*}
\]

Moreover, it is immediate from the definitions that the diagram

commutes.

\section*{Lectures on mintmal models}

But \(Q(\alpha)\) is an isomorphism by hypothesis, while \(Q(\bar{\alpha})^{*}\) has just been shown to be an isomorphism. This implies that inclusion induces an isomorphism \(Q(A) \xrightarrow{\cong} H\left(Q(G), Q\left(d_{G}\right)\right.\)). In view of the exact sequence (7.7) we may conclude
\[
Q(F)=0 .
\]

It follows that \(F=k\) and so \(\stackrel{V}{C}=E\) and \(j\) is the identity map. Hence \(\bar{\psi}=\psi\). But \(\bar{\psi}^{*}\) was an isomorphism, and so \(\psi^{*}\) must be one.
ii) and iii) \(=\) i) : Consider the minimal model

\[
E_{2}=E_{1} \theta_{\mathrm{B}} \check{ } \text { と }\left(=E_{1} \oplus \AA \check{A}\right) \quad ;
\]
then the sequence of augmented c.g.d.a.'s
\[
E_{1}: E_{1} \rightarrow E_{2} \rightarrow \AA
\]
is a minimal \(K S\) extension.
Combine \(\psi\) and the morphism \((\psi, \psi, \alpha)\) to get a morphism

of extensions.

\section*{S. HALPERIN}

We show now that \(H^{0}\left(E_{2}\right)=k\). In fact, write \(E_{2}=E_{1} \theta \Lambda \ddot{X}\) and let \(x_{\lambda}\) be a well ordered homogeneous basis of \(\dot{x}\) satisfying (1.4) for \(\bar{E}_{1}\). Now \(H^{0}\left(E_{1}\right)=H^{0}(B)=k\). Assume by induction that \(\left.H^{0}\left(E_{1} \theta(\Lambda X)\right)_{\leqslant \lambda}\right)=k\). The existence of a non scalar degree zero cocycle in \(E_{1} \theta(\Lambda x) \leqslant \lambda\) would imply (as in previous chapters) that \(\operatorname{deg} x_{\lambda}=0\) and
\[
d\left(10 x_{\lambda}+2\right)=0 \quad, \quad \text { some } z \in\left(E_{1} \theta \Lambda X_{<\lambda}\right)^{0}
\]

We may assume \(z\) is in the augmentation ideal, and so, since \(H^{0}(C)=k, \bar{\varphi}\left(1 \theta x_{\lambda}+2\right)=0\). Thus projecting \(1 \theta x_{\lambda}+z\) to \(Q(\bar{A})\) and following by \(Q(\alpha)\) gives zero. Since \(Q(\alpha)\) is an isomorphism we obtain
\[
\zeta_{A}\left(x_{\lambda}\right) \in \zeta_{A}\left((\Lambda X)_{<\lambda}\right)
\]
which is impossible.
This proves \(H^{\circ}\left(E_{2}\right)=k\), and so we can apply the second part of the theorem (i) and iii) => ii)) to the morphism above to obtain that \(\psi^{*}\) is an isomorphism.

On the other hand, write
\[
E_{2}=\check{C} \theta_{B} E_{1}=\check{C} \text { e } F_{1} .
\]

This exhibits
\[
\mathrm{C} \longrightarrow \mathrm{E}_{2} \xrightarrow{\pi} \mathrm{~F}_{1}
\]
as a minimal KS extension, where \(\pi=\varepsilon_{c} \theta p\), and \(j\) is the obvious inclusion. Since \(\bar{\psi} j=\psi\) and \(\bar{\psi}\) and \(\psi^{*}\) are isomorphisms, we conclude that so is \(j *\). Hence cor. 3.9 gives \(F_{1}=k, \check{B}=E_{1}, \bar{\psi}=\psi\); in particular \(\psi\) is an isomorphism.
Q.E.D.

\section*{7.8. - Proof of theorem 7.1. In view of theorem 2.2 we can find}
minimal extensions
\[
\ddot{E}_{1}: \dot{B}_{1} \longrightarrow \ddot{C}_{1} \longrightarrow \dot{A}_{1} \text { and } E_{1}: B_{1} \longrightarrow C_{1} \longrightarrow A_{1}
\]
and morphisms
\(\left(\psi_{1}, \psi_{1}, \alpha_{1}\right): \dot{E}_{1} \rightarrow \stackrel{V}{L}\) and \(\left(\psi_{2}, \psi_{2}, \alpha_{2}\right): E \rightarrow E_{1}\)
such that \(\psi_{i}^{*}, \psi_{i}^{*}, \alpha_{i}^{*}\) and \(Q\left(\alpha_{i}\right)^{*}\) are isomorphisms \((i=1,2)\).
Moreover \(\left(\psi_{2} \psi \psi_{1}, \psi_{2} \psi \psi_{1}, \alpha_{2} \alpha_{1}\right): \check{E}_{1} \rightarrow E_{1}\) is a morphism between minimal KS extensions, to which we can apply theorem 7.2. The final assertion together with i) and ii) \(\Rightarrow\) iii) follow immediately. It also follows at once that if \(Q(\alpha)^{*}\) is an isomorphism and either \(\psi^{*}\) or \(\psi^{*}\) is, then both and \(\psi\) are isomorphisms.

Finally, suppose \(\alpha^{*}\) is an isomorphism. Define connected minimal
KS complexes \(\stackrel{V}{F}\) and \(F\) by

Then cor 3.10 shows that
\[
H^{0}\left(\tilde{A}_{1}\right)=\ddot{A}_{1}^{0} \quad, \quad H^{0}\left(A_{1}\right)=A_{1}^{0}
\]
and that the sequences
\[
0 \rightarrow H^{0}\left(\operatorname{ker} \varepsilon_{\dot{A}}^{\dot{\prime}}\right) \cdot H\left(\check{A}_{1}\right) \rightarrow H\left(\check{A}_{1}\right) \rightarrow H(\check{F}) \rightarrow 0
\]
and
\[
0 \rightarrow H^{0}\left(\operatorname{ker}_{A_{1}}\right) \cdot H\left(A_{1}\right) \rightarrow H\left(A_{1}\right) \rightarrow H(F) \rightarrow 0
\]
are short exact.

\section*{S. HALPERIN}

We may conclude the \(\alpha_{2} \alpha_{1}\) is an isomorphism in degree zero. (and so also \(Q\left(\alpha_{2} \alpha_{1}\right)\) is an isomorphism in degree zero.) We may also conclude that the homomorphism \(\bar{\alpha}: \bar{F} \rightarrow F\) induced from \(\alpha_{2} \alpha \alpha_{1}\) satisfies : \({ }_{\alpha}^{-*}\) is an isomorphism.

Applying theorem 7.2 to the morphism (\(1, \bar{\alpha}, \bar{\alpha}\)) from \(k \rightarrow \dot{F} \rightarrow \dot{F}\) to \(k \rightarrow F \rightarrow F\) we conclude that \(Q(\bar{\alpha})\) is an isomorphism. But clearly \(Q(\bar{\alpha})=Q\left(\alpha_{2} \alpha_{1}\right)\) in degrees \(\geqslant 1\). We have thus shown that \(Q\left(\alpha_{2} \alpha \alpha_{1}\right)\) is an isomorphism. It follows that so is \(Q(\alpha)\).
Q.E.D.
7.9.- Proof of theorem 7.3.- That i) and ii) imply iii) is shown in theorem 7.2. If i) and iii) hold then theorem 7.2 shows that \(\psi^{*}\) is an isomorphism. Hence theorem 4.6 shows that \(\varphi\) is an isomorphism.

Finally, assume ii) and iii) hold. Then by theorem 7.2 each \(Q_{p}^{n}(\alpha)\) is an isomorphism. Thus lemma 4.8 asserts that we can write
\[
\psi=\psi \theta a: \check{B} \theta \check{A} \rightarrow B \theta A .
\]

Since \(\psi\) and a are isomorphisms (cf leman 4.8) it follows that so is \(\psi\).
Q.E.D.

\section*{Chapter 8}

\section*{The \(\psi\)-homotopy spaces : \(\pi_{\psi}^{*}(\gamma)\).}
8.1. - Introduction.- In this chapter we consider a homomorphism
(8.2)
\[
\gamma:\left(B, d_{B}, \varepsilon_{B}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)
\]
between augmented c.g.d.a.'s such that \(H^{\circ}(B)=H^{\circ}(E)=k\). We shall associate with \(\gamma\) a graded space \(\pi_{\psi}^{*}(\gamma)\).
8.3. - Lemma.- Assume \(\alpha_{0}, \alpha_{1}:\left(\check{A}, d_{\tilde{A}}, \varepsilon_{\check{V}}\right) \rightarrow\left(A_{A}, d_{A}, \varepsilon_{A}\right)\) are homomorphisms of KS complexes, and that \(\alpha_{0}\) and \(\alpha_{1}\) are based homotopic. Then
\[
Q\left(\alpha_{0}\right)^{*}=Q\left(\alpha_{1}\right)
\]

Proot : Let \(\Phi:\left(\hat{A}^{I}, D, \varepsilon\right) \rightarrow\left(A, d_{A}, \varepsilon_{A}\right)\) be a based homotopy from \(\alpha_{0}\) to \(\alpha_{1}\). Since \(\check{A}^{I}\) is a KS complex we can write
\[
Q\left(a_{i}\right)^{*}=Q(\phi) \circ Q\left(\lambda_{i}\right)^{*}, \quad i=0,1
\]

On the other hand
\[
Q\left(\check{A}^{\check{I}}\right)=Q_{A}^{\bullet} \bullet \bar{Q}_{A}^{V} \bullet Q(D)\left(\bar{Q}_{A}^{\sim}\right)
\]
and it follows that \(Q\left(\pi^{*}\right): H\left(Q\left(\bar{A}^{I}\right)\right) \rightarrow H(Q(\AA))\) is an isomorphism. Since \(Q(\pi) \circ Q\left(\lambda_{i}\right)=1\) we obtain
\[
Q\left(\lambda_{0}\right)^{*}=\left(Q(\pi)^{*}\right)^{-1}=\cap\left(\lambda_{1}\right)^{*}
\]
and so \(Q\left(a_{0}\right)^{*}=Q\left(a_{1}\right)^{*}\).
Q.E.D.

\section*{S. HALPERIN}

\section*{Now let}

be a model for the homomorphism (8.2) - cf. definition 6.20 . Then we set
(8.4)
\[
\pi_{\psi}^{*}(\gamma ; E, \psi)=H^{*}\left(Q(A), Q\left(d_{A}\right)\right)
\]

\section*{Suppose next that}

is a second model. Theorem 5.20 applies to the commutative square

and yields a morphism \((1, \bar{\psi}, \bar{a}): E \cdot \rightarrow E\) such that \(Q\) is based homotopic to \(\psi^{\prime}\) (rel B). Moreover the based homotopy classes of \(\bar{\psi}\) and \(\bar{\alpha}\) are uniquely determined.

In particular there is a canonical homomorphism
\[
Q(\bar{a})^{\bullet}: H\left(\cap\left(A^{\prime}\right), Q\left(d_{A}\right)\right) \rightarrow H\left(\cap(A), Q\left(d_{A}\right)\right)
\]
which is independent of the choice of \(\bar{\psi}\) and \(\bar{\alpha}\). (Apply lemma 8.3.)

Moreover, because \(\psi \psi^{\prime} \sim \psi^{\prime}(\) rel \(B)\) we have that \(\psi^{*} \psi^{*}=\left(\psi^{\prime}\right)\), and so \(\bar{\psi}^{*}\) is an isomorphism. Thus theorem 7.1 shows that \(Q(\bar{\alpha})\) is an isomorphism.

We have thus a canonical isomorphism
\[
\begin{equation*}
\pi_{\psi}^{*}\left(\gamma ; E^{\prime}, \varphi^{\prime}\right) \quad \cong \quad \pi_{\psi}^{*}(\gamma ; E, \psi), \tag{8.5}
\end{equation*}
\]
which depends only on (\(E^{\prime}, \psi^{\prime}\)) and \((E, \psi)\). If (\(E^{\prime \prime}, \psi^{\prime \prime}\)) is a third model for \(\gamma\) then the isomorphism
\[
\pi_{\psi}^{*}\left(\gamma ; E^{\prime \prime}, \psi^{\prime \prime}\right) \longrightarrow \pi_{\psi}^{*}(\gamma ; E, \psi)
\]
is obtained by composing the isomorphisms
\(\pi_{\psi}^{*}\left(\gamma ; E^{\prime \prime}, \psi^{\prime \prime}\right) \xrightarrow{\square} \pi_{\psi}^{*}\left(\gamma ; E^{\prime}, \psi^{\prime}\right)\) and \(\pi_{\psi}^{*}\left(\gamma ; E^{\prime}, \psi^{\prime}\right) \xrightarrow{\pi} \pi_{\psi}^{*}(\gamma ; E, \varphi)\),
(cf. Remark 6.30.1). Moreover, if \(\left(E^{\prime}, \psi^{\prime}\right)=(E, \psi)\) the isomorphism (8.5) is the identity.

Now fix \(r\), and consider the family of graded spaces \(\nabla_{\psi}^{*}(\gamma ; E, \mathcal{U})\) indexed by the models of \(Y\). In view of our remarks above the isomorphisms (8.5) can be used to identify all these spaces as a single graded space.
8.6. - Dehinition. - The graded space obtained by identifying the \(\pi_{\psi}^{*}(r ; E, \|)\) will be denoted by \(\pi_{\psi}(\gamma)\) and will be called the \(\psi\)-homotopy space of \(r\).
```

    8.7. - Definition.- If (E,d}\mp@subsup{|}{E}{},\mp@subsup{\varepsilon}{E}{\prime})\mathrm{ is an augmented c.g.d.a. with
    H}\mp@subsup{|}{}{\circ}(E)=k, and if r : k m is the inclusion, the graded space *** (r
will be denoted by }\mp@subsup{\pi}{\psi}{*}(E,\mp@subsup{d}{E}{},\mp@subsup{\varepsilon}{E}{})\mathrm{ and called the }\psi\mathrm{ -homotopy space for E.

```
```

    8.8. - Remarks 1.- Let ( }E:B->C->A,\)\mathrm{ be a model for }\gamma\mathrm{ .
    We shall often say we identify }\mp@subsup{H}{}{*}(Q(A)) with 郱(\gamma) ; note that this
identification depends on }\psi\mathrm{ !

```

\section*{2.- We shall frequently further abuse notation and} write \(\pi_{\psi}^{*}(A)=H^{*}(Q(A))\), even though it may not be the case that \(H^{0}(A)=k\).
\[
\begin{gathered}
\text { 3.- If }(E, \psi) \text { is a minimal model then } \\
\pi_{\psi}^{*}(\gamma)=Q(A) .
\end{gathered}
\]
4.- We shall frequently abuse notation and write (in definition 8.7) \(\pi_{\psi}^{*}(E)\) for \({ }_{\psi}^{*}\left(E, d_{E}, \varepsilon_{E}\right)\).
5.- Observe that the isomorphism class of \(\pi_{\psi}^{*}(E)\)
is independent of the choice of augmentations.
8.9. - Morphisms.- Suppose now that

is a commutative square of homomorphisms augmented c.g.d.a.'s. Assume
\(H^{0}\left(B_{i}\right)=H^{0}\left(E_{i}\right)=k, i=1,2\). Let \(\left(E_{1}, N_{1}\right)\) be a model for ; and (\(E_{2}, v_{2}\)) be a model for \(r_{2}\).

Then (cf. remark 6.30.2 and diagram (6.29)) there is a morphism (\(\nu, \hat{U}, a): E_{1}\) to \(E_{2}\) such that \(\dot{U}_{2} \dot{\psi} \geq \psi_{1}\) (rel \(B_{1}\)), and this completely determines the based homotopy class of \(a\).

Hence by lemma 8.3 the linear map
\[
Q(\alpha)^{*}: \pi_{\psi}^{*}\left(\gamma_{1} ; E_{1}, \psi_{1}\right) \rightarrow \pi_{\psi}^{*}\left(\gamma_{2} ; E_{2}, \vartheta_{2}\right)
\]
is independ nt of the choice of \(Q\) and \(\alpha\). Moreover (cf. remark 6.30.1) if \(\left(E_{1}^{\prime}, \psi_{1}^{\prime}\right)\) and \(\left(E_{2}^{\prime}, \psi_{2}^{\prime}\right)\) are also models for \(\gamma_{1}\) and \(\gamma_{2}\) then the diagrams,

commute. (The vertical arrows are the isomorphisms (8.5).
It follows that the linear maps \(Q(\alpha)\) define a linear map
\(\pi_{\psi}\left(\gamma_{1}\right) \rightarrow \pi_{\psi}^{*}\left(r_{2}\right)\) which depends only on the square (8.10).
8.11.- Definition.- The linear map defined above will be denoted by
\[
\left(\psi, r_{1}\right)^{=}: \pi_{\psi}^{*}\left(\gamma_{1}\right) \rightarrow \pi_{\psi}^{*}\left(\gamma_{2}\right)
\]

If \(B_{1}=B_{2}=k\) we write it simply as
\[
r^{r}:{ }_{i}^{*}\left(E_{1}\right) \rightarrow r_{i}^{*}\left(E_{2}\right)
\]
8.12.- Proposition.- i) Assume that

\section*{S. HALPERIN}
is a second commutative square of homomorphisms of augmented c.g.d.a.'s.
Assume \(H^{0}\left(B_{3}\right)=H^{0}\left(E_{3}\right)=k\). Then
\[
\begin{array}{r}
\left(\psi^{\prime} \psi, \eta^{\prime} \eta\right)^{\#}=\left(\psi^{\prime}, \eta^{\prime}\right)^{\#} \circ(\psi, n)^{\#} \text {. } \\
\text { ii) If } B_{1}=B_{2}, \quad E_{1}=E_{2}, \quad \gamma_{1}=r_{2}, \quad \text { and } \psi=1, \quad \eta=1
\end{array}
\]
we have
\[
(1,1)^{\#}=1
\]

Proof : Apply remark 6.30.1.
Q.E.D.

\section*{Chapter 9}

\section*{A-extensions.}

\section*{9.1. - Definition.- A 1 -extension is a KS extension}
\(E: B \xrightarrow{i} C \xrightarrow{\rho} A\) such that \(\left(B, d_{B}, \varepsilon_{B}\right)\) is itself a KS complex. The \(\Lambda\) extension is called \(\Lambda\)-minimal if \(B\) is a minimal \(K S\) complex and \(E\) is a minimal KS extension.
9.2. - Remarks 1.- A 1 -extension may be minimal as a KS extension, without being \(n\)-minimal.
```

2.- Suppose E : B I

```
Let (\(X, f\)) be a structure for \(E\) and assume \(\left\{x_{\alpha}\right\}_{\alpha \in I}\) is a well ordered
homogeneous basis for \(X\) such that (1.4) holds. Let \(Y \subset\) ker \(\varepsilon_{B}\) be a
graded space such that \(B=\Lambda Y\) and assume \(\left\{y_{\gamma}\right\}_{\gamma \in J}\) is a well ordered homoge-
neous basis of \(Y\) such that (1.4) holds.
Then the triple (\(Y, X, f\)) determines a commutative diagram

of homomorphisms of graded algebras. This diagram, together with the equations
\[
\begin{equation*}
d_{B} y_{\gamma} \in(\Lambda Y)_{<\gamma} \quad \text { and } \quad d_{C}\left(1 \theta x_{\alpha}\right) \in \Lambda Y \theta(\Lambda X)_{<\alpha} \tag{9.4}
\end{equation*}
\]
exhibits (\(C, d_{C}, \varepsilon_{C}\)) as a \(K S\) complex.
\[
\text { 3.- Suppose } C \text { is a minimal } K S \text { complex. Then by }
\]
cor.2.4 \(Q\left(d_{C}\right)=0\) and hence (9.3) implies that \(Q\left(d_{A}\right)=0\) and \(Q\left(d_{B}\right)=0\).
Thus (again by cor. 2.4) \(B\) and \(E\) are minimal :i.e., \(E\) is \(A\)-minimal. The converse, however, may fail : \(E\) may be \(\Lambda\)-minimal while \(C\) is not minimal.

Now consider a \(\Lambda\)-extension \(E: B \xrightarrow{i} C \quad A\).
As in chap. 5 , denote by \(\bar{Q}_{B}, \ldots\) the suspensions of \(Q_{B}, \ldots\), and suspend \(Q(i)\) and \(Q(\rho)\) to linear maps \(\overline{Q(i)}\) and \(\overline{Q(\rho)}\). These extend uniquely to homomorphisms
between the contractible complexes generated by \(\bar{Q}_{B}, \bar{Q}_{C}\) and \(\bar{Q}_{A}\).

Next, tensor this sequence with
\[
\mathrm{B} \xrightarrow{i} \mathrm{C} \xrightarrow{\rho} \mathrm{~A}
\]
to obtain a sequence
\[
\begin{equation*}
E^{I}: B^{I} \xrightarrow{i^{I}} C^{I} \xrightarrow{I} A^{I} \tag{9.5}
\end{equation*}
\]
in which \(i^{I}=i \theta \bar{i}\) and \(D^{I}=0 \theta \bar{\rho}\).

Choose now (\(Y, X, f\)) and well ordered homogeneous bases \(\left.\left\{y_{\gamma}\right\}_{\gamma \in}\right]^{1}\)
for \(Y\) and \(\left\{x_{\alpha}\right\}_{\alpha \in I}\) for \(X\), satisfying the conditions of remark 9.2.2.
From (9.3) we obtain the commutative diagram
(9.6)

Thus the choice of (\(Y, X, f\)) determines isomorphisms
(9.7)
\[
{ }^{Q_{C}} \equiv Q_{B} \cdot Q_{A} \quad \text { and } \quad \bar{Q}_{C} \equiv \bar{Q}_{B} \cdot \bar{Q}_{A}
\]
compatible with \(Q(i)\) and \(Q(\rho)\) (resp. \(\overline{Q(i)}\) and \(\overline{Q(\rho)) . ~ U s i n g ~(9.3) ~ a n d ~}\) (9.7) we may write
(9.8)
\[
\begin{aligned}
C & =B \Theta \Lambda X \theta \Lambda \bar{Q}_{B} \otimes \Lambda D \bar{Q}_{B} \otimes \Lambda \bar{Q}_{A} \otimes \Lambda D \bar{Q}_{A} \\
& =B^{I} \theta \Lambda X \theta \Lambda \bar{Q}_{A} \otimes \Lambda D \bar{Q}_{A}
\end{aligned}
\]

\section*{Moreover, the diagram}

commutes. Thus \(E^{I}\) is exhibited as a \(\Lambda\)-extension.

We may also write
\[
\begin{equation*}
C^{I}=\Lambda Y \otimes \Lambda X \otimes \Lambda \bar{Q}_{B} \otimes \Lambda D \bar{Q}_{B} \otimes \Lambda \bar{Q}_{A} \otimes \Lambda D \bar{Q}_{A} \tag{9.10}
\end{equation*}
\]

Recall the degree -1 derivation \(i\) and the degree 0 derivation \(\theta\) defined in chap. 5. We apply this definition to the KS complex \(C\) to obtain a degree -1 derivation \(i_{C}\) and a degree zero derivation \({ }^{\theta} C\) in \(C\) given by
\[
\begin{gathered}
i_{C}=0 \text { in } \bar{Q}_{B}, D \bar{Q}_{B}, \bar{Q}_{A}, D \bar{Q}_{A}, \\
i_{C}(y)=\bar{y}\left(\epsilon \quad \bar{Q}_{B}\right), \quad i_{C}(x)=\bar{x}\left(c \quad \bar{Q}_{A}\right), y \in Y, x \in x
\end{gathered}
\]
and
\[
{ }^{\theta} C=D i_{C}+i_{C} D .
\]

Then \(i_{C}\) and \(\theta_{C}\) restrict to derivations \(i_{B}\) and \(\theta_{B}\) in \(B\),

\section*{s. halperin}
and project to derivations \(i_{A}\) and \(\theta_{A}\) in \(A^{I}\).
Next denote the standard inclusions and projections by
\[
\left(\lambda_{0}\right)_{B}: B \rightarrow B^{I},\left(\lambda_{0}\right)_{C}: C \rightarrow C^{I},\left(\lambda_{0}\right)_{A}: A \rightarrow A^{I}
\]
and
\[
\begin{gathered}
\pi_{B}: B^{I} \rightarrow B, \pi_{C}: C^{I} \rightarrow C, \pi_{A}: A^{I} \rightarrow A . \\
\text { Set }\left(\lambda_{1}\right)_{B}=e^{\theta_{B}} \circ\left(\lambda_{0}\right)_{B}, \ldots: \text { Then } \\
\left(\left(\lambda_{0}\right)_{B},\left(\lambda_{0}\right)_{C},\left(\lambda_{0}\right)_{A}\right): E \rightarrow E^{I} \\
\left(\pi_{B}, \pi_{C}, \pi_{A}\right): E^{I} \rightarrow E \\
\left(\left(\lambda_{1}\right)_{B},\left(\lambda_{1}\right)_{C},\left(\lambda_{1}\right)_{A}\right): E \rightarrow E^{I}
\end{gathered}
\]
and
are morphisms of extensions.
9.11. - Remark.- The ideals ger \(\pi_{B} \subset B^{I}\) and her \(\pi_{C} \subset C^{I}\) are acyclic, and \(i^{I}\left(\right.\) er \(\left.\pi_{B}\right) \subset\) er \(\pi_{C}\). Moreover,
\[
\operatorname{Im}\left(\left(\lambda_{0}\right)_{B}-\left(\lambda_{1}\right)_{B}\right) \subset \text { ger } \pi_{B} \text { and } \operatorname{Im}\left(\left(\lambda_{0}\right)_{C}-\left(\lambda_{1}\right)_{C}\right) \subset \text { ger } \pi_{C} .
\]

Finally, let \(\left((C, B)^{I}, D\right)\) be the c.g.d.a. defined in chap. 5 with inclusions \(\lambda_{0}, \lambda_{1}: C \rightarrow(C, B)^{I}\) and projection \(\pi:(C, B)^{I} \rightarrow C\). Consider the projection
\[
P: C^{I} \rightarrow(C, B)^{I}
\]
defined by
\[
\begin{aligned}
& P(z)=z, z \in C, \\
& P=0 \quad \text { in } \quad \bar{n}_{B} \text { and } D \bar{Q}_{B} . \\
& P(\bar{x})=\bar{x} \text { and } P D \bar{x}=D \bar{x}, \bar{x} \subset \bar{n}_{A} .
\end{aligned}
\]

Evidently \(P\) is a surjective homomorphism of augmented c.g.d.a.'s,
and \(\mathrm{P}^{*}\) is an isomorphism ; i.e.
\[
H(\text { ker } P)=0 .
\]

It follows from the definitions that
\[
P \circ\left(\lambda_{i}\right)_{C}=\lambda_{i} \circ P, \quad i=0,1 .
\]

Suppose now that \(n:\left(G, d_{G}\right) \rightarrow\left(E, d_{E}\right)\) is a homomorphism of
c.g.d.a.'s. Assume that
(9.12)

are comutative squares of homomorphisms.
9.13. - Definition. - The pair \(\left(\psi_{0}, \psi_{0}\right)\) is called homotopic to the pair \(\left(\psi_{1}, \psi_{1}\right)\) if there is a commutative square of homomorphisms

such that \(\psi \circ\left(\lambda_{i}\right)_{B}=\psi_{i}\) and \(\oplus \circ\left(\lambda_{i}\right)_{C}=\psi_{i}, i=0,1\). We write \(\left(\psi_{0}, \psi_{0}\right) \sim\left(\psi_{1}, \psi_{1}\right)\).

The pair (\(\psi, \phi)\) is called a homotopy from \(\left(\psi_{0}, \|_{0}\right)\) to \(\left(\psi_{1}, \psi_{1}\right)\).

\section*{S. HALPERIN}

Now suppose that \(E\) and \(G\) are augmented by \(\varepsilon_{E}\) and \(\varepsilon_{G}\), and that \(\psi_{0}, \psi_{1}, \psi_{0}, \vartheta_{1}\) and \(\eta\) preserve augmentations.
9.14.- Definition.- \(\left(\psi_{0}, \psi_{0}\right)\) is called based homotopic to \(\left(\psi_{1}, \psi_{1}\right)\) if there is a homotopy (\(\psi, \Phi\)) from \(\left(\psi_{0}, \psi_{0}\right)\) to \(\left(\psi_{1}, \psi_{1}\right)\) such that \(\psi\) and \(\Phi\) preserve augmentations. The pair \((\Psi, \phi)\) is then called a based homotopy from \(\left(\psi_{0}, \psi_{0}\right)\) to \(\left(\psi_{1}, \psi_{1}\right)\) and we write \(\left(\psi_{0}, \psi_{0}\right) \approx\left(\psi_{1}, \psi_{1}\right)\).
9.15.- Remarks 1.- We shall see in prop. 9.17. that these definitions do not depend on the choice of structure used to define \(\left(\lambda_{1}\right)_{B}, \ldots\).
\[
\text { 2.- Assume }\left(\psi_{0}, \psi_{0}\right) \sim\left(\psi_{1}, \psi_{1}\right) \text {. Then } \psi_{0} \sim \psi_{1} \text { and }
\] \(\psi_{0} \sim \psi_{1}\), and hence \(\psi_{0}^{*}=\psi_{1}^{*}\) and \(\psi_{0}^{*}=\nabla_{1}^{*}\). However, the converse is not always true ; it may be the case that \(\psi_{0} \sim \psi_{1}\) and \(\psi_{0} \sim \psi_{1}\) without (\(\psi_{0}, \psi_{0}\)) and \(\left(\psi_{1}, \psi_{1}\right)\) being homotopic.
\[
\text { 3.- Suppose } \hat{\psi}_{0}, \psi_{1}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right) \text { satisfy }
\]
\(\hat{\psi}_{j} \circ i_{-}=n \circ \psi, j=0,1\), for some \(\psi:\left(B, d_{B}\right) \rightarrow\left(G, d_{G}\right)\). A homotopy (\(\left.\psi, \varnothing\right)\) from \(\left(\psi, \Downarrow_{0}\right)\) to \(\left(\psi, \psi_{1}\right)\) is said to be constant in \(B\) if
\[
\psi=\psi \circ \pi_{B} .
\]

It follows easily that a homotopy is constant in \(B\) if and only if it has the form (\(\left.\psi \circ \pi_{B}, \Omega \circ P\right)\) where \(P\) is the projection defined above and \(\Omega\) is a homotopy (rel B) from \(J_{0}\) to \(\ell_{1}\). Moreover, if \(\Omega\) is any homotopy (rel B) from \(\dot{\psi}_{0}\) to \(\dot{\psi}_{\dot{\prime}}\) then (\(6 \circ \pi_{B}\), \(S \circ \circ\)) is a homotopy from \(\left(\psi, \dot{U}_{0}\right)\) to \(\left(\psi, \psi_{1}\right)\) constant in \(B\).

This defines a bijection between homotopies (rel B) and homotopies constant in B. In particular, if \(\emptyset_{0} \sim \varphi_{1} \quad(r e l B)\) then \(\left(w, \dot{H}_{0}\right)=\left(w, \dot{w}_{1}\right)\), but the reverse implication does not always hold.
\[
\begin{aligned}
& \psi_{1} \circ i=n \circ \psi_{1} \text { and }\left(\psi_{0}, \psi_{0}\right) \sim\left(\psi_{1}, \psi_{1}\right) . \\
& \text { 5.- Remark } 3 \text { applies verbatim to based homotopies, }
\end{aligned}
\] and homomorphisms of augmented c.g.d.a.'s. Remark 4 applies with the single change that the bijection is with degree zero linear maps \(\bar{Q}_{A} \rightarrow\) ker \(\varepsilon_{E}\).
9.16.- Lemma.- Assume given the commutative squares (9.12) with the property that
\[
\operatorname{Im}\left(\psi_{1}-\psi_{0}\right) \subset I_{G} \text { and } \operatorname{Im}\left(\psi_{1}-\psi_{0}\right) \subset I_{E},
\]
where \(I_{G}\) and \(I_{E}\) are acyclic ideals in \(G\) and in \(E\), and \(n\left(I_{G}\right) \subset I_{E}\).
Then \(\left(\psi_{0}, \psi_{0}\right) \sim\left(\psi_{1}, \psi_{1}\right)\), and the homotopy \((\psi, \phi)\) can be chosen so that \(\psi\left(\bar{Q}_{B}\right) \subset I_{G}\) and \(\Phi\left(\bar{Q}_{A}\right) \subset I_{E}\).

Moreover if the homomorphisms of (9.12) preserve augmentations and \(I_{G}=\operatorname{ker} \varepsilon_{G}\) and \(I_{E} \subset\) ker \(\varepsilon_{E}\), then \((\psi, \phi)\) is a based homotopy.

Proof : Use the proof of lemma 5.11.
Q.E.D.
9.17. - Proposition.-
i) Definitions 9.13 and 9.14 of homotopic and based homotopic are independent of the choice of \((Y, X, f)\).
ii) Homotopy and based homotopy are equivalence relations on commutative squares of the form (9.12) (with \(B \xrightarrow{i} C\) and \(G \xrightarrow{n} E\) fixed !).

Proof : Use lemma 9.16 the same way lemma 5.11 and cor. 5.12 were used to prove prop. 5.14.
Q.E.D.

Next suppose \(\check{E}: \check{B} \xrightarrow{\check{i}} \check{C} \xrightarrow{\check{p}} \check{\sim}\) is a second \(\Lambda\)-extension, and that \(\check{n}:\left(\underset{G}{G}, \mathrm{~d}_{\mathrm{G}}\right) \rightarrow\left(\check{E}, \mathrm{~d}_{\underline{E}}\right)\) is a homomorphism of c.g.d.a.'s. Assume given commutative squares of homomorphisms of c.g.d.a.'s

9.18. - Proposition.- Consider the commutative squares (9.12) in conjunction with the squares above :
i) If \(\left(\psi_{0}, \psi_{0}\right) \sim\left(\psi_{1}, \psi_{1}\right)\) then
\(\left(\gamma_{G} \psi_{0}, \gamma_{E} \psi_{0}\right) \sim\left(\gamma_{G} \psi_{1}, \gamma_{E} \dot{\psi}_{1}\right)\) and \(\left(\psi_{0} x_{B}, \dot{\psi}_{0} x_{C}\right) \sim\left(\psi_{1} x_{B}, \psi_{1} x_{C}\right)\).
ii) If \(\gamma_{G}^{*}\) and \(\gamma_{E}^{*}\) are isomorphisms then \(\left(\psi_{0}, \psi_{0}\right) \sim\left(\psi_{1}, \psi_{1}\right)\)
if and only if \(\left(\gamma_{G} \psi_{0}, \gamma_{E} \dot{\psi}_{0}\right) \sim\left(\gamma_{G} \psi_{1}, \gamma_{E} \psi_{1}\right)\).
iii) If all c.g.d.a.'s are augmented and all homomorphisms preserve augmentations, then i) and ii) hold with "based homotopic" replacing "homotopic".

\section*{LECTURES ON MINIMAL MODELS}

Proof : Part i) is trivial (cf. the proof of prop. 5.15). To prove ii) we may assume \(\left(\gamma_{G} \psi_{0}, \gamma_{E} \psi_{0}\right) \sim\left(\gamma_{G} \psi_{l}, \gamma_{E} \psi_{1}\right)\). Then, as in the proof of prop. 5.15 ii) define a commutative square

where \(F=\check{G}, L=\check{E}\) and \(n_{1}\) is the obvious homomorphism extending \(\check{n}\). Denote the left hand side of the above square by
\[
\overline{\mathbf{G}} \xrightarrow{\bar{\eta}} \overline{\mathbf{E}}
\]
and let the obvious inclusions and projections be written

Now suppose \((\check{\psi}, \dot{\phi})\) is a homotopy from \(\left(\gamma_{G} \psi_{0}, \gamma_{E} \psi_{0}\right)\) to \(\left(\gamma_{G} \psi_{1}, \gamma_{E} \psi_{1}\right)\).
Choose linear maps (of degree zero)
\[
\psi: \bar{Q}_{B} \rightarrow \bar{G} \text { and } \Phi: \bar{Q}_{A} \rightarrow \overline{\mathrm{E}}
\]
so that \(\bar{\gamma}_{G} \psi=\psi\) and \(\bar{\gamma}_{E} \psi=\bar{\phi}\). These extend to a unique homotopy \((\psi, ष)\) starting at \(\left(j_{G}{ }_{b}, j_{E} \psi_{o}\right)\).

Use lemma 9.16 (as lemma 5.11 is used in prop. 5.15) to conclude the proof.

To prove iii) modify the proof of prop. 5.16 the way the proof

\section*{s. halperin}
of prop. 5.15 was modified above.
Q.E.D.

Suppose that \(E: B \xrightarrow{i} C \xrightarrow{\rho} A\) is a fixed \(\Lambda\)-extension. 9.19. - Theorem. -Assume

is a commutative diagram of homomorphisms of c.g.d.a.'s such that
i) \(\gamma_{G}^{*}\) and \(\gamma_{E}^{*}\) are isomorphisms.
ii) \(E\) is a n-extension.

Then there are homomorphisms \(\psi_{0}:\left(B, d_{B}\right) \rightarrow\left(G, d_{G}\right)\) and
\(\dot{\psi}_{0}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) such that
\[
\dot{\psi}_{0} \circ i=n \circ \psi_{0} \text { and }\left(r_{G} \psi_{0}, r_{E} \psi_{0}\right) \sim(\psi, 0)
\]

If (\(\psi_{1}, \psi_{1}\)) also satisfies these conditions, then
\[
\left(\psi_{1}, \psi_{1}\right) \sim\left(\psi_{0}, \psi_{0}\right) .
\]

Proof : Existence.- By theorem 5.19, we can find \(\psi_{0}:\left(B, d_{B}\right) \rightarrow\left(G, d_{C}\right)\)

\[
\bar{\psi} \circ i=\dot{n} \gamma_{G} \psi_{0} \text { and } \quad\left(\gamma_{G} \psi_{0}, \bar{\psi}\right) \sim(\psi, \Downarrow) \text {. }
\]

Now theorem 5.19 applies again and yields \(\psi_{0}:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)\) such that
\(\psi_{0} \circ i=n \circ \psi_{0}\) and \(\quad \gamma_{E} \psi_{0} \sim \bar{\psi} \quad(\) rel \(B)\).

By remark 9.15 .3 this implies \(\left(\gamma_{G} \psi_{0}, \gamma_{E} \psi_{0}\right) \sim\left(\gamma_{G} \psi_{0}, \bar{\psi}\right)\) and since homotop is an equivalence relation we obtain \(\left(\gamma_{G} \psi_{0}, \gamma_{E} \psi_{0}\right) \sim(\psi, \psi)\).

Uniqueness.- Apply prop. 9.18 ii).
Q.E.D.
9.20.- Theorem.- Assume all the homomorphisms in the diagram of theorem 9.19 are homomorphisms of augmented c.g.d.a.'s. Then \(\left(\psi_{0}, \psi_{0}\right)\) may be chosen to preserve augmentations, as well as to satisfy
\[
\dot{\psi}_{0} \circ i=\eta \circ \psi_{0} \quad \text { and } \quad\left(\gamma_{G} \psi_{0}, \gamma_{E} \psi_{0}\right) \sim(\psi, \psi) .
\]

Moreover, these conditions determine \(\left(\psi_{0}, \psi_{0}\right)\) up to based homotopy.

Proof : Modify the proof of theorem 9.19 , using theorem 5.20
and prop. 9.18 iii .
Q.E.D.

Finally, consider free morphisms
\[
\left(\psi_{i}, \vartheta_{i}, a_{i}\right): \check{E} \rightarrow E, \quad i=0,1,
\]
where

are \(\Lambda\)-extensions. If \((\psi, \phi)\) is a homotopy from \(\psi_{0}, \psi_{0}\)) to (\(\psi_{1}, \psi_{1}\))
then in particular
\[
\psi: \overleftarrow{B}^{I} \rightarrow B .
\]

Now if \(\psi\) is a based homotopy then we have \(\psi(\) ker \(\varepsilon) \subset\) ker \(\varepsilon_{B}\)
and it follows that
\[
\Phi\left(\text { ker } \check{\rho}^{I}\right) \subset \text { ker } \rho .
\]

Thus factors over \(\dot{\rho}^{I}\) to yield a homomorphism
\[
\equiv: \check{A}^{I} \rightarrow \mathrm{~A},
\]
which is a homotopy from \(\alpha_{0}\) to \(\alpha_{1}\).
9.22. - Definition. - If \(\psi\) is a based homotopy we say that
\(\left(\psi_{0}, \varphi_{0}, \alpha_{0}\right)\) and (\(\psi_{1}, \varphi_{1}, \alpha_{1}\)) are homotopic by the homotopy (\(\left.\psi, \phi, \equiv\right)\). We write \(\left(\psi_{0}, \psi_{0}, \alpha_{0}\right) \sim\left(\psi_{1}, \psi_{1}, \alpha_{1}\right)\).

If (\(\psi_{i}, \psi_{i}, \alpha_{i}\)) are actual morphisms and \(\downarrow\) is also a based homotopy,
then
\[
(\psi, \phi, \equiv): \check{E}^{I} \rightarrow E
\]
is a morphism. We call it a based homotopy from \(\left(\psi_{0}, \psi_{0}, \alpha_{0}\right)\) and (\(\left.\psi_{1}, \psi_{1}, \alpha_{1}\right)\), and write \(\left(\psi_{0}, \psi_{0}, \alpha_{0}\right) \approx\left(\psi_{1}, \psi_{1}, \alpha_{1}\right)\).

\section*{Chapter 10}

\section*{\(\Lambda\)-models.}

In this chapter, we consider a homomorphism of c.g.d.a.'s

such that
i) \(E\) is a \(\Lambda\)-minimal \(\Lambda\)-extension.
ii) \(\psi^{*}\) and \(\psi^{*}\) are isomorphisms.

Moreover, if \(\varepsilon_{G}\) and \(\varepsilon_{E}\) augment \(G\) and \(E\) and \(\varepsilon_{E}{ }^{n}=\varepsilon_{G}\), then \(\psi\) and \(\downarrow\) can be chosen to preserve augmentations.

Proch : Let \(\psi: B \rightarrow G\) be the minimal model for (\(G, d_{G}\)) (or for \(\left(G, d_{G}, \varepsilon_{G}\right)\)). Let \((E, \Downarrow)\) be the minimal model for \(n \psi: B \rightarrow E\) (or for \(\left.n \psi:\left(B, d_{B}, \varepsilon_{B}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\right)\).

> Q.E.D.
10.2. - Remark. - Note that \(H^{\circ}(B)=H^{\circ}\left(\sigma_{\mathrm{S}}\right)=k\). Thus in the \(k S\)
extension \(k \rightarrow B \rightarrow B\) the inclusion of \(k\) is 0 -regular. Thus cor. 3.9.
shows that \(B\) is connected. In particular \(B\) has exactly one augmentation.

\section*{Next suppose}
\[
E: B \xrightarrow{i} C \xrightarrow{\rho} A \text { and } \check{E}: \check{B} \xrightarrow{\dot{i}} \check{C} \xrightarrow{\check{\rho}} \quad \check{A}
\]
are \(\Lambda\)-minimal \(\Lambda\)-extensions. Assume *

are commutative squares of homomorphisms of c.g.d.a.'s such that \(\psi^{*}, \psi^{*}, \psi^{*}\) and \(\hat{j}^{*}\) are isomorphisms.
10.3. - Theorem (uniqueness).- Under the hypotheses above there is a commutative diagram of homomorphisms of c.g.d.a.'s

such that \(\bar{\psi}, \bar{\psi}\) and \(\bar{\alpha}\) are isomorphisms, and \((\psi \bar{\psi}, \psi \bar{\psi}) \sim(\stackrel{\psi}{\psi}, \stackrel{\psi}{)}\).
If \(n, \dot{\psi}, \stackrel{\psi}{*} \psi, \psi\) are augmentation preserving (for given augmentations
of \(G\) and \(E\)) then \((\bar{\psi}, \bar{\psi}, \bar{\alpha})\) can be chosen to be augmentation preserving and so that \((\psi \bar{\psi}, \psi \bar{\psi}) \approx(\dot{\psi}, \dot{\psi})\).

Proof : Apply theorem 9.19. (or in the augmented case theorem 9.20.)
to obtain homomorphisms \(\bar{\psi}, \bar{\psi}\) such that \((\psi \bar{\psi}, \Delta \bar{\psi}) \sim(i, \psi)\).
By remark 10.2., \(\bar{\psi}\) is automatically augmentation preserving.

Hence \(\bar{\psi}\) factors to give \(\bar{\alpha}\).
\[
\text { Now because }(\bar{\psi} \bar{\psi}, \bar{\psi} \bar{\psi}) \sim(\stackrel{\psi}{\psi}, \bar{\psi}) \text { we have that } \bar{\psi}^{*} \text { and } \bar{\psi}^{\star} \text { are isomor- }
\]
phisms. Apply theorem 7.2 to the morphism
\[
(1, \bar{\psi}, \bar{\psi}):(k \longrightarrow \bar{B} \stackrel{\tilde{\Xi}}{\longrightarrow}) \rightarrow(k \longrightarrow B \xrightarrow{\tilde{ \pm}} B)
\]
to obtain that \(\bar{\psi}\) is an isomorphism.

On the other hand, (cf. remark 6.27.2), we can reaugment \(\check{C}\) and \(\bar{A}\) so that \((\bar{\psi}, \bar{\psi}, \bar{\alpha})\) is a morphism. Since \(\bar{\psi}\) is an isomorphism and \(\bar{\psi}^{\star}\) is an isomorphism, theorem 7.2. implies that \(\bar{\alpha}\) is an isomorphism. Hence theorem 7.3. shows that so is \(\bar{\psi}\).

> Q.E.D.
10.4. - Theorem (uniqueness of isomorphism).- With the hypotheses and notation of theorem 10.3. assume that \(\left(\psi_{0}, \varphi_{0}, \alpha_{0}\right): \check{E} \rightarrow E\) is a free morphism such that
\[
\left(\psi \psi_{0}, \psi \psi_{0}\right) \sim(\check{\psi}, \check{\psi})
\]

Then \(\left(\psi_{0}, \psi_{0}, \alpha_{0}\right)\) is an isomorphism, and \(\left(\psi_{0}, \psi_{0}\right) \sim(\bar{\psi}, \bar{\psi})\).
Moreover, if \(E\) and \(G\) are augmented and all homomorphisms preserve augmentations, and if \(\left(\psi_{0}, W_{0}\right) \approx\left(\psi, v^{\prime}\right)\) then \(\left(\psi_{0}, \psi_{0}, a_{0}\right) \approx(\bar{v}, \bar{w}, \bar{a})\).

Prood : Note that \(\psi_{0}^{*}\) and \(\psi_{,}^{*}\) are isomorphisms and argue as above that (\(\psi_{0}, \psi_{0}, a_{0}\)) is therefore an isomorphism. Prop. 9.18. ii) implies (because \(\left.\left(\psi \psi_{0}, \omega_{0}\right) \sim(\dot{\psi}, \dot{D}) \sim(\psi \bar{\psi}, \dot{\psi})\right)\) that \(\left(i_{0}, \psi_{0}\right)=(\bar{\psi}, \bar{D})\).

In the augmented case prop. 9.18 iii) implies that \(\left(4,0, \theta_{0}\right)\left(v_{1}, 0,0\right)\) whence (cf. definition 9.21\()\left(0_{0}, 0_{0}\right)=\left(, 1,0_{1}\right)\).
Q.E.D.
10.5. - Definition.- Let \(\eta:\left(G, d_{G}\right) \rightarrow\left(E, d_{E}\right)\) be a homomorphism of c.g.d.a.'s such that \(H^{\circ}(G)=k=H^{\circ}(E)\). Then a \(\Lambda\)-model for \(\eta\) is a \(\Lambda^{-}\) extension \(E: B \xrightarrow{i} C \xrightarrow{\rho} A\) together with homomorphisms
\[
\psi:\left(B, d_{B}\right) \rightarrow\left(G, d_{G}\right) \text { and } \psi:\left(C, d_{C}\right) \rightarrow\left(E, d_{E}\right)
\]
such that \(\psi \circ i=n \circ \psi\) and \(\psi^{*}\) and \(\psi^{*}\) are isomorphisms.

If \(E\) is \(\Lambda\)-minimal then \((E, \psi, \psi)\) is called a \(\Lambda\)-minimal \(\Lambda\)-model for \(n\).
10.6. - Definition. - Let \(\eta:\left(G, d_{G}, \varepsilon_{G}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\) be a homomorphism of augmented c.g.d.a.'s such that \(H^{\circ}(G)=k=H^{\circ}(E)\). Then a \(\Lambda\)-model for \(\eta\) is a \(\Lambda\)-extension \(E: B \xrightarrow{i} C \xrightarrow{\rho} A\) together with homomorphisms
\[
\psi:\left(B, d_{B}, \varepsilon_{B}\right) \rightarrow\left(G, d_{G}, \varepsilon_{G}\right) \text { and } \psi:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)
\]
such that \(\psi \circ i=n \circ \psi\) and \(\psi^{*}\) and \(\psi^{*}\) are isomorphisms.

If \(E\) is \(\Lambda\)-minimal then \((E, \psi, \psi)\) is called a \(\Lambda\)-minimal \(\Lambda\)-model
for \(n\).
10.7. - Remarks 1.- Theorems 10.1 and 10.3 show that 1 -minimal
n -models always exist, and are unique up to isomorphism.
2.- Another way of constructing the \(A\)-minimal \(A\)-model
of \(n\) is as follows (if \(G\) is augmented). Let

\section*{LECTURES ON MINIMAL MODELS}
be the minimal model of \(n\). Then let
\[
\left(B, d_{B}, \varepsilon_{B}\right) \xrightarrow{\psi}\left(G, d_{G}, \varepsilon_{G}\right)
\]
be the minimal model of \(G\). Finally, let

be the minimal model of \(j \psi\).

Then \(\left(E, \psi, \psi_{0} \psi_{1}\right)\) is a (and so the) \(\Lambda\)-minimal \(\Lambda\)-model of \(n\).
Note that because \(\psi\) preserves augmentations, \(\emptyset_{1}\) factors to yield

where \(a\) is an isomorphism by theorem 7.2.
Thus the fibres of the \(\Lambda\)-minimal \(\Lambda\)-model of \(n\) and of the minimal model of \(n\) coincide.
```

            3.- Suppose ( }E,w,\mathcal{H})\mathrm{ is a }\Lambda\mathrm{ -model for n : G E E.
            Then \psi: B ->G is a model for G and ( }E,|\mathrm{ ) is a model for r o .. If
            (E,\psi,\psi) is A-minimal then both these are the minimal models.
            On the other hand }V:C->E\mathrm{ is also a model, and even if ( }E,\ldots,0
    is A-minimal this model for E need not be.

```

\section*{10.8. - Morphisms.- Consider a commutative square}
(10.9)

of homomorphisms of c.g.d.a.'s. Assume \(H^{0}\left(G_{i}\right)=H^{0}\left(E_{i}\right)=k, i=1,2\).
Combine (10.9) with \(\Lambda\)-models \(\left(E_{i}, \psi_{i}, \psi_{i}\right)\) for \(n_{i}(i=1,2)\). This gives a diagram
(10.10)

Here \(\psi\) and \(\psi\) are constructed so that \(\left(\gamma_{G} \psi_{1}, \gamma_{E} \psi_{1}\right) \sim\left(\psi_{2} \psi_{,} \psi_{2} \psi\right)\), (cf. theorem 9.19). Note that all the remaining squares commute. We assume the augmentations in \(B_{1}\) and \(B_{2}\) are chosen so that \(\psi\) preserves augmentations (this is a vacuous assumption if \(B_{1}\) is minimal). Then factors to give \(a\). Finally note that the homotopy class of \((\checkmark, \forall)\) is uniquely determined.
10.11. - Remcrks 1.- Suppose

is a second commutative square with \(H^{0}\left(G_{3}\right)=H^{0}\left(E_{3}\right)=k\). Let \(\left(E_{3}, \psi_{3}, \mathscr{H}_{3}\right)\) be a 1 -model for \(\eta_{3}\) and repeat the above construction to obtain a free morphism \((\bar{\psi}, \mathbb{\Psi}, \bar{\alpha}): E_{2} \rightarrow E_{3}\).

Then \((\bar{\psi} \psi, \bar{\psi} \psi, \bar{\alpha} \alpha): E_{1} \rightarrow E_{3}\) is the free morphism corresponding to \(\left(\bar{\gamma}_{G} \circ \gamma_{G}, \bar{\gamma}_{E} \circ \gamma_{E}\right)\).
2.- Assume in (10.9) that the c.g.d.a.'s are
augmented and that the homomorphisms preserve augmentations. Let (\(E_{i}, \psi_{i}, \varphi_{i}\)) be a \(n\)-model for \(n_{i}:\left(G_{i}, d_{G_{i}}, \varepsilon_{G_{i}}\right) \rightarrow\left(E_{i}, d_{E_{i}}, \varepsilon_{E_{i}}\right), i=1,2\).

Then using theorem 9.20 , we can choose \((\psi, \downarrow, a)\) to be a morphism such that \(\left(\gamma_{G} \psi_{1}, \gamma_{E} \psi_{1}\right) \not \approx\left(\psi_{2} \psi_{,} \psi_{2} \psi\right)\). Moreover this uniquely determines the based homotopy class of \((\psi, \sharp, \alpha)\).
\[
\text { 10.12. - The exact u-homoton" seauence. - Suppose } E: B \xrightarrow{\mathrm{i}} \mathrm{C} \text {-... } \mathrm{A}
\]
is a 1 -extension. Then the sequence of differential spaces
\[
\begin{aligned}
& 0 \rightarrow\left(Q(B), Q\left(d_{B}\right)\right) \xrightarrow{Q(i)}\left(\cap(C), Q\left(d_{C}\right)\right) \xrightarrow{\cap(1)}\left(\cap(A), O\left(d_{A}\right)\right) \rightarrow 0 \\
& \text { is short exact, as follows from (} 9.6) \text {. Hence it gives rise to an exact triangle }
\end{aligned}
\]

\section*{S. HALPERIN}
(10.13)

in which the connecting homomorphism, \(\partial^{*}\), has degree +1 .

A morphism of \(\Lambda\)-extensionsinduces a morphism of short exact sequences
and hence a morphism of exact cohomology triangles. According to lemma 8.3
this last only depends on the based homotopy class of the original morphism.

Now suppose that \((E, \psi, \psi)\) is a \(\Lambda\)-model for a homomorphism \(n:\left(G, d_{G}, \varepsilon_{G}\right) \longrightarrow\left(E, d_{E}, \varepsilon_{E}\right)\)
of augmented c.g.d.a.'s. Then
\(\psi:\left(B, d_{B}, \varepsilon_{B}\right) \rightarrow\left(G, d_{G}, \varepsilon_{G}\right)\) and \(\psi:\left(C, d_{C}, \varepsilon_{C}\right) \rightarrow\left(E, d_{E}, \varepsilon_{E}\right)\)
are models.
Thus, as described in chap. 8, we have canonical identifications

On the other hand, \((E, 1)\) is clearly a model for \(i\) and hence
we have a canonical identification
(10.15)
\[
H(Q(A)) \longrightarrow \pi_{\psi}^{*}(i)
\]

Moreover, because \(\psi \circ i=n \circ \psi\) we can apply definition 8.11 to obtain a
linear map
\[
\begin{aligned}
& \text { LECTURES ON MINIMAL MODELS } \\
& (\psi, \psi)^{\#}: \pi_{\psi}^{*}(i) \longrightarrow \pi_{\psi}^{*}(n) .
\end{aligned}
\]

Since \(\psi^{*}\) and \(\psi^{*}\) are isomorphisms theorem 7.2 shows that so is \((\psi, \psi)^{\#}\). Thus composing (10.15) with \((\psi, \varphi)^{\#}\) gives an isomorphism
\[
\begin{equation*}
H(Q(A)) \longrightarrow \pi_{\psi}^{*}(\eta) \tag{10.16}
\end{equation*}
\]

We can thus express the exact triangle (10.13) in the form
(10.17)

If (\(E^{\prime}, \psi^{\prime}, \psi^{\prime}\)) is a second \(\Lambda\)-model then theorem 9.20 gives a
morphism \((\bar{\psi}, \bar{\psi}, \bar{\alpha}): E^{\prime} \rightarrow E\) such that \(\left(\psi^{\psi}, \psi \bar{\psi}\right) \approx\left(\psi^{\prime}, \nu^{\prime}\right)\). This completely determines the based homotopy class of the morphism. Moreover, \(\psi^{*}\) and \(\bar{\psi}^{*}\) are isomorphisms, and hence \(Q(\bar{\psi})^{*}, Q(\bar{\varphi})^{*}\) and \(Q(\bar{\alpha})^{*}\) are canonical isomorphisms.

If we identify the "primed triangle" analogous to (10.13) with
(10.17) as described above then the two identifications are identified by \(Q(\bar{\psi})^{*}, O(\bar{\phi})^{*}\) and \(Q(\bar{\alpha})^{*}\).

Finally observe that a commutative square

of homomorphisms of augmented c.g.d.a.'s defines a commutative diagram

\section*{S. HALPERIN}
\[
\begin{aligned}
& \rightarrow \pi_{\psi}^{P}\left(G_{1}\right) \xrightarrow{\eta_{1}^{\#}} \pi_{\psi}^{P}\left(E_{1}\right) \longrightarrow \pi_{\psi}^{P}\left(\eta_{1}\right) \xrightarrow{\partial^{*}} \pi_{\psi}^{p+1}\left(G_{1}\right) \rightarrow \\
& \text { (10.18) } \mid Y_{G}^{\#} \\
& \downarrow \gamma_{E}^{\#} \quad \downarrow\left(\gamma_{G}, \gamma_{E}\right)^{\#} \quad \gamma_{G}^{*} \\
& \rightarrow \pi_{\psi}^{P}\left(G_{2}\right) \underset{\eta_{2}^{\#}}{\overrightarrow{\eta_{2}}} \pi_{\psi}^{P}\left(E_{2}\right) \longrightarrow \pi_{\psi}^{p}\left(\eta_{2}\right) \longrightarrow \pi_{\psi}^{p+1}\left(G_{2}\right) \rightarrow \quad . \\
& \text { 10.19.- Example.- Suppose the } \Lambda \text {-extension } E \text { is in fact } \Lambda \text {-minimal. }
\end{aligned}
\]

Then the short exact sequence reads
\[
0 \longrightarrow(Q(B), 0) \longrightarrow\left(Q(C), Q\left(d_{C}\right)\right) \longrightarrow(Q(A), 0) \longrightarrow 0
\]
as follows from cor. 2.4.
Thus \(Q\left(d_{C}\right)(Q(B))=0\) and \(\operatorname{Im} Q\left(d_{C}\right) \subset Q(B)\).
Hence \(Q\left(d_{C}\right)\) factors to produce a linear map
\[
\overline{Q\left(d_{C}\right)}: Q(A) \rightarrow Q(B)
\]
and this by definition is exactly the connecting homomorphism \(\partial_{*}\).
In other words, \(\partial^{*}=0\) if and only if \(Q\left(d_{C}\right)=0\).
Thus (cf. cor. 2.4) \(\partial^{*}\) exactly measures the failure of the middle KS complex in the \(\Lambda\)-minimal \(\Lambda\)-extension \(E\) to be itself a minimal \(K\) complex.

Now if \(n: G \rightarrow E\) is a homomorphism of augmented c.g.d.a.'s
with \(H^{\circ}(G)=H^{\circ}(E)=k\), then \(n\) has a unique 1 -minimal 1 -model. The middle term of this will be the minimal model for \(E\) if and only if the connecting homomorphism \(\partial^{*}\) in (10.17) is zero.

\section*{Chapter 11}

\section*{Automorphisms.}

In this chapter (\(A, d_{A}\)) denotes annected \(K S\) complex and \(\zeta_{A}: A^{+} \rightarrow Q(A)\) is the projection (cf. 1.1). Thus if we write \(A=\Lambda X\) then \(\zeta_{A}: X \xrightarrow{\cong} Q(A)\).
11.1.- The Hurewicz map. Recall (2.1) that a differential, \(Q\left(d_{A}\right)\), is defined in \(Q(A)\) by \(Q\left(d_{A}\right) \zeta_{A}=\zeta_{A} \circ d_{A}\). Thus \(\zeta_{A}\) induces a map
\[
\zeta_{A}^{*}: H^{+}(A) \rightarrow H\left(Q(A), Q\left(d_{A}\right)\right) ;
\]
this map is called the Hurewicz map.
If \(\psi:\left(A, d_{A}\right) \rightarrow\left(\underset{A}{V}, d_{A}^{V}\right)\) is a homomorphism of connected KS complexes, then it induces a linear map \(Q(\psi): Q(A) \rightarrow Q(\bar{A})\) and the diagram
(11.2)

commutes.
In particular, suppose \(\psi:\left(A, d_{A}\right) \rightarrow\left(E, d_{E}, E_{E}\right)\) is a model for an
augmented c.g.d.a. (\(E, d_{E}, \varepsilon_{E}\)). If we use \(\psi\) to identify
\[
H(A)=H(E) \quad \text { and } \quad H(Q(A))=\pi_{\psi}^{*}(E)
\]
(cf 8.8.1) then \(\zeta_{A}^{*}\) defines a map
\[
\begin{equation*}
H^{+}(E) \rightarrow \pi_{\psi}^{*}(E) . \tag{11.3}
\end{equation*}
\]

Diagram (11.2) shows that (11.3) does not depend on the choice of model ; it is called the Hurewicz map for (\(E, d_{E}, \varepsilon_{E}\)).

Now suppose that \(\left(A, d_{A}\right)\) is minimal (so that \(Q\left(d_{A}\right)=0-c f . \operatorname{cor} 2.4\)).
Then
\[
\zeta_{A}^{*}: H^{+}(A) \rightarrow Q(A) .
\]

On the other hand, recall from 3.2 (with \(B=k\) and \(C=A\)) the filtrations
\[
Q_{0}^{n}(A)=Q_{1}^{n}(A) \subset \ldots \subset \subset Q^{n}(A), \quad n \geqslant 1
\]

According totheorem \(3.4 \quad \boldsymbol{\zeta}_{\mathrm{A}}\) induces is omorphisms
\[
\bar{\zeta}_{A}: z_{p}^{n} /_{A_{p-1, n}^{n}} \xrightarrow{\cong} Q_{p}^{n}(A) / Q_{p-1}^{n}(A) \quad, \quad p \geqslant 1
\]
and
\[
\begin{equation*}
\bar{\zeta}_{A}: z_{0}^{n} /_{A_{-1, n}^{n}} \xrightarrow{\cong} Q_{0}^{n}(A) \tag{11.4}
\end{equation*}
\]

By definition the second restricts to an isomorphism (cf. prop 3.8)
\[
\begin{equation*}
\bar{\zeta}_{A}: \operatorname{Im} B \xrightarrow{\cong} \operatorname{Im} \zeta_{A}^{*} \tag{11.5}
\end{equation*}
\]
11.6.- Locally nilpotent families. Let \(\left\{\varphi_{\gamma}\right\}_{\gamma \in \Gamma}\) be a family of linear transformations of vector space \(W\). We say the family is locally nilpotent if there is a well ordered basis \(\left\{w_{\alpha}\right\}_{\alpha \in I}\) of \(W\) such that for \(r \in \Gamma, \alpha \in I\) \(\Psi_{\gamma} w_{a}\) is a linear combination of the \(w_{B}\) with \(B<\alpha\). If \(V\) is a subspace of \(W\) which is stable under each \(\psi_{Y}\) then the family is locally nilpotent in \(W\) if and only if the induced families of transformations of \(V\) and \(W / V\) are locally nilpotent. If \(W\) is a direct sum of subspaces \(W_{\lambda}\) and each \(W_{\lambda}\) is

\section*{LECTURES ON MINIMAL MODELS}
stable under the \(\psi_{\gamma}\) then \(\left\{\Downarrow_{\gamma}\right\}\) is locally nilpotent if and only if for each \(\lambda\left\{\psi_{Y} \mid W_{\lambda}\right\}\) is locally nilpotent.

Finally, if \(\left\{\psi_{\gamma}-1\right\}\) is locally nilpotent we say \(\left\{\psi_{\gamma}\right\}\) is locally unipotent.
11.7.- Proposition. Let (\(A, d_{A}\)) be a minimal connected KS complex.

Assume \(\varphi_{\gamma}:\left(A, d_{A}\right) \rightarrow\left(A, d_{A}\right), \gamma \in \Gamma\), is a family of c.g.d.a. homomorphisms.
Then the following are equivalent :
i) \(\left\{\psi_{\gamma}\right\}\) is a locally unipotent family.
ii) \(\left\{\psi_{\gamma}^{*}\right\}\) is a locally unipotent family.
iii) \(\left\{Q\left(\psi_{\gamma}\right)\right\}\) is a locally unipotent family.
iv) The restrictions of the \(\left\{Q\left(\varphi_{Y}\right)\right\}\) to Im \(\zeta_{A}^{*}\) form a locally unipotent family.

Proof.- The following implications are evident from the remarks above :

It is also easy to verify that \(i i i) \Rightarrow i)\).
Now assume iv) holds. We apply prop. 3.8 (parts iii) and iv)) together with the isomorphisms (11.4) and (11.5). Together these show that if i) holds for some \(A_{p-1, n}\) then iii) holds for \(A_{p, n}\). Since iii) \(\Rightarrow\) i) the proposition follows.
Q.E.D.

Next, consider a locally unipotent family \(\left\{\varphi_{\gamma}\right\}\) of automorphisms of a minimal connected KS complex (\(A, d_{A}\)). Since the \(Q\left(\varphi_{\gamma}\right)\) are locally unipotent and respect the filtration
\[
Q_{0}^{n}(A) \subset Q_{1}^{n}(A) \subset \ldots .
\]
 following conditions :
\[
\begin{align*}
& B<\alpha \Rightarrow \operatorname{deg} z_{B} \leqslant \operatorname{deg} z_{\alpha} \tag{11.8}\\
& B<\alpha, \operatorname{deg} z_{B}=n=\operatorname{deg} z_{\alpha}, z_{\alpha} \varepsilon Q_{p}^{n}(A) \Rightarrow z_{B} \in Q_{p}^{n}(A) . \tag{11.9}
\end{align*}
\]
(11.10) For all,\(\gamma\) and all \(\alpha,\left(Q\left(\psi_{\gamma}\right)-i\right) z_{\alpha}\) is a linear combination of the \(z_{B}\) with \(B<\alpha\).
11.11.- Proposition. Let \(z_{\alpha}\) satisfy the above conditions and let \(x_{\alpha} \in A\) be homogeneous vectors such that \(\zeta_{A} x_{\alpha}=z_{\alpha}\). Then
i) The \(x_{\alpha}\) are a basis for a graded space \(X \subset A^{+}\), and \(A=\Lambda X\).
ii) \(d_{A} X_{\alpha} \in(\Lambda X)<\alpha\).
iii) For each \(\gamma\) and each \(\alpha,\left(\psi_{\gamma}-1\right) x_{\alpha} \in(\Lambda X)<\alpha^{\text {. }}\)

Proof.- i) and iii) are immediate from the connectivity of A. ii) follows from theorem 3.4 (because of (11.8) and (11.9)).

> Q.E.D.
11.12. - The circle construction. Assume (\(A, d_{A}\)) is minimal. Fix a locally unipotent automorphism, \(\downarrow\), of (\(A, d_{A}\)). For each \(2 \in A\) there is some \(n_{2}\) such that
\[
(\ell-1)^{n} z=0
\]

Thus we can define
\[
\theta=\log \psi=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(\psi-1)^{n} ;
\]
it is a locally nilpotent derivation of \(A\), homogeneous of degree zero, and commuting with \(d_{A}\). Note that \(\varphi=e^{\theta}\).

We can also define a linear map of degree zero, commuting with \(d_{A}\) : \(\psi: A \rightarrow A\), by
\[
\begin{gathered}
\text { LECTURES ON MINIMAL MODELS } \\
\psi=-\sum_{\mathrm{n}=0}^{\infty} \frac{1}{(\mathrm{n}+1)!} \theta^{\mathrm{n}} .
\end{gathered}
\]

It is locally unipotent, and hence a linear automorphism. It satisfies
\[
\theta \psi=\psi \theta=i-\psi .
\]

Now let \(\left\{x_{\alpha}\right\}_{\alpha \in I}\) satisfy the conclusions of prop. 11.11 (for \(\downarrow\)) and let \(X\) be their span; then \(A=\Lambda X\). Define ac.g.d.a. (\(u\) u A, \(D_{f}\)), (where deg \(u=1\)) by
\[
D_{\psi} u=0
\]
and
\[
D_{\phi}(10 a)=10 d_{A} a+u \theta \theta a, \quad a \in A .
\]

Apply prop 11.11 ii) and iii) to conclude that
\[
d_{A} X_{\alpha} \in(\Lambda X)_{<\alpha} \quad \text { and } \quad \theta_{\alpha} \in(\Lambda X)_{<\alpha} \quad \text {; }
\]
it follows that (\(\Lambda u \in A, D_{\vee}\)) is a minimal KS complex. It will be called the circle construction for \(\ell\).

On the other hand denote by \(\Lambda(t, d t)\) the contractible \(K\) complex generated by an element \(t\) of degree zero. Define
\[
\pi_{0}, \pi_{1}: \Lambda(t, d t) \ominus A \rightarrow A
\]
by \(\pi_{0}(t)=0, \pi_{1}(t)=1\) and \(\pi_{0}(a)=\pi_{1}(a)=a\), a \(\in A\).
Let (\(K_{f}, d\)) be the c.g.d.a defined by
\[
k_{1}=\operatorname{ker}\left(\pi_{1}-\xi_{0}\right) .
\]

Then a homomorphism of c.g.d.a.'s
\[
\begin{equation*}
\sigma_{\emptyset}:\left(\Lambda u \odot A, D_{\downarrow}\right) \rightarrow\left(K_{\downarrow}, d\right) \tag{11.13}
\end{equation*}
\]
is defined by \(\sigma_{\phi}(u)=d t, \quad \sigma_{\rho}(a)=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} \theta \theta^{n}(a)\).

\section*{S. HALPERIN}
11.14.- Proposition. \(\sigma_{j}^{*}\) is an isomorphism. Thus (11.13) is the minimal model of (\(\left.K_{\varphi}, d\right)\).

Prooh.- Define a short exact sequence of differential spaces
\[
\begin{equation*}
0 \rightarrow A \xrightarrow{\alpha} \Lambda u \otimes A \xrightarrow{B} A \rightarrow 0 \tag{11.15}
\end{equation*}
\]
by \(\alpha(a)=-u \psi^{-1}(a)\) and \(B\left(u \theta a+10 a_{1}\right)=a_{1}\). On the other hand we have the short exact sequence
\[
\begin{equation*}
0 \rightarrow K_{\varphi} \xrightarrow{j} \Lambda(t, d t) \text { e } A \xrightarrow{\pi_{1}^{-\varphi \pi_{0}}} A \rightarrow 0 \tag{11.16}
\end{equation*}
\]
where \(j\) is the inclusion.
In the long exact cohomology sequence arising from (11.15) the connec-
ting map \(\partial_{0}: H^{p+1}(A) \rightarrow H^{p+1}(A)\) is given by
\[
\partial_{0}=\psi^{2}-1
\]
as is easy to check. On the other hand, if \(a \in A\) then
\[
\left(\pi_{1}-\varphi \pi_{0}\right)\left(-\sum_{n=0}^{\infty} \frac{t^{n+1}}{(n+1)!} \theta \theta^{n} \psi^{-1} a\right)=a
\]

It follows that the connecting map \(\partial_{1}\) for the long exact sequence arising from (11.16) is given by
\[
\partial_{1}=\sigma_{\psi}^{*} \alpha^{*}
\]

Thus the diagram

\(\rightarrow H^{P}(A) \xrightarrow[\partial_{1}]{ } H^{p+1}\left(K_{p}\right) \xrightarrow[j^{*}]{P+1}(\Lambda(t, d t) \otimes A) \xrightarrow[\left(\pi_{1}-\psi \pi_{0}\right)]{ } H^{p+1}(A) \rightarrow\)
commutes and the proposition follows.
Q.E.D.

Next recall from chap. 5 the c.g.d.a. \(A^{I}\). (Let \(B=k, C=A\).) We have the projection \(\pi: A^{I} \rightarrow A\) and the inclusions \(\lambda_{0}, \lambda_{1}: A \rightarrow A^{I}\). Assume \(\oplus: A^{I} \rightarrow A\) is a homotopy from \(\psi\) to \(\bar{\psi}\). Then \(\bar{\psi}=\psi^{*}\), so \(\bar{\psi}\) is also locally unipotent Let \(\bar{\theta}=\log \bar{\psi}\).
\[
\begin{gathered}
\text { Regard } \pi_{i} \text { as projections } \Lambda(t, d t) \ominus A^{I} \rightarrow A^{I}, i=0,1 \text {, and define } \\
P=\pi 0 \pi_{1}-\oplus 0 \pi_{0}: \Lambda(t, d t) \otimes A^{I} \rightarrow A .
\end{gathered}
\]

Then set \(K_{\phi}=\) ker \(P\); it is a sub c.g.d.a.
Consider the row exact commutative diagram

from it we deduce that \(\gamma^{*}\) and \(\vec{\gamma}^{*}\) are isomorphisms.
Now identify \(u\) with dt. Then

and

are both minimal models for the inclusion \(\Lambda u \rightarrow K_{\Phi}\).

\section*{S. HALPERIN}

Hence by theorem 6.2 there is a c.g.d.a isomorphism
\[
\tau:\left(\Lambda u \otimes A, D_{\varphi}\right) \xrightarrow{\cong}\left(\Lambda u \ominus A, D_{\bar{\varphi}}\right)
\]
such that \(\tau(u)=u\). Clearly \(\tau\) must have the form
\[
\tau(1 \theta a)=-u \theta \tilde{8}(a)+1 \theta \tau_{0}(a), \quad a \in A,
\]
where \(\tau_{0}\) is an automorphism of (\(A, d_{A}\)).

> Straightforward calculations show that
\[
\tilde{s}(a b)=\tilde{s}(a) \tau_{0}(b)+(-1)^{\operatorname{deg} a_{\tau_{0}}(a) \tilde{s}(b)}
\]
and
\[
\tilde{s}_{A}+d_{A} \tilde{s}=\tau_{0} \theta-\bar{\theta}_{0}
\]

In particular a degree -1 derivation, \(s\), in \(A\) is given by
\[
s=\tau_{0}^{-1} \tilde{s}
\]

It satisfies
\[
\mathrm{sd}_{A}+d_{A} s=\theta-\tau_{0}^{-1} \bar{\theta} \tau_{0} .
\]

We have thus proved
11.17.- Proposition. Assume \(\bar{\psi}\) is homotopic to \(\downarrow\). Then there is a degree -1 derivation, \(s\), of \(A\), and an automorphism \(\tau_{0}\) of (\(A, d_{A}\)) such that
\[
\log \psi=s d_{A}+d_{A} s+\tau_{0}^{-1} \log \bar{\psi} \tau_{0} .
\]

In particular, if \(\psi \sim\) then
\[
\log \psi=s d_{A}+d_{A} s .
\]

\section*{LECTURES ON MINIMAL MODELS}

Next suppose \(\Phi\) is a based homotopy between \(\varphi\) and \(\bar{\vee}\). Since \(A\) is connected \(A^{\prime}=X^{\prime}\) and \(A=\Lambda X^{\prime}\) e \(\Lambda X^{2}\). Thus (since \(A\) is minimal)
\[
\Lambda X^{1} \rightarrow A \rightarrow \Lambda X^{2}
\]
is a minimal \(K S\) extension and so we can form the c.g.d.a \(\left(A, \Lambda X^{1}\right)^{I}\). The projection \(A^{I} \xrightarrow{P}\left(A, \Lambda X^{l}\right) \quad\) (of chap. 9) satisfies \(p \circ \lambda_{i}=\bar{\lambda}_{i}\), \(i=0,1\), where \(\bar{\lambda}_{i}: A \rightarrow\left(A, \Lambda X^{\prime}\right)^{I}\) are the inclusions. Since \(\phi\) is based and \(A\) is connected, \(\Phi\) factors over \(p\) to yield a homotopy
\[
\Psi:\left(A, \Lambda X^{l}\right)^{I} \rightarrow A
\]
such that \(\Psi \circ \bar{\lambda}_{0}=\Downarrow, \quad \Psi \circ \bar{\lambda}_{1}=\bar{\psi}\)

Now repeat the above construction with \(\psi\) replacing \(\Phi\) to achieve
the commutative diagram

Note that \(\left(A, \Lambda X^{\prime}\right)^{I}\) is connected. Thus if we augment \(\Lambda(t, d t)\) by \(t \rightarrow 0\) then \(\begin{aligned} & K_{\psi}, K_{\psi}, K_{\bar{\psi}} \text { are augmented and } Y, \bar{\gamma} \text { preserve the augmentations. } \\ & \text { Moreover } \bar{\lambda}_{0}, \bar{\lambda}_{1} \text { agree in } \Lambda X^{\prime} \text { and hence so do } \psi, \bar{\psi} \text { and } \theta, \bar{\theta} .\end{aligned}\)

Thus we can write
\[
\gamma o_{\psi}=\bar{\gamma} \sigma_{\bar{\psi}}=n: \Lambda u \otimes \Lambda X^{\prime} \rightarrow K_{\psi} .
\]

\section*{S. HALPERIN}

In particular

and

are both minimal models for \(n\).
We apply theorem 6.2 to obtain an isomorphism
\[
\tau:\left(\Lambda u \otimes A, D_{\varphi}\right) \xrightarrow{\cong}\left(\Lambda u \otimes A, D_{\vec{\psi}}\right)
\]
such that \(\tau=1\) in \(\Lambda u 0 \Lambda X^{1}\). The resulting derivation \(s\) is thus zero in \(X^{\prime}\), and we obtain
11.18. - Proposition. Assume \(\bar{\psi} \tilde{\sim} \psi\). Then there is a degree -1 derivation
\(s\) of \(A\) and an automorphism \(\tau_{0}\) of (\(A, d_{A}\)) such that
\[
\tau_{0}=1 \text { in } \Lambda X^{\prime} \text { and } s=0 \text { in } \Lambda X^{\prime}
\]
and
\[
\log \vartheta=\operatorname{sd}_{A}+d_{A} s+\tau_{0}^{-1} \log \bar{\varphi} \tau_{0}
\]

In particular, if \(\downarrow \approx\) then
\[
\log =\operatorname{sd}_{A}+d_{A} s .
\]
11.19.- Lomotopies. Again assume (\(A, d_{A}\)) is minimal. For any c.g.d.a. (\(E, d_{E}\)) form the c.g.d.a. \(\Lambda(t, d t) \theta E(\operatorname{deg} t=0)\) with the inclusion and projections
\[
\ell: E \rightarrow \Lambda(t, d t) \bullet E, \quad \pi_{0}, \pi_{1}: \Lambda(t, d t) \theta E \rightarrow E
\]
given by \(\quad \ell_{2}=10 z, \quad \pi_{0} t=0, \quad \pi_{1} t=1\).
Two c.g.d.a. homomorphisms \(\psi_{0}, \psi_{1}: A \rightarrow E\) will be called lomotopic if for some c.g.d.a. homomorphism
\[
\Phi: A \rightarrow \Lambda(t, d t) \ominus E,
\]
\(T_{i} \circ \Phi=\psi_{i}, i=0,1\). If \(\varphi_{0}, \psi_{1}\) preserve augmentations (for a given augmentation \(\varepsilon_{E}\) of \(E\)) then \(\psi_{0}\) and \(\psi_{1}\) are called based lomotopic if \(\Phi\) can be chosen so that
\[
\left(: \quad \otimes \varepsilon_{E}\right) \Phi\left(A^{+}\right)=0
\]
11.20.- Proposition. Assume \(H^{0}(E)=k\). Then
i) \(\varphi_{0} \sim \dot{\psi}_{1}\) if and only if they are lomotopic
ii) \(\psi_{0} \tilde{\sim} \dot{\phi}_{1}\) if and only if they are based lomotopic.

Prooń. - Since \(\operatorname{Im}\left(\ell \pi_{0}^{-1}\right) \subset \Lambda^{+}(t, d t) \theta E\), which is an acyclic ideal, we have \(\ell \pi_{0} \sim 1\). Similarly \(\ell \pi_{1} \sim 1\). Thus \(\ell \pi_{0} \sim \ell \pi_{1}\) and by prop 5.15, \(\pi_{0} \sim \pi_{1}\). Hence \(\pi_{0} \Phi \sim \pi_{1} \Phi\). Thus \(\psi_{0}, \psi_{1}\) lomotopic \(\Rightarrow \psi_{0} \sim \psi_{1}\).

The identical argument shows that \(\psi_{0}, \psi_{1}\) based lomotopic \(\Rightarrow \psi_{0} \tilde{\sim} \psi_{1}\),
once \(\Lambda(t, d t) \theta E\) is replaced by the augmented c.g.d.a.
\[
\left[\Lambda(t, d t) \otimes \operatorname{ker} \varepsilon_{E}\right] \bullet k .
\]

Conversely, suppose \(\psi_{0} \sim \psi_{1}\) and let \(\psi: A^{I} \rightarrow E\) be a homotopy.
Recall that (Chap. 5),
\[
A^{I}=\Lambda X \oplus \Lambda \bar{X} \otimes \Lambda D \bar{X} .
\]

Define a degree -1 derivation, \(h\), in \(\Lambda(t, d t) \theta A^{I}\) by
\[
h(x)=t \bar{x} ; h(t)=h(d t)=h(\bar{x})=h(D \bar{x})=0
\]

Denote the differential in \(\Lambda(t, d t) \theta A^{I}\) also by \(D\).
Then an automorphism of \(\Lambda(t, d t) \otimes A^{I}\) is given by \(e^{D h+h D}\).

Put
\[
\Phi=\left(\begin{array}{ll}
i & \theta
\end{array}\right) \circ e^{D h+h D} \circ \lambda_{0}: A \rightarrow A(t, d t) \theta E
\]

Then \(\pi_{0} \Phi=\emptyset_{0}\) and \(\pi_{1} \Phi=\vartheta_{1}\). Moreover if \(\psi\) was a based homotopy then \(\left(\begin{array}{lll}1 & 0 & E_{E}\end{array}\right) \Phi\left(A^{+}\right)=0\).
Q.E.D.
11.21.- Theorem. Assume (\(A, d_{A}\)) is a minimal connected KS complex and \(\emptyset:\left(A, d_{A}\right) \rightarrow\left(A, d_{A}\right)\) is a homomorphism of c.g.d.a.'s. Then the following are equivalent :
i) \(\wp \sim\) 亿.
ii) \(\emptyset=e^{s d_{A}+d_{A}^{s}}\), where \(s\) is a degree -1 derivation of \(A\).

Prooh.- In prop 11.17 we proved i) \(m\) ii). If ii) holds define a
degree -1 derivation \(j\) in \(\Lambda(t, d t) \Theta A\) by
\[
j(t)=0, j(d t)=0, j(a)=\operatorname{ts}(a), \quad a \in A .
\]

Define \(: A \rightarrow \Lambda(t, d t) \ominus A\) by
\[
\bullet(a)=e^{d j+j d}\left(\begin{array}{lll}
1 & \theta
\end{array}\right) \quad, \quad a \in A
\]
where \(d\) is the differential in \(A(t, d t) \theta A\). Then \(\pi_{0}{ }^{\Phi}=1\) and \(\pi_{1} \oplus=0\). Hence prop. 11.20 shows that \(\psi \sim 1\).
Q.E.D.

\section*{The same argument gives}
11.22.-Theorem. Assume (\(A, d_{A}\)) is a minimal connected KS complex and \(\Downarrow:\left(A, d_{A}\right) \rightarrow\left(A, d_{A}\right)\) is a homomorphism of c.g.d.a.'s. Then the following are equivalent :
i) \(\downarrow \approx_{1}\).
ii) \(\downarrow=e^{s d} A^{+d} A^{s}\), where \(s\) is a degree -1 derivation of \(A\) and \(s\left(A^{1}\right)=0\).

\section*{Chapter 12}

\section*{Simplicial sets and local systems.}
12.1.- Simplicial sets. For each integer \(n \geqslant 0\) write
\([n]=\{0,1, \ldots, n\}\). Let Ord denote the category whose objects are the sets [0], [1], [2], and whose morphisms are given by
\[
\operatorname{Ord}([n],[m])=\{\text { set maps } f:[n] \rightarrow[m] \text { such that } i \leqslant j=>f(i) \leqslant f 1
\]

Among the elements of \(\operatorname{Ord}([n],[n+1])\) we distinguish the face maps
\[
\delta_{i}:\{0, \ldots, n\} \rightarrow\{0, \ldots, i-1, \hat{i}, i+1, \ldots, n+1\}
\]
and among the elements of \(\operatorname{Ord}([n+1],[n])\) we distinguish the degeneracy maps
\[
\sigma_{i}:\{0, \ldots, n+1\} \rightarrow\{0, \ldots, i, i, \ldots, n\}
\]

They satisfy the relations
\[
\begin{array}{ll}
\delta_{j} \delta_{i}=\delta_{i} \delta_{j-1} & , i<j \\
\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j-1} & , i \leq j
\end{array}
\]
(12.2) and
\[
\sigma_{j} \delta_{i}=\left\{\begin{array}{cl}
\delta_{i}^{\sigma_{j-1}} & , i<j \\
1 & , i=j, j+1 \\
\delta_{i-1} \sigma_{j} & , i>j+1
\end{array}\right.
\]

A simplicial set is a contravariant functor, \(\underline{K}\), from Ord to the category of sets. We denote by \(\underline{K}_{n}\) the set \(\underline{K}([n])\); it is called the set of \(\underline{n-s i m p l i c e s}\) of \(K\). If \(\sigma \in \underline{K}_{n}\) we write \(|0|=\operatorname{dim} \sigma=n\).

Corresponding to the \(\delta_{i}\) and \(\sigma_{i}\) are the face and degeneracy maps
\[
\partial_{i}: \frac{K}{n+1}^{K_{n}} \frac{K}{n} \quad \text { and } \quad s_{i}: K_{n} \rightarrow \frac{K_{n+1}}{}
\]

They satisfy the relations
\[
\begin{array}{lll}
\partial_{i} \partial_{j}=\partial_{j-1} \partial_{i} & , & i<j \\
s_{i} s_{j}=s_{j+1} s_{i} & , & i \leqslant j
\end{array}
\]
(12.3) and
(A family of sets, \(f_{n}, n \geqslant 0\), together with maps \(\partial_{i}, s_{i}\) satisfying (12.3) defines a simplicial set.)

If \(K\) is a simplicial set the simplices in \(\bigcup_{i=0}^{n-1} s_{i}\left(K_{n-1}\right)\) are called degenerate. The other simplices in \({\underset{n}{n}}\) are called nondegenerate.

A simplicial map \(\underline{L} \rightarrow \underline{K}\) is a family of set maps \(\underline{L}_{n} \rightarrow K_{n}\) commuting with the face and degeneracy maps. If each \(L_{n} \rightarrow K_{-n}\) is the inclusion of a subset, we say \(\underline{L}\) is a subsimplicial set of \(\underline{K}\).

Suppose \(\underline{K}\) is a simplicial set, and \(M_{n} C{\underset{n}{n}}\) are subsets such that \(\partial_{i}\left(M_{n}\right) \subset M_{n-1}\). Define subsets \(L_{n} \subset K_{n}\) by
\[
\begin{equation*}
\underline{L}_{n}=\left\{s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}(\tau) \mid \tau \varepsilon M_{n-p}, 1 \leqslant p \leqslant n\right\} \cup M_{n} . \tag{12.4}
\end{equation*}
\]

Using (12.3) it is easy to see that the \(\frac{L_{n}}{}\) define a subsimplicial set of \(\underline{K}\). Note that the non-degenerate simplices of \(L_{n}\) are all in \(M_{n}\); we have only added degenerate ones.

\section*{S. HALPERIN}

If we apply this construction with
\[
M_{m}= \begin{cases}R_{m} & , m \leq n \\ \phi & , m>n\end{cases}
\]
we obtain a subsimplicial set which we denote by \(\underline{K}^{(n)}\) and call the \(n^{\text {th }}\) skeleton of K . Thus
\[
\text { Nondegenerate simplices in } K_{m}^{(n)}=\left\{\begin{array}{cc}
\text { Nondegenerate simplices in } K_{m}, & m \leq n \\
0 & m>n
\end{array}\right.
\]
(Note that \(\left.\underline{K}_{m}^{(n)}=\left(\underline{K}^{(n)}\right)_{m}.\right)\)
A simplicial map \(\underline{L} \rightarrow \underline{K}\) restricts to simplicial maps \(\underline{L}^{(n)} \rightarrow \underline{K}^{(n)}, n \geqslant 0\).
12.5.- Lemma. Let \(\underline{K}\) be a simplicial set. Assume \(w, \tau \in{\underset{K}{n}}\) satisfy
\[
s_{i} \tau=s_{j}{ }^{\omega}=\sigma \quad \text {, some } \quad j \leq i
\]

If \(j=i\) then \(\tau=\omega\). If \(j<i\) then
\(\tau=s_{j} \partial_{i} \omega\) and \(\omega=s_{i-1} \partial_{i} \omega\).
Proof.- Using (12.3) we find
\[
\tau=\partial_{i+1} \mathbf{s}_{i} \tau=\partial_{i+1} s_{j}^{\omega}=s_{j} \partial_{i}^{\omega},
\]
and
\[
\omega=\partial_{j} s_{j}^{\omega}=\partial_{j} s_{i}^{\tau}=s_{i-1} \partial_{j}^{\tau}
\]

Hence
\[
\omega=s_{i-1}{ }_{j} s_{j} \partial_{i} \omega=s_{i-1} \partial_{i} \omega .
\]
Q.E.D.

\section*{LECTURES ON MINIMAL MODELS}
12.6.- Example-simplicial complexes. Let \(K\) be a simplicial complex. If \(K_{p}\) is the set of \(p\)-simplices then each element of \(K_{p}\) is a subset of \(K_{0}\) containing \(\mathrm{p}^{+1}\) elements.

An associated simplicial set \(K\) is given as follows :
i) \(K_{n}\) consists of all the set maps \(\sigma:[n] \rightarrow K_{0}\) such that \(I m \sigma\) is a simplex of \(K\).
ii) For \(f \in \operatorname{Ord}([n],[m]), K(f): K_{m} \rightarrow K_{n}\) is given by
\[
\underline{\underline{Z}}(f)(\sigma)=\sigma \circ f .
\]
12.7.- Example - ordered simplicial complexes. Suppose \(K\) is a simplicial complex, and that the vertices of \(K\) havec been.assigned a (partial) order in such a way that the vertices of any simplex are linearly ordered.

An associated simplicial set, \(\underline{K}\), is given as follows :
i) \(K_{n}\) consists of all the set maps \(\left.\sigma: \mid n\right] \rightarrow K_{0}\) such that Im \(\sigma\) is a simplex of \(K\) and such that
\[
\sigma(0) \leqslant \sigma(1) \leqslant \ldots \leqslant \sigma(n) .
\]
ii) For \(f \in \operatorname{Ord}(|n|,|m|), \quad \underline{K}(f): \underline{K}_{-m} \rightarrow \underline{K}_{n}\) is defined by
\[
\underline{K}(f)(\sigma)=\sigma \circ f .
\]

Then the set map \(\sigma \mapsto \operatorname{Im} \sigma\) defines a bijection :
(12.8)
\[
\text { Nondegenerate simplices of } K_{n}=K_{n} \text {. }
\]

In particular, if \(K^{(n)}\) is the n-skeleton of \(K\) then \(K^{(n)}=\underline{K}^{(n)}\).
12.9.- Example-the standard simplex \(\Delta^{n}\). Denote the standard basis
\[
(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots .,(0, \ldots, 0,1)
\]
of \(R^{n+1}\) by \(v_{0}, \ldots, v_{n}\). The standard \(n\)-simplex, \(\Delta^{n}\), is the subset of \(R^{n+1}\) given by

\section*{S. HALPERIN}
\[
\Delta^{n}=\left\{\sum_{0}^{n} t_{i} v_{i} \mid 0 \leqslant t_{i} \leqslant 1 ; \sum_{0}^{n} t_{i}=1\right\}
\]

The continuous function \(b_{i}: \Delta^{n} \rightarrow \mathbb{R}\) given by
\[
b_{i}\left(\sum t_{j} v_{j}\right)=t_{i}
\]
is called the \(i^{\text {th }}\) barycentric coordinate function. If \(f:[n] \rightarrow[m]\) is any set map we define a continuous map \(\Delta(f): \Delta^{n} \rightarrow \Delta^{\text {m }}\) by
\[
\Delta(f)\left(\sum_{0}^{n} t_{i} v_{i}\right)=\sum_{0}^{n} t_{i} v_{f(i)}
\]

Then
\[
b_{i} \circ \Delta(f)=\left\{\begin{array}{cc}
\because_{i}^{\sum_{j}^{-1}}(i)^{b} & f^{-1}(i) \neq \emptyset \tag{12.10}\\
0 & ,
\end{array}\right.
\]

A function \(\Delta^{n} \rightarrow M \quad\left(M\right.\) a \(C^{\infty}\) manifold) is called smooth if it extends to a smooth function \(U \rightarrow M\) in some neighbourhood \(U\) of \(\Delta^{n}\) in \(R^{n+1}\).

We shall also denote by \(\Delta^{n}\), and call the standard n-simplex the ordered simplicial complex given by
\[
\left(\Delta^{n}\right)_{0}=\left\{v_{0}, \ldots, v_{n}\right\} \quad, \quad v_{0}<\ldots<v_{n}
\]
and
\[
\left(\Delta^{n}\right)_{p}=\left\{\text { all subsets of }\left(\Delta^{n}\right)_{0} \text { with } p+1 \text { elements }\right\}
\]

Applying example 12.7 we obtain a simplicial set \(\Delta^{n}\); if we identify \([n]=\left\{v_{0}, \ldots, v_{n}\right\}\) then
\[
\begin{equation*}
\left.\left(\Delta^{n}\right)_{p}=\operatorname{ord}(|p|, \mid n]\right) \tag{12.11}
\end{equation*}
\]

The (\(n-1\))-skeleton of \(\Delta^{n}\) is just its boundary \(\partial \Delta^{r}\) (consisting of all simplices of dimension \(<n\)) clearly then \(\partial^{n}\) is the (\(n-1\))-skeleton of \(\Delta^{n}\) :
\[
\underline{\partial}^{n}=\left(\underline{\Delta}^{n}\right)^{(n-1)} c \underline{\Delta}^{n}
\]
```

(We regard }\partial\mp@subsup{\Delta}{}{n}\mathrm{ as an ordered complex !)
Thus (cf. (12.11) or (12.8)) all the non degenerate simplices of
\partial\mp@subsup{\Delta}{}{n}}\mathrm{ are of dimension }\leqslantn-1. \mp@subsup{\Delta}{}{n}\mathrm{ has a single additional non-degenerate simplex.
It has dimension n and we denote it by [勋].
Finally, let K
simplicial map

$$
\underline{\sigma}: \underline{\Delta}^{\mathrm{n}} \rightarrow \underline{\mathrm{~K}}
$$

by (using (12.11))

$$
\underline{\sigma}(f)=\underline{K}(f) \circ \sigma
$$

It satisfies

$$
\begin{equation*}
\sigma\left(\left[\Delta^{n}\right]\right)=\sigma \tag{12.12}
\end{equation*}
$$

12.13.- Example - singular simplices. The singular simplices on a topological space, $M$, form a simplicial set Sing(M):

$$
\underline{\text { Sing }}_{n}(M)=\left\{\sigma: \Delta^{n} \xrightarrow{\text { cont }} M\right\} ;
$$

$$
\partial_{i}(\sigma)=\sigma \circ \delta_{i} \quad ; \quad s_{i}(\sigma)=00 \sigma_{i}
$$

A continuous map $\emptyset: M \rightarrow N$ defines a simplicial map

$$
S(\psi): \underline{\operatorname{sing}}(M) \rightarrow \operatorname{Sing}^{(N)}
$$

by $S(\psi) \sigma=\psi 00$.
If $M$ is a $C^{\infty}$ manifold then smooth singular simplices are a
subsimplicial set, Sing $^{\infty}(M)$.

```
12.14.- Local systems. Recall that all vector spaces are defined over a given field \(k\) of characteristic zero. By the category of n-graded spaces we mean the category whose objects are the n-graded spaces
\[
v=\sum_{p_{1}, \ldots, p_{n} \geqslant 0} v^{p_{1}, \cdots, p_{n}}
\]
and whose morphisms are the linear maps, homogeneous of multidegree zero.

The category of \(n\)-graded differential spaces has for objects pairs \((V, d)\), where \(V\) is an \(n\)-graded space, \(d\) is a linear map of total degree 1 , and \(d^{2}=0\). The morphisms are the linear maps, homogeneous of multidegree zero, which commute with d.

In the sequel \(C\) will always denote one of the following categories :

II \(\left\{\begin{aligned} & \text { iv) n-graded differential spaces. } \\ & \text { v) The subcategory of n-graded differential algebras. } \\ & \text { vi) The subcategory of commutative (in the graded sense) n-graded diffe- } \\ & \text { rential algebras. }\end{aligned}\right.\)

In group II the differential is usually denoted by \(d\). We shall almost always restrict ourselves to the case \(n=1\) (graded spaces, etc.) and leave the general case to the reader.
12.15.- Definition. Let \(K\) be a simplicial set. A local system \(F\) on \(K\) with values in \(C\) is :
i) A family of objects \(F_{0}=\sum_{p \geqslant 0} F_{\sigma}^{P}\) in \(C\), indexed by the simplices 0 of \(\underline{K}\).
ii) A family of morphisms (called the face and degeneracy operators)
\[
\begin{gathered}
\text { LECTURES ON MINIMAL MODELS } \\
\partial_{i}: F_{\sigma} \longrightarrow F_{\partial_{i} \sigma} \quad \text { and } \quad s_{i}: F_{\sigma} \longrightarrow F_{s_{i}}
\end{gathered}
\]
satisfying the relations (12.3).
12.16.- Definition. Let \(\emptyset: \underline{L} \rightarrow \underline{\mathrm{~K}}\) be a simplicial map, and F a local system over K. The pullback of \(F\) to \(\underline{L}\) is the local system \(p^{*} F\) over \(\underline{L}\) given by
\[
\left(\psi^{*} F\right)_{\sigma}=F_{\psi_{0}} \quad ; \quad \partial_{i}=\partial_{i} ; s_{i}=s_{i} .
\]

If \(\underline{L} \longrightarrow \underline{\mathrm{~K}}\) is a subset we say \(\Psi^{*} F\) is the restriction of \(F\) to
L.

Next, let \(F\) be a local system over \(K\) with values in C. Define a graded space \(F(\underline{K})\) as follows : an element of \(F^{P}(\underline{K})\) is a function which assigns to each simplex \(\sigma\) of \(\underline{K}\) an element \(\oplus_{\sigma} \in F_{\sigma}^{P}\) such that for all \(\sigma\)
\[
\Phi_{\partial_{i} \sigma}=\partial_{i}\left(\Phi_{\sigma}\right) \quad \text { and } \quad \Phi_{i_{i} \sigma}=e_{i}\left(\Phi_{\sigma}\right) .
\]

The linear structure is given by
\[
(\lambda \phi+\mu \psi)_{\sigma}=\lambda \phi_{\sigma}+\mu \psi_{\sigma} .
\]

If \(C\) is a category of algebras (or with differential) we put
\[
\left.(\Phi . \psi)_{\sigma}=\phi_{\sigma} \cdot \psi_{\sigma} \quad \text { (or } \quad(\mathrm{d} \Phi)_{\sigma}=\mathrm{d}\left(\phi_{\sigma}\right)\right) .
\]

If \(C\) is a category of \(n\)-graded spaces then the finite decompositions
\[
F_{\sigma}^{p}=\sum_{p_{1}+\cdots+p_{n}-p_{\sigma}} F_{p_{1}}^{p_{1} \cdots \cdots, p_{n}}
\]
define in an obvious way an n-grading in \(F(\underline{K})\).
In this way \(F(\underline{K})\) becomes an object of \(C\). It is called the space of
global sections of \(F\).

\section*{S. HALPERIN}

If \(\psi: \underline{\underline{L}} \rightarrow \underline{K}\) is a simplicial map it determines a morphism \(F(\psi):\left(\psi^{*} F\right)(L) \leftarrow F(\underline{K})\) given by
\[
\left(F(\varphi) \Phi_{\sigma}=\Phi_{\varphi \sigma}\right.
\]

If \(\dot{\psi}\) is an inclusion of \(\underline{L}\) we denote \(\left(\|^{*} F\right)(\underline{L})\) simply by \(F(\underline{L})\), and call the morphism \(F(\underline{K}) \rightarrow F(\underline{L})\) restriction.

Again suppose \(F\) is a local system over \(\underline{K}\). Assume \(M_{n} \subset K_{n}\) are subsets \((n \geqslant 0)\) such that \(\partial_{i}: M_{n} \rightarrow M_{n-1}\).

Recall that \(\left\{M_{n}\right\}\) generates a subsimplicial set \(\underline{L} \subset \underline{K}\) (cf. (12.4)). Moreover, if \(s_{i} \sigma \in M_{n+1}\) then \(\sigma=\partial_{i}{ }^{s}{ }_{i} \sigma \in M_{n}\).
12.17.- Lemia. Suppose \(\Phi_{\sigma} \in F_{\sigma}^{p}\left(\sigma \in M_{n}, n \geqslant 0\right)\) satisfy \(\Phi_{\partial_{i} \sigma}=\partial_{i} \Phi_{\sigma}\left(\sigma \in M_{n}, n \geqslant 1\right)\) and \(\Phi_{s_{i} \sigma}=\mathbf{3}_{i} \Phi_{\sigma} \quad\) (if \(\sigma\) and \(\left.\mathbf{s}_{i} \sigma \in M_{n}, n \geqslant 0\right)\). Then there is a unique element \(\Phi \in F^{P}(\underline{L})\) extending the \(\oplus_{\sigma}\).

Proof : We show by induction that there are unique elements \(\psi_{\sigma} \in F_{\sigma}^{p} \quad\left(\sigma \in L_{n}, \quad n=0,1, \ldots\right)\) such that
\[
\begin{array}{ll}
\Psi_{\sigma}=\Phi_{\sigma} & \text { if } \sigma \in M_{n} \\
\Psi_{\delta_{i}}=s_{i} \Psi_{\tau} & \text { if } \tau \in L_{n-1}, n \geqslant 1 . \tag{12.18}\\
\Psi_{\partial_{i} \sigma}=\partial_{i} \Psi_{\sigma} & \text { if } \sigma \in \frac{L_{n}}{}, \quad n \geqslant 1 .
\end{array}
\]

In fact, for \(n=0\) the first condition defines the \(\psi_{0}\) and the others are vacuous. Assume the \(\psi_{\sigma}\) are constructed for \(\sigma \in L_{m}, m \leqslant n\), such that (12.18) holds for \(m \leqslant n\).

If \(\sigma \in L_{n+1}\) then by (12.4) either \(\sigma \in M_{n+1}\) or \(\sigma=s_{i}{ }^{\top}\), \(T \in L_{n}\). In the first case put \(\psi_{\sigma}=\oplus_{\sigma}\), in the second put \(\psi_{\sigma}=s_{i} \psi_{\tau}\). To check that \(\psi_{\sigma}\) is well defined note first that if \(\sigma=s_{i} \tau \in M_{n^{+}}\)then \(\tau \in M_{n}\) and so \(\Phi_{\sigma}=\mathbf{s}_{i} \Phi_{\tau}=\mathbf{s}_{i} \psi_{\tau}\).

\section*{LECTURES ON MINIMAL MODELS}

On the other hand, if \(\sigma=s_{i} \tau=s_{j}{ }^{\omega}\) with \(\tau \neq \omega, \quad \tau, \omega \in \underline{L}_{n}\) then \(i \neq j\). Take \(j<i\) and apply lemma 12.5 to find
\[
\begin{aligned}
& s_{j} \psi_{\omega}=s_{j}{ }^{\psi} s_{i-1} \partial_{i} \omega \\
&=s_{j}{ }_{i-1}{ }^{\psi_{\partial_{i}} \omega} \\
&=s_{i}{ }_{j} \psi_{\partial_{i} \omega}=s_{i} \psi_{s} \partial_{i} \omega=s_{i} \psi_{\tau} .
\end{aligned}
\]

Finally, the first two parts of \((12.18)_{n+1}\) are true by definition, while the third follows easily from (12.3).
Q.E.D.

Recall (example 12.9) that if \(K\) is a simplicial set, each simplex \(\sigma \in \underline{K}_{n}\) determines a simplicial map \(\underline{\sigma}: \underline{\Delta}^{n} \rightarrow \underline{K}\) with \(\underline{o}\left(\left[\Delta^{n}\right]\right)=\sigma\). In particular, if \(F\) is a local system over \(\underline{K}\) we can form \(\underline{\sigma}^{*} F\) over \(\underline{\Delta}^{n}\).
12.19.- Definition. \(F\) is extendable if for each \(\sigma\) the restriction
\[
\left(\underline{\sigma}^{*} F\right)\left(\underline{\Delta}^{n}\right) \rightarrow\left(\underline{\sigma}^{*} F\right)\left(\underline{\Delta}^{n}\right)
\]
is surjective.
12.20.- Proposition. If \(\psi: \underline{L} \rightarrow \underline{K}\) is a simplicial map and \(F\) is an extendable local system over \(\underline{K}\), then \(\psi^{*} F\) is an extendable local system over \(\underline{L}\).

Proof : Obvious.
Q.E.D.
12.21.- Proposition. Suppose \(\underline{L} \mathbb{C} \underline{K}\) is a subsimplicial set and \(F\) is an extendable local system over \(\underline{K}\). Then the restriction morphism
\[
F(\underline{K}) \rightarrow F(\underline{L})
\]
is surjective.

\section*{S. HALPERIN}
 be extended to an element \(\psi\) of \(F^{p}\left(\underline{L} \cup \underline{K}^{(n)}\right)\). Suppose that \(\sigma \varepsilon \underline{K}_{n}, \sigma \notin \underline{L}_{n}\) and \(\sigma\) non degenerate. Then \(\underline{\sigma}\) restricts to
\[
\partial \underline{\sigma}: \underline{\partial \Delta}^{n} \rightarrow \underline{K}^{(n-1)} \text {, and }
\]
we can use \(\partial \underline{\sigma}\) to pull \(\phi\) back to an element of \(\sigma^{*} F^{p}\left(\Delta^{n}\right)\).
By hypothesis there is an element \(\Psi_{\sigma} \in F_{\sigma}^{P}\) which restricts to this pull back of \(\Phi\) (use the isomorphism 12.12.b) below);
\[
\partial_{i} \psi_{\sigma}=\Phi_{\partial_{i} \sigma} \quad 0 \leq i \leqslant n .
\]

Next, set \(\psi_{\sigma}=\Phi_{\sigma}\) if \(\sigma \in\left(\underline{L} \cup \underline{K}^{(n-1)}\right)_{, m}, m \geqslant 0\). Finally, use lemma 12.17 to extend \(\Psi\) to all the simplices in \(\underline{L} \cup \underline{K}^{(n)}\).

> Q.E.D.
12.22.- Definition. If \(F\) is an extendable local system over \(K\) and \(\underline{L} \subset \underline{K}\) we denote the kernel of \(F(\underline{K}) \rightarrow F(\underline{L})\) by \(F(\underline{K}, \underline{L})\), the space of relative global sections. Thus
\[
0 \rightarrow F(\underline{K}, \underline{L}) \rightarrow F(\underline{K}) \rightarrow F(\underline{L}) \rightarrow 0
\]
is a short exact sequence.
\[
\begin{aligned}
& \text { 12.23.- Example. Let } F \text { be any local system over } \underline{K} \text {. Put } \\
& N K_{n}=\left\{\text { nondegenerate simplices in } K_{n}\right\}
\end{aligned}
\]
and
\[
N F_{\sigma}^{p}=\left\{\begin{array}{l}
F_{\sigma}^{p} \quad \sigma \in \underline{K}_{0} \\
\bigcap_{0 \leq i \leq n} \operatorname{ker}\left(\partial_{i}: F_{\sigma}^{p} \rightarrow F_{\partial_{i} \sigma}^{p}\right), \quad \sigma \in \underline{K}_{n}, \quad n \geqslant 1
\end{array}\right.
\]

\section*{LECTURES ON MINIMAL MODELS}

Define an inclusion
\[
\prod_{\sigma \in N K} N F_{\sigma}^{p} \longrightarrow F^{p}\left(\underline{K}^{(n)}\right)
\]
as follows. If \(\Psi_{\sigma} \in N F_{\sigma}^{p}, \sigma \in N K_{n}\), extend by putting \(\Psi_{\sigma}=0\), if \(|\sigma|<n\) and then use lemma 12.17 to extend to a unique element \(\psi\) of \(F^{P}\left(K^{(n)}\right)\). It is easy to verify that the sequence
\[
\begin{equation*}
0 \rightarrow \prod_{\sigma \in N K} N F_{\sigma}^{p} \rightarrow F^{p}\left(\underline{K}^{(n)}\right) \xrightarrow{\text { rest'n}} F^{p}\left(\underline{K}^{(n-1)}\right) \tag{12.24}
\end{equation*}
\]
is exact.

In particular, if \(F\) is extendable this inclusion is an
isomorphism
\[
\begin{equation*}
\left.\prod_{\sigma \in N K} N F_{\sigma}^{p} \xrightarrow{\cong} F^{p} \underline{K}^{(n)}, \underline{K}^{(n-1)}\right) \quad, \quad p=0,1, \ldots \tag{12.25}
\end{equation*}
\]

On the other hand, suppose \(F\) is any local system over \(\underline{\Delta}^{n}\).
It is an equally easy exercise to deduce that an isomorphism
(12.26.a)
\[
F\left(\underline{\Delta}^{n}\right) \xrightarrow{\cong}\left[_{\Delta_{n}}\right]
\]
is defined by \(\Phi \rightarrow \Phi \|_{\left.\Delta^{n}\right]}\). In view of (12.24) it restricts to an isomorphism
(12.26.b)
\[
\operatorname{Ker}\left(F\left(\Delta^{n}\right) \rightarrow F\left(\underline{\partial \Delta}^{n}\right)\right) \xrightarrow{\cong} N F\left[\Delta^{n}\right]
\]

In the applications we shall consider local systems satisfying certain additional conditions. Aside from extendable we need the following definitions. A local system \(F\) over \(\underline{K}\) is
i) constant if for some \(F_{0} \in C\) each \(F_{\sigma}=F_{0}\) and each \(\partial_{i}, s_{i}\) is the identity map of \(F_{0}\).
ii) constant by dimension if for some sequence \(F_{n} \in C \quad(n \geqslant 0)\), \(F_{\sigma}=F_{n}, \quad \sigma \in \underline{K}_{n}\), and \(\partial_{i}, \quad s j\) depend only on \(|\sigma|\).

\section*{S. HALPERIN}
iii) a local system of coefficients (l.s.c.) if for each \(\sigma\) and each \(i\)
\[
\partial_{i}: F_{\sigma} \rightarrow F_{\partial_{i} \sigma} \quad \text { and } \quad s_{i}: F_{\sigma} \rightarrow F_{S_{i} \sigma}
\]
are isomorphisms.
iv) a local system of differential coefficients if \(C\) is a category with differentials and if for each \(\sigma\), i
\(\partial_{i}^{*}: H\left(F_{\sigma}\right) \rightarrow H\left(F_{\partial_{i} \sigma}\right) \quad\) and \(\quad s_{i}^{*}: H\left(F_{\sigma}\right) \rightarrow H\left(F_{\delta_{i} \sigma}\right)\)
are isomorphisms (in other words if \(\left\{H\left(F_{\sigma}\right), \partial_{i},{ }_{i}\right\}\) is a local system of coefficients).

Our next goal is the following
12.27.- Theorem. Let \(F\) and \(G\) be extendable local systems of differential coefficients over \(\underline{K}\). Assume we are given morphisms
\[
\Psi_{\sigma}: F_{\sigma} \rightarrow G_{\sigma} \quad, \quad \sigma \in \underline{K}
\]
compatible with the face and degeneracy operators, with each \(\psi_{\sigma}^{\star}\) an isomorphism.
Then a morphism \(\psi: F(\underline{K}) \rightarrow G(\underline{K})\) is given by \((\psi \Phi)_{\sigma}=\psi_{\sigma}\left(\Phi_{\sigma}\right)\), and
\[
\varphi^{*}: H(F(\underline{K})) \rightarrow H(G(\underline{K}))
\]
is an isomorphism.
12.28. - Lemma. Let \(E\) be an extendable local system of differential coefficients over \(\underline{\Delta}^{n}\). For \(m \leqslant n\) let \(L^{m, n} C \Delta^{n}\) be the subcomplex generated by all simplices of dimension \(\leq m\) which contain the vertex \(v_{0}\). Then
i) For each \(m \leqslant n\),
\[
H\left(E\left(\underline{\Delta}^{n}\right)\right) \rightarrow H\left(E\left(\underline{L}^{m, n}\right)\right)
\]
is an isomorphism.

\section*{lectures on minimal models}
ii) \(\quad H^{P}\left(E\left(\underline{\Delta}^{\mathbf{n}}, \partial \underline{\Delta}^{n}\right)\right)=0, \quad \mathbf{p}<\mathbf{n}\).

\section*{Prood :}
i) If \(m=n\) there is nothing to prove and if \(m=0\) formula (12.26.b) reduces the assertion to \(\mathrm{H}\left(\mathrm{E}{\left[\Delta^{\mathrm{n}}\right]}\right) \xrightarrow{\cong} \mathrm{H}\left(\mathrm{E}_{\mathrm{v}_{0}}\right)\). This is true by hypothesis.

Now assume that \(0<m<n\) and (by induction) that the lemma holds for \(L^{p, q} \subset \Delta^{q}\) whenever \(p<m\). Since \(E\) is extendable we need only show that (cf. definition 12.22)
\[
\begin{equation*}
H\left(E\left(\underline{L}^{m, n}, \underline{L}^{m-1, n}\right)\right)=0 \tag{12.29}
\end{equation*}
\]

Let \(\sigma_{1}, \ldots, \sigma_{N}\) be the m-dimensional simplices of \(L^{m, n}\); they are also the non degenerate simplices of \(\underline{L}^{m, n}\) (of dimension m). Each \({\underset{\sim}{i}}: \underline{\Delta}^{m} \rightarrow \underline{L}^{m, n}\) pulls \(E\) back to a local 'system \(E_{i}\) of differential coefficients on \(\underline{\Delta}^{m}\) and \(E_{i}\) is extendable by prop. 12.20.

It is easy to check that the induced morphisms
\[
E\left(\underline{\sigma}_{i}\right): E\left(\underline{L}^{m, n}\right) \rightarrow E_{i}\left(\underline{\Delta}^{m}\right)
\]
define an isomorphism
\[
\left.\begin{array}{l}
E\left(\underline{L}^{m, n}, \underline{L}^{m-1, n}\right) \xrightarrow{\cong} \prod_{i=1}^{N} E_{i}\left(\Delta^{m}, \underline{L}^{m-1}, m\right.
\end{array}\right) .
\]
ii) Use the embedding \(\delta_{0}:[n-1] \hookrightarrow[n]\) to write \(\Delta^{n-1} C \Delta^{n}\) (as the face opposite \(v_{0}\)) and \(\Delta^{n-1} \subset \underline{\Delta}^{n}\). Since \(E\) is extendable we obtain the short exact sequence
\[
\begin{aligned}
& 0 \rightarrow E\left(\underline{\Delta}^{n}, \partial \underline{\Delta}^{n}\right) \rightarrow E\left(\underline{\Delta}^{n}, \underline{L}^{n-1, n}\right) \rightarrow E\left(\underline{\Delta}^{n-1}, \partial \underline{\Delta}^{n-1}\right) \rightarrow 0 . \\
& \text { But i) shows that } H\left(E\left(\underline{\Delta}^{n}, \underline{L}^{n-1, n}\right)\right)=0 \text {, and so there is a linear }
\end{aligned}
\]
is omorphism of degree 1

\section*{S. HALPERIN}
(12.30)
\[
H\left(E\left(\Delta^{n-1}, \partial \Delta^{n-1}\right)\right) \xrightarrow{\cong} H\left(E\left(\Delta^{n}, \partial \Delta^{n}\right)\right) .
\]
Q.E.D.
12.31.- Proof of theorem 12.27. We show first that for each \(n\),
\[
\begin{equation*}
\varphi^{*}: H\left(F\left(\underline{\underline{(}}^{(n)}\right)\right) \rightarrow H\left(G\left(\underline{K}^{(n)}\right)\right) \tag{12.32}
\end{equation*}
\]
is an isomorphism. Assume this is true for \(n-1\); to prove it for \(n\) we have to show only that
\[
\left.\left.\varphi^{*}: H\left(F \underline{K}^{(n)}, \underline{K}^{(n-1)}\right)\right) \rightarrow H\left(G \underline{K}^{(n)}, \underline{K}^{(n-1)}\right)\right)
\]
is an isomorphism.
Because of the isomorphism (12.25) it is sufficient to prove that \(\varphi_{\sigma}^{*}: H\left(N F_{\sigma}\right) \rightarrow H\left(N G_{\sigma}\right)\) is an isomorphism for \(\sigma \in N K_{n}\). Use \(\sigma\) to pull \(F\) and \(G\) back to \(\Delta^{n}\) and obtain (cf. (12.26.b) a commutative row exact diagram

in whica the right hand arrew is a cohomology isomorphism by induction and the central arrow is by hypothesis. Hence so is the left hand arrow; and (12.32) follows.

Next observe that by lemma 12.28 if \(\sigma \in K_{n}\),
\[
H^{P}\left(\underline{\sigma}^{*} F\left(\underline{\Delta}^{n}, \partial \Delta^{n}\right)\right)=0=H^{p}\left(\underline{\sigma}^{*} G\left(\underline{\Delta}^{n}, \underline{\Delta}^{n}\right)\right), \quad p<n .
\]

Equations (12.26.a) and (12.26.b) translate this to
(12.33)
\[
H^{P}\left(N F_{\sigma}\right)=0=H^{P}\left(N G_{\sigma}\right), \quad \sigma \in K_{n}, \quad P<n \text {. }
\]

\section*{lectures on mintmal models}

Now the isomorphisms (12.25) yield
\[
\begin{equation*}
H^{p}\left(F\left(\underline{K}^{(n)}, \underline{K}^{(n-1)}\right)=0=H^{p}\left(G \underline{K}^{(n)}, \underline{K}^{(n-1)}\right)\right), \quad p<n . \tag{12.34}
\end{equation*}
\]

In particular, let \(\Phi \in F^{P}\left(\underline{K}, \underline{K}^{(n)}\right), p \leq n\), satisfy \(d \Phi=0\). Using equations (12.34) and the extendability of \(F\) we can find a sequence \(\Psi_{i} \in F^{p-1}\left(\underline{K}_{\underline{K}}^{(n+i)}\right), i=0,1, \ldots\) so that \(\quad-d\left(\sum_{0}^{m} \Psi_{i}\right) \in F^{p}\left(\underline{K}_{\underline{K}}^{(n+m+1)}\right)\). For each \(\sigma\) set
\[
\left.\Psi_{\sigma}=\sum_{0}^{\infty}\left(\psi_{i}\right)_{\sigma} \quad \text { (this is a finite sum }!\right) .
\]

\[
\begin{equation*}
H^{p}\left(F\left(\underline{K}_{\underline{K}}^{\underline{K}}{ }^{(n)}\right)\right)=0=H^{p}\left(G\left(\underline{K}_{\underline{K}}^{\underline{K}}{ }^{(n)}\right)\right), \quad P \leq n . \tag{12.35}
\end{equation*}
\]

These equations, together with (12.32), complete the proof.
Q.E.D.

Finally, suppose \(A\) and \(B\) are objects from one of the categories \(C\) in our list. If \(A\) and \(B\) were \(n\)-graded then \(A B\) is \(2 n\)-graded. If \(A\), \(B\) were algebras we set \((a \quad \theta) .\left(a^{\prime} \theta b^{\prime}\right)=(-1)|b|\left|a^{\prime}\right|_{a a^{\prime}} \theta \quad b b^{\prime}\). If \(A\) and \(B\) had differentials we set \(d(a \operatorname{b})=d a \theta b+(-1)|a| a \operatorname{db}\). With these conventions we say.
12.36. - Definition. The tensor product of local systems \(E\) and \(F\) over \(K\) with values in \(C\) is the local system \(E F\) given by
\[
(E \oplus F)_{\sigma}=E_{\sigma} \otimes F_{\sigma} \quad ; \quad \partial_{i}=\partial_{i} \theta \partial_{i} \quad ; \quad s_{i}=s_{i} \theta s_{i}
\]

Our next main result is
12.37.- Theorem. The tensor product of extendable local systems is extendable.
S. HALPERIN
12.38.- Proposition. Let \(E\) be an extendable local system over K. Let \(\underline{L}, \underline{L}^{1}, \ldots, \underline{L}^{m} C \underline{X}\) be subsimplicial sets.
i) Suppose \(\phi_{i} \in E\left(\underline{L}, \underline{L} \cap \underline{\underline{L}}^{i}\right)\) satisfy \(\sum_{i=1}^{m} \Phi_{i}=0\). Then each \(\bullet_{i}\) extends to \(\psi_{i} \in E\left(\underline{K}, \underline{L}^{i}\right)\) such that \(\sum_{i=1}^{m} \psi_{i}=0\).
ii) If \(\Gamma \in E(\underline{K}, \underline{L})\) and \(r=\sum_{i=1}^{m} r_{i}, \Gamma_{i} \in E\left(\underline{K}, \underline{L}^{i}\right)\) then also \(r=\sum_{i=1}^{m} \bar{r}_{i}\) with \(\bar{r}_{i} \in E\left(\underline{K}, \underline{L} \cup \underline{L}^{i}\right)\).

Proof : By induction on \(m\). Regard the assertions above as \(i)_{m}\) and ii) \({ }_{m}\). Note that both are trivial for \(m=1\). We show that
\[
\text { ii) } \left.\left.{ }_{m-1} \Rightarrow i i_{m}, \quad \text { and } \quad i\right)_{m} \Rightarrow i i\right)_{m} .
\]
\(\left.\underline{i i})_{m-1} \Rightarrow i\right)_{m}\). Choose \(\Omega_{i} \in E\left(\underline{K}, \underline{L}^{i}\right)\) extending \(\phi_{i}\) for \(i=1, \ldots, m-1\), and set \(\Omega=\sum_{i=1}^{m-1} \Omega_{i}\). Then
and
\[
\Omega=\sum_{i=1}^{m-1} \Omega_{i}, \quad \Omega_{i} \in E\left(\underline{K}, \underline{L}^{i}\right)
\]

Hence by \(i i)_{m-1} \quad \Omega=\sum_{i=1}^{m-1} \bar{\Omega}_{i}\), where \(\bar{\Omega}_{i} \in E\left(\underline{K}, \underline{L}^{i} \cup\left(\underline{L} \cap \underline{L}^{m}\right)\right)\).
In particular, \(\bar{\Omega}_{i}\) is zero in \(\underline{\underline{L}}^{m} \cap\left(\underline{L}^{i} \cup \underline{L}\right)\). Hence by the extendability of \(t\) we can find \(\Gamma_{i} \in E\left(K, \underline{\underline{L}}^{i} \cup \underline{L}\right)\) so that
\[
\left.r_{i}\right|_{\underline{L}}=\left.\bar{\Omega}_{i}\right|_{\underline{L}} ^{m} \quad, \quad i=1, \ldots, m-1
\]

Put \(\psi_{i}=\Omega_{i}-r_{i} \quad(i=1, \ldots, m-1)\) and \(\psi_{m}=-\sum_{i=1}^{m-1} \psi_{i}\). Then

> Lectures on minimal models
> \(\left.\psi_{i}\right|_{\underline{\mathrm{L}}}=\left.\Omega_{\mathrm{i}}\right|_{\underline{\underline{L}}}-\left.\Gamma_{\mathrm{i}}\right|_{\underline{\underline{L}}}=0-0=0, \quad \mathrm{i}=1, \ldots, \mathrm{~m}-1\)
and
\[
\left.\Psi_{m}\right|_{\underline{\underline{L}}} m=\left.\left(-\sum_{1}^{m-1} \Omega_{i}\right)\right|_{\underline{L}}=\left.\left(\sum_{1}^{m-1} r_{i}\right)\right|_{\underline{L}}=-\left.\Omega\right|_{\underline{L}}=\left.\sum_{1}^{m-1} \bar{\Omega}_{i}\right|_{\underline{L}}{ }^{m}
\]
\(=0\).

Finally
\[
\left.\psi_{i}\right|_{\underline{\underline{L}}}=\left.\Omega_{i}\right|_{\underline{L}}-r_{i \underline{\underline{L}}}=\Phi_{i}-0=\Phi_{i} \quad, \quad i=1, \ldots, m-1
\]
and so
\[
\left.\psi_{m}\right|_{\underline{L}}=-\left.\sum_{i=1}^{m-1} \psi_{i}\right|_{\underline{L}}=-\sum_{i=1}^{m-1} \Phi_{i}=\Phi_{m}
\]
\(\left.)_{m} \Rightarrow i i\right)_{m}\). Set \(\Phi_{i}=\left.r_{i}\right|_{\underline{L}}\). Then \(\sum_{1}^{m} \Phi_{i}=0\) and \(\Phi_{i} \varepsilon E\left(\underline{L}, \underline{L} \cap \underline{L}^{i}\right)\). Hence by \(i)_{m} \Phi_{i}\) extends to \(\psi_{i} \in E\left(K, L^{i}\right)\) such that \(\sum_{i=1}^{m} \psi_{i}=0\). Now set \(\bar{\Gamma}_{i}=\Gamma_{i}-\psi_{i}\).
Q.E.D.
12.39.- Lemma. Let \(E\) and \(F\) be extendable local systems over \(\Delta^{n}\).

Suppose \(\Omega \in\left(E \in X^{n}\right)\) satisfies \(\left(\partial_{i} \theta \partial_{i}\right) \Omega=0,0 \leqslant i \leqslant m\). Then we can write \(\Omega=\sum_{\alpha} \Omega_{\alpha}\) where for each \(\alpha\) :

Either \(\left(\partial_{i} \theta i\right) \Omega_{\alpha}=0\) or \(\left(1 \quad 0 \quad \partial_{i}\right) \Omega_{\alpha}=0, i=0, \ldots, m\).

Proof : For each subset \(\sigma=\left\{i_{1}, \ldots, i_{p}\right\} \subset[n]\) (including \(0=0\))
define subspaces \(N_{\sigma}^{E} \subset E_{\left[\Delta^{n}\right]}, N_{\sigma}^{F} \subset F_{\left[\Delta^{n}\right]}\) by
\[
N_{\sigma}^{E}=\bigcap_{i \in \sigma} \text { jer } \partial_{i} \quad \text { and } \quad N_{\sigma}^{F}=\bigcap_{i \in \sigma} \text { ger } \partial_{i}
\]

Choose subspaces \(\bar{N}_{\sigma}^{E} C \cdot N_{\sigma}^{E}\) and \(\bar{N}_{\sigma}^{F} C N_{\sigma}^{F}\) so that for each \(p\)
\[
|\sigma|_{\mid \geqslant p}^{0} \quad \bar{N}_{\sigma}^{E}={ }_{|\sigma| \geqslant p}^{+} N_{\sigma}^{E} \quad \text { and } \quad|\sigma| \geqslant p \quad \bar{N}_{\sigma}^{F}=\quad+N_{\sigma \geqslant p}^{F} .
\]
(Here 0 denotes direct \(s u m,+\) denotes not necessarily direct sum.)

We show first that in \(E\left[\Delta^{n}\right]\) and \(F^{n}\left[\Delta^{n}\right]\),
(12.40) \(\quad \operatorname{ker} \partial_{i}=0 \bar{N}_{\sigma \geqslant i}^{F} \quad\) and \(\quad\) er \(\partial_{i}=0 \quad \bar{N}_{\sigma \geqslant i}^{F}\)

In fact the right hand side is contained by definition in the left. Thus we need to show that ger \(\partial_{i} \Gamma_{\sigma_{i} i} \hat{N}_{\sigma}^{E}=0\).

Recall that \(\partial_{i}\left(\Delta^{n}\right)\) is its \(i^{\text {th }}\) face; denote it by \(L^{i}\) and denote \(\bigcup_{i \in \sigma} L^{i}\) by \(L^{\sigma}\). These are subcomplexes of \(\Delta^{n}\) and so we can form \(\underline{L}^{\sigma} \subset \Delta^{n}\); clearly \(N_{\sigma}^{E}=E\left(\underline{\Delta}^{\mathrm{n}}, \underline{L}^{\sigma}\right)\).

Now suppose \(\Phi=\sum_{\substack{\left\lvert\, \begin{array}{l}\mid \geqslant p \\ i \notin \sigma\end{array}\right.}} \Phi_{\sigma}, \Phi_{\sigma} \in \bar{N}_{\sigma}^{E}\), and that \(\partial_{i} \Phi=0\). Then

In particular \(\Psi_{\sigma} \in N_{\sigma}^{E} U\{i\} \quad\) and since \(i \notin \sigma\) we have
\[
\oplus \in \sum_{|\tau| \geqslant p+1} N_{T}^{E}=\sum_{|\tau| \geqslant p+1} \bar{N}_{T}^{E} .
\]

Since \(E_{\left[\Delta^{n}\right]}=\theta_{0} \bar{N}_{\sigma}^{E}\) this gives \(\phi_{\sigma}=0,|\sigma|=p\).
Continue in this way to deduce \(\Phi=0\), which completes the proof of (12.40).

Finally, write \(\Omega=\sum_{\sigma \tau} \Omega_{\sigma \tau}, \Omega_{\sigma \tau} \varepsilon \bar{N}_{\sigma}^{E} \quad\) e \(\bar{N}_{\tau}^{E}\).
Using (12.40) we see at once that if \(\left(\partial_{i} \theta \partial_{i}\right) \Omega=0\) then \(\Omega_{\sigma \tau}=0\) unless either \(i \in \sigma\) or \(i \in \tau\). Hence for each \(\sigma\) and \(\tau\left(\partial_{i} \theta i\right) \Omega_{\sigma \tau}=0\) or \(\quad\left(\begin{array}{lll}1 & 0 & \partial_{i}\end{array}\right) \Omega_{\sigma \tau}=0\).
Q.E.D.
12.41.- Proof of theorem 12.37. In view of the definition we have only to prove that if \(E\) and \(F\) are extendable local systems over \(\Delta^{n}\) then
\[
(E \oplus F)\left(\underline{\Delta}^{n}\right) \rightarrow(E \Theta F)\left(\underline{\Delta}^{n}\right)
\]
is surjective.
Suppose \(\Omega \in(E \otimes F)\left(\partial^{n}\right)\). If \(\Omega_{\partial . \Delta^{n}}=0,0 \leqslant i \leqslant n\), then \(\Omega=0\). So if \(\Omega \neq 0\) there is a least \(r\) such thait \(\Omega_{\partial_{r} \Delta^{n}} \neq 0\).

In particular, for \(i<r\),
\[
\begin{aligned}
\left(\partial_{i} \theta \partial_{i}\right) \Omega_{\partial_{r}} \Delta^{n} & =\Omega_{\partial_{i} \partial_{r} \Delta^{n}}=\Omega_{\partial_{r-1} \partial_{i} \Delta^{n}} \\
& =\left(\partial_{r-1} \otimes \partial_{r-1}\right) \Omega_{\partial_{i} \Delta^{n}}=0 .
\end{aligned}
\]

By lemma 12.39 we can write
\[
\Omega_{\partial_{r} \Delta^{n}}=\left[\Phi_{\alpha} \quad, \quad \Phi_{\alpha} \in E \partial_{\partial_{r}} \Delta^{n} F_{\partial_{r} \Delta^{n}}\right.
\]
where either \(\left(\partial_{i} \theta 1\right) \Phi_{\alpha}=0\) or \(\left(10 \partial_{i}\right) \Phi_{\alpha}=0, i<r\), and we may obviously assume \(\Phi_{\alpha}=\Phi_{\alpha}^{E} \theta \Phi_{\alpha}^{F}\). Extend \(\Phi_{\alpha}^{E}\) and \(\phi_{\alpha}^{F}\) to elements \(\psi_{\alpha}^{E} \in E{ }_{\Delta}{ }^{n} \quad\) and \(\psi_{\alpha}^{F} \in F_{\Delta}{ }^{n}\) so that \(\partial_{i} \psi_{\alpha}^{E}=0\) whenever \(\partial_{i} \Phi_{\alpha}^{E}=0\) (and similarly for \(F\)), i < r
\[
\text { Then } \psi_{\alpha}^{E} \theta \psi_{a}^{F} \text { satisfies }\left(\partial_{i} \theta \partial_{i}\right)\left(\psi_{\alpha}^{E} \theta \psi_{\alpha}^{F}\right)=0, i<r \text {. }
\]

Moreover \(\Omega-\left.\left(\sum_{\alpha} \psi_{\alpha}^{E} \theta \psi_{\alpha}^{F}\right)\right|_{\partial \Delta} ^{n}\) is zero in \(\partial_{r} \Delta^{n} \quad\). This completes the proof (by induction on \(r\)).
Q.E.D.

\section*{S. HALPERIN}
12.42.- Proposition. Let E, F, G be extendable local systems over K. Assume for \(\sigma \in \underline{X}_{\mathrm{n}}, \quad \mathrm{u}_{\mathrm{u}}=0,1, \ldots\).
\[
0 \rightarrow E_{\sigma} \xrightarrow{\Psi_{\sigma}} F_{\sigma} \xrightarrow{\Psi_{\sigma}} G_{\sigma} \rightarrow 0
\]
are short exact sequences, coherent with the face and degeneracy operators.
Then
\[
0 \rightarrow E(\underline{K}) \xrightarrow{\psi} F(\underline{K}) \xrightarrow{\psi} G(\underline{K}) \rightarrow 0
\]
is also short exact.

Proof : Use the identical inductive technique of theorem 12.27.
Q.E.D.
12.43.- A spectral sequence. Suppose G and \(F\) are local systems over \(\underline{K}\) taking values in a category with differentials. Suppose further that
i) G and \(F\) are extendable
ii) \(F\) is a local system of differential coefficients.

The bigrading on the local system G \(\theta\) makes (\(G \in(\underline{K}\)),d) into a bicomplex. That is we can write
\[
d=d_{G}+d_{F}
\]
where \(d_{E}, d_{F}\) are the differentials of degrees \((1,0)\) and \((0,1)\) given by
\[
\begin{array}{ll}
{\left[d_{G}(\Omega)\right]_{\sigma}=d_{G}\left(\Omega_{\sigma}\right)} & , \\
{\left[d_{G}\left(\Phi_{\sigma} \theta \psi_{\sigma}\right)=d_{G} \Phi_{\sigma} \theta \psi_{\sigma}\right.} \\
{\left[d_{F}(\Omega)\right]_{\sigma}=d_{F}\left(\Omega_{\sigma}\right)} & , \\
d_{F}\left(\Phi_{\sigma} \theta \psi_{\sigma}\right)=(-1)^{\left|\phi_{\sigma}\right|} \phi_{\sigma} \theta d_{F} \psi_{\sigma} .
\end{array}
\]

Now filter (as usual) this bicomplex by the spaces
\[
I^{P}=\sum_{\substack{j \geqslant p \\ q \geqslant 0}}\left(G^{j} \odot F^{q}\right)(\underline{K})=\sum_{j \geqslant p}\left(G^{j} \odot F\right)(\underline{K}) .
\]

We obtain in this way a convergent first quadrant spectral sequence
\[
\begin{equation*}
\left(E_{i}, d_{i}\right) \Rightarrow H((G \otimes F)(\underline{K}), d) . \tag{12.44}
\end{equation*}
\]

It is standard that
\[
\begin{aligned}
& \left(E_{0}, d_{0}\right)=\left((G \otimes F)(\underline{K}), d_{F}\right) \\
& \left(E_{1}, d_{1}\right)=\left(H\left\{(G \otimes F)(\underline{K}), d_{F}\right\}, d_{G}^{*}\right)
\end{aligned}
\]
and
\[
E_{2}=H\left\{H\left\{(G \in F)(\underline{K}), d_{F}, d_{G}^{*}\right\}\right.
\]

On the other hand, note that we can define local systems
\(Z(F), B(F)\) and \(H(F)\) over \(K\) by
\[
Z(F)_{\sigma}=\text { ker } d: F_{\sigma} \rightarrow F_{\sigma} \quad ; \quad B(F)_{\sigma}=d\left(F_{\sigma}\right)
\]
and
\[
H(F)_{O}=H\left(F_{\sigma}, d\right)
\]

Moreover because \(F\) is a local system of differential coefficients, \(H(F)\) is a local system of coefficients.
\[
\text { Notice that } \Omega \in(G \otimes F)(\underline{K}) \text { satisfies }
\]
\[
\left(d_{F} \Omega\right)_{O}=d_{F}\left(\Omega_{0}\right)
\]
and so \(d_{F} \Omega=0\) if and only if \(\Omega_{\sigma} \in G_{\sigma} O(F)_{\sigma}\) for allo. Similarly for any \(\Omega\)
\[
\left(d_{F} \Omega\right)_{\sigma} \in G_{\sigma} \otimes B(F)_{\sigma} .
\]
```

S. HALPERIN

```

In this way we obtain a commutative diagram
\[
0 \longrightarrow[G \in B(F)](\underline{K}) \longrightarrow[G \theta Z(F)](\underline{K}) \longrightarrow[G \theta H(F)](\underline{K}) \longrightarrow 0
\]
(12.45)

in which the bot tom row is exact and the top row arises from the short exact sequences
\[
\begin{equation*}
0 \rightarrow[G \otimes B(F)]_{\sigma} \rightarrow[G \otimes Z(F)]_{\sigma} \rightarrow[G \otimes H(F)]_{\sigma} \rightarrow 0 \tag{12.46}
\end{equation*}
\]

Our next object is to establish
12.47- Theorem. With the hypotheses above, all the vertical arrows in (12.45) are isomorphisms. Thus the spectral sequence (12.44) satisfies
\[
\left(E_{1}, d_{1}\right)=((G \ominus H(F))(\underline{K}), d)
\]
and
\[
E_{2}=H[(G \Theta H(F))(\underline{K}), d] .
\]
12.48. - Lemma.
i) The local system G \(\theta(F)\) is extendable.
ii) The inclusion \(\operatorname{Im} d_{F} \rightarrow G \theta B(F)(\underline{K})\) is an isomorphism.
iii) The local system \(G \theta B(F)\) is extendable.

Proof : We establish inductively that :
\((12.49)_{n}\) If \(\underline{K}=\underline{\Delta}^{n}\) then \([G \operatorname{ZO}(F)]\left(\underline{\Delta}^{n}\right) \rightarrow[G \theta Z(F)]\left(\underline{\Delta}^{n}\right)\) is surjective.
\((12.50)_{n} \quad[G \theta B(F)]\left(\underline{K}^{(n)}, \underline{K}^{(n-1)}\right)=d_{F}\left\{\left[G E F \underline{K}^{(n)}, \underline{K}^{(n-1)}\right)\right\}\).
\((12.51)_{n}\)
\(\left.[G \otimes B(F)]\left(\underline{K}^{(n)}\right)=d_{F}\left\{\left[\begin{array}{lll}G & F\end{array}\right] \underline{K}^{(n)}\right)\right\}\).

In fact, (12.49) \({ }_{0}\) is vacuous and (12.50) o coincides with (12.51)。. To prove them let \(\left.\Phi \in[G \theta B(F)] \underline{K}^{(0)}\right)\). For each \(\sigma \in \underline{K}_{0}\) write \(\Phi_{\sigma}=d_{F} \psi_{\sigma}\) and extend the \(\psi_{\sigma}\) to a (unique) element \(\psi\) of \((G \in F)\left(\underline{K}^{(0)}\right.\)) via lemma 12.17. Then \(\Phi=\mathrm{d}_{\mathrm{F}} \Psi\).

We now assume the three assertions proved for \(m<n\) (some \(n \geq 1\)) and establish them for \(n\).
\(\left(\underline{12.49)_{n}}\right.\) : let \(\Phi \in[G \theta Z(F)]\left(\Delta^{n}\right)\). For each \(\sigma\) of \(\frac{\partial \Delta^{n}}{}\) let \(\gamma_{\sigma} \in G_{\sigma} \theta H\left(F_{\sigma}\right)\) be the element represented by \(\Phi_{\sigma}\). Because \(H(F)\) is a local system of coefficients and \(G\) is extendable, \(G \theta H(F)\) is extendable. The \(\gamma_{\sigma}\) define an element in \([G \theta H(F)]\left(\Delta^{n}\right)\), and so we can find an element \(\gamma \in[G \theta H(F)]\left(\Delta^{n}\right)=G \quad\left[\Delta^{n}\right] \quad \theta\left(F \Delta^{n}\right]\)) which restricts to the \(\gamma_{0}\).

Let \(\Gamma \in G_{\left[\Delta^{n}\right]} \quad\) (ZF\()_{\left[\Delta^{n}\right]}\) represent \(\gamma\), and regard \(\Gamma\) as an element in \(\left[\begin{array}{lll}\theta & z(F)]\left(\underline{\Delta}^{n}\right) \text {. Then }\end{array}\right.\)
\[
\phi-r_{\left.\right|_{\underline{\Delta}} ^{\mathrm{n}}} \in[G \theta B(F)]\left(\underline{\partial \Delta}^{\mathrm{n}}\right) .
\]

\(\Gamma+d_{F} \Psi \in[G \Theta Z(F)]\left(\Delta^{n}\right)\) and extends \(\bullet\).
\(\underline{(12.50)}_{n}\) : Suppose \(\Omega \in[G \theta B(F)] \underline{K}^{(\mathrm{n})}, \underline{\mathrm{K}}^{(\mathrm{n}-1)}\)). For each nondegenerate \(\sigma \in K_{n}\) write \(\Omega_{\sigma}=d_{F} \Gamma_{\sigma}\), some \(\Gamma_{\sigma} \in G_{\sigma} \theta F_{\sigma}\).

Recall the simplicial map \(\underline{\sigma}: \underline{\Delta}^{\mathrm{n}} \rightarrow \underline{\mathrm{K}}\) of example 12.9. It pulls \(G\) and \(F\) back to local systems over \(\Delta^{n}\) satisfying the same hypotheses. We may
write
\[
\left.r_{\sigma} \in G_{\sigma} \theta F_{\sigma}=\underline{\sigma}^{*} G \Delta^{n}\right] \quad \underline{\sigma}^{*}{ }_{\left[\Delta^{n}\right]}=\left(\underline{\sigma}^{*} G \theta \underline{\sigma}^{*} F\right)\left(\underline{\Delta}^{n}\right) .
\]

Moreover
\[
d_{F}\left(\partial_{i} \Gamma_{\sigma}\right)=\partial_{i} d_{F} \Gamma_{\sigma}=\partial_{i} \Omega_{\sigma}=0 \quad, \quad 0 \leqslant i \leqslant n,
\]
and so
\[
\Gamma_{\left.\sigma\right|_{\partial \Delta^{n}}} \in \underline{\sigma} \underline{\sigma}^{*} G \mathcal{Z}(\underline{\sigma} F)\left(\underline{\partial \Delta}^{n}\right)
\]

By \((12.49)_{n} \quad \Gamma_{\left.\sigma\right|_{\partial \Delta}}\) extends to an element
\[
\psi_{\sigma} \in \underline{\alpha}^{*} G \theta Z\left(\underline{\sigma}^{*} F\right)\left(\underline{\Delta}^{n}\right)=G_{\sigma} \theta Z(F)_{\sigma} .
\]

Let \(\Phi_{\sigma}=\Gamma_{\sigma}-\psi_{\sigma}\); then
\[
d_{F} \Phi_{\sigma}=\Omega_{\sigma} \quad \text { and } \quad \partial_{i} \Phi_{\sigma}=0, \quad 0 \leq i \leq n .
\]

The isomorphism (12.25) implies now that the \(\phi_{\sigma}\) define an element
\(\left.\Phi \in(G \Theta F) \underline{K}^{(n)}, \underline{K}^{(n-1)}\right)\), which by definition satisfies \(\mathrm{d}_{\mathrm{F}} \Phi=\Omega\).
\((12.51)_{n}\) : This is now immediate, via the extendability of \(G \theta\) F.
We finally complete the proof of the lemma.
Part i) is already established by (12.49).
To prove ii) let \(\oint \in(G \theta B F)(\underline{K})\). Using (12.50) we may construct
a sequence \(\psi_{0}, \ldots, \psi_{n}, \ldots \in(G \theta F)(\underline{K})\) such that
\[
\left.\psi_{n}\right|_{\underline{K}}(n-1)=0 \quad \text { and }\left.\quad\right|_{\underline{K}_{\underline{K}}(n)}=d_{F}\left(\sum_{i=0}^{n} \psi_{i}\right)_{\underline{K}_{\underline{K}}(n)} .
\]

Then \(\phi=d_{F} \psi\), where \(\psi=\sum_{n=0}^{\infty} \psi_{n}\).
```

To prove iii), we may assume $\underline{K}=\underline{\Delta}^{n}$. If $\in(G \theta B F)\left(\Delta^{n}\right)$ then by ii) $\Phi=d_{F} \psi$. Extend $\psi$ to $r \in(G \ominus F)\left(\underline{\Delta}^{n}\right)$; then $d_{F} r$ extends $\varphi$.

```
Q.E.D.
12.52. - Proof of theorem 12.47. Because of lemma 12.48 we know that \(G \theta B(F)\) and \(G \theta 2(F)\) are extendable. Because \(G\) is extendable while \(H(F)\) is a local system of coefficients, \(G \theta H(F)\) is also extendable. Hence, because the sequences (12.46) are exact, prop. 12.42 implies that the upper row in (12.45) is exact.

The theorem now follows trivially from part ii) of lemma 12.48.
Q.E.D.

Finally, assume \(\underset{G}{V}\) and \(\stackrel{V}{F}\) is a second pair of extendable local
systems over \(\underline{K}\) taking values in a category with differentials, and such that \(\stackrel{v}{F}\) is a local system of differential coefficients. Assume
\[
\psi_{\sigma}: G_{\sigma} \rightarrow \bar{G}_{\sigma} \quad, \quad \psi_{\sigma}: F_{\sigma} \rightarrow \bar{F}_{\sigma}
\]
are morphisme, conpatible with the face and degeneracy operators.
Then
\[
\hat{\psi} \boldsymbol{\psi}:(G \oplus F)(\underline{K}) \rightarrow(\underset{G}{\vee} \otimes \stackrel{v}{F})(\underline{K})
\]
is a map of bicomplexes and so induces a map of spectral sequences
\[
(\psi \otimes \psi)_{i}:\left(E_{i}, d_{i}\right) \rightarrow\left(\check{E}_{i}, \check{d}_{i}\right) \quad, \quad i \geqslant 0 .
\]

The isomorphism of theorem 12.47 identifies
(12.53)
\[
(\psi \theta \psi)_{1}=\psi \theta \psi:[G \theta H(F)|\underline{(K)} \rightarrow| \check{G} \theta H(\stackrel{F}{F})](\underline{K}) .
\]

We thus arrive at

\section*{S. HALPERIN}
12.54.- Theorem. Assume in addition to the above hypotheses that \(G\) and \(\check{G}\) are also local systems of differential coefficients, and that each \(\psi_{\sigma}^{*}\) and \(\psi_{\sigma}^{*}\) is an isomorphism. Then
\[
(\psi \oplus \psi)_{i}:\left(E_{i}, d_{i}\right) \rightarrow\left(E_{i}, d_{i}\right)
\]
is an isomorphism for \(2 \leq i \leq \infty\).

Prook : By (12.53) \((0 \psi)_{1}\) is identified with the map of global sections
\[
\psi \theta \psi^{*}:[G \otimes H(F)](\underline{K}) \rightarrow[G \theta H(F)](\underline{K})
\]
determined by the morphisms \(\Psi_{\sigma} \theta \psi_{\sigma}^{*}\). Since \(G, \dot{G}\) are extendable local systems of differential coefficients, and \(H(F)\) and \(H(\stackrel{\vee}{F})\) are local systems of coefficients, \(G \theta H(F)\) and \(\stackrel{V}{G} H(\stackrel{V}{F})\) are extendable local systems of differential coefficients.

Moreover \(\left(\psi_{\sigma} \theta \psi_{\sigma}^{*}\right)^{*}=\psi_{\sigma}^{*}\) e \(\psi_{\sigma}^{*}\) is an isomorphism. Thus theorem 12.27 asserts that \(\left(\psi \theta \psi^{*}\right)^{*}\) is an isomorphism, whence \((\| \otimes)_{2}\) is.
Q.E.D.

\section*{Chapter 13}

\section*{Differential forms.}

\subsection*{13.1 Difgerential forms on \(\Delta^{n}\). Recall that \(\Delta^{n} \subset R^{n+1}\)}
(example 12.9.) ; it spans an affine \(n\)-plane which for the moment we denote by \(F^{n}\). A \(C^{\infty}\) p-differential form on \(\Delta^{n}, \quad \Phi\), is a family of \(p\)-linear skew symmetric maps
\[
\Phi_{x}: \mathrm{T}_{\mathbf{x}}\left(\mathrm{F}^{\mathrm{n}}\right) \underbrace{\mathrm{factors}}_{\mathrm{p}} \times \ldots \times \mathrm{T}_{\mathbf{x}}\left(\mathrm{F}^{\mathrm{n}}\right) \quad \longrightarrow \mathbb{R}, \quad \mathrm{x} \in \Delta^{\mathrm{n}},
\]
which extends to an ordinary \(C^{\infty} p\)-form on the manifold \(F^{n}\).
These form a real vector space, \(A_{\infty}^{P}\left(\Delta^{n}\right)\) and we have the obvious restriction map \(A_{\infty}^{p}(F) \rightarrow A_{\infty}^{P}\left(\Delta^{n}\right)\), which is surjective by definition. It is a straight forward calculation that in the direct sum
\[
A_{\infty}\left(\Delta^{n}\right)=\sum_{p=0}^{n} A^{p}\left(\Delta^{n}\right)
\]
there is a unique multiplication, \(\wedge\), and a unique differential \(d\) such that restriction \(A_{\infty}\left(F^{n}\right) \rightarrow A_{\infty}\left(\Delta^{n}\right)\) is a homomorphism of c.g.d.a.'s.

Moreover, the standard proofs of the Poincare lemma apply to show that \(\left(A_{\infty}\left(\Delta^{n}\right), d\right)\) is acyclic :
\[
H\left(A_{\infty}\left(\Delta^{n}\right), d\right)=\mathbb{R} .
\]

Next, let \(f:[n|\rightarrow| m \mid\) be any set map and define a linear map \(f: R^{n+1} \rightarrow R^{m+1}\) by \(v_{i} \rightarrow v_{f(i)}\). It restricts to a linear map \(\Delta(f): \Delta^{n} \rightarrow \Delta^{m}\) which induces in the standard way a homomorphism of c.g.d.a.'s
\[
A_{\infty}(f): A_{\infty}\left(\Delta^{n}\right)+A_{\infty}\left(\Delta^{m}\right)
\]

\section*{S. HALPERIN}

If \(f\) is a face map \(\delta_{i}\) or a degeneracy map \(\sigma_{i}\) (cf. 12.1)
we write simply
(13.2)
\[
A_{\infty}\left(\delta_{i}\right)=\partial_{i} \quad \text { and } \quad A_{\infty}\left(\sigma_{i}\right)=s_{i}
\]

These satisfy the relations (12.3).
Now each element of \(A_{\infty}^{P}\left(\Delta^{n}\right)\) may be uniquely written
\[
\Phi=\sum_{1 \leqslant i_{1}<\ldots<i_{p} \leqslant n} \Phi_{i_{1}} \ldots i_{p}^{d b_{i_{1}}} \Lambda \ldots \Lambda d b_{i_{p}}
\]
where (cf. 12.9) \(b_{j}\) is the \(j^{\text {th }}\) barycentric coordinate function and each \(\Phi_{i_{1} \ldots i_{p}}\) is \(c^{\infty}\)-function in \(\Delta^{n}\). If each \(\Phi_{i_{1}} \ldots i_{p} \quad\) is a polynomial in \(b_{1}, \ldots, b_{n}\) with rational coefficients we say \(\phi\) is an element of the rational vector space \(A_{Q}^{P}(n)\).

The rational vector space
\[
A_{Q}(n)=\sum_{0}^{n} A_{Q}^{P}(n)
\]
is in fact the sub c.g.d.a. of \(A_{\infty}\left(\Delta^{n}\right)\) generated (over Q) by \(b, \ldots, b_{n}\) (because \(b_{0}=1-\sum_{i=1}^{n} b_{i}\)). We can write
\[
A_{Q}(n)=\Lambda\left(b_{1}, \ldots, b_{n}, d b_{1}, \ldots, d b_{n}\right)
\]

Hence it is a contractible KS complex and in particular acyclic:
\[
H\left(A_{Q}(n), d\right)=Q
\]

Note as well that if \(f:|n| \rightarrow|m|\) is a set map the induced map \(\Delta(f): \Delta^{n} \rightarrow \Delta^{m}\) is linear, and \(A_{\infty}(f)\) restricts to a homomorphism of c.g.d.a.'s
\[
A_{Q}(f): A(n) \leftarrow A(m)
\]
(cf. formula 12.10). In particular, as in (13.2) we write
\[
\begin{equation*}
A_{Q}\left(\delta_{i}\right)=\partial_{i} \quad \text { and } \quad A_{Q}\left(\sigma_{i}\right)=s_{i} \tag{13.3}
\end{equation*}
\]

Finally, if \(k\) is any field extension of ? we set
\(A_{k}(n)=A_{Q}(n) \quad \theta_{Q^{k}}^{k} ; \quad \partial_{i}=\partial_{i} \theta i, \quad s_{i}=s_{i} \theta_{1}\).

If the field \(k\) is fixed throughout we will usually suppress the \(k\) and simply write \(A(n)\).
13.5 Differential forms on a simplicial set. - Let \(\underline{K}\) be a simplicial set. Define local systems \(A_{\infty}\) and \(A\) (over \(: R\) or a given field \(k\)) on \(K\) by \(\left(A_{\infty}\right)_{\sigma}=A_{\infty}\left(\Delta^{n}\right), \quad \partial_{i}=A_{\infty}\left(\delta_{i}\right), \quad s_{i}=A_{\infty}\left(\sigma_{i}\right), \sigma \in K_{n}\),
and
\[
A_{\sigma}=A(n), \quad \partial_{i}=A\left(\delta_{i}\right), \quad s_{i}=A\left(\sigma_{i}\right), \quad \sigma \in \underline{K}_{n}
\]
13.6 Definition. - The c.g.d.a.'s of global sections of \(A_{\infty}\) and \(A\) :
\[
\left(A_{\infty}(\underline{K}), d\right) \text { and }(A(\underline{K}), d)
\]
are called, respectively the c.g.d.a. of \(C^{\infty}\) differential forms and the c.g.d.a. of polynomial differential forms on \(\underline{K}\). Because we usually consider \(A(\underline{K})\) we often call it simply the c.g.d. 3. of differential forms on \(K\).
\[
13.7 \text { Proposition.- If } \psi: \underline{L} \rightarrow \underline{K} \text { is simplicial then } \dot{\psi}^{*} A_{\infty}=A_{\infty}
\] and \(\dot{U}^{*} A=A\). In particuiar \(\psi\) induces homomorphisms
\[
A_{\infty}(\vartheta): A_{\infty}(\underline{L})+A_{\infty}(\underline{K}) \text { and } A(\eta): A(\underline{L}) * A(\underline{K}) .
\]

Prooh: Clear.
Q.E.D.
13.8 Proposition.- \(A\) and \(A_{\infty}\) are extendable local systems.

Proof : Given prop. 13.7 we need only prove that
\[
A\left(\underline{\Delta}^{n}\right) \rightarrow A\left(\underline{\Delta}^{n}\right) \text { and } A_{\infty}\left(\underline{\Delta}^{n}\right) \rightarrow A_{\infty}\left(\partial \Delta^{n}\right)
\]
are surjective.
\[
\begin{aligned}
& \text { Now an element } \Phi \text { in } A^{P}\left(\partial^{n}\right) \text { is determined by the elements } \\
& \Phi_{i}=\Phi_{\partial_{i} \Delta^{n} \in A^{p}(n-1), \quad 0 \leqslant i \leqslant n \quad \text { which must satisfy. }} \\
& \partial_{i} \Phi_{j}=\partial_{j-t} \Phi_{i}, \quad i<j . \\
& \text { If } \Phi_{i}=0, i<r<n \text {, then } \partial_{i} \Phi_{r}=0, i<r \text {. Write } \\
& \Phi_{r}=\sum_{0 \leqslant j_{1}<\ldots<r<\ldots j_{p}<n}{ }^{P_{j}} j_{1} \ldots j_{p}{ }^{d b} j_{j_{1}}{ }^{\Lambda} \ldots \Lambda d b_{j_{p}} \text {, }
\end{aligned}
\]
where \(P_{j_{1}} \ldots j_{p}\) is a polynomial in \(b_{0}, \ldots, b_{r}, \ldots, b_{n-1}\). This same expression defines an element \(\psi_{r}\) in \(A^{P}(n)\) which satisfies \(\partial_{i} \psi_{r}=0, i<r\) and \(\partial_{r}{ }^{\psi}{ }_{r}=\Phi_{r}\). In this way we reduce to the case \(\Phi_{i}=0, i<n\). Assume this.
\[
\text { Consider the projection } \Delta^{n}-\left\{v_{n}\right\} \xrightarrow{\pi} \Delta^{n-1} \text { given by }
\]
\[
\pi\left(\sum_{0}^{n} t_{i} v_{i}\right)=\sum_{0}^{n-1} \frac{t_{i}}{1-t_{n}} v_{i}
\]

Then \(A_{\infty}(\pi): A_{\infty}\left(\Delta^{n-1}\right) \rightarrow A_{\infty}\left(\Delta^{n}-\left\{v_{n}\right\}\right)\) satisfies
\[
A_{\infty}(\pi)\left(b_{i}\right)=\frac{b_{i}}{1-b_{n}} \text { and } A_{\infty}\left(d b_{i}\right)=\frac{d b_{i}}{1-b_{n}}+\frac{b_{i} d b_{n}}{\left(1-b_{n}\right)^{2}} .
\]

Because \(\Phi_{n}\) is polynomial it follows that for some large \(N\)
\[
\left(1-b_{n}\right)^{N} A_{\infty}(\pi) \Phi_{n} \in A^{P}(n)=A^{P}\left(\Delta^{n}\right)
\]

It is the desired extension.
In the cas of \(A_{\infty}\) the same proof works, except that \(\left(1-b_{n}\right)^{N}\) has to be replaced by a smooth function, zero near \(\mathbf{v}_{\mathbf{n}}\).
Q.E.D.
13.9.- Remark.- Prsp. 13.8 and its proof are taken directly from Sullivan [10, p. D3]. Cf. also Grivel [7] who gives a different proof, which he attributes to Karoubi.

Next, let \(F\) be any local system on \(K\). We "regard" \(F\) as taking values in a category with differentials, (which may possibily all be zero !). Then we can form the local system A \(\theta\) (cf. 12.36) whose space of global sections is denoted by \(A(\underline{K} ; F)\).
13.10 Definition.- The graded differential space (or g.d.a. or c.g.d.a.) (\(A(\underline{K} ; F), d\)) is called the space (algebra) of differential forms with values in the local system \(F\).

\subsection*{13.11 Remarks 1.- The canonical inclusions}
\(i_{\sigma}: F_{\sigma} \rightarrow 1 \theta F_{\sigma} \subset A(n) \theta F_{\sigma}, \quad \sigma \in \underline{K}_{n}\),
are coherent with the face and degenerary operators. In particular they determine a canonical inclusion
\[
i_{F}: F(\underline{K}) \longrightarrow A(\underline{K} ; F)
\]

Moreover, because
\(H\left(A(n) \otimes F_{\sigma}\right)=H\left(A(n) \otimes H\left(F_{\sigma}\right)=H\left(F_{\sigma}\right)\right.\),
each \(i_{o}^{*}\) is an isomorphism.
S. HALPERIN
2.- If \(F\) is a local system of differential coefficients
then so is A 0 , since \(H\left(\left(\begin{array}{lll}A & F\end{array}\right)_{\sigma}\right)=H\left(F_{\sigma}\right)\).
3.- If \(F\) is extendable so is \(A \operatorname{F}\) (by theorem 12.37).
4.- If \(F\) is a local system of coefficients, then

A 8 is extendable. Indeed it is trivial that the pullback of \(F\) to \(\Delta^{n}\) via any \(\sigma \in \mathrm{K}_{\mathrm{n}}\) is constant, and the tensor product of an extendable with a constant local system is obviously extendable.
13.12 Theorem. - Let \(F\) be an extendable local system of differential coefficients on \(\underline{K}\). Then the canonical inclusion, \(i_{F}\), induces an isomorphism
\[
i_{F}^{*}: H(F(\underline{K})) \xrightarrow{\cong} H(A(\underline{K} ; F))
\]

Proof : According to the remarks above, \(A \operatorname{F}\) is also an extendable local system of differential coefficients. By remark 1 we can apply theorem 12.27 .
Q.E.D.

Finally, consider the local system, \(F\), of theorem 13.12 .
We apply the results of sec. 12.43 to the tensor product \(A \operatorname{F}\) to obtain a bicomplex. Filtering by the ideals
\[
I^{P}=\sum_{\substack{j \geqslant p \\ a l l q}}\left(A^{j} \otimes F^{q}\right)(\underline{K})=\sum_{j \geqslant p} A^{j}(\underline{K} ; F)
\]
we obtain a convergent first quadrant spectral sequence, \(\left(E_{i}, d_{i}\right), i \geqslant 0\).

According to theorem 13.12 this spectral sequence converges to
\(H(F(K))\). On the other hand, theorem 12.47 gives natural isomorphisms
\[
\left(E_{1}, d_{1}\right)=\left(\left[\begin{array}{l}
A \\
A
\end{array}(F)\right](\underline{K}), d\right)=(A(\underline{K} ; H(F)), d)
\]
(13.13) and
\[
E_{2}=H(A(\underline{K} ; H(F)))
\]

\section*{LECTURES ON MINIMAL MODELS}

As an example, assume \(F\) takes values in the category of g.d.a.'s.
Define a homomorphism \(\lambda:(A(\underline{K}), d) \rightarrow(A(K ; F), d)\) by
\[
(\lambda \Phi)_{\sigma}=\Phi_{\sigma} \theta 1 \quad, \sigma \in \underline{K}
\]
13.14 Proposition.- Assume \(H^{0}(\mathbf{A}(\underline{K}))=k=H^{0}\left(F_{\sigma}\right), \sigma \in \underline{K}\).

Then \(\left.H^{0}(A(\underline{K} ; F))=H^{0}(\underline{K})\right)=k\) and
\[
\lambda^{*}: H^{1}(\mathrm{~A}(\mathrm{~K})) \rightarrow \mathrm{H}^{1}(\mathrm{~A}(\underline{K} ; \overline{\mathrm{F}}))
\]
is injective.

Proof : Filter \(A(\underline{K})\) by the ideals \(\sum_{j \geqslant p} A^{j}(\underline{K})\) to obtain a spectral sequence \(\left(\breve{E}_{i}^{p}, q, \check{d}_{i}\right)\). Then \(\lambda\) induces a homomorphism \(\lambda_{i}: \check{E}_{i} \rightarrow E_{i}\) of spectral sequences.

Because of our hypothesis on \(F\), (13.13) yields
\[
E_{1}^{p, 0}=\left(A^{P}(\underline{K}), d\right), \quad P \geq 0
\]
and so \(\lambda_{1}: A(K) \xrightarrow{\tilde{z}} E_{1}^{*}, 0\). Hence \(\lambda_{2}\) is an isomorphism in degree zero and injective in degree 1 . The standard comparison theorem for spectral sequences now implies that \(\lambda^{*}\) has the same property.
Q.E.D.

\section*{Chapter 14}

\section*{Simplicial cohomology.}
\[
\begin{aligned}
& \text { 14.1. - Definition.- Let } \underline{K} \text { be a simplicial set. Define } \\
& \partial_{p}^{F}: \mathbb{K}_{p+q} \rightarrow \mathbb{K}_{p} \text { and } \partial_{q}^{B}:{\underset{\sim}{p}+q}^{J_{q}} \underline{K}_{q}
\end{aligned}
\]
by
\[
\partial_{p}^{F_{p}}=\left(\partial_{p+1} \circ \ldots 0 \partial_{p+q}\right) \sigma \text { and } \partial_{q}^{B}=(\underbrace{0 \ldots}_{p \text { factors }} \ldots \partial_{0}) \sigma .
\]

The simplices \(\partial_{p}^{F} \sigma\) and \(\partial_{q}^{B} \sigma\) are called the front \(p\) face and the back q-face of \(\sigma\).

Now we recall the g.d.a. (\(C(\underline{K} ; k), \delta)\) of simplicial cochains on \(\underline{K}\). \(C^{P}(\underline{K} ; k)\) is the vector space of all set maps \(f: \underline{K}_{p} \rightarrow k\). It is a g.d.a. with multiplication and differential given by
\[
\begin{aligned}
(f . g)(\sigma)=f\left(\partial_{p}^{F} \sigma\right) g\left(\partial_{q}^{B} \sigma\right) \quad, & f \in C^{P}(\underline{K} ; k) \\
& g \in C^{q}(K ; k) \\
& 0 \in \underline{K}_{p+q}
\end{aligned}
\]
and
\[
(\delta f)(\sigma)=\sum_{i=0}^{P+1}(-1)^{i} f\left(\partial_{i} \sigma\right), f \in C^{P}(\underline{K} ; k), \sigma \in \underline{K}_{p+1} .
\]

The identity is the constant function \(\underline{K}_{0} \rightarrow 1\).
The cohomology algebra of \((C(\underline{K} ; k), \delta)\) is denoted by \(H(\underline{K} ; k)\) and is called the simplicial cohomology of K.

A simplicial map \(\mathcal{\psi}: \underline{K} \rightarrow \underline{\underline{L}}\) determines homomorphisms \(C(\Downarrow): C(K ; k)+C(\underline{L} ; k)\) and \(C(f): H(\underline{K} ; k)+H(\underline{L} ; k)\) given by \((C(\psi) f)(\sigma)=f\left(\ell_{\sigma}\right)\).

\section*{LECTURES ON MINIMAL MODELS}

More generally, suppose \(F\) is a local system of coefficients on \(\underline{K}\)
(cf. just before theorem 12.27) so that each \(\partial_{i}: F_{\sigma} \rightarrow F_{\partial_{i}}\) and
\({ }^{\mathbf{s}} \mathbf{j}: \mathrm{F}_{\sigma} \rightarrow \mathrm{F}_{\mathbf{s}_{\mathbf{j}} \sigma}\) are isomorphisms. Define a bigraded space
\[
C(\underline{K} ; F)=\sum_{p, q \geqslant 0} c^{p}\left(\underline{K} ; F^{q}\right)
\]
as follows : an element of \(C^{P}\left(\underline{K} ; F^{q}\right)\) is a function which assigns to each \(\sigma \in \underline{K}_{p}\) an element of \(\mathrm{F}_{\sigma}\).
\[
\begin{aligned}
& \text { A differential (of bidegree (} 1,0 \text {) in } C(\underline{K} ; F) \text { is given by } \\
& (\delta f)(\sigma)=\sum_{i=0}^{p+1}(-1)^{i} \partial_{i}^{-1} f\left(\partial_{i} \sigma\right) \quad \sigma \in \underline{K}_{p+1}, \quad f \in C^{p}(\underline{K} ; F) .
\end{aligned}
\]

If \(F\) takes values in a category of algebras we make \(C(\underline{K} ; F)\) into
a g.d.a. by putting
\[
\begin{aligned}
(f . g)(\sigma)=(-1)^{q r}\left[\left(\partial_{p}^{F}\right)^{-1} f\left(\partial_{P}^{F} \sigma\right)\right] \cdot[& {\left.\left[\partial_{q}^{B}\right)^{-1} g\left(\partial_{q}^{B}\right)\right], } \\
& f \in C^{P}\left(\underline{K} ; F^{r}\right), g \in C^{q}\left(\underline{K} ; F^{s}\right) .
\end{aligned}
\]

We call \(C(\underline{K} ; F)\) the space (or algebra) of simplicial cochains with coefficients in \(F\). Its cohomology, \(H(\underline{K} ; F)\) is called the simplicial cohomology of \(\underline{K}\) with coefficients in \(F\). It is bigraded : \(H(\underline{K} ; F)=\sum_{p, q \geqslant 0} H^{p}\left(\underline{K} ; F^{q}\right)\).
14.2. - The local sustem \(C\).- We shall interpret \(C(\underline{K} ; k)\) as the global sections of a certain local system over \(\underline{K}\) (if 12.14). Recall (12.11) that \(\underline{\Delta}^{n}\) is the simplicial set given by \(\left(\underline{\Delta r}^{n}\right)_{p}=\operatorname{Ord}([p],[n])\).

Denote \(C\left(\underline{n}^{n} ; k\right)\) simply by \(C(n)\). Each \(\alpha \dot{\epsilon} \operatorname{Ord}([n],[m])\) defines a simplicial map \(\alpha: \Delta^{n} \rightarrow \Delta^{m} \quad(\alpha(0)=\alpha 0 \sigma)\) and so determines a g.d.a. homomorphism \(C(\alpha): C(n)+C(m):\)
(14.3) \(\quad(C(\alpha) f)(\sigma)=f(\alpha \circ \sigma) \quad f \in C^{P}(m)\)
\(a \in \operatorname{Ord}([n],[m])\)
\(\sigma \in\left(\underline{\Delta}^{n}\right)_{p}\).

\section*{S. HALPERIN}
```

In particular we write $C\left(\delta_{i}\right)=\partial_{i}$ and $C\left(\sigma_{j}\right)=s_{j}$ where $\delta_{i}$ and $\sigma_{j}$ are defined in (12.1) ; these homomorphisms satisfy (12.3).
Now proceed exactly as in the case of differential forms to define a
local system C over every simplicial set K as follows :

$$
C_{\sigma}=C(|\sigma|) \quad, \quad \sigma \in \underline{K}_{p}, \quad p=0,1, \ldots,
$$

and $\partial_{i}, s{ }_{j}$ are the homomorphisms just defined. The g.d.a. of global sections is written $(C(\underline{K}), \delta)$. A simplicial map $\downarrow: \underline{K} \rightarrow \underline{\underline{L}}$ determines an obsvious homomorphism $C(\eta): C(\underline{L}) \rightarrow C(\underline{K})$.
More generally let $F$ be any local system of coefficients over K, such that the differential in each $F_{\sigma}$ is zero. Then the local system C $\theta$ F over $\underline{K}$ is a system of bigraded differential spaces (in which the differentials are simply $\delta$ (i). We shall describe a canonical isomorphism

$$
\begin{equation*}
r:\left(C^{p} \oplus F^{q}\right)(\underline{K}) \xrightarrow{\cong} c^{p}\left(\underline{K} ; F^{q}\right), \tag{14.4}
\end{equation*}
$$

```
```

where the right hand side is defined in 14.1. In particular (when F = k)

```
where the right hand side is defined in 14.1. In particular (when F = k)
we may identify C(K) with C(K;k) as g.d.a.'s.
 First observe that
\[
\begin{aligned}
C^{p}(n) \ominus F_{\sigma}^{q} & =\text { Set functions }\left(\left(\underline{\Delta}^{n}\right)_{p} \rightarrow k\right) \oplus F_{\sigma}^{q} \\
& =\text { Set functions }\left(\left(\underline{\Delta}^{n}\right)_{p} \rightarrow F_{\sigma}^{q}\right) \\
& =C^{p}\left(\Delta^{n} ; F_{\sigma}^{q}\right),
\end{aligned}
\]
because \(\left(\underline{\Delta}^{n}\right)_{p}\) is a finite set. Thus if \(\Phi \in\left(C^{P} \theta F^{q}\right)(\underline{K})\) we may interpret each \(\Phi_{\sigma}\) as a set map
```

$$
\Phi_{\sigma}:\left(\underline{\Delta}^{n}\right)_{P} \rightarrow F_{\sigma}^{q}, \sigma \in \underline{K}_{n} .
$$

In particular $\Phi$ determines set maps

## LECTURES ON MINIMAL MODELS

$$
\Phi_{\sigma}:\left(\Delta^{p}\right)_{p} \rightarrow F_{\sigma}^{q}, \quad \sigma \in \underline{K}_{p} .
$$

Now recall that $\left[\Delta^{P}\right] \in\left(\Delta^{P}\right)_{p}$ is the distinguished simplex corresponding to the identity map $[\mathrm{p}] \rightarrow[\mathrm{p}]$. Define r by

$$
\begin{equation*}
(\Gamma \Phi)(\sigma)=\Phi_{\sigma}\left(\left[\Delta^{\mathrm{P}}\right]\right), \quad \oplus \in\left(C^{\mathrm{P}} \oplus \mathrm{~F}^{\mathrm{q}}\right)(\underline{K}), \quad \sigma \in \underline{K}_{\mathrm{p}} . \tag{14.5}
\end{equation*}
$$

14.6. - Theorem. - The linear maps

$$
\Gamma:\left(C^{p} \otimes F^{q}\right)(\underline{K}) \rightarrow C^{p}(\underline{K} ; F)
$$

defined by (14.5) are isomorphisms commuting with the differentials. If $F$ takes values in a category of algebras then $\Gamma$ is an isomorphism of g.d.a.'s.

Proof : Because the face and degeneracy operators of $F$ satisfy (12.3) we can find unique morphisms

$$
F(\alpha): F_{\sigma} \rightarrow F_{\underline{K}}(\alpha) \sigma \quad, \quad \sigma \in \underline{K}_{p}, \quad \alpha \in \operatorname{Ord}([m],[p]),
$$

such that $F\left(\delta_{i}\right)=\partial_{i}, F\left(\sigma_{j}\right)=s_{j}$ and $F(\alpha \beta)=F(\beta) \circ F(\alpha)$. Since $F$ is a local system of coefficients, each $F(\alpha)$ is an isomorphism.

Next, fix $\Phi \in\left(C^{P} \otimes F^{q}\right)(\underline{K})$. Because $\Phi$ is compatible with the face and degeneracy operators we have
(14.7) $\quad[C(\alpha) \theta F(\alpha)] \Phi_{\sigma}=\Phi_{\underline{K}(\alpha) \sigma}, \quad \sigma \in \underline{K}_{n}, \quad a \in \operatorname{Ord}([m],[n])$.

If $\Phi_{o}$ is interpreted as a function $\left(\underline{\Delta}^{n}\right)_{p} \rightarrow F_{o}^{q}(|\sigma|=n)$ then this reads

$$
\begin{equation*}
F(\alpha)\left[\Phi_{C}(\alpha \circ \sim \tau)\right]=\Phi_{\underline{K}(\alpha) \sigma}(\tau), \tau \in\left(\underline{U}^{m}\right)_{p}=\operatorname{Ord}\left(\left[P_{-}\right],[m]\right), \tag{14.8}
\end{equation*}
$$

as follows from (14.3).

$$
\begin{align*}
& \text { Since } \begin{aligned}
& F(\alpha) \text { is an isomorphism we obtain, finally, } \\
&=\in \underline{K}_{n} \\
& \Phi_{\sigma}(\alpha \circ \tau)=F(\alpha)^{-1}\left(\Phi_{\underline{K}(\alpha) \sigma}(\tau)\right\} \quad \alpha \in \operatorname{Ord}([m],[n]) \\
& \tau \in \operatorname{Ord}([p],[m]) .
\end{aligned}
\end{align*}
$$

In particular when $m=p$ and $\tau=\left[\Delta^{\mathrm{P}}\right]$ is the identity map of $[\mathrm{p}]$, (14.9) reads

$$
\begin{equation*}
\Phi_{\sigma}(\alpha)=F(\alpha)^{-1}\{(\Gamma \Phi)(\underline{K}(\alpha) \sigma)\} \quad l l: \quad \alpha \in \underline{K}_{\mathrm{n}} . \tag{14.10}
\end{equation*}
$$

This equation shows that if $\Gamma \Phi=0$ then $\phi=0$ and so $r$ is injective. Moreover if $f \in C^{P}\left(\underline{K} ; F^{q}\right)$ is given, define $\boldsymbol{\Phi} \in\left(C^{P} \otimes F^{q}\right)(\underline{K})$ by

$$
\Phi_{\sigma}(\alpha)=F(\alpha)^{-1}\{f(\underline{K}(\alpha) \sigma)\} \quad \sigma \in \underline{K}_{n}, \alpha \in \operatorname{Ord}([p],[n]) .
$$

Then $\Gamma \Phi=f$ and so $\Gamma$ is surjective.

It is easy to verify that $\Gamma \circ \delta=\delta \circ \Gamma$ and that $\Gamma$ preserves products if $F$ takes values in a category of algebras.
Q.E.D.
14.11. - Proposition.- The local system $C$ (over $\underline{K}$ ) has the following properties :
i) If $\psi: \underline{\underline{L}} \rightarrow \underline{\underline{K}}$ is a simplicial map then $\wp^{*} \mathrm{C}=\mathrm{C}$. The induced homomorphism $C(\Downarrow): C(\underline{L}) \& C(\underline{K})$ coincides with that given in 14.1.
ii) $H(C(n), \delta)=k$ for all $n$. In particular, $C$ is a local system of differential coefficients.
iii) C is extendable.

Proof : i) is obvious, ii) is a classical computation and iii) is an immediate corollary of theorem 14.6 (with $F=k$ ).
Q.E.D.
14.12. - Topological spaces.- Let $M$ be a topological space and consider the simplicial set Sing $M$ of singular simplices on $M$ (eg. 12.13) The g.d.a. (C(Sing M), $\delta$ ) will simply be denoted by (C(II), $\delta$ ) ; by definition it is the g.d.a. of singular cochains on $M$ (with coefficients $k$ ). Its cohomology is written $H(M)$ or $H(M ; k)$; it is the singular cohomology

## LECTURES ON MINIMAL MODELS

of $M$ (with coefficients $k$ ).
14.13. - Integration and de Rham theorems.- We conclude this chapter
with the simplicial version of de Rham's theorem. Recall from 13.1 the definition of $A_{\infty}\left(\Delta^{n}\right)$. Define a linear map

$$
\int_{\Delta^{n}}: \mathbb{A}_{\infty}^{n}\left(\Delta^{n}\right) \rightarrow \mathbb{R}
$$

by

$$
\int_{\Delta^{n}} f d b_{1} \wedge \ldots \Lambda d b_{n}=\int_{\Delta^{n}} f(x) d x, \quad f \in C^{\infty}\left(\Delta^{n}\right)
$$

where the right hand side is the ordinary Riemann integral. Stokes'theorem reads
(14.14) $\int_{\Delta^{n}} d \Phi=\sum_{i=0}^{n}(-1)^{i} \int_{\Delta^{n-1}} \partial_{i} \Phi, \quad \Phi \in A_{\infty}^{n-1}\left(\Delta^{n}\right)$.

Now $A_{Q}^{n}(n) \subset A_{\infty}^{n}\left(\Delta^{n}\right)$ is the subspace defined by : $f$ is a polynomial
in the $b_{i}$ with rational coefficients. It follows that $\int_{\Delta} n$ restricts to a linear map $A_{Q}^{n}(n) \rightarrow Q$. Tensoring with $k$ we obtain a linear map

$$
\int_{\Delta^{n}}: A^{n}(n) \rightarrow k
$$

which still satisfies (14.14). If $E$ is any vector space (over $k$ ) we also write

$$
\int_{\Delta^{n}}=\int_{\Delta^{n}} \theta: A^{n}(n) \theta E \rightarrow E .
$$

Next, let $F$ be a local system of coefficients over a simplicial set
K. Define linear maps

$$
\int: A^{p}\left(\underline{K} ; F^{q}\right)+c^{p}\left(\underline{K} ; F^{q}\right)
$$

## S. HALPERIN

by
(14.15)

$$
\left(\int \phi\right)(\sigma)=\int_{\Delta^{p e}} \phi_{\sigma} \quad \sigma \in \frac{K_{p}}{p}
$$

(Note that $\phi_{\sigma} \in A^{p}(p) \in E_{\sigma}$ and so $\int_{\Delta^{p}} \Phi_{\sigma} \in F_{\sigma}$. )

maps.

$$
A(\emptyset): A(\underline{L} ; G) \leftarrow A(\underline{K} ; F) \text { and } C(\psi): C(\underline{L} ; G) \leftarrow C(\underline{K} ; F) .
$$

It is immediate from the definitions that the diagram
(14.16)

commutes.
Next we use (14.14) to prove that
(14.17)

$$
\int 0 \mathrm{~d}=\delta 0 \int .
$$

Let $\quad \in A^{p}\left(\underline{K} ; F^{q}\right)=\left(A^{p} \oplus F^{q}\right)(\underline{K})$. Then

$$
\begin{aligned}
\left(\int d \Phi\right)(\sigma) & =\int_{\Delta^{p}} d \Phi_{\sigma}=\sum_{i=0}^{p}(-1)^{i} \int_{\Delta^{p-1}} \partial_{i} \Phi_{\sigma} \\
& =\left.\sum_{i=0}^{p-1}(-1)^{i} \partial_{i}^{-1}\right|_{D-1}\left(\partial_{i} \theta \partial_{i}\right)\left(\Phi_{\sigma}\right) .
\end{aligned}
$$

Because $\Phi \in\left(A^{p} \oplus F^{q}\right)(\underline{K}),\left(\partial_{i} \otimes \partial_{i}\right) \phi_{\sigma}=\oplus_{\partial_{i} \sigma}$. Thus

$$
\left(\int d \Phi\right)(\sigma)=\sum_{i=0}^{P+1}(-1)^{i} \partial_{i}^{-1}\left(\int \phi\right)\left(\partial_{i} \sigma\right)=\left(\delta \int \phi\right)(\sigma) .
$$

Note, however, that even if $F=k, \int$ is not an algebra homomorphism ! In view of (14.17) and (14.16) $\int$ induces natural linear maps

$$
\int: H^{p+q}\left(\left(A \otimes F^{q}\right)(\underline{X}), d\right) \longrightarrow H^{p}\left(\underline{K} ; F^{q}\right) \text {. }
$$

14.18. Theorem.- Suppose $F$ is a local system of coefficients over $\underline{K}$ (with zero differentials). Then

$$
\int^{*}: H((A \otimes F)(\underline{K})) \rightarrow H(\underline{K} ; F)
$$

is an isomorphism of bigraded spaces. If $F$ takes values in a category of algebras then $\int^{*}$ is an isomorphism of algebras.

Prooh : Since A and $C$ are extendable local systems (prop 13.8, prop 14.11) and $F$ is a local system of coefficients, $A 9 P$ and $C P$ are also extendable. Thus by theorem 12.37 , A C C F is extendable as well.

Because $H(A(n))=k=H(C(n))$ and $F$ is local system of coefficients, $A \theta F, C \theta F$ and $A \theta C \theta F$ are all local systems of differential coefficients.

Now consider the inclusions "opposite 1"

$$
\varphi_{\sigma}:(A \oplus F)_{\sigma} \longrightarrow(A \oplus C \oplus F)_{\sigma}
$$

and

$$
\psi_{\sigma}:(C \theta F)_{\sigma} \longrightarrow(A \otimes C \theta F)_{\sigma}, \quad \sigma \in K_{n}, n \geqslant 0 .
$$

They satisfy the hypotheses of theorem 12.27. Applying this theorem we obtain isomorphisms

$$
\varphi^{*}: H[(A \ominus F)(\underline{K})] \xrightarrow{\equiv} H[(A \theta C \theta F)(\underline{K})]
$$

and

$$
: H(C(\underline{K} ; F)) \xrightarrow{\cong} H[(A \text { © } C \text { er })(\underline{K})] \text {, }
$$

which are multiplicative if $F$ takes values in a category of algebras. (Note that we have used the isomorphism $\Gamma$ of theorem 14.6 to identify ( $C O F$ ) (K) with $C(\underline{R} ; F)$.

It remains to show that $\int^{*}=\left(\psi^{*}\right)^{-1} \circ \psi^{*}$. Define linear maps

$$
I_{\sigma}: A(n) \otimes C(n) \ominus F_{\sigma} \rightarrow C(n) \ominus F \quad, \quad \sigma \in \mathbb{K}_{-n}
$$

as follows : since $A(n)=A\left(\underline{\Delta}^{n}\right)$ and $C(n)=C\left(\underline{\Delta}^{n}\right)$ the chain map

$$
\int:(A(n), d) \rightarrow(C(n), \delta)
$$

is defined. Let

$$
I_{\sigma}(\Phi \in f 0 z)=\left(\int \phi\right) \cdot f 0 z
$$

Because $\int d=\delta \int$, $I_{\sigma}$ commutes with the differentials. Because $\int$ is natural with respect to simplicial maps $(14.16)$, the $I_{\sigma}$ commute with the face and degenerary operators. Hence the $I_{\sigma}$ define a map

$$
\begin{gathered}
I:(A \bullet C \theta F)(\underline{K}) \longrightarrow C(\underline{K} ; F) . \\
\quad \begin{array}{c}
\text { Clearly } I \circ \psi=1 \text { and } I \circ \psi=\int \text {. Hence } I=\left(\psi^{*}\right)^{-1} \text { and } s o
\end{array} \text { Q.E.D. }
\end{gathered}
$$

## Chapter 15

## Topological spaces and manifolds.

```
 15.1.- Differential forms.- Let M be a topological space and recall
(example 12.13) that Sing M denotes the simplicial set of singular simplices
on M. Thus we can form the c.g.d.a. (A(Sing M),d).
 If }\:M->N is a continuous map it defines a simplicial ma
S(*) : Sing(M) }->\mathrm{ Sing(N) and so we obtain a homomorphism
 A(\psi):(A(Si:g M),d) + (A(Sing N),d).
15.2.- Definition.- The c.g.d.a. (A(Sing M),d) will be denoted sim-
```

ply by

$$
(A(M), d)
$$

and called the c.g.d.a. of differential forms on $M$. If $i: N \rightarrow M$ is the inclusion of a subspace then

$$
(A(M, N), d)
$$

denotes the ideal of forms which vanish on $N(\Lambda(i) \Phi=0)$.
15.3.- Property.- The map $M, \psi \sim A(M), A(\psi)$ is a contravariant functor from spaces to c.g.d.a.'s.

$$
\begin{aligned}
& \text { 15.4.- Propertiv. - If } N \text { is a subspace of } M \text { then } \\
& 0 \rightarrow A(M, N) \rightarrow A(M) \xrightarrow{A(i)} A(N) \rightarrow 0
\end{aligned}
$$

is a short exact sequence.

## S. HALPERIN

```
Proof : Since \(N \subset M\), Sing \(N\) is a subset of Sing M. Apply prop. 12.21 to the extendable local system \(A\).
```

Q.E.D.
15.5.- Property.- $A$ (point) $=k$. In particular the inclusion of $a$ point in $M$ defines an augmentation $A(M) \rightarrow k$.

Proof : Any singular simplex $\sigma \in$ Sing $_{n}(p t)$ can be written $\sigma=s_{i_{1}} \quad 0 \ldots 0 s_{i_{n}}(\tau)$
where $\tau$ is the unique singular simplex of dimension zero. It follows that $A(p t) \rightarrow A(0)$ defined by $\Phi \rightarrow \Phi_{\tau}$ is an isomorphism. But $A(0)=k$.
Q.E.D.
15.6. - Property.- Integration defines a natural isomorphism of graded algebras

$$
\mathrm{H}(\mathrm{~A}(\mathrm{M}), \mathrm{d}) \xrightarrow{\tilde{\leftrightarrows}} \mathrm{H}(\mathrm{M} ; \mathrm{K}),
$$

where $H(M ; k)$ is the singular cohomology.

which identifies the long exact cohomology sequence of the differential form cohomology with that of singular cohomology.

Because $H(A(M), d)=H(M ; k)$ it follows that $H^{\circ}(A(M), d)=k$ if
and only $M$ is path connected. In this case we can apply the results of

## LECTURES ON MINIMAL MODELS

chap. 6 to the inclusion

$$
k \longrightarrow(A(M), d)
$$

```
to obtain a "unique" minimal model (cf theorems 6.1, 6.2, 6.3)
```

$$
\Psi_{M}:\left(\Lambda X_{M}, d\right) \quad \longrightarrow(A(M), d)
$$

15.8. - Definition. - The minimal model

$$
\varphi_{M}:\left(\Lambda X_{M}, d\right) \longrightarrow(A(M), d)
$$

is called the minimal model for $M$. Note that $\Lambda X_{M}$ is connected.

```
 Next suppose A(M) is augmented (by the inclusion of a fixed base
point in M). Recall (definition 8.7 with A(M) = E) the \psi-homotopy spaces
\mp@subsup{\pi}{\psi}{}}(\textrm{A}(M)) and note that 林varphi M gives an explicit identification
 \pi
.5.9.- Definition.- The spaces }\mp@subsup{\pi}{\psi}{P}(A(M)) will be written simply
#
 \pi P
and called the }\psi\mathrm{ -homotopy spaces of the path connected based space M.
 Next recall that a continuous map \psi:N }->M\mathrm{ between path connected
spaces determines a homomorphism
\[
A(\emptyset):(A(M), d) \rightarrow(A(N), d)
\]
 We regard this as ag special case of diagram (6.28) (with B B = B = = k
E}=A(M),\quad\mp@subsup{E}{2}{}=A(N),\quadn=A(|))
```

Then, as described in diagram (6.29) we obtain a homomorphism

$$
\bar{\varphi}:\left(\Lambda X_{M}, d\right) \rightarrow\left(\Lambda X_{N}, d\right)
$$

such that the diagram
(15.10)

homotopy commutes. Moreover, the homotopy class of $\bar{\psi}$ is uniquely determined.
If $\psi$ preserves base points ther the based homotopy class of $\bar{\psi}$ is uniquely determined. In particular, it determines maps between the $\psi$-homotopy spaces (cf. definition 8.11) which we write
(15.11)

$$
\psi^{\#}: \pi_{\psi}^{*}(\mathrm{M}) \longrightarrow \pi_{\psi}^{*}(\mathrm{~N}) ;
$$

i.e.,

$$
\varphi^{\#}=Q(\bar{\varphi}) .
$$

15.12.- Property.- Assume $\varphi_{0}, \psi_{1}: N \rightarrow M$ are homotopic maps between path connected spaces. Then the induced homomorphisms

$$
\bar{\varphi}_{0}, \bar{\nu}_{1}: \Lambda x_{M} \longrightarrow \Delta x_{N}
$$

are homotopic.
If $\psi_{0}, \psi_{1}$, and the homotopy preserve base points (fixed in $M$ and
$N$ then $\bar{\psi}_{0}$ and $\bar{\psi}_{1}$ are based homotopic, and so

$$
\psi_{0}^{\#}=\psi_{1}^{\#}: \pi_{\psi}^{*}(M) \longrightarrow \pi_{\psi}^{*}(N) .
$$

## LECTURES ON MINIMAL MODELS

Proof : Fix a base point $x \in N$, and consider the c.g.d.a.

$$
\tilde{A}(N \times I)=A(N \times I, x \times I) \bullet k .
$$

The inclusion $\tilde{A}(N \times I) \hookrightarrow A(N \times I)$ induces a cohomology isomorphism as follows at one from property 15.7 , and $\tilde{A}(N \times I)$ is naturally augmented.

The projection $\pi: N \times I \rightarrow N$ induces a homomorphism of augmented c.g.d.a.'s

$$
A(\pi): A(N) \rightarrow \tilde{A}(N \times I)
$$

which is a cohomology isomorphism. Hence we may take

$$
A(\pi) \circ \varphi_{N}: \Lambda X_{N} \rightarrow \tilde{A}(N \times I)
$$

as the minimal model ; composing with the inclusion $\tilde{A}(N \times I) \quad 4(N \times I)$ gives the minimal model for $N \times I$.

On the other hand the inclusions $j_{\lambda}: N \rightarrow N \times\{\lambda\} \quad(\lambda=0,1)$
define homomorphisms of augmented c.g.d.a.'s

$$
A\left(j_{\lambda}\right): \tilde{A}(N \times I) \rightarrow A(N)
$$

and $A\left(j_{\lambda}\right) \circ A(\pi)=A\left(\pi j_{\lambda}\right)=1$.
Now assume $\Phi: N \times I \rightarrow M$ is a homotopy from $\rrbracket_{0}$ to $\psi_{1}$ which preserves base points : $\Phi(x \times I)=y$. Then $\Phi$ determines a homomorphism of augmented c.g.d.a.'s

$$
A(\Phi): \tilde{A}(N \times I) \quad A(M)
$$

This in turn determines a homomorphism

$$
\bar{\Phi}: \Lambda x_{N}+\Delta x_{M}
$$

```
 S. HALPERIN
such that }A(\Phi)\circ\mp@subsup{\Psi}{M}{}\approxA(\pi)\circ\mp@subsup{\psi}{N}{}\circ\overline{\Phi}
 We thus have
\[
\begin{aligned}
& \Psi_{N} \bar{\varphi}_{\lambda} \not \approx A\left(\oplus_{\lambda}\right) \psi_{M}=A\left(j_{\lambda}\right) A(\Phi) \varphi_{M} \\
& \forall A\left(j_{\lambda}\right) A(\pi) \psi_{N} \bar{\Phi}=\varphi_{N} \bar{\Phi}, \quad \lambda=0,1
\end{aligned}
\]
Now prop. 5.16. ii) implies (because \(\psi_{N}^{*}\) is an isomorphism) that \(\bar{\psi}_{0} \approx \bar{\Phi} \approx \bar{\psi}_{1}\), whence \(\bar{\psi}_{0} \approx \bar{\psi}_{1}\).
The "unbased" case is left to the reader.
Q.E.D.
We next consider a number of topological constructions, and find c.g.d.a.'s which "carry" the model of the constructed space.
15.13. - Products. - Let \(\pi_{M}: M \times N \rightarrow M, \quad \pi_{N}: M \times N \rightarrow N\) be the projections, and define
\[
A(M) \oplus A(N) \rightarrow A(M \times N)
\]
by \(\quad 0 \psi \mapsto A\left(\pi_{M}\right) \Phi \cdot A\left(\pi_{N}\right) \psi\).
This is a homomorphism of c.g.d.a.'s. Because \(\int^{\bullet}\) is a multiplicative isomorphism, it identifies the induced homomorphism
\[
H(A(M)) \theta H(A(N)) \rightarrow H(A(M \times N))
\]
with the homomorphism
\[
H(M ; k) \theta H(N ; k) \rightarrow H(M \times N ; k)
\]
given by \(\alpha \theta B \rightarrow\left(\pi_{M}^{*}\right) \cdot\left(\pi_{N}^{*} B\right)\).
```


## LECTURES ON MINIMAL MODELS

If either $H(M ; k)$ or $H(N ; k)$ has finite type the Kunneth theorem asserts that this is an isomorphism.

Assume this to be the case and let

$$
\psi_{M}: \Lambda X_{M} \rightarrow A(M) \text { and } \vartheta_{N}: \Lambda X_{N} \rightarrow A(N)
$$

be the minimal models (supposing as well $M, N$ path connected). Then

$$
\varphi_{M} \cdot \dot{\psi}_{N}: \Lambda X_{M} \otimes \Lambda X_{N} \rightarrow A(M \times N)
$$

$\left(\psi_{M} \cdot \psi_{N}(\phi \in \Psi)=A\left(\pi_{M}\right) \psi_{M} \phi \cdot A\left(\pi_{N}\right) \psi_{N} \psi\right)$ induces a cohomology isomorphism. Hence it is the minimal model for $M \times N$.
15.14. - Wedges. - Let $\left\{M_{\alpha}, x_{\alpha}\right\}_{\alpha \in I}$ be a collection of path connected spaces with base points. Their wedge, $V_{\alpha} M_{\alpha}$ is the disjoint union with all the $x_{\alpha}$ 's identified.

On the other hand if $\left\{A_{B,} \varepsilon_{B}\right\}_{B \in I}$ is a collection of augmented c.g.d.a.'s, their wedge is the augmented c.g.d.a.

$$
\mathbf{v}_{B} A_{B}=k \oplus \prod_{B} \operatorname{ker} \varepsilon_{B}
$$

In particular the inclusions $M_{\alpha} \rightarrow V_{\alpha} M_{\alpha}$ define homomorphisms

$$
\left.\underset{\alpha}{A(V} M_{\alpha}\right) \rightarrow \underset{\alpha}{V} A\left(M_{\alpha}\right)
$$

and

$$
\underset{a}{\mathrm{H}}\left(\mathrm{~V} \mathrm{M}_{\alpha} ; k\right) \quad \rightarrow \quad \underset{a}{V} \mathrm{H}\left(M_{a} ; k\right) .
$$

Integration identifies the second of these with the cohomology homomorphism induced by the first : if the second is an isomorphism the first induces a cohomology isomorphism.

Assume this to be the case. Then $A\left(V M_{a}\right)$ and $V A\left(M_{a}\right)$ have
the same minimal models (cf. theorem 6.24). On the other hand if $\varphi_{\alpha}: \Lambda X_{\alpha} \rightarrow A\left(M_{\alpha}\right)$ is the minimal model then the $\varphi_{\alpha}$ determine

$$
V \varphi_{\alpha}: V_{\alpha}\left(\Lambda X_{\alpha}\right) \rightarrow{\underset{\alpha}{ }}_{V} A\left(M_{\alpha}\right)
$$

and $\left(V \rrbracket_{\alpha}\right)^{*}$ is an isomorphism. Hence (again by 6.24) the minimal model of $V_{\alpha} M_{\alpha}$ is the minimal model of

$$
\underset{\alpha}{v}\left(\Lambda X_{\alpha}\right)=k \cdot \prod_{\alpha} \Lambda^{+} x_{\alpha}
$$

(Observe that the right hand side is rather horrid.)
15.15. - Attaching maps. - Let

$$
i: N \rightarrow M \text { and } f: N \rightarrow P
$$

be continuous maps, in which $i$ is the inclusion of a subspace. We use $f$ to attach $M$ to $P$ by identifying $x$ and $f(x)(x \in N)$ in the disjoint union of $P$ and $M$; the resulting space is written $P U_{f} M$.

Then these is an obvious map of topological pairs

$$
(M, N) \longrightarrow\left(P U_{f} M, P\right)
$$

and we shall say $M$ is well attached to $P$ if this map induces an isomorphism

$$
\begin{equation*}
H(M, N ; k) \stackrel{\tilde{E}}{\rightleftarrows} H\left(P \cup_{f} M, P ; k\right) . \tag{15.16}
\end{equation*}
$$

Consider the analogous situation for c.g.d.a.'s. Suppose

$$
n: R \rightarrow G \text { and } Y: L \rightarrow G
$$

are homomorphisms of c.g.d.a.'s, and $n$ is surjective. Define the c.g.d.a.

$$
L \dot{\theta}_{G} R \subset L \ominus R
$$

to consist of the pairs $(\Phi$ ) such that $\gamma \Phi=n \psi$. Note that it fits into

## LECTURES ON MINIMAL MODELS

the short exact sequence
(15.17)

$$
0 \rightarrow L \theta_{G} R \rightarrow L \cdot R \xrightarrow{Y-\eta} G \rightarrow 0
$$

(in which $\gamma-n$ is not product preserving and sends 1 to zero !).

In particular, if we are in the topological situation described above
we can form the exact sequence


Let $j: P \rightarrow P U_{f} M, \psi: M \rightarrow P U_{f} M$ be the obvious maps and define a homomorphism

$$
\varphi: A\left(P \cup_{f} M\right) \longrightarrow A(P) \quad \theta_{A(N)} A(M)
$$

by $\quad \varphi \Phi=\mathbf{A}(\mathrm{j}) \Phi \oplus \mathbf{A}(\psi) \Phi$.
15.18.- Proposition.- If $M$ is well attached to $P$ then $\varphi^{*}$ is an isomorphism of cohomology. In particular, the minimal model for $P U_{f}^{M}$ is the minimal model for $A(P) \quad A(N) A(M)$.

Prooh : Observe that $A(M, N)=0 \quad A(M, N) \subset A(P) \theta_{A(N)} A(1 I)$ and
that the diagram

is commutative and row exact. By (15.16) and property 15.7 the left hand arrow is a cohomology isomorphism. Hence $\psi$ is an isomorphism.
Q.E.D.

## S. HALPERIN

15.19. - Manifolds. - Let $M$ be a smooth manifold and consider the standard c.g.d.a. of "de Rham" differential forms, ( $\left.A_{D R}(M), d\right)$. Recall the simplicial set Sing ${ }^{\infty}(M)$ of smooth singular sinplices on $M$. Define a homomorphism (cf. 13.6) of c.g.d.a.'s

$$
r_{1}: A_{D R}(M) \rightarrow A_{\infty}\left(\operatorname{Sing}^{\infty}(M)\right)
$$

by $\quad\left(\gamma_{1} \Phi\right)_{\sigma}=\mathbf{A}(\sigma) \Phi$.

On the other hand the inclusions $\operatorname{Sing}^{\infty}(M) \longrightarrow$ Sing $(M)$ anc
$A_{R}(n) \rightarrow A_{\infty}\left(\Delta^{n}\right)$ define homomorphisms of c.g.d.a.'s

$$
A_{\infty}\left(\operatorname{Sing}^{\infty}(M)\right) \longleftarrow A_{R}\left(\operatorname{Sing}^{\infty}(M)\right) \longleftarrow A_{R}(M)
$$

## Moreover the diagram


commutes.
Now the first vertical arrow is a cohomology isomorphism. (This is in fact the De Rham theorem of De Rham!) The other two vertical arrows induce cohomology isomorphisms by theorem 12.27 . That the bottom arrow does this is standard topology.

It follows that $\gamma_{1}$ and $\gamma_{2}$ are isomorphisms. Hence $\gamma_{1}$ and $\gamma_{2}$ define a c-equivalence between $A_{D R}(M)$ and $A_{R}(M)$ (cf. 6.23). Hence (theorem 6.24) their minimal models and $\psi$-homotopy spaces coincide.

## $\pi_{1}(M)$ modules and singular cohomology.

16.1.- In this chapter $M$ denotes a fixed path connected topological space with base point $x$. The fundamental group of $M$, based at $x$, is denoted by $\pi_{1}(M)$.

By a $\pi_{1}(M)$ module we shall mean a graded vector space (over $k$ ) $F=\sum_{q \geqslant 0} F^{q}$ together with group homomorphisms $\pi_{1}(M) \rightarrow G L\left(F^{q}\right), \quad q \geqslant 0$. (GL( $F^{q}$ ) denotes the abstract group of $k$-linear automorphisms of $F^{q}$.) We shall regard $\alpha \in \pi_{1}(M)$ as an automorphism of $F$ and write simply $\alpha \cdot w \in F$, WEF.

Given a $\pi_{1}(M)$-module $F$ define submodules

$$
F_{0} \subset F_{1} \subset \ldots \subset F_{p} \subset \ldots \subset F
$$

by: $w \in F_{p}$ if and only if $\left(\alpha_{0}-i\right)\left(\alpha_{1}-v \ldots\left(\alpha_{p}-i\right) w=0\right.$ for all $\alpha_{0}, \ldots, \alpha_{p} \in \pi_{1}(M)$. This sequence is called the upper central series for $F$.

The quotient of a $\pi_{1}(M)$ module by a submodule is a $\pi_{1}$ (li)-module (in the obvious way). In particular, the inclusions $F_{p} \subset F_{p+q} \subset F$ define an isomorphism of modules
(16.2) $\mathrm{F}_{\mathrm{P}+\mathrm{q}} / \mathrm{F}_{\mathrm{P}} \xrightarrow{\boldsymbol{E}}\left(\mathrm{F} / \mathrm{F}_{\mathrm{p}}\right)_{\mathrm{q}-1}$.

Next observe that if $G \subset F$ is a submodule then
(16.3) $\quad G_{P}=G \cap F_{P}, \quad P \geqslant 0$
and so $G / G_{p}$ is a submodule of $F / F_{p}$.
A $\pi_{1}(M)$ module $F$ is called nilpotent if for each $q$ there is
an integer $N(q)$ such that

$$
F^{q}=F_{N(q)}^{q}
$$

In this case we say $\pi_{1}(M)$ acts nilpotently in $F$.
A $\pi_{1}(M)$-module $F$ has finite type if it has finite type as a graded vector space (each $F^{q}$ is finite dimensional). It is finitely approximable if it is the union of its submodules of finite type.
16.4.- Lemma.- Suppose $F$ is a finitely approximable $\pi_{1}$ ( $M$-module with family $\left\{F^{\gamma}\right\}$ of submodules of finite type :

$$
F=\bigcup_{\gamma} F^{Y} .
$$

Then
i) Each $F_{p}$ is finitely approximable and the submodules of finite type are exactly the $F_{p}^{\gamma}$.
ii) Each $F / F_{p}$ is finitely approximable and the submodules of finite type are exactly the $F^{\gamma} / F_{p}^{\gamma}$.
iii) Each $F_{p+q} / F_{p}$ is finitely approximable and the submodules of finite type are exactly the $F_{p+q}^{Y} / F_{p}^{\gamma}$.

## Proof :

i) follows from (16.3) with $G$ replaced by $F^{\gamma}$.
ii) follows from the observation that $F^{\gamma} / F_{p}^{\gamma}$ is a submodule of $F / F_{p}$.
iii) is a special case of ii).
Q.E.D.
16.5.- Local sustems of coefficients.- Let $F$ be a local system of coefficients ( $\ell . s . c$. ) over Sing $M$ (cf. just after ( 12.26 )). Each $2 \in M$ is a singular o-simplex and hence determines a graded vector space $F_{z}$. Each

## LECTURES ON MINIMAL MODELS

path $\lambda: I \rightarrow M$ is a singular l-simplex and hence determines isomorphisms

$$
F_{\lambda(0)} \stackrel{\partial_{1}}{\cong} F_{\lambda} \xrightarrow[\tilde{Z}]{\partial_{0}} F_{\lambda(1)} .
$$

The composite isomorphism $\partial_{0} \circ \partial_{1}^{-1}$ will be denoted by

$$
[\lambda]: F_{\lambda(0)} \xrightarrow{\cong} F_{\lambda(1)}
$$

and called the path isomorphism determined by $\lambda$.
16.6.- Proposition.- The path isomorphisms have the following properties :
i) If $\lambda: I \rightarrow z$ is the constant path, then $[\lambda]$ is the identity map of $\quad F_{z}$.
ii) [ $\lambda$ ] depends only on the homotopy class (rel. the endpoints) of $\lambda$.
iii) Let $\lambda$ and $\mu$ be paths from $y$ to $z$ and from 2 to $w$, and let $\mu * \lambda$ be the composite path from $y$ to w. Then $[\mu * \lambda]=[\mu] \circ[\lambda]$.

Prood :
i) Regard $z$ as a $0-s i m p l e x$; then $\lambda=s_{0} z$. Hence $\partial_{0}=\partial_{1}=$
$=\mathrm{s}_{0}^{-1}: \mathrm{F}_{\lambda} \xrightarrow{\equiv} \mathrm{F}_{\mathrm{z}}$.
ii) Let $\Phi: I \times I \rightarrow M$ be a homotopy such that
$\Phi(s, 0)=\lambda_{0}(s), \phi(s, 1)=\lambda_{1}(s), \phi(0, t)=y, \quad(1, t)=2$.

Triangulate $I \times I$ as shown :

and let $\alpha, \beta$ and $\mu$ be the singular simplices (of dimensions 2,2 and 1) obtained by restricting $\Phi$.

The face maps define isomorphisms

$$
F_{\alpha} \quad \cong \quad F_{\lambda_{1}}, F_{\mu} \quad \text { and } \quad F_{B} \quad \tilde{} \quad F_{\lambda_{0}}, F_{\mu}
$$

Combine these with i) to achieve the proof.
iii) Construct a singular 2-simplex $\alpha$ such that $\partial_{0} \alpha=\mu$, $\partial_{1} \alpha=\mu \omega^{2}$ and $\partial_{2} \alpha=\lambda ;$ then argue as in ii).
Q.E.D.

If $\lambda$ is a loop based at $x$, then $[\lambda]$ is an automorphism of $F_{X^{\prime}}$. Prop. 16.6 shows that these automorphisms make $F_{x}$ into a $\pi_{1}(M)$-module.
16.7.- Definition. - The $\pi_{1}(M)$-module $F_{x}$ is called the $\pi_{1}(M)$-module associated with the l.s.c. F.

Suppose GCF is a sub l.s.c. (i.e. $G_{\sigma} \subset F_{\sigma}, \sigma \in$ Sing $M$ and the face and degeneracy maps of $F$ restrict to those of $G$ ). We define the quotient l.s.c., F/G by

$$
(F / G)_{\sigma}=F_{\sigma} / G_{\sigma} \quad, \quad \sigma \in \text { Sing } M
$$

with the obvious face and degeneracy operators.
In particular note that $G_{x}$ is a submodule of $F_{x}$ and the equality

$$
(F / G)_{x}=F_{x} / G_{x}
$$

is an equality of $\pi_{1}(M)$-modules.
On the other hand, let $E \subset F_{x}$ be any sub $\pi_{1}(M)$ module.

```
For each }\sigma\in\mathrm{ Sing M choose a path }\lambda\mathrm{ from x to }\sigma(0)\mathrm{ . Restriction defines an isomorphism \(F_{\sigma} \xrightarrow{I} F_{\sigma(0)}\) and so \(\lambda\) determines a composite isomorphism
```

$$
\mathbf{F}_{\mathbf{x}} \xrightarrow{[\lambda]} \mathbf{F}_{\sigma(0)} \xrightarrow{\cong} \mathbf{F}_{\sigma}
$$

Because $E$ is a submodule, the image of $E$ under this isomorphism is a subspace $E_{\sigma} \subset F_{\sigma}$ which is independent of the choice of $\lambda$. Thus the $E_{\sigma}$ define a sub \&.s.c. of $F$. In this way we obtain
16.8. - Proposition. - The correspondence $G \leadsto G_{x}$ defines a bijection between sub local coefficient systems of $F$ and sub $\pi_{1}(M)$-modules of $\mathrm{F}_{\mathrm{X}}$.
16.9.- Example.- The upper central series of $F_{x}$ :

$$
\left(F_{x_{0}} \subset \ldots \subset\left(F_{x}\right)_{p} \subset \ldots\right.
$$

determines a sequence of local systems of coefficients

$$
F_{0} \subset \ldots \subset F_{p} \subset \ldots
$$

such that $\left(F_{p}\right)_{x}=\left(F_{x}\right)_{p}$. It is called the upper central series for $F$.
Next recall that the l.s.c. $F$ determines the graded space
$F\left(\underline{\text { Sing }} M\right.$ ) of global sections whose elements $\phi$ are the families $\Phi_{\sigma} \in F_{\sigma}$ ( $\sigma \in$ Sing $M$ ) compatible with the face and degeneracy operators. For simplicity we write

$$
F(\underline{\text { Sing }} M)=F(M)
$$

Then the correspondence $\oplus \rightarrow \Phi_{\sigma}$ is a linear map

$$
e_{0}: F(M) \rightarrow F_{\sigma} \quad \sigma \in \underline{S i n g} M
$$

If $\sigma$ and $\omega$ are faces of a simplex $\tau$ then the face maps define isomorphisms $F_{\tau} \xrightarrow{\cong} F_{\sigma}, F_{\omega}$ and the diagram
(16.10)

commutes.
Since $M$ is path connected each $\sigma$ is a face of a simplex $\tau$ which contains $x$ as a vertex. Setting $\omega=x$ in (16.10) we see that $e_{\sigma} \Phi=0$ if and only if $e_{x} \Phi=0$. But in this case $e_{\sigma} \Phi=0$ for all $\sigma$ and so $\phi=0$. Hence each $e_{\sigma}$ is injective.

Next consider (16.10) when $\tau$ is a loop based at $x$ and $\sigma=\omega=x$. It shows that

$$
[\tau] \circ e_{x}=e_{x} \text { and hence }
$$

$$
\operatorname{Im} e_{x} \subset\left(F_{x}\right)_{0}
$$

On the other hand, if $w \in\left(F_{x}\right)$ an argument similar to the proof of prop. 16.8 extends $w$ to an element of $F(M)$. Thus

$$
\begin{equation*}
e_{x}: F(M) \quad \cong\left(F_{x}\right)_{0} \tag{16.11}
\end{equation*}
$$

$$
\begin{gather*}
\text { Since }\left(F_{x}\right)_{0}=\left(F_{0}\right)_{x} \text { a final application of }(16.10) \text { shows that } \\
e_{\sigma}: F(M) \geqq\left(F_{0}\right)_{\sigma}, \quad 0 \in \underline{\text { Sing } M .} \tag{16.12}
\end{gather*}
$$

The isomorphisms (16.12) exhibit $F_{0}$ as a constant system of coefficients.
16.13.- Singular cohomology. - Let $F$ be a local system of coefficients over Sing $M$ (with zero differentials !). In 14.1. we defined the bigraded differential space ( $(\underline{\text { Sing }} M ; F), \delta$ ) which we shall denote simply by ( $C(M ; F), \delta)$. It is called the space of singular cochains on $M$ with coefficients in $F$.

Because $\delta$ is homogeneous of bidegree $(1,0)$ the cohomology space $\mathrm{H}(\mathrm{C}(\mathrm{M} ; \mathrm{F}), \delta)$ is also bigraded : it is written simply

$$
H(M ; F)=\sum_{p, q \geqslant 0} H^{p}\left(M ; F^{q}\right)
$$

and called the singular cohomology of $M$ with coefficients in $F$.

On the other hand if $E$ is a graded vector space we have the bigraded differential space ( $C(\underline{\text { Sing }} M ; E), \delta)$ of singular cochains on $M$ with values in $E$, which we write $(C(M ; E), \delta)$. Its cohomology,

$$
H(M ; E)=\sum_{P, q \geqslant 0} H^{P}\left(M ; E^{q}\right),
$$

is the ordinary singular cohomology of $M$ with values in $E$. When $E=k$
we write simply $H(M)=H(M ; k)$ - cf. example 14.12. - and call this c.g.a.
the singular cohomology algebra of $M$.

Suppose $F$ is, as above, an l.s.c. Then we have the differential spaces $C(M ; F(M)), C\left(M ;\left(F_{x}\right)_{0}\right)$ and $C\left(M ; F_{0}\right)$ obtained by taking $E=F(M),\left(F_{x}\right){ }_{0}$ and replacing $F$ by the $\ell . s . c . F_{0}$. If $f \in C^{P}\left(M ; F^{q}(I)\right)$ define

$$
\bar{e}_{x} f \in C^{p}\left(M ;\left(F_{x}^{q}\right)_{0}\right) \quad \text { and } \quad \bar{e} f \in C^{p}\left(M ; F_{0}\right)
$$

by

$$
\left(\bar{e}_{x} f\right)(\sigma)=e_{x}(f(\sigma))=f(0)_{x} \text { and }(\bar{e} f)(\sigma)=e_{c}(f(\sigma))=f(\sigma)_{\sigma}, \sigma \in{\underset{\mathrm{sing}}{p}}(M) .
$$

In this way, we obtain isomorphisms of differential spaces
(16.14)

$$
C\left(M ; F_{0}\right) \underset{\equiv}{\equiv} C(M ; F(M)) \frac{\bar{e}_{x}}{\equiv} C\left(M ;\left(F_{x}\right)_{0}\right) \text {, }
$$

as follows from (16.10), (16.11) and (16.12). These isomorphisms induce isomorphisms
(16.15)

$$
H\left(M ; F_{0}\right) \stackrel{e^{-*}}{\underset{\sim}{\rightleftarrows}} H(M ; F(M)) \xrightarrow[\tilde{x}]{e_{x}^{-w}} H\left(M ;\left(F_{x}\right)_{0}\right)
$$

Finally, recall that an element $f \in C^{P}\left(\mathbb{M} ; F^{q}\right)$ associates with each
p-simplex $\sigma$ an element $f(\sigma) \in F_{\sigma}^{q}$. Since $\delta$ is homogeneous of bidegree $(1,0)$ we have

$$
H^{0}\left(M ; F^{q}\right)=C^{0}\left(M ; F^{q}\right) \cap \text { ker } \delta
$$

In particular the linear map $C^{0}\left(M ; F^{q}\right) \rightarrow F_{x}^{q}$ given by $f \rightarrow f(x)$ restricts to a linear map $H^{0}\left(M ; F^{q}\right) \rightarrow F_{x}^{q}$.

We show that this map is in fact an isomorphism

$$
\begin{equation*}
H^{0}(M ; F) \xrightarrow{\underline{E}} \quad\left(F_{x}\right)_{0} . \tag{16.16}
\end{equation*}
$$

Indeed, suppose $f \in H^{0}(M ; F$ ). Let $\lambda$ be a path from $x$ to $y$, with face maps $\partial_{0}: F_{\lambda} \xrightarrow{\cong} F_{y}, \quad \partial_{1}: F_{\lambda} \xrightarrow{\tilde{m}} F_{x}$. Then

$$
0=(\delta f)(\lambda)=\partial_{0}^{-1} f(y)-\partial_{1}^{-1} f(x)
$$

and hence

$$
f(y)=\partial_{0} \partial_{1}^{-1} f(x)=[\lambda] f(x), \quad y \in M .
$$

This shows that $f(x)=0$ if and only if $f=0$, and that $f(x):\left(F_{x}\right)_{0}$. Finally, if $v \in\left(F_{x}^{q}\right)$ extend $v$ to an element $\quad \in F^{q}(M)$ and observe that $y \rightarrow \Phi_{y}$ is a cocycle in $C^{0}\left(M ; F^{q}\right)$ which restricts to $v$. Thus (16.16) is established.
16.17. - Direct limits.- Let $G$ be an l.s.c. over Sing M (with zero differentials). Denote by $G_{x}^{\gamma} \subset G_{x}$ the family of sub $\pi_{1}(M)$-modules of finite type ; each $G_{x}^{\gamma}$ entends to anique subl.s.c. $G^{\gamma} \subset G$.

The modules $G_{x}^{\gamma}$ are directed by inclusion, and if $G_{x}^{\gamma} \subset G_{x}^{\boldsymbol{\lambda}}$ then $G^{\gamma} \subset G^{\lambda}$, so we have an inclusion $C\left(M ; G^{\gamma}\right) \subset C\left(M ; G^{\lambda}\right)$. Denote the direct limit by $\left(\underline{\lim } C\left(M ; G^{\gamma}\right), \delta\right)$. The inclusions $G^{\gamma} C G$ define inclusions $i_{\gamma}: C\left(M ; G^{\gamma}\right) \rightarrow C(M ; G)$ and so we obtain an inclusion

$$
i:\left(\underline{\lim } C\left(M ; G^{\gamma}\right), \delta\right) \rightarrow(C(M ; G), \delta)
$$

of bigraded differential spaces.
16.18. - Proposition. - Suppose that
i) $G_{x}$ is a nilpotent $\pi_{1}(M)$ module.
ii) $G_{x}$ is finitely approximable : $G_{x}=\bigcup_{\gamma} G_{X}{ }^{\gamma}$.
iii) Either $G_{x}$ or $H(M)$ has finite type.

Then $i^{*}$ is an isomorphism.
16.19.- Lemma. - The proposition is correct when $G_{x}=\left(G_{x}\right)_{0}$

Proof : When $G_{x}=\left(G_{x}\right)_{0}$ then the same is true for each $G_{x}{ }^{\gamma}$. In this case we use the isomorphisms (16.14) to identify $i$ with the inclusion

$$
\xrightarrow{\lim } C\left(M ; G_{x}^{\gamma}\right) \longrightarrow C\left(M ; G_{x}\right)
$$

Now because $G_{X}^{Y}$ has finite type there is a canonical isomorphism $C(M) \theta G_{x}^{Y} \xrightarrow{\cong} C\left(M ; G_{x}^{\gamma}\right)$. Extend to difect limits and use hypothesis ii) to write

$$
\xrightarrow{\lim } C\left(M ; C_{x}^{\gamma}\right)=C(M) \otimes G_{x}
$$

We are thus reduced to proving that the inclusion
$C(M) \theta G_{x} \rightarrow C\left(M ; G_{x}\right)$ induces a cohomology isomorphism. This is a direct consequence of hypothesis iii).
Q.E.D.
16.20.- Proof of the proposition.- Consider the short exact sequences of l.s.c.'s

$$
0 \rightarrow G_{p} \rightarrow G_{p+1} \rightarrow G_{p+1} / G_{p} \rightarrow 0
$$

Because $C$ is an extendable local system, tensoring with an l.s.c. yields an extendable local system. Hence prop. 12.42 applies to yield the short exact sequences

$$
0 \rightarrow C\left(M ; G_{p}\right) \rightarrow C\left(M ; G_{p+1}\right) \rightarrow C\left(M ; G_{p+1} / G_{p}\right) \rightarrow 0
$$

We make the same construction for each $G^{\gamma}$ and pass to direct limits to obtain the commatative row exact diagram of differential spaces


According to lema 16.4 the $\pi_{1}(M)$-modules $\left(G_{p}\right)_{x}$ and $\left(G_{p+1} / G_{p}\right)_{x}$ are finitely approximable, and their submodules of finite type are exactly the $\left(G_{P}^{Y}\right)_{x}$ and the $\left(G_{p+1}^{Y} / G_{p}^{Y}\right)_{x}$. Moreover (16.2) (with $\left.q=1\right)$ shows that

$$
\left(G_{p+1} / G_{p}\right)_{x}=\left[\left(G_{p+1} / G_{p}\right)_{x}\right]_{0} .
$$

Thus lemma 16.19 implies that the vertical arrow on the right of (16.21) is always a cohomology isomorphism, and the one on the left is when $p=0$. It follows by induction that for each $p \geqslant 0$

$$
i^{*}: H\left(\underline{\lim } C\left(M ; G_{P}^{Y}\right)\right) \xrightarrow{\cong} H\left(M ; G_{P}\right) .
$$

The proposition follows now from the nilpotence of $G_{x}$ and the equations

## lectures on minimal models <br> $$
H(M ; G)=\sum_{q} H\left(M ; G^{q}\right)
$$

> Q.E.D.

```
 16.22.- Corollarll.- Under the hypotheses of prop. 16.18 the linear
maps }\mp@subsup{i}{Y}{*}\mathrm{ define an isomorphism
 |im}\mp@subsup{i}{\gamma}{*}:\xrightarrow{}{\operatorname{lim}}H(M;\mp@subsup{G}{}{\gamma})\xrightarrow{}{\cong}H(M;G)
 16.23.- The main theorem.- Suppose now that G and F are local
systems of coefficients (with zero differentials) over Sing M, where M is,
as always our fixed path connected topological space with base point x. Assume
given linear maps
\[
\psi_{\sigma}: G_{\sigma} \rightarrow F_{\sigma}, \sigma \in \text { Sing } M,
\]
homogeneous of degree zero and compatible with the face and degeneracy operators.
Define a linear map of bigraded differential spaces,
\[
\downarrow:(C(M ; G), \delta) \rightarrow(C(M ; F), \delta)
\]
by \((\varphi f)(\sigma)=\varphi_{\sigma}(f(\sigma))\). Denote by \(\varphi^{*}: H(M ; G) \rightarrow H(M ; F)\) the induced map of bigraded spaces.
As above let \(G^{\gamma} \subset G\) be the sub local systems of coefficients such that \(G_{x}^{\gamma}\) has finite type. Write
\[
\psi_{\gamma}: \psi \circ i_{\gamma}: C\left(M ; G^{\gamma}\right) \rightarrow C(M ; F)
\]
and
\[
\psi=\emptyset \circ i: \underline{\underline{\lim }} C\left(M ; G^{\gamma}\right) \rightarrow C(M ; F) ;
\]
```


16.24.- Theorem.- With the notation and hypotheses above, assume further

## that

i) $F_{x}$ and each $G_{x}^{\gamma}$ are nilpotent $\pi_{1}(M)$-modules.
ii) $G_{x}$ is finitely approximable : $G_{x}=\bigcup_{\gamma} G_{x}^{\gamma}$.
iii) Either $F_{x}$ or $H(M)$ has finite type.
iv) $\psi^{*}: \underline{\underline{\lim }} H^{0}\left(M ; G^{\gamma}\right) \rightarrow H^{0}(M ; F)$ is an isomorphism and
$\psi^{*}: \underline{l i m}^{\lim } H^{1}\left(M ; G^{\gamma}\right) \rightarrow H^{1}(M ; F)$ is injective.

Then $\psi^{*}, \psi$ and each $\psi_{\sigma}$ are isomorphisms. In particular, $G_{x}$ is nilpotent.

Proof : It is enough to prove the theorem separately for each $F^{q}$ and $G^{q}$ and so we lose no generality in assuming $F=F^{q}, G=G^{q}$. We assume this henceforth. In particular, because $F$ is nilpotent,

$$
\mathbf{F}=\mathrm{F}_{\mathrm{n}} \quad, \quad \text { some } \mathrm{n} .
$$

We show next that $\psi_{x}$ restricts to isomorphisms

$$
\left(\varphi_{x}\right)_{p}:\left(G_{x}\right)_{p} \xrightarrow{\tilde{z}}\left(F_{x}\right)_{p} \quad, p \geqslant 0 .
$$

In fact we obtain from (16.16) the commutative diagram


Thus hypothesis iv) implies that $\left(\|_{x}\right)_{0}$ is an isomorphism.
Suppose we have proved that $\left(\emptyset_{X}\right)_{p}$ is an isomorphism. It follows at once (because $M$ is path connected) that $\emptyset_{\sigma}$ restricts to isomorphisms

## LECTURES ON MINIMAL MODELS

```
(\mp@subsup{\ell}{p}{}\mp@subsup{)}{\sigma}{}:(\mp@subsup{G}{p}{\prime}\mp@subsup{)}{\sigma}{}\xrightarrow{#}{#}(\mp@subsup{F}{p}{}\mp@subsup{)}{\sigma}{}}\mathrm{ and so \ restricts to an isomorphism
\psi : C(M;GP)
```

By hypothesis ii) and lemma $16.4 \quad\left(G_{p}\right)_{x}$ is finitely approximable with submodules of finite type exactly the $\left(G_{x}^{\gamma}\right)_{P}=\left(G_{p}^{\gamma}\right)_{x}$. Because $\left(\varphi_{x}\right)_{p}$ is an isomorphism either $\left(G_{x}\right)_{p}$ has finite type or $H(M)$ has finite type. Since $\left(G_{x}\right)_{p}$ is (trivially) nilpotent we may apply prop. 16.18 and conclude that

$$
H\left(\underset{\gamma}{\lim } C\left(M ; G_{p}^{\gamma}\right)\right) \xrightarrow{\cong} H\left(M ; G_{p}\right) .
$$

Because $\emptyset_{p}$ was an isomorphism this implies that the restriction

$$
\psi_{P}: \underset{\gamma}{\lim } C\left(M ; G_{P}^{\gamma}\right) \longrightarrow C\left(M ; F_{P}\right)
$$

also induces a cohomology isomorphism, $\psi_{p}^{*}$.
Next, exactly as in the proof of prop. 16.18 , we have the commutative row exact diagram of differential spaces
$0 \longrightarrow \underline{\lim } Z\left(M ; G_{p}^{\gamma}\right) \longrightarrow \lim C\left(M ; G^{\gamma}\right) \longrightarrow \lim C\left(M ; G^{\gamma} / G_{p}^{\gamma}\right) \longrightarrow 0$

where $\bar{\psi}_{p}$ is defined in the obvious way.
Since $\psi_{p}^{*}$ is an isomorphism in all degrees we can pass to cohomology
and use hypothesis iv) to conclude that

$$
\bar{\psi}_{P}^{*}: \underline{\lim } H^{0}\left(M ; G^{\gamma} / G_{P}^{\gamma}\right) \quad \equiv H^{0}\left(M ; F / F_{P}\right) .
$$

As above use the isomorphisms (16.16) to identify this with an isomorphism

$$
\xrightarrow{\lim }\left[G_{x}^{\gamma} /\left(G_{x}^{\gamma}\right)_{p}\right]_{0} \xrightarrow{\cong}\left[F_{x} /\left(F_{x}\right)_{p}\right]_{0}
$$

induced by $\varphi_{x}$.
On the other hand by lemma $16.4 \quad G_{x}^{\gamma} /\left(G_{x}^{\gamma}\right)_{p}$ is a submodule of $G_{x} /\left(G_{x}\right)_{p}$, and the left hand side is exactly $\left[G_{x} /\left(G_{x}\right)_{p}\right]_{0}$. By (16.2) we may identify this isomorphism with an isomorphism

$$
\left(G_{x}\right)_{p+1} /\left(G_{x}\right)_{p} \xrightarrow{\cong}\left(F_{x}\right)_{p+1} /\left(F_{x}\right)_{p}
$$

(induced by $\left.\varphi_{x}\right)$. Since $\left(\varphi_{x}\right)_{p}$ is already shown to be an isomorphism it follows that so is $\left(\psi_{x}\right)_{p+1}$.

We have now shown that each $\left(\varphi_{x}\right)_{p}$ is an isomorphism. Since
$F_{x}=\left(F_{x}\right)_{n}$ we have $\left(F_{x}\right)_{n}=\left(F_{x}\right)_{n+1}$ and so $\left(G_{x}\right)_{n}=\left(G_{x}\right)_{n+1}$. This implies that $\left(G_{x}^{\gamma}\right)_{n}=\left(G_{x}^{\gamma}\right)_{n+1}$. Since $G_{x}^{\gamma}$ is assumed to be nilpotent we conclude that $G_{x}^{\gamma}=\left(G_{x}^{\gamma}\right)_{n}$ for all $\gamma$ and so

$$
G_{x}=\bigcup_{\gamma}\left(G_{x}^{\gamma}\right)_{n}=\left(G_{x}\right)_{n}
$$

It follows that $\varphi_{x}$ and each $\varphi_{\sigma}$ (and hence $\varphi$ and $\varphi^{*}$ ) are isomorphisms. Moreover $G_{x}$ is nilpotent and so $i^{*}$ and $\psi^{*}$ are also isomorphisms (prop. 16.18).
Q.E.D.

## Chapter 17

## A Converse to theorem 12.27

17.1.- Introduction. Fix a path connected topological space $M$ with base point $x$. For any local system, $F$, over Sing $M$ denote the space of global sections, $F(\underline{\text { Sing }} M$ ) simply by $F(M)$. If $G$ is a second local system over Sing $M$ with values in the same category $C$ then a morphism

$$
\Psi_{*}: G \longrightarrow F
$$

is a family of morphisms $\psi_{\sigma}: G_{\sigma} \rightarrow F_{\sigma}$, compatible with the face and degeneracy operators. It determines a morphism

$$
\downarrow: G(M) \rightarrow F(M)
$$

$\operatorname{via}(\Downarrow \Phi)_{\sigma}=\psi_{\sigma} \oplus_{\sigma}$.
Next, recall (chap. 13) the local system $A$ whose global sections are the c.g.d.a $A(M)$ of differential forms on $M$. Tensor $\varphi_{\text {. }}$ with the identity to obtain a morphism of local systems :

$$
\bar{\phi}_{*}=: \theta \varphi_{*}: A \theta G \rightarrow A \theta F .
$$

The induced morphism,

$$
\bar{\emptyset}: A(M ; G) \rightarrow A(M ; F),
$$

is homogeneous of bidegree zero.
Suppose now that $G$ and $F$ are extendable local systems of differential coefficients. Then local systems of coefficients $H(G)$ and $H(F)$ over Sing $M$ are given by

$$
H(G)_{\sigma}=H\left(G_{\sigma}\right) \quad \text { and } \quad H(F)_{\sigma}=H\left(F_{\sigma}\right)
$$

The morphisms $\varphi_{\sigma}$ define morphisms $\psi_{\sigma}: H\left(G_{\sigma}\right) \rightarrow H\left(F_{\sigma}\right)$, which it is convenient to denote by $H\left(\psi_{\sigma}\right)$. Then the $H\left(\psi_{\sigma}\right)$ define a morphism

$$
H\left(\Psi_{*}\right): H(G) \rightarrow H(F)
$$

of local systems. Proceeding as above obtain a morphism of local systems :

$$
\overline{H\left(\psi_{n}\right.}=1 \theta H\left(\varphi_{n}\right): A \theta H(G) \rightarrow A \theta H(F)
$$

and hence a linear map of bigraded differential spaces :

$$
\overline{H(W)}: A(M ; H(G)) \rightarrow A(M ; H(F))
$$

- On the other hand, as in 16.23 (replace $\psi_{\sigma}$ by $H\left(\psi_{\sigma}\right)$ ) the morphisms $H\left(\psi_{\sigma}\right)$ define a linear map of bigraded differential spaces,

$$
H(\forall): C(M ; H(G)) \rightarrow C(M ; H(F))
$$

It is trivial to cherk that the diagram

commutes.
Next, filter $A(M ; G)$ and $A(M ; F)$ by the subspaces

$$
G^{I^{P}}=\sum_{j \geqslant p} A^{j}(M ; G) \quad \text { and } \quad F^{P}=\sum_{j \geqslant p} A^{j}(M ; F)
$$

## This defines spectral sequences

$$
G_{i}^{P}, q \Rightarrow H(A(M ; G)) \text { and } F_{i}^{P}, q \Rightarrow H(A(M ; F)),
$$

as described in 12.43 and the end of chap. 13. Because is homogeneous of bidegree zero it defines a homomorphism of spectral sequences

$$
\bar{\psi}_{i}^{p, q}:{ }_{G} E_{i}^{p, q} \rightarrow F_{i}^{E_{i}^{p, q}} \quad, \quad i \geqslant 0
$$

Since $\bar{\psi}$ is homogeneous of bidegree zero we can identify $\bar{\psi}_{0}=\bar{\psi}$; $G_{0}=A(M ; G) ; F_{0}=A(M ; F)$. Thus theorem 12.47 yields the commutative diagram

(17.3)

17.4.- Direct limits. Let $r$ be a partially ordered set such that for any $Y_{1}, Y_{2} \in \Gamma$ there is some $\gamma \in \Gamma$ with $Y \geqslant \gamma_{1}$ and $Y \geqslant Y_{2}$. Assume given:
i) A family of local systems $\left\{G^{\gamma}\right\}_{Y E \Gamma}$ over Sing $M$ with values in the same category $C$.
S. HALPERIN
ii) A family of morphisms

$$
\xi_{2}^{\gamma_{2}^{\gamma_{1}}}: G^{\gamma_{1}} \longrightarrow G^{\gamma_{2}} \quad, \gamma_{1} \leqslant \gamma_{2} \text {. }
$$


Then $\left\{G^{\gamma} ; \xi^{\gamma_{2}{ }^{\gamma}}\right\}$ is called a directed family of local systems.
Because all our categories $C$ have direct limits we can form.the $\xrightarrow[\text { direct limit }]{\text { dit }}$ such a directed family ; it is the local system $G=\underset{\Gamma}{\lim } G^{\gamma}$ given by

$$
G_{\sigma}=\frac{\lim }{\Gamma}\left(G^{\gamma}\right)_{\sigma} \quad ; \quad \partial_{i}=\frac{\lim }{\Gamma} \partial_{i} \quad ; \quad s_{j}=\frac{\lim }{\Gamma} s_{j} .
$$

The morphisms $G_{\sigma}^{\gamma} \rightarrow G_{\sigma}$ define morphisms

$$
\begin{gathered}
\xi_{0}^{\gamma}: G^{\gamma} \rightarrow G . \\
\text { The morphisms } \xi^{\gamma_{2} \gamma_{1}}: G^{\gamma_{1}}(M) \rightarrow G^{\gamma_{2}}(M) \text { define a directed system of } \\
\text { objects in } C \text { and the morphisms } \xi^{\gamma}: G^{\gamma}(M) \rightarrow G(M) \text { define a morphism }
\end{gathered}
$$

$$
\xi: \lim _{\Gamma} G^{\gamma}(M) \rightarrow G(M) .
$$

However, $\xi$ need not be an isomorphism.
Next, assume $G$ and each $G^{\boldsymbol{\gamma}}$ are extendable local systems of differential coefficients. As in 17.1 the morphisms $\xi_{*}^{\gamma} \gamma^{\gamma}$ and $\xi_{e}^{\gamma}$ determine morphisms

$$
\bar{\xi}^{\gamma_{2} \gamma_{1}}: A\left(M ; G^{Y_{1}}\right) \rightarrow A\left(M ; G^{Y_{2}}\right)
$$

and

$$
\bar{\xi}^{\gamma}: A\left(M ; G^{\gamma}\right) \rightarrow A(M ; G) .
$$

The first collection of morphisms makes $\left\{A\left(M ; G^{\gamma}\right)\right\}$ into a directed family, and the second collection determines a morphism

$$
\begin{gathered}
\text { LECTURES ON MINIMAL MODELS } \\
\bar{\xi}: \frac{\lim A\left(M ; G^{\gamma}\right) \rightarrow A(M ; G) .}{\Gamma} \\
\text { Since the } \quad \bar{\xi}^{\gamma} 2^{\gamma} 1 \text { are homogeneous of bidegree zero we can bigrade }
\end{gathered}
$$

the limit by

$$
\left.\frac{\left[i_{I I}\right.}{\Gamma} A\left(M ; G^{\gamma}\right)\right]^{p, q}=\frac{\lim _{\Gamma}}{} A^{p}\left(M ;\left(G^{\gamma}\right)^{q}\right) .
$$

With this bigradation $\bar{\xi}$ is homogeneous of bidegree zero.

$$
\text { Moreover, if we set } \breve{I}^{Y} p=\sum_{j \geqslant p}\left[\frac{1 i m}{\Gamma} A\left(M ; G^{\gamma}\right)\right]^{j, *} \text {, we define a filtration }
$$ which determines a spectral sequence

$$
{\underset{E}{i}}_{\mathrm{p}}^{\mathrm{i}}, \mathrm{q} \Rightarrow \frac{\mathrm{H}\left(\frac{\text { lim }}{\Gamma} A\left(M ; G^{\gamma}\right)\right) .}{}
$$

Since $\bar{\xi}$ is homogeneous of bidegree zero it preserves filtrations and induces a map

$$
\bar{\xi}_{i}^{p, q}:{\underset{E}{p}}_{i}^{p, q} \longrightarrow G_{i}^{E_{i}^{p, q}}
$$

of spectral sequences.
As in 17.1 the morphisms $\xi_{\varepsilon}^{\gamma_{2} \gamma_{1}}$ determine morphisms $\overline{H\left(\xi^{\gamma} 2^{\gamma}\right)}$; and $H\left(\xi^{\gamma} 2^{\gamma}\right.$, which make $\left\{A\left(M ; H\left(G^{\gamma}\right)\right)\right\}$ and $\left\{C\left(M ; H\left(G^{\gamma}\right)\right)\right\}$ into directed families. Moreover theorem 12.47 yields the commutative diagram


## S. HALPERIN

(in which $\overline{H\left(\xi^{\gamma}\right)}$ and $H\left(\xi^{\gamma}\right)$ are the morphisms induced from $\xi_{n}^{\gamma}$, again as described in 17.1).

Passing to cohomology and using the fact that $\int^{*}$ is an isomorphism we obtain the commutative diagram


Finally recall that $G_{\sigma}=\frac{\operatorname{liq}}{\Gamma} G_{\sigma}^{\gamma}$. It follows that for $\sigma \in$ Sing $M$ the $H\left(\xi_{\sigma}^{\gamma}\right)$ define an isomorphism

$$
\begin{equation*}
\frac{\lim }{\Gamma} H\left(\xi_{\sigma}^{\gamma}\right): \frac{\lim }{\Gamma} H\left(G_{\sigma}^{\gamma}\right) \xrightarrow{\cong} H\left(G_{\sigma}\right) . \tag{17.7}
\end{equation*}
$$

17.8. - Finite type. Suppose as in 17.4 that $G=\underline{1 i m} G^{\gamma}$, where $G$ and each $G^{\gamma}(\gamma \in \Gamma)$ is an extendable local system of differential coefficients over Sing $M$. Then $H(G)$ and $H\left(G^{\curlyvee}\right)$ are l.s.c.'s.

As in 16.17 let $\left\{H^{\top} \mid \tau \in T\right\}$ be the family of sub l.s.c.'s of $H(G)$
such that $H^{\top}$ has finite type. Then we have the inclusions $i_{\tau}: C\left(I I ; H^{\top}\right) \rightarrow C(H ; H(G))$ which yield the inclusion

$$
i: \underset{T}{\lim } C\left(M ; H^{\top}\right) \rightarrow C(M ; H(G)) \text {. }
$$

## Now assume that for each $\gamma \in \Gamma, H\left(G_{x}^{\gamma}\right)$ has finite type. Since $H\left(\xi^{\gamma}\right): H\left(G^{\gamma}\right) \rightarrow H(G)$ is a morphism of R.s.c's, a sub \&.s.c. $H^{\gamma} C H(G)$ is

 defined by$$
\left(H^{\gamma}\right)_{\sigma}=\operatorname{Im} H\left(\xi_{\sigma}^{\gamma}\right) \quad, \quad \sigma \in \underline{\text { Sing } M} .
$$

## Lectures on minimal models

Moreover $H_{X}^{\gamma}$ has finite type ; hence $H^{\gamma}$ is one of the $H^{\top}$ 's consi-
dered above.
If $\gamma_{1} \leqslant \gamma_{2}$ then $H\left(\xi_{2}^{\gamma_{2}}\right) \circ H\left(\xi_{2}^{\gamma_{2} \gamma_{1}}\right)=H\left(\xi^{\gamma_{1}}\right)$ and so $H^{\gamma_{1}} C H^{\gamma_{2}}$.
Moreover (17.7) shows that $H\left(G_{\sigma}\right)=\bigcup_{\gamma \in \Gamma} H_{\sigma}^{\gamma}$.
Thus we have the commatative diagram
(17.9)


On the other hand, the morphisms $H\left(\xi_{( }^{\gamma}\right)$ determine morphisms $e^{\gamma}: H\left(G^{\gamma}\right) \rightarrow H^{\gamma}$ by the requirement that the composite

$$
H\left(G^{\gamma}\right) \rightarrow H^{\gamma} \rightarrow H(G)
$$

be $H\left(\xi^{\gamma}\right)$. The morphism $\ell^{\gamma}$ defines a linear map

$$
\ell^{\gamma}: C\left(M ; H\left(C^{\gamma}\right)\right) \rightarrow C\left(M ; H^{\gamma}\right)
$$

and, passing to the limit we obtain the linear map (of differential spaces)

$$
\ell=\frac{\lim }{\Gamma} \ell^{\gamma}: \underset{\Gamma}{\lim } C\left(M ; H\left(G^{\gamma}\right)\right) \rightarrow \underset{\Gamma}{\lim } C\left(M ; H^{\gamma}\right) .
$$

17.10.- Lenma. The linear map $\&$ is an isomorphism and makes the diagram

commute.

## S. HALPERIN

Prooh. It is obvious that the diagram commutes. By definition

$$
\ell_{\sigma}^{\gamma}: H\left(G_{\sigma}^{\gamma}\right) \rightarrow H_{\sigma}^{\gamma} \quad, \quad \gamma \in \Gamma, \sigma \in \underline{\text { Sing }} \mathrm{H},
$$

is surjective ; hence so is $\ell^{\gamma}$ and it follows that so is $\ell$.
On the other hand, suppose $\ell \phi=0$. Then $\phi$ comes from some
$\Phi^{\gamma} \in C\left(M ; H\left(G^{\gamma}\right)\right)$, and by choosing $\gamma$ large enough we can arrange that
$\ell^{\gamma} \phi^{\gamma}=0$. We lose no generality in assuming $\Phi^{\gamma} \in C\left(M ; H^{q}\left(G^{\gamma}\right)\right)$.
Now since $H\left(\xi^{\gamma}\right): H\left(G^{\gamma}\right) \rightarrow H(G)$ is a morphism of l.s.c.'s an l.s.c. $N^{\gamma} \subset H\left(G^{\gamma}\right)$ is defined by

$$
\left(N^{\gamma}\right)_{\sigma}=\operatorname{ker} H\left(\xi_{\sigma}^{\gamma}\right) \quad, \quad \sigma \in \underline{\text { sing }} M .
$$

Since $\ell^{\gamma} \phi^{\gamma}=0$ we have $\phi^{\gamma} \in C\left(M ;\left(N^{\gamma}\right)^{q}\right)$.
On the other hand, recall from (17.7) that

$$
H\left(G_{x}\right)=\frac{\lim }{\Gamma} H\left(G_{x}^{\gamma}\right) .
$$

It follows that if $z \in$ ker $H\left(\xi_{x}^{\gamma}\right)$ then $H\left(\xi_{x}^{\gamma}{ }^{\prime} \gamma^{\gamma}=0\right.$ for some $\gamma^{\prime} \geqslant \gamma$. Since $\left(N_{x}^{\gamma}\right)^{q}$ has finite dimension (because $H^{q}\left(G_{x}^{\gamma}\right)$ does) there is some $\gamma_{q} \geqslant \gamma$ such that

$$
H\left(\xi_{X}^{Y} q^{Y}\right)\left(\mathbb{N}_{x}^{Y}\right)^{\mathbf{q}}=0 .
$$

This yields $H\left(\xi_{\sigma}^{\gamma} q^{\gamma}\right)\left(N_{\sigma}^{\gamma}\right)^{q}=0, \quad \sigma \in \underline{\text { Sing } M \text {, whence }}$

$$
H\left(\xi^{\gamma} \mathbf{Q}^{\gamma}\right) \Phi^{\gamma}=0 .
$$

It follows that $=0$ and $\ell$ is injective.

> Q.E.D.

If we combine (17.6), lemma 17.10, and (17.9), we arrive at the commutative diagram

## lectures on minimal models


in which the direct limit is over all sub l.s.c.'s $H^{\top} C H(G)$ such that $H_{x}^{\top}$ has finite type, and $i^{*}$ is the linear map defined in 16.17.
17.12.- The main theorem. Recall that $M$ is a path connected topological space with base point $x$. Assume that

$$
\varphi_{*}: G \rightarrow F
$$

is a merphism of local systems over Sing M. Assume further that $\left\{G^{\gamma} ; \xi^{\gamma} 2^{\gamma}\right\}_{\gamma \in \Gamma}$ is a directed family of local systems over Sing $M$ and that

$$
\xi_{m}^{\gamma}: G^{\gamma} \rightarrow G
$$

are morphisms such that $\xi_{*}^{\gamma_{2}} \circ \xi^{\gamma_{2}^{\gamma}}=\xi_{*}^{\gamma_{1}}$, and

$$
\underset{\Gamma}{\lim } \xi^{\gamma}: \underset{\Gamma}{\lim } G^{\gamma} \xrightarrow{\cong} G
$$

Recall from 17.1 and 17.4 that $\rrbracket_{\text {. }}$ and the $\xi_{\text {d }}^{\gamma}$ determine morphisms

$$
\hat{\psi}: G(M) \rightarrow F(M) \quad \text { and } \quad \xi: \frac{\lim }{\Gamma} G^{\gamma}(M) \rightarrow G(M) .
$$

The main theorem of this chapter reads.
17.13.- Theorem. With the hypotheses and notation above, suppose that
i) $F, G$ and each $G^{\gamma}$ are extendable local systems of differential coefficients.
ii) $H\left(F_{x}\right)$ is a nilpotent $\pi_{1}(M)$-module.

## S. HALPERIN

iii) Each $H\left(G_{x}^{\gamma}\right)$ is a nilpotent $\pi_{1}(M)$-module of finite type.
iv) Either $H(M)$ or $H\left(F_{x}\right)$ has finite type.
v) There are isomorphisms

$$
H^{0}\left(F_{\sigma}\right) \cong H^{0}\left(G_{\sigma}\right) \cong H^{0}\left(G_{\sigma}^{\gamma}\right) \cong k \quad \gamma \in \Gamma \quad, \sigma \in \underline{\operatorname{sing} M},
$$

compatible with the face and degeneracy operators.
vi) The composite $\Downarrow^{*}: \frac{\lim }{\Gamma} H\left(G^{\gamma}(M)\right) \rightarrow H(F(M))$ is an isomorphism.

Then $\xi^{*}, \varphi^{*}$ and each $\varphi_{\sigma}^{*}: H\left(G_{\sigma}\right) \rightarrow H\left(F_{\sigma}\right)$ are isomorphisms.
Proof.- We adopt all the notation defined earlier in this chapter.
In particular we have morphisms

$$
\bar{\xi}: \frac{\lim }{\Gamma} A\left(M ; G^{Y}\right) \rightarrow A(M ; G) \quad \text { and } \bar{\varphi}: A(M ; G) \rightarrow A(M ; F) .
$$

Moreover (cf. 13.11 and theorem 13.12) we have a commutative diagram

in which the verticalarrows are cohomology isomorphisms. It follows that

$$
\vec{\psi}^{*} \circ \vec{\xi}: \frac{\lim }{\Gamma} H\left(A\left(M ; G^{\gamma}\right)\right) \xrightarrow{\cong} H(A(M ; F))
$$

On the other hand $\overline{\bar{y}}$ and $\bar{\xi}$ define morphisms of convergent spectral sequences. Combining (17.11) and (17.3) we have the commutative diagram

## lectures on mintmal models


liq $H^{p}\left(M ;\left(H^{\top}\right)^{q}\right) \xrightarrow[\left(i^{*}\right)^{p, q}]{ } H^{P}\left(M ; H^{q}(G)\right) \xrightarrow[\left(H(\mathcal{H})^{*}\right)^{p, q}]{ } H^{P}\left(M ; H^{q}(F)\right)$.
17.15.- Lerma. Assume that for some $q, \bar{\varphi}_{2}^{0, q} \circ \bar{\xi}_{2}^{0, q}$ is an isomorphism and $\bar{\psi}_{2}^{1, q} \circ \bar{\xi}_{2}^{1, q}$ is injective. Then
i) $\bar{\Phi}_{2}^{p, q}$ and $\overline{\bar{F}}_{2}^{p, q}$ are isomorphisms for all $p$.
ii) $\psi_{\sigma}^{*}: H^{q}\left(G_{\sigma}\right)+H^{q}\left(F_{\sigma}\right)$ is an isomorphism, $\sigma \in \underline{\text { Sing } M . ~}$

Prooh.- First consider the $\pi_{1}(M)$-module $H^{q}\left(G_{x}\right)$. Formula (17.7)
shows that

$$
H^{q}\left(G_{x}\right)=\frac{1 i^{T}}{\Gamma} H^{q}\left(G_{x}^{\gamma}\right) .
$$

Since each $H^{q}\left(G_{x}^{\gamma}\right)$ is a nilpotent $\pi_{1}(M)$ module of finite dimension it follows that $H^{q}\left(G_{x}\right)$ is finitely approximable, and each finite dimensional submodule is nilpotent.

Moreover, by hypothesis. $H^{q}\left(F_{x}\right)$ is a nilpotent $\pi_{1}(M)$-module, and either $H(M)$ has finite type or $H^{9}\left(F_{x}\right)$ has finite dimension. Finally, (17.14) shows that

$$
H(\eta)^{*} \rho i^{*}: \underline{\underline{\lim }} H^{0}\left(M ;\left(H^{\top}\right)^{q}\right) \rightarrow H^{0}\left(M ; H^{q}(F)\right)
$$

is an isomorphism, and

$$
H(\varphi)^{*} \circ i^{*}: \underline{\underline{\lim }} H^{1}\left(M ;\left(H^{\top}\right)^{q}\right) \rightarrow H^{1}\left(M ; H^{q}(F)\right)
$$

is injective.

We may thus apply theorem 16.24 to the morphism

$$
H\left(\varphi_{*}\right): H^{q}(G) \rightarrow H^{q}(F)
$$

and conclude that, $H(\psi)_{\sigma}$ is an isomorphism (in degree $q$ ) for all $\sigma$ and that

$$
H(\varphi)^{*}: H\left(M ; H^{q}(G)\right) \rightarrow H\left(M ; H^{q}(F)\right)
$$

and

$$
i^{*}: \xrightarrow{\lim } H\left(M ;\left(H^{\tau}\right)^{q}\right) \rightarrow H\left(M ; H^{q}(G)\right)
$$

are is omorphisms.
Part i) of the lemma now follows via (17.14) while part ii) follows from the definition $H\left(\psi_{\sigma}\right)=\psi_{\sigma}^{*}$.
Q.E.D.
17.16.- Lemma. $\bar{\psi}_{2}^{p, 0} \circ \bar{\xi}_{2}^{p, 0}$ is an isomorphism for each $p \geqslant 0$.

Proof. Hypothesis $v$ ) of the theorem and (17.14) identify $\overline{\mathcal{F}}_{2}^{p, o} \circ \bar{\xi}_{2}^{p, 0}$ with the identity map of $H^{p}(M ; k)$.
Q.E.D.

Theorem 17.13 follows now from the Zeeman-Moore comparision theorem (17.17) below. Indeed, since $\bar{\psi}^{*} \circ^{-\xi^{*}}$ is an isomorphism, lemmas 17.15 and 17.16 allow us to apply the comparison theorem (with $\eta_{i}^{p, q}=\bar{\psi}_{i}^{p, q} o \bar{\xi}_{i}^{p, q}$ ) to conclude that $\mathbb{P}_{i}, q_{0} \bar{\xi}_{i}^{p, q}$ is an isomorphism for all $i \geqslant 2$ and all $p, q \geqslant 0$.

A second application of lemma 17.15 gives that $\bar{\psi}_{2}, \bar{\xi}_{2}$ and each $\psi_{0}^{*}$ are isomorphisms. Hence so are $\bar{\psi}^{*}, \bar{\xi}^{*}, \psi^{*}$ and $\xi^{*}$.
Q.E.D.

We complete the chapter by establishing the Zeeman-Moore theorem.
Suppose $\eta_{i}^{p, q}:{\underset{E}{p}}_{i}^{p, q} \rightarrow E_{i}^{p, q} \quad(i \geqslant 2)$ is a morphism of first quadrant spectral sequences in which the $i^{\text {th }}$ differentials are homogeneous of degree (i, 1-i). We put

$$
\eta_{i}^{p, q}=n_{\infty}^{p, q} \quad, \quad{\underset{E}{p}}_{p, q}^{p}=\check{E}_{\infty}^{p, q} \quad, \quad E_{i}^{p, q}=E_{\infty}^{p, q}
$$

## LECTURES ON MINIMAL MODELS

if $i \geqslant p+q+2$.
Next assume $\eta^{\bar{*}}: \overline{\mathrm{H}} \xrightarrow{\underline{\longrightarrow}} \mathrm{H}$ is an isomorphism of graded spaces.
Suppose $n^{*}\left(F^{p}\left(\mathrm{H}^{q}\right)\right) \subset F^{p}\left(H^{q}\right)$ where

$$
H^{q}=F^{0}\left(H^{q}\right) \supset F^{1}\left(H^{q}\right) \supset \ldots \supset F^{q+1}\left(H^{q}\right)=0, \quad q \geqslant 0
$$

and similarly for Hq . We say $\eta_{i}$ converges to the isomorphism $\eta$ if there
 which identify $n_{\infty}^{p, q}$ with the map induced by $n^{*}$.

The comparison theorem we need reads as follows :
17.17.- Theorem. Suppose $\eta_{i}: \bar{E}_{i} \rightarrow E_{i}, \quad 2 \leqslant i \leqslant \infty$ is a map of first quadrant spectral sequences, as described above. Assume that
i) $\eta_{2}^{p, 0}$ is always an isomorphism $(p \geqslant 0)$.
ii) If for some $q, n_{2}^{0, q}$ is an isomorphism and $\eta_{2}^{1, q}$ is injective, then $n_{2}^{p, q}$ is an isomorphism for all $p \geqslant 0$.
iii) $n_{i}$ converges to an isomorphism.

Then $\eta_{i}^{p, q}$ is an isomorphism for all $p, q \geqslant 0$ and $i \geqslant 2$.

The proof proceeds by a number of lemmas.
17.18.- Lenma.
i) $n_{\infty}^{\mathrm{r}, 0}$ is injective.
ii) If $n_{\infty}^{p, r-p}$ is an isomorphism for $p>m$ then $n_{\infty}^{m, r-m}$ is injective.
iii) If $n_{\infty}^{p, r-p}$ is an isomorphism for $p>0$ then $n_{\infty}^{0, r}$ is an isomorphism.

Prooh.- Apply hypothesis iii) of the theorem.
Q.E.D.

## S. HALPERIN

17.19.- Lemma. $\eta_{i}^{p, 0}$ is surjective for all $i \geqslant 2$. In particular $\eta_{\infty}^{p, 0}$ is an isomorphism.

Prooh.- Apply hypothesis i) of the theorem, and lemma 17.18 i).
Q.E.D.

For the rest of this chapter (only) we establish the notation :

$$
B_{i}^{p, q}=d_{i}\left(E_{i}^{p-i, q+i-1}\right) \quad ; \quad z_{i}^{p, q}=E_{i}^{p, q} \cap \text { ker } d_{i}
$$

and we denote the restrictions of $n_{i}^{p, q}$ by

$$
B(\eta)_{i}^{p, q}: \underset{B}{v} \underset{i}{p, q} \rightarrow{ }_{B_{i}^{p, q}}^{p}
$$

and

$$
z(n)_{i}^{p, q}: z_{i}^{v}, q \rightarrow z_{i}^{p, q} .
$$

We also adopt the convention that $p$ and $q$ always denote integers $\geqslant 0$.
17.20.- Lemma. Suppose for some $m \geqslant 0$ that $\eta_{2}^{p, q}$ is an isomorphism, q \& m. Then for $\mathrm{i} \geqslant 2$ :

$$
\eta_{i}^{p, q} \text { is an } \begin{cases}\text { isomorphism if } p+q \leqslant m+1, & q \neq m+1 . \\ \text { isomorphism if } p+q=m+2, & p \geqslant i \\ \text { injection if } p+q=m+3, & p \geqslant \max (3,2 i-2) .\end{cases}
$$

Proof.- By induction on $i$. The lemma is true by hypothesis when $i=2$.
Assume it is proved for some $i \geqslant 2$. We show that :
(17.21)

$$
B(n)_{i}^{p, q} \text { is surjectiveif }\left\{\begin{array}{l}
p r \begin{array}{l}
p+q \leqslant m+1 \\
\text { or } \\
p+q=m+2,
\end{array} \quad p \neq i \\
p+q=m+3, \quad p \geqslant 2 i
\end{array}\right.
$$

(17.22) $\quad{ }_{\eta_{i}}^{p, q}$ is injective if $\quad \begin{cases}\text { or } p+q \leqslant m+1, & q \neq m+1 \\ \text { or } p+q=m+2, & p \geqslant i \\ p+q=m+3, & p \geqslant \max (3,2 i-2) .\end{cases}$
(17.23)
$B(\eta)_{i}^{p, q}$ is an isomorphism if $\begin{cases}\text { or } \begin{array}{ll}p+q \leqslant m+1, & q \neq m+1 \\ p+q=m+2, & p \geqslant i+1 \\ \text { or } & p+q=m+3,\end{array} \quad p \geqslant \max (3,2 i) .\end{cases}$
(17.24)


Indeed by induction $n_{i}^{p-i, q+i-1}$ is an isomorphism when ( $p, q$ ) satisfy one of the conditions of (17.21). Thus (17.21) follows from the surjections $d_{i}: E_{i}^{p-i, q+i-1} \rightarrow B_{i}^{p, q}$.

Equation (17.22) simply restates part of the induction hypothesis. Since $B(\eta)_{i}^{p, q}$ is a restriction of $\eta_{i}^{p, q}$, (17.23) follows from (17.21) and (17.22)

To prove (17.24) consider the exact sequence

$$
0 \rightarrow z_{i}^{p, q} \rightarrow E_{i}^{p, q} \xrightarrow{d_{i}} E_{i}^{p+i, q-i+1}
$$

By our induction hypothesis $\eta_{i}^{p, q}$ is an isomorphism and $\eta_{i}^{p+i, q-i+1}$ is injective when ( $p, q$ ) satisfy one of the conditions of (17.24). Equation (17.24) follows.

Finally, consider the exact sequence

$$
0 \rightarrow B_{i}^{p, q} \rightarrow z_{i}^{p, q} \rightarrow E_{i+1}^{p, q} \rightarrow 0 .
$$

In view of this sequence equations (17.23) and (17.24) imply that
$n_{i+1}^{p, q}$ is an isomorphism if $p+q \leqslant m+1, q \neq m+1$ or if $p+q=m+2, p \geqslant i+1$.

## S. HALPERIN

Equations (17.22) and (17.23) show that $\eta_{i+1}^{p, q}$ is injective if $p+q=m+3$ and $p \geqslant \boldsymbol{m a x}(3,2 i)$.

This closes the induction, and completes the proof.
Q.E.D.
17.25.- Lemma. Suppose $\eta_{2}^{p, q}$ is an isomorphism for $q \leqslant m$, all $p$. Then $n_{\infty}^{p, q}$ is an isomorphism for $p+q \leqslant m+1$.

Proob.- If $q \neq m+1$, this is lemm 17.20. Thus the lemma follows from lemma 17.18 iii).

> Q.E.D.
17.26.- Lemma. Fix integers $m \geqslant 0$ and $i \geqslant 2$. Suppose that $\eta_{2}^{p, q}$ is an isomorphism if $q \leqslant m$ (all $p$ ), and $\eta_{j}^{0, m+1}$ is, an isomorphism, $j \geq i$.

Then for $\ell \geqslant 0$. and $j \geqslant i$ :
i) $n_{j+l}^{2 j+l},(m+3)-(2 j+\ell) \quad$ is injective.
ii) $B(n) \underset{j+\ell}{2 j+\ell,(m+3)-(2 j+\ell)}$ is an isomorphism.
iii) $\eta_{j+l}^{j, m+2-j}$ is an isomorphism.
iv) $n_{j+\ell+1}^{2 j+\ell}(m+3)-(2 j+\ell)$ is injective.

Proof.- We use induction on $\ell$. When $\ell=0$, ii) is equation (17.23) and the other three parts are lemma 17.20. Now assume the lemma proved for $j \geqslant i$ and $\ell^{\prime} \leqslant \ell$, same fixed $\ell \geqslant 0$. We prove it for $j \geqslant i$ and $\ell+1$

Part i): If $\ell=0$ then lema 17.26 shows that $n_{j+1}^{2 j+1,(m+3)-(2 j+1)}$ is injective. If $\ell>0$ then $i)_{j, \ell+1}$ coincides with iv) ${ }_{j+1, \ell-1}$ and so is true by induction.

Part iii) : Consider the short exact sequence

$$
0 \rightarrow z_{j+\ell}^{j, m+2-j} \rightarrow E_{j+\ell}^{j, m+2-j} \xrightarrow{d_{j+\ell}} B_{j+\ell}^{2 j+\ell,(m+3)-(2 j+\ell)} \rightarrow 0
$$

## Lectures on mintmal models

Because of iii) $j_{j, \ell}$ and $i_{i, \ell}$ we may conclude that
(17.27)

$$
Z(n)_{j+l}^{j, m+2-j} \quad \text { is an isomorphism. }
$$

If $\ell>0$ then $E_{j+\ell+1}^{j, m+2-j}=2_{j+\ell}^{j, m+2-j}$ and so $\eta_{j+\ell+1}^{j, m+2-j}$ is an
isomorphism. If $\ell=0$ we have the exact sequence

$$
0 \rightarrow E_{j}^{0, m+1} \xrightarrow{d_{j}} z_{j}^{j, m+2-j} \longrightarrow E_{j+1}^{j, m+2-j} \rightarrow 0
$$

We have assumed that $\eta_{j}^{0, m+1}$ is an isomorphism (hypothesis of lemma). Thus (17.27) shows that $\eta_{j+1}^{j, m+2-j}$ is an isomorphism, and iii) is proved for $\ell+1$.
part ii): Observe that $z_{j+\ell+1}^{j, m+2-j}=E_{j+\ell+2}^{j, m+2-j}$ and consider the exact
sequence.

$$
\begin{aligned}
& 0 \rightarrow E_{j+\ell+2}^{j, m+2-j} \rightarrow E_{j+\ell+1}^{j, m+2-j} \xrightarrow{d_{j+\ell+1}} B_{j+\ell+1}^{2 j+\ell+1},(m+3)-(2 j+\ell+1) \rightarrow 0 . \\
& \text { By iii) } \left.{ }_{j, \ell+1} \text { and } i\right)_{j, \ell+1} \text { (which are now proved) we have an isomorphism }
\end{aligned}
$$ in the middle of this sequence and an injection at the right. Hence we have an isomorphism at the right, which proves ii) ${ }_{j, \ell+1}$.



$$
0 \rightarrow B_{j+\ell+1}^{r, m+3-r} \rightarrow 2_{j+\ell+1}^{r, m+3-r} \rightarrow E_{j+\ell+2}^{r, m+3-r} \rightarrow 0
$$

By ii) $j_{j, \ell+1}$ we have an isomorphism at the left and by $\left.i\right)_{j, \ell+1}$ we
have an injection at the centre. Thus we have an injection at the right;
i.e., $\eta_{j+\ell+2}^{r, m+3-r}$ is injective.

The induction is now closed and the proof complete.

> Q.E.D.
17.28. - Lemma. Assume $\eta_{2}^{p, q}$ is an isomorphism for $q \leq m$ and all $p$. Then $n_{i}^{0, m+1}$ is an isomorphism for all $i \geqslant 2$.

## S. HALPERIN

Proof.- By lemma $17.25 \quad \eta_{\infty}^{0, m+1}=\eta_{m+3}^{0, m+1}$ is an isomorphism.
Now assume $n_{j}^{0, m+1}$ is an isomorphism for all $j \geqslant i+1$, some $i \geqslant 2$.
We show that

$$
\begin{equation*}
n_{i+\ell}^{2 i+\ell,(m+3)-(2 i+\ell)} \quad \text { is injective, } \quad \ell \geqslant 0 \tag{17.29}
\end{equation*}
$$

and
(17.30)

$$
n_{i+\ell}^{i, m+2-i} \quad \text { is injective, } \quad \ell \geqslant 1
$$

In fact (17.29) is lemma 17.20 if $\ell=0,1$ or 2 . If $\ell>2$ we write

$$
n_{i+\ell}^{2 i+\ell,(m+3)-(2 i+\ell)}=\frac{n^{2(i+1)+l-2,(m+3)-(2 i+\ell)}}{(i+1)+(\ell-2)+1}
$$

and apply lemma 17.26 , iv). This proves (17.29).
Next, consider the exact sequences

$$
0 \rightarrow E_{i+\ell+1}^{i, m+2-i} \rightarrow E_{i+\ell}^{i, m+2-i} \xrightarrow{d_{i+\ell}} E_{i+\ell}^{2 i+\ell,(m+3)-(2 i+\ell)}, \quad \ell \geqslant 1
$$

By (17.29) we have an injection on the right. Hence

$$
\begin{equation*}
n_{i+l+1}^{i, m+2-i} \text { injective } \Rightarrow n_{i+l}^{i, m+2-i} \text { injective, } \quad \ell \geqslant 1 \tag{17.31}
\end{equation*}
$$

On the other hand for $j \geqslant i+1$ lemma 17.26 iii) shows that
$\eta_{\infty}^{j, m+2-j}$ is an isomorphism. Hence lemma 17.18 ii) shows that $\eta_{\infty}^{i, m+2-i}$ is injective. Now (17.30) follows from (17.31).

Finally, consider the exact sequence

$$
0 \rightarrow E_{i+1}^{0, m+1} \rightarrow E_{i}^{0, m+1} \xrightarrow{d_{i}} z_{i}^{i, m+2-i}+E_{i+1}^{i, m+2-i} \rightarrow 0
$$

Since we have assumed (by induction) that $\eta_{i+1}^{0, m+1}$ is an isomorphism, and since $Z(n)_{i}^{i, m+2-i}$ is an isomorphism by (17.24) and since $\eta_{i+1}^{i, m+2-i}$ is injective by (17.30), we conclude that $n_{i}^{0, m+1}$ is an isomorphism. The lemma follows by induction.
Q.E.D.
17.32.- Lemma. Assume $\eta_{2}^{p, q}$ is an isomorphism for $q \leqslant m$ (all $p$ )
and $n_{2}^{0, m+1}$ is also an isomorphism. Then for $i \geqslant 2$ :

$$
n_{i}^{p, q} \text { is an } \quad\left\{\begin{array}{l}
\text { isomorphism if } p+q \leqslant m+1 . \\
\text { isomorphism if } p+q=m+2, p \geqslant 2 \\
\text { injection if } p+q=m+3, p \geqslant i+1 .
\end{array}\right.
$$

Proof.- The proof is identical with that of lemma 17.20.
Q.E.D.
17.33.- Proof of theorem 17.17. We show by induction on $q$ that ${ }_{n}{ }_{2}^{p, q}$ is an isomorphism (all $p$ ). When $q=0$ this is hypothesis i) of the theorem. Assume we have proved it for $q \leqslant m$.

By lemma $17.28 \quad \eta_{i}^{0, m+1}$ is an isomorphism, $i \geqslant 2$. In particular $n_{2}^{0, m+1}$ is an isomorphism. Moreover, by lemma 17.26 iii) $\eta_{\infty}^{i, m+2-i}$ is an isomorphism for $i \geqslant 2$. Hence by lemma 17.18 ii ), $\eta_{\infty}^{1, m+1}$ is injective.

Consider the exact sequences (for $i \geqslant 2$ )

$$
0 \rightarrow E_{i+1}^{1, m+1} \rightarrow E_{i}^{1, m+1} \xrightarrow{d_{i}} E_{i}^{i+1},(m+3)-(i+1)
$$

Since $\eta_{2}^{0, m+1}$ is an isomorphism, lemma 17.32 applies and shows we have an injection on the right. Hence

$$
n_{i+1}^{1, m+1} \text { injective }=>n_{i}^{1, m+1} \text { injective }
$$

 for all $p$. This closes the induction.
Q.E.D.

```
 18.1.- Introduction.- In this chapter M denotes a fixed path con-
nected topological space with base point m. Recall (definition 15.2) the
c.g.d.a. (A(M),d) and (property 15.5) the augmentation A(M)
by m. If F is any local system over Sing M we adopt the same convention
as for A and denote F (Sing M) simply by F(M).
 Since }A(M)=A(\underline{\mathrm{ Sing M M each singular simplex }\sigma:\mp@subsup{\Delta}{}{n}->M}\mathrm{ deter-
mines the evaluation homomorphism (of c.g.d.a.'s)
 e
given by e}\mp@subsup{e}{\sigma}{}\mp@subsup{\Phi}{= = 的 (cf. 13.5).}{
 Now assume
\[
E: A(M) \xrightarrow{i} R \xrightarrow{\rho} T
\]
is a KS extension (cf. chap. 1). Use the c.g.d.a. homomorphisms
\[
A(M) \xrightarrow{e_{\sigma}} A(n) \text { and } A(M) \xrightarrow{i} R
\]
to tensor \(A(n)\) with \(R\) over \(A(M)\) : denote the resulting c.g.d.a. by
\[
\left(R_{\sigma}, d\right)=\left(A(n) \theta_{A(M)} R, d\right) .
\]
(Note the dependence on \(\sigma\) comes from the homomorphism \(e_{o}\).)
Next observe that by definition the diagrams
```


## lectures on mintmal models <br> A(M)

(18.2)

commute. It follows that $\partial_{i}$ and $s_{j}$ extend to c.g.d.a. homomorphisms

$$
\partial_{i} \theta_{1}: A(n) \theta_{A(M)} R \rightarrow A(n-1) \theta_{A(M)} R \quad \text { and } s_{j} \theta_{i}: A(n) \theta_{A(M)} R \rightarrow A(n+1) \theta_{A(M)}^{R}
$$

We denote these simply by

$$
\partial_{i}: R_{\sigma} \rightarrow R_{\partial_{i} \sigma} \text { and } s_{j}: R_{\sigma} \rightarrow R_{s_{j}}
$$

Formulae (12.3) are clearly satisfied and so $\left\{R_{o}, \partial_{i}, s_{j}\right\}$ is a local system over Sing M. Since it is a local system of c.g.d.a.'s we can pass to cohomology and obtain the local system $\left\{H\left(R_{\sigma}\right), \partial_{i}^{*}, s_{j}^{*}\right\}$.
18.3.- Definition. - The local system $\left\{R_{\sigma}, \partial_{i}, s_{j}\right\}$ will be denoted by $R_{*}$ and called the local system determined by $E$. The local system $\left\{H\left(R_{\sigma}\right), \partial_{i}^{*}, s_{j}^{*}\right\}$ will be denoted by $H\left(R_{*}\right)$.

The canonical homomorphisms

$$
\begin{equation*}
\lambda_{c}: A(n) \rightarrow A(n) \theta_{A(M)} R=R_{C}, \quad \sigma \in \underline{\text { Sing } M} \tag{18.4}
\end{equation*}
$$

are compatible with the face and degeneracy operators. Hence the $\lambda_{0}$ define a c.g.d.a. homomorphism
(18.5)

$$
\lambda:(A(M), d) \rightarrow\left(R_{*}(M), d\right)
$$

by $(x))_{c}={ }^{*}{ }^{*} c_{c}$.

## S. HALPERIN

On the other hand the canonical homomorphisms
(18.6)

$$
\mu_{\sigma}: R \rightarrow A(n) \theta_{A(M)} R=R_{\sigma}, \quad \dot{\sigma} \in \underline{\text { Sing } M}
$$

satisfy $\partial_{i} \circ \mu_{\sigma}=\mu_{\partial_{i} \sigma}$ and $s_{j} \circ \mu_{\sigma}=\mu_{s_{j}} \sigma$. Thus a c.g.d.a. homomorphism

$$
\begin{equation*}
\mu:(R, d) \quad \rightarrow \quad\left(R_{m}(M), d\right) \tag{18.7}
\end{equation*}
$$

is defined by $(\mu \phi)_{\sigma}=\mu_{\sigma} \Phi$.

A short calculation yields $\mu \circ i=\lambda$. Since $e_{m}: A(M) \rightarrow k$ is the augmentation and $E$ is a $K S$ extension, ker $\rho$ is generated by $i\left(\right.$ ker $e_{m}$ ). Thus $p$ factors to yields the commutative diagram of c.g.d.a.'s
(18.8)

(Here $\left(e_{R}\right)_{m}: \Phi \rightarrow \Phi_{m} ;$ clearly $\left.\left(e_{R}\right)_{m} 0 \lambda=e_{m}\right)$.
18.9.- Proposition.- With the hypotheses and notation above, suppose T is connected. Then
i) $R_{k}$ is an extendable local system of differential coefficients.
ii) $H\left(R_{\text {, }}\right)$ is a local system of coefficients.
iii) $\bar{u}: T \rightarrow R_{m}$ is an isomorphism.
iv) If $T$ has finite type (as a graded space) then $u: R \rightarrow R_{*}(M)$
is an isomorphism.

Proof : Since $M$ is path connected $H^{\circ}(M)=k$ and so by theorem 14.18 (with $F=k$ ) $H^{0}(A(M))=k$. We can thus write

## LECTURES ON MINIMAL MODELS

(18.10)

$$
R=A(M) \theta T
$$

so that $\rho=e_{n} \theta$ and $d(1 \theta a)-1 \theta d_{T^{2}} \in A^{+}(M) \theta T$, a $\varepsilon T$, (cf. 1.14). Moreover we can write $T=\Lambda X$ and find a well ordered homogeneous basis $\left\{x_{a}\right\}$ for $X$ such that (cf. 1.4)

$$
\begin{equation*}
d\left(1 \ominus x_{\alpha}\right) \in A(M) \ominus(A X)_{<\alpha} \tag{18.11}
\end{equation*}
$$

Use the isomorphism (18.10) to identify

$$
\begin{equation*}
R_{\sigma}=A(n) \theta_{A(M)} A(M) \theta T=A(n) \theta T \tag{18.12}
\end{equation*}
$$

Thus an augmentation $A(n) \rightarrow k$ determines a c.g.d.a. homomorphism $R_{\sigma} \rightarrow T$ and, by (18.11)

$$
A(n) \xrightarrow{\lambda_{0}} R_{\sigma} \longrightarrow T
$$

is a KS extension. For suitable augmentations of $A(n)$ and $A(n-1), \partial_{i}$ preserves augmentations, and so there is a commutative diagram


This diagram is a morphism of KS extensions. Since $T$ is connected $H^{0}\left(R_{\sigma}\right)=H^{0}\left(R_{\partial j_{\sigma}}\right)=k$. Since (trivially) $\partial_{i}: H(A(n)) \xrightarrow{\boldsymbol{z}} H(A(n-1))$, theorem 7.1 implies that $\partial_{i}: H\left(R_{\sigma}\right) \xrightarrow{\tilde{3}} H\left(R_{\partial_{i} \sigma}\right)$. Since $\partial_{i} \delta_{i}=1$, each $s_{i}$ is also an isomorphism. This proves $\left.i i\right)$.

To complete the proof of $i$ ) we need only show that $R_{\text {. }}$ is extendable.

## S. HALPERIN

Regard $T$ as a constant local system over Sing M. The isomorphisms (18,12) identity $R_{\text {. }}$ with $A T$ (in the category of graded spaces). Since $T$ is constant and $A$ is extendable, $A-T$ (and so $R_{m}$ ) is extendable. Part iii) follows from (18.12) with $\sigma=m$. To prove iv) let $a_{1}, \ldots, a_{r}$ be a basis of $\sum_{\ell \leqslant p} T^{\ell}$. If $\Omega \in R_{*}(M)$ use the isomorphisms (18.12) to write

$$
\Omega_{\sigma}=\sum_{\ell=1}^{\mathbf{r}} \Omega_{\sigma, \ell}{ }^{\theta} \mathbf{a}_{\ell}, \quad \Omega_{\sigma, \ell} \in \mathbf{A}(|\sigma|)
$$

The isomorphisms (18.12) convert $\partial_{i}$ and $s_{j}$ to $\partial_{i} \theta_{i}$ and $s_{j} \theta$ and so the equations $\Omega_{\partial_{i} \sigma}=\partial_{i} \Omega_{\sigma}$ and $\Omega_{s_{j} \sigma}=s_{j} \Omega_{\sigma}$ yield

$$
\Omega_{\partial_{i} \sigma, \ell}=\partial_{i} \Omega_{\sigma, \ell} \quad \text { and } \quad \Omega_{s_{j} \sigma, \ell}=s_{j} \Omega_{\sigma, \ell}, \quad \ell=1, \ldots, p
$$

It follows that elements $\Omega_{\ell} \in A(M), \ell=1, \ldots, r$ are defined by $\left(\Omega_{\ell}\right)=\Omega_{\sigma, \ell}$ Clearly $\Omega=\mu\left(\sum \Omega_{\ell}{ }^{0} a_{\ell}\right)$. Thus $\mu$ is surjective. On the other hand if $\mu\left(\sum \Phi_{\ell} \theta a_{\ell}\right)=0$ for elements $\Phi_{\ell} \in A(M)$ then

$$
0=\mu_{\sigma}\left(\sum \Phi_{\ell} \theta \mathbf{a}_{\ell}\right)=\sum\left(\Phi_{\ell}\right)_{\sigma} \theta \mathbf{a}_{\ell}
$$

Hence $\left(\phi_{\ell}\right)_{\sigma}=0$ for all $\ell, 0$. This implies that $\Phi_{\ell}=0, \ell=1, \ldots, r$, and so $\mu$ is injective.
Q.E.D.
18.13.- Remark.- Suppose $E: A(M) \xrightarrow{i} R \xrightarrow{D} I$ is a KS extension
with $T$ connected. Since $H\left(R_{*}\right)$ is a $\ell . s . c .$, a canonical $\pi_{1}(M)$ module structure is defined in $H\left(R_{m}\right)_{m} H\left(R_{m}\right)-c f$. definition 16.7 .

Now by part iii) of prop. $18.9 \mathrm{~L}^{-\pi}$ is an isomorphism :

$$
i: H(T) \xrightarrow{i} H\left(R_{m}\right) .
$$

Thus $H(T)$ becomes a canonical $\pi_{1}(M)$-module.

We shall now make this $\pi_{1}(M)$-module structure explicit. Fix an isomorphism $R=A(M) \theta T$, a graded subspace $X \subset T^{+}$, and a well ordered homogeneous basis $\left\{x_{\alpha}\right\}_{\alpha \in I}$ of $X$ such that
i) $p=e_{m} 0$
$(18.14)$ ii) $T=\Lambda X$
iii) $d\left(1 \quad 0 x_{\alpha}\right) \in A(M) \theta(\Lambda X)_{<\alpha}, \quad \alpha \in I$.

We also need the following conventions. We regard $S^{\prime}$ as the unit interval $I$ with endpoints identified, and let $\sigma: I \rightarrow S$ be the projection. We put $\sigma(0)=\sigma(1)=b$; it is a base point for $S^{1}$. Note that $\sigma$ is a 1-simplex on $S^{\prime}$.

Next write $A(1)=\Lambda(t, d t)$, where $t$ is the barycentric coordinate function $b_{1}$ (cf. example 12.9). Then $A(0)=k$ and the face maps $\partial_{0}, \partial_{1}: A(1) \rightarrow k$ are given by

$$
\begin{equation*}
\partial_{0} t=1 \quad \text { and } \quad \partial_{1} t=0 \tag{18.15}
\end{equation*}
$$

It is easy to construct a cocycle $u \in A^{\prime}\left(S^{\prime}\right)$ such that $u_{0}=d t$. Clearly the inclusion

$$
(\Lambda u, 0) \longrightarrow\left(A\left(S^{\prime}\right), d\right)
$$

induces a cohomology isomorphism.

Now suppose $\tau: I \rightarrow M$ is a loop based at $m$ :
$\tau(0)=T(1)=m$. Then $\tau$ factors over $\tau$ to yield a continuous map

$$
\psi:\left(S^{\prime}, b\right) \quad \rightarrow \quad(M, m)
$$

The base point $b$ determines an augmentation $e_{b}: A\left(S^{\prime}\right) \cdot k$ and

> S. HALPERIN
> $\mathrm{A}(\phi): \mathrm{A}(\mathrm{M}) \rightarrow \mathrm{A}\left(\mathrm{S}^{\prime}\right)$
is a homomorphism of augmented c.g.d.a.'s.

In particular we can form the commutative diagram of homomorphisms of augmented c.g.d.a.'s :

in which $j \phi=01$ and $n=e_{b} 0$.

Our fixed isomorphism $R=A(M) \theta \Lambda$ defines an isomorphism $A\left(S^{\prime}\right) \theta_{A(M)} \mathbb{R} \cong A\left(S^{\prime}\right) \theta \Lambda X$. Because of (18.14) this identifies the lower row above as a KS extension.

We now apply prop. 1.11 and its corollary to the inclusion $\Lambda u \leadsto A\left(S^{\prime}\right)$. This yields a second isomorphism

$$
f: A\left(S^{\prime}\right) \theta \Lambda X \quad \equiv A\left(S^{\prime}\right) \theta_{A(M)^{R}}
$$

with respect to which
i) $n=e_{b} 0$ i.
ii) $d\left(1 \otimes x_{\alpha}\right) \in A\left(S^{\prime}\right) \theta(A X)_{<\alpha}, \quad a \in I$.
iii) $\Lambda u \theta A X$ is stable under $d$.

Identify $A\left(S^{\prime}\right) \theta A X$ with $A\left(S^{\prime}\right) \theta_{A(M)}^{R}$ via $f$. Then iii) implies
that

$$
d(1 \theta a)=1 \theta d_{T} a+u \theta \theta(a), \quad a \in \Lambda X,
$$

where $\theta$ is a degree zero derivation of $\Lambda x$. The equation $d^{2}=0$ yields
$d_{T} \theta=\theta d_{T}$ and so $\theta$ induces derivation $\theta$ in $H(T)$. Moreover, because of ii ) we have

$$
\theta x_{\alpha} \in(\Lambda X)_{<\alpha}, \quad a \in I
$$

This shows that for any a $\in T, \theta^{n_{a}}=0$ if $n$ is large enough. Thus $e^{\theta}=\left[\sum^{\infty} \theta^{n} / n!\right.$ is an automorphism of ( $T, d_{T}$ ) and

$$
\left(e^{\theta}\right)^{*}=e^{\left(\theta^{*}\right)} .
$$

$$
\text { 18.16. - Proposition. - The } \pi_{1}(M) \text {-module structure of } H(T) \text { is given }
$$ by

$$
[\tau]=e^{\theta^{*}}: H(T) \stackrel{\vdots}{\rightrightarrows} H(T)
$$

Proof : Since $\downarrow 0 \sigma=\tau$ the homomorphisms

$$
e_{\tau}: A(M) \rightarrow A(1) \text { and } e_{\sigma}: A\left(S^{1}\right) \rightarrow A(1)
$$

are connected by $e_{\tau}=e_{\sigma} \circ A(\psi)$. Thus we can write

$$
R_{T}=A(1) \theta_{A(M)} R=A(1) \theta_{A\left(S^{1}\right)}\left[A\left(S^{1}\right) \theta_{A(M)} R\right] \text {, }
$$

where we use $e_{\sigma}$ to make $A(1)$ into an algebra over $A\left(S^{\prime}\right)$.
Next, use the isomorphism $f$ above, together with this equation to
write

$$
R_{T}=A(1) \Theta \Lambda X=\Lambda(t, d t) \otimes \Lambda X
$$

Because $u=d t$ the differential in $R_{T}$ is then given explicitly by

$$
d(1 \theta a)=1 \theta d_{T} a+d t \theta \theta a, \quad a \in \quad \Lambda X
$$

It follows that a homomorphism $\psi:\left(T, d_{T}\right) \rightarrow\left(R_{T}, d\right)$ is given by

$$
\begin{gathered}
\text { S. HALPERIN } \\
\psi_{\mathrm{a}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{t}^{\mathrm{n} / \mathrm{n}!\dot{\theta} \theta^{\mathrm{n}} \mathrm{a} .} \\
\text { On the other hand, because } \sigma(0)=\sigma(1)=\mathrm{b} \text { we have } \\
\partial_{1} \circ e_{\sigma}=\partial_{0} \circ e_{\sigma}=e_{b}: A\left(S^{1}\right) \rightarrow \mathrm{k} .
\end{gathered}
$$

It follows that the diagrams

commute. Thus the $\pi_{1}(M)$-module structure of $H(T)$ is given by

$$
[\tau]=\left(\partial_{0} \theta \text { i }\right)^{*} \circ\left[(\partial, ~ \theta i)^{*}\right]^{-1}: H(T) \stackrel{y}{\rightrightarrows} H(T) .
$$

Now use (18.15) to conclude $\left(\partial_{1} \theta 1\right) \psi=1,\left(\partial_{0} \theta 1\right) \psi=e^{\theta}$ and hence

$$
[\tau]=\left(\partial_{0} 0_{1}\right)^{*} \psi^{*}=e^{\theta^{*}} .
$$

Q.E.D.
18.17.- Corollaru.- If $T$ is connected and finitely generated (as an algebra) then $H(T)$ is a nilpotent $\pi_{1}(M)$-module.

Proo6 : We can write (in this case)

$$
R=A(M) \otimes \wedge\left(x_{1}, \ldots, x_{n}\right)
$$

with $d\left(10 x_{i}\right) \in A(M) \theta \Lambda\left(x_{1}, \ldots, x_{i-1}\right)$. For each loop $f$ in $M$ based at $m$ we have

$$
[\tau]=\left(e^{\theta} \tau\right): H(T) \rightarrow H(T)
$$

where $\theta_{\tau}$ is a derivation of $\left(T, d_{T}\right)$ and

$$
\theta_{\tau}\left(x_{1}\right)=0, \quad \theta_{\tau}\left(x_{i}\right) \in \Lambda\left(x_{1}, \ldots, x_{i-1}\right), \quad i>1
$$

These equations imply that if a $\varepsilon T$ then for some integer $N$
(depending on a)

$$
{ }^{\theta} \tau_{1} \circ \cdots o \theta_{\tau_{N}}(a)=0
$$

for any sequence of $N$ loops $\tau_{1}, \ldots, \tau_{N}$.
Since $T$ (and hence $H(T)$ ) has finite type, it follows that $H(T)$
is a nilpotent $\pi_{1}(M)$ module.
Q.E.D.
18.18. - Direct limits. - Again consider the KS extension

$$
E: A(M) \xrightarrow{i} R \xrightarrow{p} T
$$

of 18.1. Assume $T$ is connected. Fix an isomorphism
(18.19)

$$
R=A(M) \geqslant T
$$

a graded subspace $X \subset T^{+}$and a well ordered homogeneous basis $\left\{x_{\alpha}\right\}_{\alpha \in I}$ of $X$ such that (18.14) holds.

If $\gamma$ is a subset of $I$ denote by $T^{\gamma} \subset T$ the subalgebra generated by the $x_{\alpha}$, a $\varepsilon \gamma$ and denote by $X^{\gamma} \subset X$ the subspace spanned by the $x_{\alpha}$, $a \in \gamma . \quad$ Then

```
 T
Let }r\mathrm{ be the collection of finite subsets }r\subset
```


## S. HALPERIN

$R^{Y}=A(M)$ e $T^{Y}$ is stable under $d$. Then $r$ is ordered by inclusion. The properties (18.14) exhibit

$$
E^{Y}: A(M) \longrightarrow R^{Y} \longrightarrow T^{Y}
$$

as a sub KS extension of
E. Moreover $I=U \gamma$ and so the inclusions $R^{\gamma} \hookrightarrow R$ define an isomorphism,


Similarly the inclusions $R^{Y_{1}} \longrightarrow R^{Y_{2}} \longrightarrow R$ define morphisms of local systems

(cf. 17.1). In particular $\left\{R_{\gamma \in \Gamma}^{\gamma}\right\}_{\gamma \in \Gamma}$ is directed family of local systems over Sing $M$ (cf. 17.4) and the morphisms $\xi_{\square}^{Y}: R_{\%}^{Y} \rightarrow R_{\text {. }}$ define a morphism of local systems

$$
\xi: \underset{\Gamma}{\lim _{r}} R^{Y} \longrightarrow R_{0}
$$

18.21.- Proposition. - With the notation above:
i) $R_{\text {. and each }} R_{\text {. are extendable local systems of differential }}^{r}$ coefficients.
ii) For each $Y$, $H\left(R_{m}^{Y}\right)$ is a nilpotent $\pi_{1}(M)$-module of finite type.
iii) The morphism $\xrightarrow{\lim } R_{C}^{Y} \rightarrow R$ is an isomorphism of local systems.
iv) The diagram below commutes, with isomorphisms as shown :

## LECTURES ON MINIMAL MODELS



Proof :
i) is prop. 18.9 i). ii) is cor. 18.17 (with remark 18.13).
iii) is immediate from the definitions. The commutativity of iv) is obvious and each $\mu^{Y}$ is an isomorphism by prop. 18.9 iv).
Q.E.D.

## Serre fibrations

19.1.- Serre fibrations. A Serre fibration is a continuous surjective map of topological spaces,

$$
\pi: P \rightarrow M
$$

which has the following homotopy lifting property : if

is a commutative square of continuous maps, then $\tau_{0}$ extends to a continuous map $\tau: \Delta^{n} \times I \rightarrow P$ such that $\pi \tau=\sigma$.

The spaces $P$ and $M$ are the total space and base space of the fibration. If $x \in M$ the fibre, $P_{x}$, at $x$ is the subspace $\pi^{-1}(x)$ of $P$.
19.2.- Fibrations over a simplex. Recall (12.9) that the vertices of the $p$-simplex $\Delta^{p}$ are denoted by $v_{0}, \ldots, v_{p}$. Further, the order preserving maps $\alpha \in \operatorname{Ord}([p],[q])$ define continuous maps $\Delta(\alpha): \Delta^{p} \rightarrow \Delta^{q}$. In this section it will, in particular, be convenient to denote the face and degeneracy maps respectively by

$$
\begin{equation*}
n_{i}=\Delta\left(\delta_{i}\right): \Delta^{p-1} \rightarrow \Delta^{p} \quad \text { and } \quad \zeta_{j}=\Delta\left(\sigma_{j}\right): \Delta^{p} \rightarrow \Delta^{p-1} \tag{19.3}
\end{equation*}
$$

We recall now the standard triangulation of $\Delta^{P} \times I$. It is given by
the continuous maps

$$
a_{m}: \Delta^{p+1} \longrightarrow \Delta^{p} \times I \quad 0 \leq m \& p
$$

## lectures on minimal models

defined by

$$
\alpha_{m}(z)=\left(\zeta_{m}(z), \sum_{i=m+1}^{p+1} b_{i}(z)\right), \quad z \in \Delta^{p+1},
$$

where $b_{i}(z)$ is the $i^{\text {th }}$ barycentric coordinate.

$$
\text { Let } \sigma: \Delta^{p} \rightarrow \Delta^{n} \quad \text { be any continuous map. Denote by }
$$

$\bar{\sigma}: \Delta^{\mathrm{P}} \times \mathrm{I} \rightarrow \Delta^{\mathrm{n}}$ the continuous map given by

where $\lambda=\sum_{i=m^{+1}}^{p+1} \lambda_{i}$. Thus
(19.5)

$$
\bar{\sigma}(z, 0)=\sigma(z) \quad \text { and } \quad \bar{\sigma}(z, 1)=v_{n}, \quad z \in \Delta^{P} .
$$

The relations (12.2) imply that the diagrams
(19.6)

commute, where (as usual) $\partial_{i} \sigma=\sigma 0 \eta_{i}$.
Now consider a Serre fibration

$$
P \xrightarrow{\pi} \Delta^{n} .
$$

Using the homotopy lifting property, and (19.6) we obtain
19.7.- Lemma. There are continuous maps

$$
\overline{\bar{\tau}}: \Delta^{P} \times I \rightarrow P \quad, \quad \tau \in \underline{\text { Sing }}_{p}(P), \quad P \geqslant 0,
$$

## S. HALPERIN

## such that

i) $\overline{\bar{q}}(z, 0)=\tau(z)$.
ii) $\pi 0 \overline{\overline{7}}=\overline{\pi 0 \tau}$, where $\overline{\pi O \tau}$ is defined from $\pi 0 \tau$ by (19.4).
iii) If $\pi \tau\left(\Delta^{P}\right)=v_{n}$, then $\overline{\bar{\tau}}(z, t)=\tau(z)$, $t \in I$.
iv) $\bar{i} \rho\left(n_{i} \times i\right)=\overline{\overline{\partial_{i} \tau}} \quad, \quad 0 \leqslant i \leqslant p$.

Recall next from 19.2 (or 12.9 ) that an inclusion of simplicial sets

$$
\Delta^{n} \subset \operatorname{sing}\left(\Delta^{n}\right)
$$

is defined by $\alpha \mapsto \Delta(\alpha)$. Thus a subsimplicial set $\underline{P} \subset \underline{\text { Sing }} P$ is defined by

$$
\begin{equation*}
\tau \in \underline{P} \ll \pi 0 \tau \in \Delta^{n} . \tag{19.8}
\end{equation*}
$$

We have thus the sequence of inclusions of simplicial sets

$$
\underline{\operatorname{sing}}\left(P_{v_{n}}\right) \xrightarrow{r_{2}} \underline{P} \xrightarrow{Y_{1}} \underline{\text { Sing }}(P) \text {. }
$$

19.9.- Lemma. The homomorphisms

$$
A\left(P_{v_{n}}\right) \stackrel{A\left(\gamma_{2}\right)}{\Perp} A(\underline{P}) \stackrel{A\left(\gamma_{1}\right)}{\longleftrightarrow} A(P)
$$

induce isomorphisms of cohomology.

Prooh.- In view of theorem 14.18 it is enough to prove that

induce cohomology isomorphisms. For each $\tau \in \underline{S i n g}_{p}(p)(p \geqslant 0)$ let $\mathcal{T}: \Delta^{P} \times I \rightarrow P$ be a continuous map such that the conclusions of lemma 19.7 hold. Define $\hat{T} \in \operatorname{Sing}_{p}\left(P_{v_{n}}\right)$ by $\tau(z)=\overline{\bar{\tau}}(z, 1)-c f .19 .7$ ii) and 19.5 .

LECTURES ON MINIMAL MODELS
Define linear maps

$$
\lambda: c^{P}\left(P_{v_{n}}\right) \rightarrow c^{P}(P), \quad p \geqslant 0
$$

by $(\lambda f)(\tau)=f\left(\frac{\tau}{\tau}\right)$. It follows from 19.7 iii) that
(19.10)

$$
c\left(r_{2}\right) \circ c\left(r_{1}\right) \circ \lambda=i
$$

Recall the linear maps $a_{1}: \Delta^{p+1} \rightarrow \Delta^{p} \times I$ defined above. Put $h_{m}(\tau)=\overline{\bar{q}} 0 a_{m}: \Delta^{p+1} \rightarrow P, \tau \in \underline{S i n g}_{p}(P)$. Define linear maps

$$
h: c^{p+1}(p) \rightarrow c^{p}(p), \quad p \geqslant 0
$$

by

$$
(h f)(\tau)=\sum_{m=0}^{f}(-1)^{m} f\left(h_{m}(\tau)\right) \quad, \quad \tau \in \underline{\operatorname{Sing}}_{p}(P)
$$

Then a classical calculation (via 19.7 iv ) yields

$$
\begin{equation*}
h \delta+\delta h=\lambda \circ C\left(\gamma_{2}\right) \circ C\left(\gamma_{1}\right)-1 \tag{19.11}
\end{equation*}
$$

This, together with (19.10) shows that $C\left(\gamma_{2}\right) \circ C\left(\gamma_{1}\right)$ is an isomorphism.

Finally, suppose $\sigma \in \underline{S i n g}_{p}\left(\Delta^{n}\right)$ is actually in $\left(\Delta^{n}\right)_{p}$.
Then formula (19.4) showe that $\bar{\sigma} \circ \alpha_{m} \in\left(\underline{\Delta}^{n}\right)_{p+1}, m \geqslant 0$. Hence if $\tau \in \underline{P}, h_{m}(\tau)$ satisfies (by 19.7 ii))

$$
\pi \circ h_{m}(\tau)=\overline{\pi O \tau} \circ a_{m} \in\left(\underline{\Delta}^{n}\right)_{p+1}
$$

This shows that if $\tau \in \underline{P}$ so does each $h_{m}(\tau)$ and so $h$ restricts to an operator in $C(\underline{P})$. It follows that $C\left(r_{2}\right)$ is an isomorphism.
Q.E.D.

## S. HALPERIN

19.12.- Pullbacks. Consider continuous maps

and suppose $\pi$ is a Serre fibration. Define a subspace ${ }^{*} \subset M_{1} \times P$ by

$$
\psi^{*}=\{(x, y) \mid \Downarrow x=\pi y\}
$$

The projections of $M_{1} \times P$ onto $M_{1}$ and $P$, when restricted to $\varphi^{*} P$, give the commutative square


Evidently $\pi_{1}$ is again a Serre fibration ; it is called the pullback of $\pi$ to $M_{1}$ via $\varphi$.

Let $\psi: M_{2} \rightarrow M_{1}$ be another continuous map. Then $\psi\left(\|^{*} P\right)$ is the subspace of $M_{2} \times M_{1} \times P$ of points of the form $(x, \psi x, z)$ with $\phi \psi x=2$. Thus projection $M_{2} \times M_{1} \times P \rightarrow M_{2} \times P$ restricts to a homeomorphism

$$
\begin{equation*}
\psi^{*}\left(\psi^{*} P\right) \xrightarrow{\equiv}(\psi \psi)^{*}(P) \tag{19.13}
\end{equation*}
$$

We of ten identify these spaces via this homeomorphism.
If $\Downarrow: x \rightarrow M$ is the inclusion of a single point then the pullback is just the constant projection $P_{x} \rightarrow x$. More generally, if $\sigma: \Delta^{n} \rightarrow M$ is any singular simplex on $M$ we denote the pullback of $\pi$ to $\Delta^{n}$ via $\sigma$ by

$$
\begin{equation*}
P_{\sigma} \xrightarrow{\pi_{0}} \Delta^{n} \tag{19.14}
\end{equation*}
$$

## LECTURES ON MINIMAL MODELS

In particular, if $\partial_{i}$ ans $s_{j}$ are the face and degeneracy operators in Sing $M$ (cf. 12.13) then the identifications (19.13) yield commutative squares of continuous maps

( $n_{i}$ and $\zeta_{j}$ are defined in (19.3).) Moreover $\Delta_{i}, \Sigma_{j}$ satisfy the equations (12.2) .
19.16. Local system of forms. Consider a Serre fibration

$$
\begin{array}{r}
\text { For each } \sigma \in{\underset{\sim}{\text { Sing }}}_{n}(M) \text { the pullback } \\
P_{\sigma} \xrightarrow{\pi} \Delta^{n}
\end{array}
$$

is a Serre fibration over $\Delta^{n}$. We can thus apply definition (19.8) to define a
simplicial subset $P_{\sigma} \subset$ Sing $(P)$.
It follows from the diagrams (19.15) that the simplicial maps
Sing $\left(P_{\partial_{i} \sigma}\right) \rightarrow \operatorname{Sing}\left(P_{\sigma}\right)$ and $\underline{\operatorname{Sing}}\left(P_{s_{j} \sigma}\right) \rightarrow \underline{\operatorname{Sing}}\left(P_{\sigma}\right)$ defined by $\Delta_{i}$ and $\Sigma_{j}$ restrict to simplicial maps

$$
\mathrm{P}_{\partial_{i} \sigma} \longrightarrow \mathrm{P}_{\sigma} \text { and } \mathrm{P}_{\mathbf{s}_{j} \sigma} \longrightarrow \mathrm{P}_{\sigma} .
$$

Hence they determine c.g.d.a. homomorphisms

$$
\left.\partial_{i}: \underline{A\left(P_{\partial_{i} \sigma}\right.}\right)+A\left(P_{\sigma}\right) \text { and } s_{j}: A\left(P_{s_{j}}\right)+A\left(P_{\sigma}\right) .
$$

## S. HALPERIN

Because $\Delta_{i}$ and $\Sigma_{j}$ satisfy (12.2), $\partial_{i}$ and $s_{j}$ satisfy (12.3). Hence a local system of c.g.d.a.'s, F, over Sing $(M)$ is defined by

$$
F_{\sigma}=A\left(P_{\sigma}\right), \quad \partial_{i}, s_{j} \quad, \quad \sigma \in \underline{\operatorname{Sing}(M) .}
$$

It is called the local system of the fibration.
19.17.- Lemma. The local system, $F$, of a fibration is an extendable local system of differential coefficients.

Proof.- That $F$ is a local system of differential coefficients is an easy consequence of lemma 19.9.

To show it is extendable, fix $\sigma \in$ Sing $_{n}(M)$. Denote by $\mathcal{P}_{\partial \sigma}$ the simplicial subset of these $\tau$ such that $\pi_{0} 0 \tau \in \frac{\partial \Delta^{n}}{}$. It is easy to identify the homomorphism

$$
\underline{\sigma}^{k} P\left(\underline{\Delta}^{n}\right) \rightarrow \underline{o}^{k} F\left(\underline{\partial}^{n}\right)
$$

 is surjective (prop. 13.8).
Q.E.D.

Since $P_{\sigma}$ is the pullback of $P$ we have commutative squares
(19.18)


Equations (19.13) yield the relations
(19.19)

$$
\varepsilon_{\sigma} \circ \Delta_{i}=\varepsilon_{\partial_{i} \sigma} \quad \text { and } \quad \varepsilon_{\sigma} \circ \varepsilon_{j}=\varepsilon_{s_{j} \sigma}
$$

Next, denote by
the couposite homomorphism $A(P) \xrightarrow{A\left(\xi_{\sigma}\right)} A\left(P_{\sigma}\right)+A\left(P_{\sigma}\right)$. From (19.19) we have (19.20) $\quad \partial_{i} 0 a_{\sigma}=a_{a_{i} \sigma} \quad$ and $\quad b_{j} \circ a_{\sigma}=a_{j} \sigma \quad, \quad \sigma \in \operatorname{Sing}(M)$

These relations show that a c.g.d.a. homomorphism

$$
a: A(P) \rightarrow P(M)
$$

 sections of the local system F.)
19.21.- Lemma. The homomorphism, a, is an isomorphism of c.g.d.a.'s

$$
a: A(P) \xrightarrow{\underline{\Sigma}} P(M) \text {. }
$$

Prook.- If $\sigma \in \underline{S i n g}_{n}(M)$ and $a \in \operatorname{Ord}([m],[n])$ then $\Delta(a): \Delta^{m} \rightarrow \Delta^{n}$ is a continuous map, and we obtain the commutative diagram


If we use (19.13) to identify $\Delta(a)\left(P_{\sigma}\right)$ with $P_{\sigma O \Delta(\alpha)}$ then

$$
\xi_{\sigma} \circ \lambda_{\alpha}=\xi_{\sigma O \Delta(\alpha)}
$$

(This generalizes (19.19).)
Moreover the simplicial map $\left.\underline{\text { Sing }\left(P_{\sigma O \Delta}(a)\right.}\right)+{\operatorname{Sing}\left(P_{\sigma}\right)}$ induced by $\lambda_{a}$ restricts to a simplicial map
S. HALPERIN
$\underline{\lambda_{\alpha}}:{\underline{P_{\sigma \Delta \Delta(\alpha)}}}^{P_{\sigma}}$
and hence determines a homomorphism

$$
A\left(\lambda_{\underline{\alpha}}\right): A\left(\underline{P}_{\sigma 0 \Delta(\alpha)}\right)+A\left(P_{\sigma}\right) .
$$

(Note that $\partial_{i}$ and $s_{j}$ are special cases !) Notice that $\lambda_{a}$ is given by

$$
\lambda_{\alpha}(\tau)=\lambda_{\alpha} 0 \tau \quad \tau \in P_{\sigma O \Delta(\alpha)}
$$

Furthermore if $\Omega \varepsilon F(M)$ it is coherent with respect to all the $A\left(\lambda_{\alpha}\right)$; i.e.
(19.22)

$$
\begin{aligned}
A\left(\lambda_{\alpha}\right) \Omega_{\sigma}=\Omega_{\sigma \alpha \Delta}(\alpha) & \sigma \in \operatorname{Sing}_{n}(M), \\
& \alpha \in \operatorname{Ord}([m],[n]) .
\end{aligned}
$$

Now consider a singular simplex $\omega: \Delta^{\mathbf{n}} \rightarrow \mathrm{P}$.
It determines the singular simplices

$$
\sigma_{\omega}: \Delta^{n} \rightarrow M \quad \text { and } \quad \tau_{\omega}: \Delta^{n} \rightarrow P_{\sigma_{\omega}}
$$

given by

$$
\sigma_{\omega}(z)=\pi \omega(z) \quad \text { and } \quad \tau_{\omega}(z)=(z, \omega(z)), \quad z \in \Delta^{n} .
$$

Observe that ${ }^{\tau}{ }_{\omega}$ satisfies (and is determined by) the relations
(19.23)

$$
\pi_{\sigma} \circ \tau_{\omega}=1 \quad \text { and } \quad \xi_{\sigma_{\omega}} \circ \tau_{\omega}=\omega
$$

$$
\begin{gathered}
\text { Hence }{ }^{\tau}{ }_{\omega} \in P_{\sigma_{\omega}} . \text { Moreover, for } \omega \in{\underline{\operatorname{Sing}_{n}}(P) \text { and } \alpha \in \operatorname{Ord}([m],[n]),}^{\sigma_{\omega} \circ \Delta(\alpha)=\sigma_{\omega o \Delta}(\alpha)}
\end{gathered}
$$

(19.24) and

$$
{ }^{\tau_{\omega}} \circ \Delta(\alpha)=\lambda_{\alpha} \circ \tau_{\omega O \Delta(\alpha)}=\underline{\lambda}_{\alpha}\left(\tau_{\omega O \Delta(\alpha)}\right),
$$

as is easily verified. These equations specialize to

$$
\partial_{i} \sigma_{\omega}=\sigma_{\partial_{i} \omega} \quad, \quad s_{j} \sigma_{\omega}=\sigma_{s_{j} \omega}
$$

(19.25) and

$$
\begin{gathered}
\partial_{i} \tau_{\omega}=\Delta_{i} \circ \tau_{\partial_{i}}, \quad \delta_{j} \tau_{\omega}=\Sigma_{j} \circ \tau_{\delta_{j} \omega} \cdot \\
\text { From (19.23) we deduce (for } \Phi \varepsilon A(P), \quad \omega \in \operatorname{Sing}(P)) \text { that }
\end{gathered}
$$

$$
(a \oplus)_{\sigma_{\omega}}\left(\tau_{\omega}\right)=\left[A\left(\xi_{\sigma_{\omega}}\right) \Phi\right]\left(\tau_{\omega}\right)=\Phi\left(\xi_{\sigma_{\omega}} \circ \tau_{\omega}\right)=\Phi_{\omega} ;
$$

i.e.,

$$
(a \Phi)_{\sigma_{\omega}}\left(\tau_{\omega}\right)=\Phi_{\omega} \quad, \quad \omega \in \underline{\operatorname{Sing}}(P) .
$$

Hence a is injective.
On the other hand, let $\Omega \varepsilon F(M)$. For each $\omega \in \operatorname{Sing}_{n}(P)$ define
$\Phi_{\omega} \in A(n)$ by

$$
\Phi_{\omega}=\Omega_{\sigma}\left(\tau_{\omega}\right)
$$

It follows from (19.25) that the $\Phi_{\omega}$ are compatible with the face and degeneracy operators, and so define an element $\Phi \in A(P)$.

Now if $\tau \in P_{\sigma}$, some $\sigma \in \underline{S i n g}_{n}(M)$ then $\pi_{\sigma}{ }^{\circ} \tau=\Delta(\alpha)$, some
$a \in \operatorname{Ord}([m],[n])$ and we candefine $\tau^{\prime} \in \underline{S i n g}_{n}\left(P_{\sigma O \Delta(\alpha)}\right)$ by the equations

$$
\pi_{\sigma O \Delta(\alpha)} \tau^{\prime}=1 \text { and } \quad \lambda_{\alpha} 0 \tau^{\prime}=\tau
$$

Let $\omega=\xi_{\sigma} 0 \tau=\xi_{\sigma O \Delta(\alpha)} 0 \tau^{\prime}$. Then (cf. (19.23)) $\tau^{\prime}=\tau_{\omega}$ and

$$
\sigma_{\omega}=\sigma 0 \Delta(\alpha) \quad, \quad \tau=\lambda_{\alpha} 0 \tau_{\omega}
$$

Equations (19.22) yield

$$
\Omega_{\sigma}(\tau)=\Omega_{\sigma}\left(\tau_{\omega}\right)=\Phi_{\omega} .
$$

## S. halperin

But by definition

$$
(a)_{\sigma}(\tau)=\left[A\left(\xi_{\sigma}\right) \oplus\right](\tau)=\left(\xi_{\sigma} \circ \tau\right)=\emptyset_{\omega}
$$

Hence $a 申=\Omega$ and $a$ is surjective.
Q.E.D.

## Chapter 20

## The fundamental theorem.

20.1.- Introduction.- Suppose

$$
P \xrightarrow{\pi} M
$$

is a Serre fibration in which $M$ is a path connected space with base point $m$. We adopt the notation of chap. 19. The diagrams (19.15) show that

$$
\left\{H(P j k) ; \Delta_{i}^{*} ; \Sigma_{j}^{*}\right\}_{\sigma \in S i n g M}
$$

is a local system over Sing M. Integration (cf. theorem 14.18) identifies this with the local system

$$
\left\{H\left(A\left(P_{\sigma}\right)\right) ; A\left(\Delta_{i}\right) ; A\left(\Sigma_{j}\right)\right\}
$$

Thus by lemma 19.9 it is identified with the local system

$$
\left\{\left(\mathrm{H}\left(\mathrm{P}_{\sigma}\right)\right) ; \partial_{i} ; s_{j}\right\}
$$

and is in particular a local system of coefficients. (cf. also lemma 19.17 l )

$$
\text { Since } M \text { is path connected } H\left(P_{n} k\right) \text { becomes a } \pi_{1}(M) \text {-module (cf. 16.5) }
$$

and the identifications

$$
H\left(P_{m} ; k\right)-H\left(A\left(P_{m}\right)\right)=H\left(A\left(P_{m}\right)\right)
$$

are isomorphisms of $\pi_{1}(M)$-modules.

$$
\text { Next, let } j: P_{m} \rightarrow P \text { be the inclusion. Then } \pi \circ j \text { is the constant }
$$

map $P_{m} \rightarrow m$ and so

$$
A(j) \circ A(\pi)=e_{m}: A(M) \rightarrow A\left(P_{m}\right),
$$

where $e_{m}$ is the augmentation of $A(M)$ at $m$. It is given explicitly by

```
 em}\mp@subsup{|}{}{|}=\mp@subsup{\Phi}{m}{},|\inA(M)
 Finally, assume P is also path connected. Then
H
unique minimal model :
```


for $A(\pi)$; the row denotes a minimal KS extension. Because ker $\rho$ is the ideal generated by $i$ (ker $e_{m}$ ) we can complete this diagram to a commutative diagram

[^1]Proof : Let $\sigma \in \underline{S i n g}_{n}(M)$. Then $\pi_{\sigma}: B \rightarrow \Delta^{n}$ defines a simplicial map $\underline{\text { Sing }}\left(P_{\sigma}\right) \rightarrow \underline{\operatorname{Sing}\left(\Delta^{n}\right)}$ which by definition (cf. 19.8) restricts to a simplecal map

$$
\pi_{\sigma}: P_{0} \rightarrow \Delta^{n} .
$$

Since (12.26 a)) $A\left(\Delta^{n}\right)=A(n)$, the resulting homomorphism of differrential forms is a homomorphism

$$
\mathrm{A}\left(\mathrm{P}_{\sigma}\right) \stackrel{A\left(\pi_{\sigma}\right)}{\longleftrightarrow} \mathrm{A}(\mathrm{n}) .
$$

Now denote by

$$
e_{\sigma}: A(M) \rightarrow A(n)
$$

the homomorphism $\Phi \mapsto \Phi_{\sigma}$. Then a computation shows that the diagram
(20.4)

commutes.
Next, recall the local system $R_{*}=\left\{R_{\sigma} ; \partial_{i} ; s_{j}\right\}$ determined by $E$, as defined in 18.3. Since $R_{\sigma}=A(n) A_{A(M)} R$, the diagrams (20.4) show that homomorphisms of c.g.d.a.'s

$$
\varphi_{c}: R_{e} \longrightarrow \underset{c}{A\left(P_{c}\right)}, \quad \sigma \in \underline{\text { Sing }}(\mathbb{M}),
$$

are defined by

$$
J_{c}=A(\underset{c}{-}) \otimes\left(a_{c} \circ G\right) .
$$

As in 19.16 denote the local system $\left\{A\left(P_{c}\right)\right.$ ! by $F$. Relations (19.20) imply that the $\emptyset_{c}$ are compatible with the face and degeneracy operators. Hence they define a morphism

$$
\varphi_{t}: R_{t} \rightarrow F
$$

of local systems. We wish to apply theorem 17.13 to this morphism.

First observe that since $P_{m}$ is path connected the homomorphism $\pi: H^{l}(M) \rightarrow H^{l}(P)$ is injective. This is therefore also true for $A(\pi)$, and it follows by cor. 3.9 that $T$ is connected.

Since $T$ is connected we can apply the results of 18.18. In particular (cf. prop. 18.21) $R_{\text {. }}$ is expressed as the direct limit of a directed family $R_{\text {. }}^{Y}$ of local systems over Sing M. We now verify the hypotheses of theorem 17.13 (with $R_{\text {a }}$ playing the role of $G$ ) :
i) $F$ is an extendable local system of differential coefficients by lemma 19.17. $R_{\text {a }}$ and $R_{\text {are }}^{\gamma}$ are exdable local systems of differential coefficients (prop. 18.21 i)).
ii) Note that $F_{m}=A\left(P_{m}\right)$ and $s 0 \quad H\left(F_{m}\right)=H\left(A\left(P_{m}\right)\right)$ is a nilpotent $\pi_{1}(M)$-module by hypothesis.
iii) Each $H\left(R_{m}^{\gamma}\right)$ is a nilpotent $\pi_{1}(M)$ module of finite type (prop. 18.21 ii)).
iv) Either $H(M ; k)$ or $H\left(F_{m}\right)\left(\sum H\left(P_{m} ; k\right)\right)$ has finite type by hypothesis.
v) Since $\left\{H\left(F_{\sigma}\right)\right\}$ is a local system of coefficients, and $P_{m}$ is path connected, clearly $H^{0}\left(F_{\sigma}\right)=H^{0}\left(P_{m}\right)=k$ and these isomorphisms are compatible with the face and degeneracy operators. The same is true for $R_{*}$ and $R_{*}{ }^{Y}$ because $T$ is connected.
vi) By prop. 18.21 iv) the composite $H\left(\underline{\lim } R^{\gamma}(M)\right) \rightarrow H(F(M))$ can be identified with the composite


By definition, for $z \in R$

$$
\begin{aligned}
\psi_{\mu}(z)_{\sigma} & =\emptyset_{\sigma} \mu_{\sigma}(z) \\
& =\left[A\left(\pi_{\sigma}\right) \bullet\left(a_{\sigma} \circ B\right)\right](10 z) \\
& =a_{\sigma}(B z)=[a B(z)]_{\sigma} .
\end{aligned}
$$

Hence $\downarrow 0 \mu=20 \beta$.
Now a is an isonorphism (leme 19.21) and $B$ is an isomorphism by hypothesis. Hence $\psi^{*}{ }^{*}$ is an isomorphism.

We have now verified all the hypotheses of theorem 17.13. We may thus conclude that

$$
\varphi_{m}^{*}: H\left(R_{m}\right) \xrightarrow{\cong} \mathrm{H}\left(\mathrm{~A}\left(\mathrm{P}_{\mathrm{m}}\right)\right)
$$

But

$$
R_{m}=T \quad(\text { prop 18.9 }), A\left(P_{m}\right)=A\left(P_{m}\right) \text { (definition) }
$$

and, clearly, $\psi_{m}=\alpha$. This completes the proof.
Q.E.D.
20.5.- Theorem. Let $M$ be a path connected apace with base point m and suppose $P \xrightarrow{\pi} M$ is a Serrefibration satisfying the hypotheses of theorem 20.3. Assume that

is a commtative diagram of c.g.d.a.'s, in which the bottom row is a kS extension.
Suppose also that $\alpha_{1}: H\left(T_{1}\right) \xrightarrow{\cong} H\left(A\left(P_{m}\right)\right)$. Then
$B_{1}^{*}: H\left(R_{1}\right) \xrightarrow{Z} H(A(P))$.

Prooh.- Combine (20.2) with the diagram above to achieve the commutative diagram


By construction $B^{*}$ is an isomorphism.
Hence we can apply theorem 5.19 to obtain a c.g.d.a. homomorphism

$$
\bar{B}: R_{1} \rightarrow R
$$

such that $\bar{B} \circ i_{1}=i$ and $B \circ \bar{B} \sim B \quad($ rel $A(M))$.
The first condition shows that $\bar{B} i_{1}\left(\right.$ ker $\left.e_{m}\right)=i\left(k e r e_{m}\right)$ and so $\bar{B}\left(\operatorname{ker} \rho_{1}\right) C$ ker $\rho$. Thus $\bar{B}$ factors to yield the commutative diagram


By changing the augmentation in $T_{1}$ (if necessary) we can arrange that $\bar{\alpha}$ preserves augmentations. Hence so does $\bar{\beta}:(1, \bar{B}, \bar{\alpha})$ is a morphism of KS extensions.

Now (cf. definition 5.8) the homotopy from $B \circ \bar{B}$ to $B_{1}$ is a
homomorphism $\Phi:\left(R_{1}, A(M)\right)^{I} \rightarrow A(P)$ such that

$$
\oplus \circ \lambda_{0}=B \circ \bar{B}, \quad \oplus \circ \lambda_{1}=B_{1}, \quad \oplus \circ i_{1}=A(\pi) .
$$

## LECTURES ON MINIMAL MODELS

In 5.1 is defined a projection $\left(R_{1}, A(M)\right)^{I} \rightarrow T_{1}^{I}$. The equations above show that $A(j) \circ \Phi$ factors over this projection to yield a homotopy

$$
\mathrm{T}_{1}^{\mathrm{I}} \longrightarrow A\left(\mathrm{P}_{\mathrm{m}}\right)
$$

from $\alpha \circ \bar{\alpha}$ to $a_{1}$.
It follows that $\alpha^{*} \circ \alpha^{-\alpha^{*}}=\alpha_{1}^{*}$. Since $\alpha_{1}^{*}$ is an isomorphism by hypothesis, and $\alpha^{*}$ is (by theorem 20.3) so is $\alpha^{* *}$. Now theorem 7.1 implies that $\bar{B}^{*}$ is an isomorphism.

Since $\beta_{1} \sim \beta \circ \bar{\beta}$ and $\beta^{*}$ and $\bar{\beta}^{*}$ are isomorphisms, $\beta_{1}^{*}=\beta^{*} \circ \bar{B}^{*}$ is also an isomorphism.
Q.E.D.
20.6.- Pullbacks.- Consider a commutative square of continuous maps
(20.7)

in which $\pi$ is a Serrefibration and $\pi_{1}$ is the pullback via $\varphi$.
Choose basepoints $m_{1} \in M_{1}$ and $m \in M$ so that $\varphi_{m_{1}}=m$; then

$$
\left(\varphi^{*} P\right)_{m_{1}}=P_{m} .
$$

Now suppose that
i) $M$ and $M_{1}$ are path connected.
ii) $\pi_{1}(M)$ acts nilpotently on $H\left(P_{m} ; k\right)$
iii) Either $H\left(P_{m} ; k\right)$ or both $H(M ; k)$ and $H\left(M_{1} ; k\right)$ have finite type.

Let the model of $A(\pi)$ be denoted by

## S. HALPERIN

(20.8)

then $B^{*}$ is an isomorphism by construction and $a$ " is an iscmorphism by theorem 20.3.

On the other hand $A(\psi): A(M) \rightarrow A\left(M_{1}\right)$ is a c.g.d.a. homomorphism which preserves augmentations (because $m_{1}=m$ ).

Thus we can use $A(\phi)$ to define the c.g.d.a.

$$
R_{1}=A\left(M_{1}\right) \theta_{A(M)} R .
$$

Diagrams (20.7) and (20.8) produce in the obvious way the diagram

in which the bottom row is a KS extension. Moreover the homeomorphism $P_{m}^{\tilde{m}}{ }^{\left(\psi^{*} P_{m}\right.}{ }_{m_{1}}$ gives an isomorphism $A\left(P_{m}\right)^{\approx} A\left(\left(\psi^{*} P\right)_{m_{1}}\right)$ which identifies $a$ and $a_{1}$. Hence $a_{1}$ is an isomorphism.

New theorem 20.5 applies and shows that $B_{1}^{*}$ is an isomorphism :

$$
\begin{equation*}
B_{1}^{*}: H\left(A\left(M_{1}\right) \Theta_{A(M)} R\right) \xrightarrow{\equiv} H\left(A\left(\varphi^{*} P\right)\right) \text {. } \tag{20.9}
\end{equation*}
$$

## REFERENCES

[B-L]	H.J. Baues and J.M. Lemaire, Minimal models in homotopy theory, Math. Ann. 255 (1977) 219-242.
[B-G]	A.K. Bousfield and V.K.A.M. Gugenhein, On PL de Rham theory and rational homotopy type, Memoirs of the A.M.S. 179 (1976).
[c]	H. Cartan, Théories cohomologiques, Inventiones math. 35 (1976) 261-271.
[Ch]	K.T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973) 217-246.
[G-M]	P.A. Griffiths and J.W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 6, Birkhauser (1981).
[G]	P.P. Grivel, Formes differentielles et suites spectrales, Ann. Inst. Fourier 29 (1979) 17-37.
$\left[L_{1}\right]$	D. Lehmann, Resume de la thérie du type d'homotopie rationelle de Sullivan, Publ. Internes de l'U.E.R. de Math., Université de Lille I, 86 (1976).
$\left[L_{2}\right]$	D. Lehmann, Theorie homotopique des formes differentielles, Asterique 45, S.M.F. (1977).
[s]	D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977) 269-331.
[Sw]	R.G. Swan, Thom's theory of differential forms on simplicial sets, Topology 14 (1975) 271-273.
[ Ta ]	D. Tanré, Homotopie rationelle: Modeles de Chen, Quillen, Sullivan, to appear.
[w]	C. Watkise, Cochaines commutatives sur les ensembles simpliciaux, Publ. Internes de 1'U.E.R. de Marh., Université de Lille I, 107 (1976).
[W-T]	Wu Wen Tsün, Theory of I*-functor in algebraic topology, I Scientia Sinica 18 (1975 464-482, II Scientia Sinica 19 (1976) 647-664.

S. HALPERIN

Mathematics Department University of Toronto TORONTO (Canada) MSS IAI


[^0]:    If ( $A, d_{A}$ ) is a g.d.a. and $A$ is a c.g.a. then ( $A, d_{A}$ ) is called a commutative graded differential algebra (c.g.d.a.). If $C \rightarrow A$ and $C \rightarrow B$ are c.g.d.a. homomorphisms then $A{ }_{C} B$ is naturally a c.g.d.a..

[^1]:    in which $a$ is a homomorphism of c.g.d.a.'s. The main theorem of these notes reads
    20.3.- Theorem.- With the notation and hypotheses above suppose that
    i) $P_{m}$ is path connected.
    ii) $H\left(P_{m} ; k\right)$ is a nilpotent $\pi_{1}(M)$-module.
    iii) Either $H\left(P_{m} ; \boldsymbol{W}\right)$ or $H(M ; k)$ has finite type.

    Then $\alpha: H(T) \rightarrow H\left(A\left(P_{m}\right)\right)$ is an isomorphism, and so (T,a) is
    the minimal model for $\mathrm{P}_{\mathrm{m}}$.

