Richard Haydon

Compactness in $C_s(T)$ and Applications

Publications du Département de Mathématiques de Lyon, 1972, tome 9, fascicule 1
p. 105-113

<http://www.numdam.org/item?id=PDML_1972__9_1_105_0>

© Université de Lyon, 1972, tous droits réservés.
COMPACTNESS IN $C_s(T)$ AND APPLICATIONS

Richard HAYDON (*)

1. - INTRODUCTION.

In this paper I look at some properties of compact subsets of $C_s(T)$ which have applications to the "more interesting" space $C_c(T)$. A little light is cast on the difficult problem of when $C_c(T)$ may be a Kelley space, the concept of infra-k_R-space is examined, and lastly I offer two generalizations of a theorem of BUCHWALTER concerning the repletion UT.

The notations throughout are "standard Lyon". The algebra $C(T)$ of all continuous real-valued functions on the completely regular space T may be endowed with the topology either of simple, compact or bounded convergence on T and is then denoted by $C_s(T)$, $C_c(T)$ or $C_b(T)$, respectively.

2. - ON KELLEY SPACES $C_c(T)$.

The characterization of $M(T)$ as the space $C_c(\emptyset T)' = M_c(\emptyset T)$, of all measures of compact support on the c-repletion $\emptyset T$, enables one to deduce ($\{B_1\}$ and $\{H_1\}$) that $C_c(\emptyset T)$ is always a Kelley space ($\{B_1\}$) and that, when T is a k_R-space, $C_c(T)$ is Kelley if and only if T is c-replete. Put into an attractively symmetric form:

$$C_c(T) \text{ is a complete Kelley space } \iff T \text{ is a c-replete } k_R \text{-space.}$$

One can, however, say more, namely that, when T is a k_R-space, $C_c(\emptyset T)$ is the Kelleyifié $\bar{K} C_c(T) \left(\{B_1\} \right)$ of $C_c(T)$.

But what can we say if we do not assume T to be a k_R-space? We can note first that the property used to prove the above results is not the full strength

(*) Research supported by SRC grant B/70/666.
Compactness in $C_s(T)$ and applications

of being a k_R-space, but only that the compact discs of $C_c(T)$ should be equi-
continuous. H. BUCHWALTER has introduced the definition of a property inter-
mediate between these:

(2.1) DEFINITION. - T is said to be an infra-k_R-space if every precompact
subset of $C_c(T)$ is equicontinuous.

If T is the space of (H_2), θT is infra-k_R and not k_R. Evidently, when T
is an infra-k_R-space, θT is also infra-k_R and we have $C_c(\theta T) = \overline{k} C_c(T)$.

But this last equality does not hold for arbitrary T, as has been pointed
out in (H_1). I want to consider here the problem posed at the end of that Note:

If $C_c(T)$ is Kelley, need T be c-replete?

This question remains open still, but I am able to give some partial results and
to show how it is linked to properties of compactness in $C_s(T)$.

(2.2) PROPOSITION. - Let T be non-c-replete and suppose that $C_c(T)$ is a Kelley
space. Then there is a compact disc in $C_c(T)$ that is not compact in $C_s(\theta T)$.

Proof. - The continuous characters of the algebra $C_c(T)$ are the evaluations
$\delta_t(t \in T)$. If $u \in \theta T \setminus T$, u is not continuous on $C_c(T)$ and, since $C_c(T)$ is Kelley,
not continuous on some compact disc of $C_c(T)$. This disc is not compact in $C_s(\theta T)$.

I know of no example of a space T for which some compact subset of $C_c(T)$,
even of $C_s(T)$, fails to be compact in $C_s(\theta T)$. Propositions (2.4) and (2.8)
suggest that such a space (if one exists!) would be difficult to construct.

Let us denote by $R(T)$ the set of all closures in T of K_C subsets of T
and consider the property:

(A) Every function $\psi \in R^T$ which coincides on each $C \in R$ with a suitable
$f \in C(T)$ is itself in $C(T)$.

This property was introduced by J.D. PRYCE who proved:

(2.3) THEOREME ([P], Theorem 2.4). - If T has property (A) then every relati-
vely countably compact (rcc) subset of $C_s(T)$ is relatively compact (rc)
in $C_s(T)$.

106
(2.4) PROPOSITION. - When θT has property (A) the compact subsets of $C_s(T)$ are compact in $C_s(\theta T)$.

Proof. - When (f_n) is a sequence in $C(T)$ and $u \in \theta T$, there exists $t \in T$ such that $f_n(t) = f_n(u)$ for every integer n. It follows at once from this that the rc subsets of $C_s(T)$ and $C_s(\theta T)$ (hence also of $C_s(\theta T)$) are the same. Thus an rc subset of $C_s(T)$ is rc in $C_s(\theta T)$ and, by the theorem of Pryce, rc in $C_s(\theta T)$. If a subset is compact in $C_s(T)$ it is rc and closed, hence compact, in $C_s(\theta T)$.

We can note that θT satisfies (A) if θT is k_∞-closed or if there is a dense k_0 subset of θT, in particular if T is pseudocompact or has a dense B_∞ (σ-bounded) subset.

Write $R'(T)$ for the set of all closures in T of B_∞ subsets of T. Pryce's theorem allows the generalization below.

(2.5) PROPOSITION. - Let T be a completely regular space that satisfies:

(A') Every $\psi \in R^T$ which coincides on each $C \in R'$ with a suitable $f \in C(T)$ is itself in $C(T)$.

Then every rc subset of $C_s(T)$ is rc in $C_s(T)$.

Proof. - Suppose first that T satisfies (A'). I shall show that the bidual T'' satisfies (A). Recall that the bidual of T is defined ($\left(B_2\right)$) as the space T'' of all continuous characters of the algebra $C_b(T)$, embedded as a subspace of θT.

Let ψ be a real-valued function on T'' and suppose that for all $C \in R(T'')$ there is an $f \in C(T'')$ with $f|C = \psi|C$. Now if B is a bounded subset of T, B, taken in T'', is compact, so that the T'' closure \overline{B} of any $D \in R'(T)$ is in $R(T'')$. Thus, for every such D, there is a $g \in C(T)$ such that $g|D = \psi|D$. Applying (A'), we see that $\psi|T \in C(T)$. Let us denote by ϕ the continuous extension of $\psi|T$ to T''. It will be enough to prove that $\phi = \psi$. If B is bounded in T, \overline{B} is compact in T''; ϕ and ψ are both continuous on \overline{B} and coincide on B. Hence ϕ and ψ coincide on \overline{B}. But by proposition 2 of (B_2) we know that $T'' = \bigcup \{\overline{B} : B$ bounded in $T\}$ and we can deduce that ϕ and ψ coincide on T''.

If now A is rc in $C_s(T)$, A is rc in $C_s(T'')$ by the same reasoning as was used in proposition (2.4). A is therefore rc in $C_s(T'')$ and so certainly rc in
Compactness in $C_s(T)$ and applications

$C_s(T)$.

(2.6) **DEFINITION.** - A space X is said to be angelic ([P], p. 534) if

(i) $roc \Rightarrow rc$ for the subsets of X, and

(ii) every element of the closure of an rc subset A of X is the limit of some sequence in A.

If $T \in R'(T)$, we know already by the first part that (i) is satisfied.

PRYCE showed that $C_s(T)$ is angelic if $T \in R(T)$ ([P], theorem 2.5). Therefore $C_s(T'')$ is angelic. If A is rc in $C_s(T)$ (and hence also in $C_s(T'')$) and $f \in \overline{A}$ (the closure being the same in the two topologies), there is a sequence in A that converges to f in $C_s(T'')$, and which converges to f, a fortiori, in $C_s(T)$. Then:

(2.7) **PROPOSITION.** - If $T \in R'(T)$ (particularly if T is pseudocompact), $C_s(T)$ is angelic.

(2.8) **PROPOSITION.** - Let T be a (completely regular) space in which all closed and discrete subspaces are C_∞-embedded (particularly if T is normal or countably compact) and that satisfies:

(B) For every $u \in \theta T \setminus T$ there is a base U of neighbourhoods of u in θT such that, whenever $V \subseteq U$ and the cardinality of V is strictly less than that of U, then $T \cap (\bigcap V)$ is nonempty.

Then the compact subsets of $C_s(T)$ are compact in $C_s(\theta T)$.

Proof. - It is enough to show that every character $u \in \theta T$ is continuous on each compact $A \subseteq C_s(T)$. Suppose then that u is not continuous on such an A; there is a net (f_α) in A such that $f_\alpha \to f$ in $C_s(T)$ while $f_\alpha^u(u) \neq f^u(u)$. We can assume that the f_α are uniformly bounded by 1, that $f_\alpha \to 0$ in $C_s(T)$ and that $f_\alpha^u(u) = 1$ for all α.

Let U be a base of neighbourhoods of u in θT with the property of (B). Then if $B \subseteq \theta C(T)$, $V \subseteq U$ and card B, card V are strictly less than card U, there exists $t \in T$ such that $t \in \bigcap V$ and $f(t) = f^u(t)$ for every $f \in B$. Let us denote by Ω the first ordinal of cardinality card U and index ξ as $(U_\xi)_{\xi < \Omega}$. I shall define, by transfinite induction, families (x_ξ) in T and (g_ξ) in A with the properties:
Compactness in $\mathcal{C}(T)$ and applications

(a) $g_\xi(x_\xi) \leq 1/2$ ($\xi \geq \xi$),
(b) $g_\xi(x_\xi) = 1 = g_\xi^\theta(u)$ ($\xi < \xi$),
(c) $x_\xi + u$ in $\mathcal{E}T$.

Let x_o be an arbitrary point of T and choose α_o such that $f_{\alpha_o}(x_o) \leq 1/2$. Put $g_o = f_{\alpha_o}$. Suppose that x_ξ and g_ξ have been defined for all ξ less than some $\eta < \Omega$ and that (a) and (b) are satisfied. Since the cardinality of $(0, \eta]$ is less than $\text{card } U$, there exists $x_\eta \in T \cap \bigcap_{\xi < \eta} U_\xi$ such that

$g_\xi(x_\eta) = g_\xi^\theta(u) = 1$ ($\xi < \eta$).

Let us now choose, for each finite subset S of $(0, \eta]$, an α_S such that $f_{\alpha_S}(x_\xi) \leq 1/2$ ($\xi \in S$). Let g_η be a cluster point of the net (f_{α_S}), directed by the upward filtering set of finite subsets of $(0, \eta]$. Then we have

$g_\eta(x_\xi) \leq 1/2$ ($\xi < \eta$) and

$g_\eta(u) = 1$ (because there is $t \in T$ with $g_\eta(t) = g_\eta^\theta(u)$ and $f_{\alpha_S}(t) = f_{\alpha_S}^\theta(u)$ for every finite set $S \subset (0, \eta]$).

Since, by construction, each x_η is in $\bigcap_{\xi < \eta} U_\xi$, we see that $x_\eta + u$ in $\mathcal{E}T$.

I shall now show that $\{x_\eta ; \eta < \Omega\}$ is a closed discrete subspace of T. If not, there is $\xi < \Omega$ such that $\{x_\eta ; \eta < \xi\}$ has an accumulation point x in T. Choose to be the least such ordinal; then x is in the closure of $\{x_\eta ; \eta < \xi\}$ for each $\xi < \xi$. Hence $g_\xi(x) = 1$ for every $\xi < \xi$. Let g be a cluster point of the net

$(g_\xi)_{\xi < \xi}$. Then

$g(x) = 1$, but

$g(x_\xi) \leq 1/2$ ($\eta < \xi$), since

$g_\xi(x_\xi) \leq 1/2$ ($\eta < \xi < \xi$). This contradicts the continuity of g at x.

Since $\{x_\xi ; \xi < \Omega\}$ is a closed discrete subspace of the space T, there is a continuous function $f \in \mathcal{C}(T)$ with $f(x_\xi) = 0$ (ξ an isolated ordinal)

$f(x_\xi) = 1$ (ξ a limit ordinal).

But such an f can have no extension that is continuous on $\mathcal{E}T$, and this contradiction ends the proof.

Proposition (2.8) applies in particular to the non-c-replete P-space of $((GJ), 9.L)$. In this case there exists, for every $\psi \in \mathcal{R}(\mathcal{E}T)$ and every $C \in \mathcal{R}(\mathcal{E}T)$,
a function \(f \in C(\theta \mathcal{T}) \) with \(f|c = \psi|c \); a situation very different from that considered in proposition (2.4).

For the last result in this paragraph, we return to the methods of propositions (2.4) and (2.5).

(2.9) **PROPOSITION.** - A compact subset of \(C_s(\mathcal{T}) \) remains compact in \(C_s(\mu \mathcal{T}) \).

Proof. - By the characterization of \(\mu \mathcal{T} \) as the space obtained by transfinite iteration of the bidual operation \((\mathcal{B}_2, \text{théorème } 2) \), it is enough to prove that a compact subset \(A \) of \(C_s(\mathcal{T}) \) is compact in \(C_s(\mathcal{T}''') \). Such an \(A \) is countably compact in \(C_s(\mathcal{T}''') \) and hence, for each bounded \(B \subset \mathcal{T} \), \(A|B \) is countably compact in \(C_s(B) \). But countable compactness and compactness coincide in this space, since \(B \) is compact. Thus, for all characters \(u \in B \), \(u|A \) is continuous for the topology of pointwise convergence on \(B \), and we deduce that \(u|A \) is \(C_s(\mathcal{T}) \)-continuous for every \(u \in \mathcal{T}'''' \).

(2.10) **COROLLARY.** - If \(C_c(\mathcal{T}) \) is a Kelley space then \(\mathcal{T} \) is a \(\mu \)-space, i.e. \(C_c(\mathcal{T}) \) cannot be Kelley without being barrelled.

3. - **INFRA-\(k_R \)-SPACES.**

The space \(\mathcal{T} \) of \(\mathcal{H}_2 \) has given us an example of a complete lcs \(E = C_c(\mathcal{T}) \), the Kelleyfié of which, \(F = \mathcal{K}E = C_c(\theta \mathcal{T}) \), is not quasi-complete. \(F \) is, however, a \(p \)-semi-reflexive space \(([DJ]) \), that is to say, every precompact subset is relatively compact. In this example \(\theta \mathcal{T} \) happens to be an infra-\(k_R \)-space, but it would seem, a priori, that the property "every precompact set is relatively compact" was a good deal weaker than the infra-\(k_R \)-property, "every precompact set is equicontinuous". But it turns out that this is not the case.

(3.1) **THEOREM.** - \(\mathcal{T} \) is an infra-\(k_R \)-space if and only if every precompact subset of \(C_c(\mathcal{T}) \) is relatively compact in \(C_s(\mathcal{T}) \).

(3.2) **COROLLARY.** - \(\mathcal{T} \) is an infra-\(k_R \)-space if and only if \(C_c(\mathcal{T}) \) is \(p \)-semi-reflexive.

We shall need a definition and two preliminary results.
(3.3) **DEFINITION.** - Let us say that a subset H of $C(T)$ is closed under lattice operations (or, more simply, lattice-closed) if $f \lor g \in H$ and $f \land g \in H$ whenever $f, g \in H$. If $H \subseteq C(T)$, define the lattice-closed hull ΛH of H to be the smallest lattice closed set that contains H.

(3.4) **LEMMA.** - For a subset H of $C(T)$ the following are equivalent:

- (a) H is precompact in $C_c(T)$;
- (a') for every compact $K \subseteq T$, $H|_K$ is bounded and equicontinuous in $C(K)$ (i.e. $H|_K \in H(K)$);
- (b) ΛH is precompact in $C_c(T)$;
- (b') for every compact $K \subseteq T$, $\Lambda H|_K \in H(K)$.

Proof. - The equivalences $(a) \iff (a')$ and $(b) \iff (b')$ are consequences of ASCOLI's theorem. (a') is equivalent to (b') since the lattice-closed hull of an equicontinuous set is equicontinuous.

(3.5) **PROPOSITION.** - A lattice-closed, relatively compact subset of $C_s(T)$ is equicontinuous.

Proof. - Let H be such a set and suppose, if possible, that H is not equicontinuous at some $t \in T$. We can assume that, for some $\varepsilon > 0$, there are, for each neighbourhood U of t, a function $h \in H$ and a point $t_U \in U$ such that

$$h(t_U) \geq h(t) + \varepsilon.$$

Now the set $\{h(t) ; h \in H\}$ is bounded in \mathbb{R} and there exists a subnet of $(h_t(t))$ convergent to some $a \in \mathbb{R}$. That is to say that there is a base U of neighbourhoods of t such that $h_t(t) \to a$ as U decreases through U. We can suppose that

$$|h_t(t) - a| \leq \varepsilon/3 \quad (U \in U),$$

so that $h_t(t) \leq a + \varepsilon/3$ and $h_t(t_U) \geq a + 2\varepsilon/3$ for all $U \in U$.

Now let us define, for each finite subset $F = \{U_1, \ldots, U_n\}$ of U, $g_F = h_{U_1} \lor \ldots \lor h_{U_n}$ and note that $g_F(t) \leq a + \varepsilon/3$ for all F, and $g_F(t_U) \geq a + 2\varepsilon/3$ whenever $U \in F$.

Each g_F is in H and so there is a subnet of (g_F) convergent in $C_s(T)$ to some g (in fact, to $g = \text{Sup } h_U$) and we see that $g(t) \leq a + \varepsilon/3$ while $g(t_U) \geq a + 2\varepsilon/3$ ($U \in U$). This contradicts the continuity of g at t.

111
Proof of theorem (3.1). - The necessity of the condition comes from the fact that a pointwise bounded equicontinuous subset of $C(T)$ is relatively compact in $C_s(T)$.

Suppose now that the condition is satisfied and that H is a precompact subset of $C_c(T)$. By lemma (3.4), ΛH is precompact in $C_c(T)$, and hence relatively compact in $C_s(T)$. But now, by proposition (3.5), we deduce that ΛH is equicontinuous.

4. - TWO GENERALIZATIONS OF A THEOREM OF BUCHWALTER.

H. BUCHWALTER has shown that, if $\mathcal{U}T$ is a k_*^R-space, then necessarily $\mathcal{U}T = \emptyset T$. There follow two generalizations of this result.

(4.1) **Lemma.** - If $H \in H(T)$ and card H is non-measurable, then the metrizable space T_H is replete and $H \cup \in H(\mathcal{U}T)$.

Proof. - Recall that T_H is defined to be the Hausdorff quotient of T endowed with the pseudometric $d(s,t) = \sup_{h \in H} |h(s) - h(t)|$. There is an injection $T_H \to \mathcal{R} H$ so that card $T_H \leq \text{card } H$. Now if m,n are non-measurable cardinals, so is m^n ([1], p. 128) and it follows that T_H is replete.

H factors through the quotient mapping $\pi_H: T \to T_H$, as $H = H_1 \circ \pi_H$ where $H_1 \in H(T_H)$. Since T_H is replete, π_H extends to $\pi_H^\cup: \mathcal{U}T \to T_H$ and $H^\cup = H_1 \circ \pi_H^\cup \in H(\mathcal{U}T)$.

(4.2) **Theorem.** - Let T be a completely regular space and suppose either:

(a) $\mathcal{U}T$ has property (A), or
(b) $\mathcal{U}T$ is an infra-k_*^R-space.

Then $\mathcal{U}T = \emptyset T$.

Proof:

(a) Let $H \in H(T)$. H is relatively compact in $C_s(T)$ and hence relatively countably compact in $C_s(\mathcal{U}T)$. By the theorem of PRYCE, H is relatively compact in $C_s(\mathcal{U}T)$. We can deduce that the topologies of $C_s(T)$ and of $C_s(\mathcal{U}T)$ coincide on H and hence that, for any $u \in \mathcal{U}T$, $u|H$ is continuous for the topology of simple convergence on T. But this is exactly the condition for a character u to be in $\emptyset T$.

112
Compactness in $C_s(\mathcal{U}T)$ and applications

(b) Again suppose $H \in H(\mathcal{T})$. As above, it will be enough to show that H^U is relatively compact in $C_s(\mathcal{U}T)$ and hence enough to show that H^U is precompact in $C_c(\mathcal{U}T)$. This will be true provided that J^U is precompact in $C_c(\mathcal{U}T)$ for each countable $J \subset H$. But, by lemma (4.1), we know that each J^U is even in $H(\mathcal{U}T)$.

REFERENCES

(H1) R. Haydon, Comptes rendus, 275, série A, 1972, p. 989.

Manuscrit remis le 22 septembre 1972.

Richard Haydon
Selwyn College
CAMBRIDGE
England

113