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ON THE CONGRUENCE SUBGROUP PROBLEM
by M. S. RAGHUNATHAN

Introduction.

Let k be a global field and V the set of valuations on k. Let oo denote the set
of archimedean valuations on k. For yeV, k^ denotes the completion ofk with respect
to v, £)„ the ring of integers in ̂  and F^ the residue field of^,. Let S 3 oo be any finite
subset of V and

D=A(S)={xek\xeQ, for all z^S}.

Next, let G be a linear algebraic group defined over k and G(A) the group ofA-rational
points. A subgroup <S>CG{k) is a S-congruence group if there is a faithful representation p
ofG in GL(%) defined over k and an ideal a+o in A(S) such that the group

^={xeG{k) | p(;c)eGL(^, 0), p(^)^ i(mod a)}

is contained in 0 as a subgroup of finite index. (One may also fix the representation p
once and for all and demand the existence of a non-zero a for this fixed representation.)
A subgroup 0 in G(A) is S-arithmetic if there is an S-congruence group Y such that
OnY has finite index in both 0 and Y. The family of S-congruence (resp. S-arithmetic)
groups serve as a fundamental system of neighborhoods of i for a topology ^{c) (resp. ^°{a))
on G{k) which makes it into a topological group. The completion of G{k) with respect
to r(^) (resp. r(^)) is denoted G(S, c) (resp. G(S, a)). It is not difficult to see that
G(S, c) and G(S, a) are locally compact groups—in fact the closure of an S-congruence
group in either of these groups is compact and open. Since the topology ^"(a) is evidently
finer than ^"(c), we have a natural surjective map

G^a)^>G{S,c).

Let G(S, G)= kernel 7r(S). The congruence subgroup problem is the problem of
determination of C(S, G) for a given G and S. (That G(S, G) is trivial is equivalent
to saying that every S-arithmetic group is an S-congruence group.) C(S, G) is a
(compact-) pro-finite group.

Before we describe the results obtained in the present work, we will briefly recall
what is already known. We begin with general comments which are well known and
easily established (but are not set down in print).
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108 M . S . R A G H U N A T H A N

G(S, G) is a functor: if /: G->H is a A-morphism of^-groups we have a natural
morphism C(S,/) : G(S, G) -> G(S, H). Suppose now that

(*) i-^G^G^G,->i

is an exact sequence of A-algebraic groups, a, (B being A-morphisms; the sequence

(**) G(S, Gi) ̂  G(S, G,) ̂  G(S, G^

is exact. This is an immediate consequence of the following fact: if /: G->H is a
surjective A-morphism, the image/(F) of an S-arithmetic group F in G is an S-arithmetic
group of H. In general G(S, a) is not injective. (An example to illustrate is the.
following: Let k be of positive characteristic. Take Gi==the additive group of k and
let Gg be the semidirect product of the multiplicative group of A and the additive group.
Then if [ S |^2, G(S, Gi) is non-trivial while the map C(S, Gi) -> G(S, Gg) is trivial.)
There is, however, one simple situation where G(S, a) is injective: when Gi has finite
index in Gg. This remark with the trivial fact that G(S, G) is trivial for finite G shows
that, for any G, G(S, G) ^G(S, G°), where G°= identity component of G. Once
again, in general G(S, (B) is not surjective. One simple case where it is indeed surjective
is the case when (*) is a split sequence; in this case moreover G(S, (B) admits a splitting
and G(S, Gg) is the semidirect product of C(S, G3) and a quotient of C(S, Gi). (If G
is any group and G a covering group, and B is the kernel of G-^G, it can be shown
that the cokernel ofC(S,j&) contains a subgroup isomorphic to the S-adele group ofB.)

At this point we will separate the case of fields of characteristic zero from those
of positive characteristics. The remarks about split sequences enable one to reduce
the problem to the semisimple case in characteristic o.

In this paragraph k will be of characteristic o. It is trivial and well known that
G(S, G)==i for all S if G is the additive group of k. Since any unipotent group over k
can be obtained by forming successive semidirect products with the additive group,
G(S, G)=i for any unipotent group. It is a (non-trivial) theorem due to Chevalley [i]
that if G is a torus, G(S, G) = i. From the structure theory one concludes that G(S, G)
is trivial for G solvable. For a general G, one knows that G is the semidirect product
over k of a reductive A-group M and the unipotent radical U of G. Since G(S, U)
is trivial, G(S, G) <"- G(S, M). The problem is thus reduced to connected reductive
groups. Again, if B is the maximal connected semisimple normal subgroup of the
connected reductive group M, M/B is a torus and we conclude that G(S, M) is a quotient
of C(S, B). Thus to a considerable extent the most important information is contained
in G(S, G) for connected semisimple G. Further, if one solves the problem in the case
when G is simply connected one can obtain considerable information in the general
case as well.

The situation when k has positive characteristic is not so pleasant. The
group G(S, Gi) is non-trivial—in fact infinite—even for the additive group of k. It is
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ON THE CONGRUENCE SUBGROUP PROBLEM 109

also non-trivial for tori. Nevertheless the semisimple case is obviously interesting, in
any event.

From now on we assume that G is simply connected and absolutely simple (this is
no loss of generality; the general case can be reduced to this by changing the field).
In the simplest such G viz. G=SL(2) over A==Q^ the rational number field, C(S, G)
is known to be infinite. (That G(S, G) is non-trivial at least has been known for a long
time.) For G=SL(2) over any A, Serre [i] has given a fairly complete solution. If
[S|^i, C(S, G) is infinite; if |S|^2 and if there exists veS such that k^ is not
isomorphic to C, C(S,G)=i; i f ^^C for all veS and |S|^:2, G(S, G) is isomorphic
to the group of roots of i in k. This result on SL(s) has an extension to all split groups.
(Historically SL(s) was handled later; the higher rank groups were dealt with earlier.)
Let G be a Ghevalley group over k of rank^2. Then C(S, G)==i or (JL (== roots of i
in k) according as all veS are not or are imaginary {veV is imaginary if A^C).
G=SL(n), k ==Q,, S=oo, 7^3 was first settled by Bass-Lazard-Serre [i] and inde-
pendently by Mennicke [i]; Bass-Milnor-Serre [i] and Mennicke [2] proved the result
for SL(yz), n>_^ Sp(/z), n>_2. Matsumoto [i] extended these results to general
Ghevalley groups. Finally Kneser [i] and Vasserstein [i] have treated some non-split
orthogonal groups. On the evidence provided by these results, Serre proposes the
following conjecture (Serre [i], p. 489, footnote):

(*) G(S, G) is finite if S ^-rank(G) >_ 2 (and G isotropic for all veS—oo).v e s

It is necessary to impose the condition in parenthesis: see § 5. The present work provides
further substantial evidence of the truth of(*). Our main results here are for groups
of^-rank^2. (Many of the results we prove are in fact true also for <e most " A-rank i
groups — at least when k is a number field — but the present proofs do not apply to that
case; the rank i groups will be dealt with by different techniques in a work now under
preparation.)

In the sequel we assume that G has ̂ -rank^ i and S is such that S ^-rank(G)^ 2.
v G S

Let O be an S-congruence subgroup of G and E(0) the group generated by

{^eO l^eUnipotent radical of a ^-parabolic group}.

A group of the form E(<t>) will be called an S-elementary subgroup in the sequel. The
first main result of the paper is

Theorem A: Let A be a normal subgroup of an ^-arithmetic subgroup of G. Then either A
is finite and central or A contains an elementary subgroup.

Theorem B: Assume that k-rank{G)>_2; then every S-elementary subgroup is ^-arithmetic.

Theorem C: Assume that k-rank(G)>_2 and let G[k]^= group generated by

{xeG{k)\ .veUnipotent radical of a ^-parabolic subgroup of G}.
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Let G^S,^ (resp. G+(S,^)) be the closure of G{k)+ in G(S, a) (resp. G(S,c)) W
G^S, G) =C(S, G) n G^S, a). Then C+(S, G) has finite index in C(S, G) and the sequences

i-^G^S, G^G^S, ̂ G+(S, c)-> i

i^G(S, G^C^S, G)->G+(S, ̂ /C^S, G)^G(S, ^)-> i

flr^ ^a^ and are central extensions.
Theorem G reduces the problem of determination ofG(S, G) to certain cohomology

computations. Precise determination is possible when G is quasi-split thanks to
Moore [i] and Deodhar [i]. (For non-split groups, Theorem G is new.) For
general G, we can obtain the following information:

Theorem D: Assume that k-rank{G}^2. If k is a number-field, C(S, G) is finite. If
k has characteristic p>o, the p-Sylow subgroup of G(S, G) has finite index in C(S, G); if in
addition G is quasi-split for all v^S, C(S, G) is finite.

The relevant cohomology computations are in fact done in a very general context:

Theorem E: Let G be a connected simply connected algebraic group over a global field k.
Assume that strong approximation holds for G. Let S 3 oo be any finite set and U be an open
compact subgroup of the S-adele group of G. Then if k is a number field, H'CU, Q^/Z) is finite
for i = i, 2 (here Q^/Z is given the discrete topology and cohomology is based on continuous cochains).
If k is a function field the p-torsion (p == characteristic of k) in H^U, Q,/Z) has finite index
in H^U, Q^/Z) and H^U, Q/Z) is finite.

Theorem E has a local version:

Theorem F: Let U be a compact open subgroup of a semisimple group over a local field K.
Then if characteristic K -==?, H'(U, Q,/Z) has p-torsion offinite index.

These results are proved in §§ 1-5. In § 6 we examine what happens when we
enlarge S and in § 7 some applications to representations of S-arithmetic groups are given.

i. An Auxiliary Lemma.

Notation and Definitions (1.1). — The following notation will be used throughout
this paper. We denote by

k, a global field.
V, the set of valuations of k.
oo, the set of archimedean valuations.
S, a finite subset with [ S [ ̂  i and oo C S.
ky {veV) the completion of k with respect to v.
£)„, the ring of integers in k^.
p^, the prime ideal in Oy.
Og=A(S)=A if there is no ambiguity about S, the ring of S-integers in k, i.e.

A{S)={xek\xeQ, for all z^S}.
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ON THE CONGRUENCE SUBGROUP PROBLEM m

p^, the prime ideal p^nA(S) in A(S) (z^S).
F^=A/p^ the residue field.
G, a connected, absolutely simple, simply connected A-algebraic group.

By and large in this paper we look upon algebraic groups as rational points in
a universal domain. But sometimes, in this chapter in particular, it is more convenient
and natural to take the scheme theoretic standpoint. To avoid confusion we reserve
the term algebraic group for the rational points in this universal domain. GL{n) denotes
the algebraic group of n x n non-singular matrices with entries in the universal domain,
while GL(n) denotes the group-scheme over A, i.e. GL(7z)=Spec B where B is the ring

A[X,;i^z,j^7z][(det(X,,.))-1].

Let G <^ GL{n) be an imbedding of G as a A-algebraic subgroup and 3 C B be the ideal
{/eB|/(G)=o}.

Note that B/3 has no nilpotent elements. We fix once and for all the imbedding T above
and denote by G the group-scheme Spec(B/3). G is evidently a scheme over A==A(S).
We set

G(A)=GnGL(7z,A)
G(A) =GnGL(7z,A)

(G(A) (resp. G(A)) is precisely the A- (resp. k-) rational points of the group-scheme G
over A) and for an ideal a C A, we denote by G(a) the congruence subgroup defined by a:

G(a)={A:eG(A) | x == Identity (mod a)}.

The group GL(7z)(a) is also denoted GL{n, a) in the sequel. We will need to consider
some other families of subgroups ofG(A) as well in the sequel. We make some definitions
towards this end.

Definition (1.2). — A unipotent element xeG{k) is a good unipotent if it belongs
to the unipotent radical of a ^-parabolic subgroup of G.

G(A)4' is the group generated by good unipotents in G{k).

Definition (1.3). — A A-group G has (property) K-T, or G is a K-T group, if
G{k)=G{k)^.

It is almost K-T if G(A>)/G(A)4- is finite abelian.

For a wide class of (simply connected) G over any field it is known that G{k) ==G{k) +.
However Platonov [3] has recently given an example when this does not hold for a
field (which is not a global field). Nevertheless, the following result is proved in
Raghunathan [4]. If k is a global field and ^-rank(G)>i, G has almost K-T for k.

Definition (1.4). — A subgroup PCH in a semisimple k-group is a k-quasi-parabolic
subgroup (QPS for short) of H if there exists a ^-parabolic subgroup P* of H and a
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maximal reductive k- subgroup M* of P* such that P*=M*U with U=unipotent radical
of P* and P=M.U, where M is the product of all the isotropic A-simple factors of M*.
A subgroup like M above is called an admissible subgroup (A-S for short). Also P is
adapted to M.

An alternate characterisation of admissible subgroups is the following: A connected
(k-) subgroup M is admissible if and only if there is a maximal ^-split torus T in H and
an order on the character group X(T) ofT such that the Lie algebra m o f M i s the span
of all those root-spaces of H with respect to T which are linear combinations of a fixed
subset of the system of simple roots (for the order).

We note that (in the notation used in Definition (1.4)) the correspondence P*l->P
sets up a bijection between sets of ^-parabolic and ^-quasi-parabolic subgroups of H.
Evidently this bijection is compatible with the action (by conjugation) of H(^) on these
two sets. It is known moreover from Borel [i] (the case of number fields) and Behr [i]
and Harder [i] (the case of function fields) that we have

Lemma (1.5). — There are only finitely many T-conjugacy classes of k-( quasi)-parabolic
subgroups/or any ^-arithmetic subgroup T in G.

We will now introduce three other families of subgroups of G(A).

Definitions (1.6). — Let aCS be any ideal. Then
EG(a) == group generated by {xeG{a) \ x a good unipotent}
FG(a) = group generated by {P(a) | P a proper A-QPS in G}
F'^c^^group generated by {M(a) | M a proper k-A-S in G}

We have then two obvious inclusions among these normal subgroups
EG(a) ̂  FG(a), FG{a) ̂  FG(^).

The following is perhaps not so evident.

Lemma (1.7). — Assume that k-rank[G)>i. There exists seA such that for any
ideal a C A

FG(ja)CF*G(a).

Let Pi, . .., P^ be a complete set of representatives for G(A)-conjugacy classes
of ^-quasi-parabolic subgroups. For each P^, we fix a semidirect product decomposition
P^=M^.U,, M^ a k-A-S and U, the unipotent radical ofP^ over k. It is then easily
seen that there exists an element j'eA such that P^'a) C M^(a) .U,(a) for all i. It
suffices thus to show that each U(j"a) CF*G(a) for a fixed ^"eA independent of i
and a. To see this let P̂ * be the parabolic subgroup determined by P^ and T, a maximal
^-split torus in P,. Let <p be a root of G with respect to T, and G^ the unique connected
^-subgroup of G whose Lie algebra is spanned by the k-root spaces corresponding to X<p,
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ON THE CONGRUENCE SUBGROUP PROBLEM 113

XeZ. Let U^^U^nG^. Since A-rank(G)^2, it is easily seen that G^ is contained
in some admissible subgroup (in fact if 9/2 is not a ^-root, G^ is itself admissible). It
follows that for every ^-root 9, U^a) CF*G(a). Now we can find A-roots 91, . . ., 9
such that the product mapping

U^x^q52x...xU^^

is an isomorphism of algebraic varieties. From this, it is easily deduced that there is
an element ./'eA(S) such that for any ideal aC A, U^(J"a) is contained in the image
of U^{a)xV^{a)X. . .xU^(a). This proves Lemma (1.7).

Remark (1.8). — When ^-rank(G)==i5 all proper admissible ^-subgroups are
trivial and any proper Q^P8 is the unipotent radical of a ^-parabolic subgroup, so that
EG(a)==FG(a).

We now go back to the scheme G and establish some facts about it. It is well
known—and not difficult to prove—that the following is true.

Lemma (1.9). — There exists a finite set 813 8 such that for z^Si, G®A/p^, is
a reduced^ connected., semisimple and simply connected group scheme over A/py

(Let Gh denote the Chevalley scheme over Z of the same type as G. Let k' be
a finite separable extension ofk over which G splits. Let A' denote the S-integers in k ' .
We can then find a finite set S^CV, 8C8* and an isomorphism

9 : G®AA'(8*) -^Ch^A^S*).

The group scheme on the right admits a good reduction at all primes of A'(S*)
(===S*-integers in A'). For 81 we need only take the following subset:

yu{veV\kr|k is ramified at y}.)

We fix now two opposite parabolic yfe-subgroups P* and P*~ in G. Let U (resp. U~)
be the unipotent radical of P (resp. P~). We define subgroup schemes P*, P*~, U and
U~ of G over A in a way entirely analogous to the way we defined G, and then it is easy
to obtain the following:

Lemma (i. 10).—There exists a finite set S^CV, SgDSi such that for y^Sg, P*®^A/p^,
and P*""®^^/?^ are (reduced) parabolic subgroup schemes of G®^A/p^, with U®^A/p^,
and U~®^A/py as the corresponding unipotent radicals.

Lemma ( 1 . 1 1 ) . — Let a be a non-zero ideal in A. There exists a finite set 83(0) CV,
83382, with the following property: for ^83(0), U^a) maps (under the natural map) onto
the group of A. ̂  ̂ -rational points of U^^A/p,,; moreover^ these last groups generate the entire
group of Alp^-rational points of G®^A/p,,.

The first assertion is standard and quite easy to establish; the second follows from
the work of Chevalley [i] and 8teinberg [i], combined with a theorem of Lang [i],
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(Lang's theorem is that for a finite field every semisimple algebraic group is quasi-split.
The papers of Chevalley and Steinberg which deal with quasi-split groups then immedi-
ately give the lemma when P* is a minimal parabolic subgroup, but the passage to the
more general case we need is quite simple.)

Corollary (1.12). — For 2/^83= 83 (A) the natural map
G(A)->(G®A/pJ(A/p,)

is surjective with kernel G(py).

(i .13). — The Lie algebra of G—more precisely its canonical (Scheme theoretic)
A-form—can be described as follows. Let

s : B(G)=B/3->A

denote the identity element (in G(A)). Let 9Jl==ker s. Since A is a Dedekind domain,
9JI is a finitely generated ideal in B(G) so that 9JI/9J12 is a finitely generated A-module.
Let ®=Hom.A(9Jt/9Jl2, A). Then ®^==®®^ can be seen to be naturally isomorphic
to the k-Lie algebra associated to G (with any definition). The group G(A) (resp. G{k))
operates in a natural fashion on ® (resp. ®^). The action ofG(A) on the two is easily
seen to be compatible with the inclusion Q0-^®^. We have then

Lemma (1.14). — There is a finite set S4CV, S3CS4, such that for z^S^, ®®^A/p^
is naturally isomorphic to the Lie algebra of the (reduced) group scheme G®^A/p^. This
isomorphism is compatible with the adjoint G {A)-action on the two Lie algebras.

Lemma (1.15). — Let U be the unipotent radical of a k-parabolic subgroup of G. Let U
be the Lie algebra ofV and i : U->® the natural map. Let U^U®^ and ©1,=®^^-
Then for almost all u, z'®i : Uy-^®^ is an inclusion and Uy is the Lie subalgebra of(Qy corre-
sponding to the unipotent radical of a k^-parabolic subgroup of G®^F,,. Let R be the group
algebra F(G(FJ), F being the prime field in F^. Then there is a finite set Sg3S4 such that
as a module over R, ®®A^i? ls g^erated by U®^Fy for all y^Sg.

This is proved by using explicitly the structure of quasi-split groups—note that
G®^F^ is quasi-split over F,, (Lang [i]). For details see the Appendix.

(1.16). — For yeV, let G(^) denote the ^-rational points of G and
G(OJ=G(^)nGL(^,OJ.

Then G(OJ is an open compact subgroup of G(^J. (It is known—and we will give
a proof of this fact later—that G(OJ is a maximal compact subgroup ofG(^) for almost
all y, but we do not need this fact now.)

Let G(A(S)) or G(A) the corresponding adele group associated to G. Then
by the definition of the adele topology II G(OJ is an open compact subgroup of G(A(S)).

u(^ S

The following result needed in the sequel implies in particular that the closure of an

114



ON THE CONGRUENCE SUBGROUP PROBLEM 115

S-arithmetic group G is open in G(A(S))—a known consequence of strong approxi-
mation (whenever strong approximation holds).

Main Lemma (1.17). — The closure o/EG(a), a+o, in G(A(S)) is a compact open
subgroup G(A(S)). Consequently, for every non-zero ideal aCA, we can find an ideal a'4=0
in A such that the closure ofEG(a) in G(A(S)) contains G(a') —or equivalent, for every non-zero
ideal b C A

EG(a).G(b)^G(a').

In order to prove the main lemma, we consider the two unipotent groups U^ intro-
duced earlier (see Lemma (1.10)). Using strong approximation for unipotent groups,
it is easily seen that the closures of U^a) in U:i:(A(8)) are compact open subgroups.
This means that the closure of U^a) in Ud::(A(8)) is of the form

n D^x n u^oj
^gS' v v^SUS ' v "

where S' is a finite subset of V—S and for ye 8', D^ is an open compact subgroup
of 'U^DJ. This shows that it suffices to show the following: D^ generate an open subgroup
of'G(OJ; for almost all yeV—8, U^OJ andU~{0^ generate G(OJ as a normal subgroup.

(Note that the closure of E(a) is a normal subgroup II G(0 ).)
vf S

Now for y^S' (resp. ye 8') the normal subgroup H ,̂ generated by U^OJ and
U~(OJ (resp. D^" and D;~) in G(OJ is easily seen to be open. Consequently it contains
a subgroup of the form

G(m, v)={geG{<D,) \ g= Identity (mod p:-)}.

For a fixed y^S^ let m(v) be the smallest integer such that H^DG(m(y), v). We need
to prove only

(*) for almost all v, m(v)=o.

(*) is a consequence of the two statements below:

Assertion (1.18). — There is a finite subset So of V, 80385, such that for V^SQ
(85 as in Lemma (1.15)):

a) V(m, v)l\J{m-\-i, v) is non-trivial for all m'>_m{v).
b) For m>_\, G(m, y)/G(w+i, v) is isomorphic to (5®^^ as a module over

Z[G(A)]; as a Z[G (A)]-module it is generated by U(m, v)l\J(m+i, v).

We will first prove (*) assuming Assertion (1.18). For this consider the
natural map

HJG(̂ ), .) -^ G{m{v)-i, v)IG{m{v), v)

(assuming that m{v)>i). By Assertion (1.18), TT is surjective since it is compatible
with G(A)-action on the two sides, a contradiction to the assumption that m(v}>i.
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Thus m{v}=o or i. If m(v)==i, according to Lemma (1.11), the images ofU^OJ
in G(o, y)/G(i, z/)^G(FJ generate the entire group. Since ^(OJCH^ TC is
surjective again, a contradiction to the assumption m{v)==i. Thus m{v)==o for all
y^So.

(1.19). — We have now to establish Assertion (1.18). We will begin with a
more general set up. Let DCGL(n) be an algebraic subgroup of GL(%) defined
over k and B(D) be the quotient B/3(D) where 3(D) is the defining ideal of D. Let
3Jt(D) be the ideal corresponding to the identity element in D: 9[R(D) is the kernel of
the ring homomorphism B(D)-^A defined by the identity element. Now the group
D(0, y)=D(DJ can be interpreted as the set of all A-algebra homomorphisms
/: B(D)->£\,. If TT^ : OV'^^/P^ is the natural homomorphism, we have

D(m, v)=={xeD{o, v) [ x =s Identity (mod p^)}

-{/:B(D)^Oj7r,o/=7r,o£}.

Since 9Jl(D) === kernel s, one sees immediately that /(9[R(D)) C p^ for all feD{m, v)
and /(9Jl(D)2) C p^-*-1; /thus defines a homomorphism / : 9Jl(D)/9?l(D)2 -> pr/p^4-1.
We obtain thus a map X^ of D(m, v)l'D{m+i, v) into the (F^-vector) space

Hom^(D)/9[R(D)2, p^lp^1)^

where b ==HomA(9Jt(D)/9Jl(D)2, A)®^F^ for almost all v. It is easily seen that the
map X^ is a group homomorphism. If now D^ C D is a ^-algebraic subgroup we have
the following commutative diagram:

'D{m,v)ID{m+i,v) —> D®^.

D^m,v)ID^m+i,v) —> 2)i®^F,

More generally ifD^ and D are group-schemes over A and u : D^->D is a morphism,
one has the same kind of diagram. Using this fact it is easily proved by induction on
the dimension of D that we have the following:

Let D be a unipotent ^-algebraic subgroup of GL(7z) admitting a filtration

D 3 DI 3 Dg D . . . 3 D^

by normal subgroups such that D,/D^i is isomorphic to the additive group (of the
field). Then for almost all v, the natural map D(m, y)/D(m+i, v) ->D®^Fy defined
above is an isomorphism.
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Part a) of Assertion ( i . 18) is an immediate consequence of this statement applied
to D==U (see Borel-Tits [i]). Part b) again follows from the above since the map

G(m, v)IG{m+i, v) -^(5®^

is compatible with the action of G(A) on both sides. The subspace U®^ on ®® F
has a non-trivial projection on all the factors of (5®^. for almost all y. v (For almost
all v, U®^ -> ©^A^ is injective; we use Lemmas (i .9)-(i. 16) as well.) This proves
Assertion (1.18) and the proof of the Main Lemma is complete.

(1.20). — We will now apply the Main Lemma to show that projective limits
of certain exact sequences (which we need to examine) remain exact. We have defined
groups G(a), EG(a), FG(a) and PG(a) for each ideal aCA. These groups can be
used to define topological group structures on G(k) or G(A). Each of the families
below can be taken as a fundamental system of neighborhoods of i to obtain a topo-
logical group structure on G{k) or G(A):

1) All arithmetic subgroups; this topology is denoted ^(a)',
2) the groups { G ( a ) [ a = h o on ideal in A}; this topology is denoted ^{c} (this

is the same as the topology induced from the adele group G(A));
3) the groups {FG(a) | a+o an ideal in A}; this is denoted ^(/);
4) the groups {EG(a) | a+o an ideal in A}; this is denoted €'{e}.

The completion of G{k) with respect to r(^) (resp. r(^), r(/), r(^)) is denoted G{a)
(resp. G{c), G(/), G{e)). The closure of G(A) in G{a) (resp. G{c), G(/), G(<?)) is an
open subgroup there and can be identified with the completion G(A, a) (resp. G(A, c),
G{A,f), G(A, e)) of G(A) for the corresponding topology on G(A). The identity maps
of G{k) and G(A) give rise to the following diagram with all arrows continuous maps:

GM ̂ ^ G(/) ̂ 1, G(.) ^±- G(»)

t t t
G(A,.) ̂  G(A,/) ̂  G(A,.) ^) G(A,.)

We also set

h(e,c)^h{f,c)oh{ej),

h{e,c)==h{f,c)oh^f).

It is then easy to see that A( , ) and h{ , ) have the same kernel which we denote by
CG( ^ ). GG(a, c) is what was called G(S, G) in the Introduction. The groups G(A, c)
and G(A, a) are evidently compact. (Also from the Main Lemma, it is clear that
G(A, c) is isomorphic to an open subgroup of G(A(S)).) In general the groups EG(a)
need not have finite index in G(A) and so the group G(e) is not in general compact.
The groups F^a) can again be used to define a topology on G{k) but in view of
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Lemma (1.7) this topology is the same as ^(f) when ^-rank(G)^2. The group G(A, e)
(resp. G(A,y), G(A, c), G(A, a)) can also be regarded as the projective limit of the
following family of groups

{G(A)/EG(a) | a non-zero ideal in A}

(resp. {G(A)/FG(a) [ a a non-zero ideal in A}, {G(A)/G(a) | a a non-zero ideal in A},
{G(A)/r | r an S-arithmetic subgroup of G(A)}.

Consider now the following exact sequences:

i ̂  G(a) /EG(a) -> G(A) /EG(a) -> G(A) /G(a) -> i
i -^ G(a) /FG(a) -> G(A) /FG(a) -> G(A) /G(a) -> i
i -> G(a) /EG(a) -> G(A) /EG(a) -> G(A) /FG(a) -^ i

These lead in the projective limit to the exact sequences described before

i ^ G G ( , )-^G(A, )i^G(A, )

We will now deduce from the Main Lemma the following:

Proposition (1 .21) . — The maps h{ , ) are all surjective.
In the case ofA(a, c) this is immediate from the compactness of the groups G(A, a)

and G(a, c). We will prove the proposition in the case Ji{e, c). The other cases are
proved entirely analogously.

For a non-zero ideal aCA, let G'(a)= F1 EG(a).G(b). The Main Lemma
guarantees that G*{a) 3 G(a') for some a'4=0. It follows that in the projective limit
the natural maps G(A)/G'lt(a) -> G(A)/G(a) induce an isomorphism. From the Main
Lemma and the definition of G"(a), it is clear that we have

(**) EG(a)G+(b)=G+(a)

for all non-zero ideals a, b C A with b C a. We have now to establish that the projective
limit of the family of the exact sequences

i -> G*(a) /EG(a) -^ G(A) /EG(a) -> G(A) /G*(a) -> i,

a a non-zero ideal in A is again exact. Fix a decreasing family of non-zero ideals
{dj i <_n<co} cofinal in the family of all non-zero ideals. Let

{^eG(A)/G-(aJ|i^<oo}

be any element in the projective limit. We will prove inductively that we can find

^eG(A)/EG(aJ

which maps under the corresponding natural maps into ^ and ^_r Assume the Y),
chosen for i<z<r . Let 7]eG(A)/EG(a^) be an arbitrary lift of ^. Let 73' be its
image in G(A)/EG(a,_i). Then ^'""^^((^^(a^). In view of (**)
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above we can find ^'eG^a,) IEG(^) which maps into ^-l^_^ It is then clear
that 7]^=7]7]" is a lift of ^ with the desired properties.

(In the other cases we need an analogue of the Main Lemma. Since EG (a) C FG(a),
such an analogue is immediate when we deal with the G(a) and the FG(a). When
we are dealing with EG(a) and FG(a) a more subtle consideration is needed. We
fix a (finite) complete set of representatives P,, i<_i<_q, of proper k-QPS in G, and
for each P, a k-AS M, to which P, is adapted. Since P, is a semidirect product
P,=M,H with U the unipotent radical of P,, and U,(a) CEG(a), it suffices to show
the existence of a non-zero ideal a' in A such that EG(a). M,(b) 3 M,(a') for all non-zero
ideals b C A. But this follows simply from the Main Lemma applied to the group M.
instead of G. Note that M, is simply connected and EM,(a) CEG(a). M, may not1

be simple but it decomposes over k into a product of ^-simple factors; these A-simple
factors again may not be absolutely simple but they are of the form R^(H) with H
an absolutely simple group over the field A', a finite extension of k.)

Corollary (1.22). — The sequences

i->GG( , )-^G(A, )->G(A, )->i
and i->CG( , )-^G( )-^G( )-^i

are exact.

The exactness of the first sequence is given by Proposition (1.21). Since
G(A,*)G(A)=G(*),

G(A, *) is an open subgroup of G(*) and G(k) is dense in G(*), the exactness of the
second sequence follows.

Remark (1.23). — The group CG(e, c) is the projective limit of G(a)/EG(a).
Similarly

CG(^/)=UmFG(a)/EG(a)
a

and CG(/, c) == Urn G(a) /FG(a).
a

For convenient future use we state explicitly as a lemma the following which
was proved in the course of the proof of Proposition (1.21):

Lemma (1.24). — Given a non-zero ideal a we can find a non-zero ideal a* such that
FG(a).G(b)3G(a*) for all non-zero ideals b.

2. Normal Subgroups in Arithmetic Groups.

Our aim in this section is to establish the following. (We make free use of the
notation introduced in § i: beginning of § i and the paragraph before Lemma (1.7).)
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Theorem (2 .1 ) .— Assume that k-rank(G)^i and that S k^-rank{G)>_2. Let FCG
t?es

be an ^-arithmetic subgroup of G and Y C F a normal subgroup of F. Then either Y is central
(and finite) in G or there exists a non-zero ideal a C A such that E(a)CY.

The first observation is

Lemma (2.2). — If T* is not central in G it is Zariski dense in G.
Let G' be the Zariski closure of Y in G. Since F is Zariski dense in G', G' is

a normal subgroup of G. Since G is (absolutely) simple, G' is either central and finite
or all of G. This proves the lemma.

In the sequel, then we assume that Y is not central in G, so that it is Zariski dense
in G. In particular Y is infinite. Hence so is any subgroup of finite index in Y. This
enables us to replace F by rnG(A) and Y by TnG(A). We assume in the sequel
that r C G(A) —in fact, we assume as we may that F is a normal subgroup ofG{A) of finite
index in G(A). Next, one knows the following from reduction theory (Borel [i] for
number fields and Behr [i] and Harder [i] for function fields):

Lemma (2.3). — G has only finitely many T-conjugacy classes of minimal k-parabolic
subgroups.

Suppose now U is the unipotent radical of a minimal ^-parabolic subgroup P
of G. Since FCG(A), we see that for any ideal a C A and any element y^,
"nil (a) ̂ (^U) (a). In view of Lemma (2.3), this remark reduces the proof of the theorem
to establishing

Proposition (2.4). — Let U be the unipotent radical of a minimal k-parabolic subgroup P.
Then there exists a non-zero ideal aCA such that YDU^a).

The rest of the section is devoted to the proof of this proposition. We introduce
some additional notation for this purpose.

Notation (2.5). — We fix P and U as above. Let TCP be a maximal k-split
torus and X(T) the group of characters on T. Let Q be the Lie algebra of G and for
/eX(T), let

Q^{veQ\Adt{v)==^t).v}.

Let 0 ={oceX(T) | oc+o, c^ (o)}: $ is the set of A-roots of G with respect to T. Let
$+={ae0 [ g" C u = Lie algebra ofU}. Then there is a lexicographic ordering on X(T)
such that O4' is precisely the set of positive A-roots. Let A denote the system of simple
roots for this ordering. Then, for each (pe<D,

<P== 2; ^a(<P)a, ^a(<P)^Z
a £ A

with all ^(9) of the same sign, this sign being positive if (peO4'. For aeA, let

(^(^—{(peO-^lm^y^o}.
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Let
S( a) === identity component of f l kernel (3,

and
Z (a) = connected centralizer ofS(oc).

Then Z(a).U=P(a) is a maximal proper ^-parabolic subgroup of G. IfU(a)
is the unipotent radical ofP(a), the Lie algebra u(a) ofU(a) is the subspace S Q9

q> £ 0<a>

of g. Let Z(T) (resp. N(T)) denote the centralizer (resp. normalizer) of T and
Wo==N(T)/Z(T) (the yfe-Weyl group of G). Let WCN(T)(A) be a complete set of
representatives for Wo. Such a W exists (see Borel-Tits [i] for this as well as any other
facts about algebraic groups involving rationality questions). Let weVf be the unique
element which induces on X(T) the automorphism which takes all of ^+ into negative
roots. For aeA,

^(a)==—a with aeA.

The map ah->oc is an automorphism of the Dynkin diagram of A. Moreover, it is easily
checked that ^=oc and, if ^=11-, ^(00=2(00)17- (^(-oc)). Let

/,: U(a)xP(a)-^G

be the map f^(u, p)==uwp. Then/^c is an isomorphism of U(oc)xP(oc) onto an open
subset B(oc) of G. For A:eB(oc) we set

x = u^x)wp^x), u^x) eU(a), p^x) eP(a).

Then x^u^x) and xv->p^x) are ^-morphisms of B (a) into U(oc) and P(a) respectively.
Next, let D(a) = P(a) n^a). Since w has order 2 modulo Z(T), D(oc) is stable under w
(and contains Z(T)). Let M(a) be the identity component of the Zariski closure of
D(oc)nr. The group M(oc) is in fact intrinsically determined by D(a)—it does not
depend on the S-arithmetic subgroup F (though it does depend on the set S). It is
a connected normal subgroup of D (a). For <pe0, let u^^ S 9^. Then there

fc£Z, fc>0

is a unique connected unipotent A-subgroup U^ of G having u^ for its Lie algebra
(we note here that if (pe0 with Aye$, k an integer, then k===±i or ±2 so that the
above summation is over at most 2 terms). With this notation we record here as a
lemma the following observation.

Lemma (2.6). — For oceA, M(oc) DU^ for all (3 with ±(BeA and ±P+a or a. If
a+a, MW^U^ and U^2^.

This is a simple consequence of the following. If V is a connected unipotent
algebraic ^-group, then any S-arithmetic subgroup ofV (with S=t=0) is Zariski dense
in V. One has only to apply this remark to conclude that U^ C M(oc) as well as the
other two inclusions when a 4= a.

121
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Notation (2.7). — We need to introduce yet another subgroup of G for each aeA.
P'(a) is the algebraic subgroup generated by the set

{p~•lxpux~lu~l\ueU{oi),peP^),xeM{oL)]

and where for ^eM(a), x:==w~'lxw. The group Z(a) decomposes into an almost direct
product:

Z(a)=G(a).A(a).H(a)

where G(a) is the identity component of the center ofZ(a), A(a) is the maximal normal
semisimple subgroup Z(oc) which is anisotropic over k and H(a) is the product of all
the isotropic A-simple factors of Z(a). Then it is easily seen—and well known—that
G(a).A(a)CD(oc). If a=a, H(a)CD(a) as well and D(a)==Z(a). If a 4= a, however,
one cannot assert this. Nevertheless we do have

Lemma (2.8). — {Assume that S=)=0.) Then P'(oc) contains the identity component of
the Zariski closure of any ^-arithmetic subgroup o/'Z(a).

To prove this assertion, we observe first that if 0 is an S-arithmetic subgroup of Z (a),
the group (OnC(a)). (OnA(a)). (OnH(a)) has finite index in 0 (Borel [i] for k a number
field and Harder [i] and Behr [i] for k a function field). It suffices then (since
G(oc) .A(a)C D(a)) to show that the ^-component of the Zariski closure of $nH(oc) is
contained in P'(oc). When a==a, H(a)CD(a) and the assertion is immediate. One
observes next that H(a) is generated as an algebraic group by the {U^3^ (Be A—{a}}
and U^nO is Zariski dense in U^3, j3eA—{a}. The group M(a), one concludes
then, contains all ofH(a) if a==a, and if oc+a, it contains U^3, (BeA—{a, a} and U^"00.
Then if a=a, M(a) 3H(a) and the lemma follows. If a 4= a, we note that the element
jeW corresponding to the reflection with respect to a belongs to P(a). It follows that

^U-V-^LTCP^a)

leading again to the conclusion that P'(oc) contains H(a). The lemma follows immediately
from this.

We are now in a position to prove

Proposition (2.9). — Yr^a) contains in its Zariski closure the identity component of
the Zariski closure of any ^-arithmetic subgroup ofZ{(x).

In view of Lemma (2.8) it suffices to show that the Zariski closure of ^^^(a)
contains P'(oc). For this consider the subset YnB(a) (see § 2.5 for notation) of Y.
As B(a) is Zariski open in G and Y Zariski dense in G, Y< a> =^0 B(a) is Zariski dense
in G. It follows that

g=.{(u, p) eU(a) X P(a) [ uwpeV}

is Zariski dense in U(a)xP(a). Next, for a fixed z/eU(a)(^), let
R{u) =={xeM{w) n F | xux~lu~le^}
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and let y=={{u, p, x) \ {u, p) e<?, xeR{u)}. Let
F : U(a)xP(a)xM(a)-^G

be the map defined by

F{u,p,x)=xp•'lx/~lpuxu~lx~l ^eU(a), j&eP(a), xe M(a),

where x'^w-^w. We claim that F(^) C P(a) nY. To see this, let ^=uwp, (u, p} e<?;
then yeY and hence so is

S=6Y6-l=6^^6-1.6^6-l=6^6-l^-l.^/w6^6-l

for all 6eR(^). Let a^^-1^-1; then aeF, so that
•/^aya^eY.

We have, moreover,

Sp(a) = 6^~1 U~ 1 Yp(a) = •y]p( a)

(note that U(a)CP(a) so that 62/6-^-^(a)). Since P(a) is its own normalizer,
^-17]==6^16'-lJ&.^z6^16-leYnP(a).

We have thus proved that F(^)CP(a)nY. We now claim that y is Zariski dense
in U(a)xP(a)xM(a). Since S is Zariski dense in U(a)xP(a), it suffices to show
that for each z/eU(a)(^), R[u) is Zariski dense in M(a). To see this consider the map h
ofM(oc) in G given by x^xux-1^-1. Now the entries of {xux-1^-1—Identity) are poly-
nomials in the entries of {x—Identity) with coefficients in k and without constant terms.
It follows that we can find an ideal a4=o in A such that A(M(a)(a)) CG(A). Let h
be the composite map -n:oh

rnM(a)(a) ̂  G(A) ̂  G(A)/F

TT being the natural projection. Then we have for A:,^eM(a)(a)n F,

h{xJy)=xy.u.y~lx~lu~l=x{Jyuy~lu~l)ux~lu~l==xh{Jy)x~l.h{x)

so that h{xy)-==~h{y).h[xY (Note that we have assumed that F is normal in G(A).)
Since G(A)/F is finite, h-1^) is a (normal) subgroup of rnM(a)(a) of finite index.
Clearly this subgroup is contained in R(^) and on the other hand it is Zariski dense in M(a).
This shows that R{u) is Zariski dense in M(a), thereby establishing Proposition (2.9).

(2.io). — Let U(a)', o<_i<r+i, be the descending central series of U(a):
U(a)°=U(a) and for z>o, U(a)1 is the connected subgroup with

Lie algebra == S cf
^-p^pP'^a^+l

(see Appendix) and r+i^nf^ll^a)3^!)}. For o<i<r, let V^^l^a^/L^a)^1.
It is known that V(i) has a natural structure ofaA-group ^-isomorphic to a vector space.
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Moreover each U(a)1 is stable under P(a) and since [U(a), U(a)1] C l^a)14-1, this
action passes down to a linear action ofP(a)/U(oc) on each of the V(z), an action defined
over k. The group Z(a) maps A-isomorphically onto the quotient P(a)/U(a)=Z^(a),
say. Let Z^oc) (resp. Z^(oc)) denote the identity component of the Zariski closure of
any S-arithmetic subgroup of Z(a) (resp. Zi(a)). Let P*(a) be the Zariski closure of
TnP(a). Then Z^(a) is contained in the image of P*(a) in Zi(a). Evidently Z^(a)
is a A-subgroup and the image of YnP(a) in Zi(a) contains Z^(oc) in its Zariski closure.
Consider now the natural map p, : U (01)'-^V {i). We identify each V(z) with a vector
space through a A-isomorphism and fix a A-basis in V(z). Let L,' denote the A-linear
span ofsuchaA-basis. Then from Corollary (A. 6) (Appendix) we know that ̂ (U^a^A))
contains an A-submodule L, ofL,' of maximal rank. Since [G(A), F] C F, one concludes
immediately that the Z-module spanned by ^(^(^'(A), P(a)nr}) C^L^a^nr).
Clearly ^([U^a^A), P(a) n F]) contains the Z-span of {{a,{x) -i) {v) | ;veP(oc) n F, yeLJ
where a, is the natural representation of P(a) on V(i). This shows that ^(U(a)'nr)
contains an A-submodule K, of L, with L,/K, finite. The argument given above can
now be repeated with F replacing G(A), K, replacing L, and ^^Tr^a), a=t=o
an ideal in A, replacing F, to conclude the following: for each i, o<^i<_r, and a non-zero
ideal aCA, AW^1011^)) contains the A-submodule of K, spanned by

{(a^)-i)(,)[z/EK,,^P(a)nY(a)}.

We denote this last A-submodule of K, by J,(a).

Claim (2.11). — For o<^i<_r, J,(a) has maximal rank in V(i) —i.e. J,(a) contains
a basis of V(z) as a vector space.

Proof of Proposition (2.4) (2.12). — We will first show that Theorem (2.1) is a
consequence of Claim (2.11). We argue by downward induction on the integer i to
show first that for any ideal a 4=0 in A, L^o^nY contains a congruence subgroup
of U(a)\ The start of the induction at i == r is immediate from Claim (2.11). Assume
now that for some integer m, i<_m<_r, and any ideal b+o, we have an ideal b*=t=o, b*Cb,
such that Y(b)nU(ar:)U(aT(y). Let a+o be any ideal in A and choose a* as
above. Choose next an ideal a'=)=o, a'C a*, such thatj^_i(a*) contains An-iWa^-^a'16)).
(Such a choice of a' is possible in view of Claim (2.11).) We now assert that
l^ar-^n^a) contains l^o^-V)- In fact, if ^e-l^oT-^a'), by the definitions
of a' and J^_i(a*), we can find j/el^ar-^n^a*) such that An-iW-An-iCA
i.e. jr^eL^a^a*). But then by the induction hypothesis jr'^elJ^a^n^a), so
that ^j^-^eL^a^n^a). It follows from this that YnU^, for any positive
A-root 9, contains a congruence subgroup U^a) with aCA, a non-zero ideal. Now
if we arrange the positive roots in, say, increasing order 0=(ai, . .., aj, then the map

x : U^ x U^ x . . . x U^ -> G
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given by X(^, . .., x^)==x^ • x^ • . .. • ̂ , is an isomorphism defined over A; the entries
of{X(^i, . . ., A*J —identity} are polynomials without constant terms with coefficients in k
in the entries of {(^ —identity) | i<j<^ m}. A similar remark applies to X~1. It follows
that YnU contains ^U^^xU^cQx.. . xU^a)) and the last set obviously
contains an S-congruence subgroup of U. This proves Proposition (2.4) and hence
Theorem (2.1) (subject to Claim (2.11)).

Before we proceed to the proof of Claim (2 .11)5 we make the following

Remark (2.13). — T^ is infinite and Zariski dense in T if and only if |S|^2.
If | S | =i and v is the unique valuation in S, Ay-rank(G)^ 2.

In the sequel we consider the two cases whe n [ S | = i and | S [ > i separately.

(2.14) Case when |Sl>i . — From Remark (2.13)3 we see that T is contained
in the Zariski closure of any S-arithmetic subgroup ofZ(a). Now the characters of T
which are eigen-characters in the representation ^ are all A-roots of G and are hence
non trivial. It follows that the set

{(^)-i)^eT^eV(z)}

spans all ofV(z) as a vector space. In view of the density results we have proved earlier,
we conclude that for any non-zero ideal aCA, J^(ci) spans all of V(z) as a vector space,
establishing Claim (2.11) in this case.

(2.15) Case when \ S| == i. — As was observed this would mean that for the unique
yeS, Ay-rank(G)^2. Let T'nZ(T) be a maximal Ay-split torus in G. Choose an
ordering on the character group X(T') of T' compatible with the order on X(T)
introduced earlier and the restriction map X(T)->X(T'). Let 0' (resp. A') denote
the system of Ay-roots (resp. simple Ay-roots) of G with respect to T'. For (peO', let
Q^ denote the eigen-space of T' corresponding to <p for the adjoint action of T' on g.
We can then describe the Lie algebra u(a) of U(a), aeA, as follows: for aeA, let
A'(a)=={(BeA' | (B |T==a}. Let

Then

^^^{(ped)' |cp= S 7^(9).P, Wp(9)>o for some peA'(a)}.
P £ A'

U(a)= S (f.
<p e^>'<a>

Now, the identity component Z*(a) of the Zariski closure of any S-arithmetic subgroup
ofZ(a), it is easily seen, intersects the Ay-split torus T' in a subgroup T'* of codimension i.
We denote by T* the identity component of T'*. Suppose now for the action of Z^a)
on V(o) we have a quotient module which is trivial. Such a module would be trivial
under T* as well. Since the actions of T and T* on V(o) are completely reducible, we
conclude that this means that for some eigen-character 9 of T occurring in the space V(o),
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9 IT* is trivial. Suppose now CT is the adjoint representation of Z(a) on u(a). Then
/(^) = det a{t) is a character on Z(oc) defined over ^. It follows that ^(Z(a) (A)) C S-units
in A, a finite group (since |S[ =i). It follows that ^ is trivial on Z*(a), so that /|^
is a character with ^(T^i. We conclude therefore that the character 9 is necessarily
a multiple of ^. Now the character ^ is known (and it is also not difficult to see) to
be a dominant weight (for the ^-root system and the order chosen). It follows that
in the expression for 9 as a linear combination of the simple V^-roots all the roots (Be A'
occur with a strictly positive coefficient. On the other hand, from the definition ofV(o),
it is immediate that at most one of the (BeA'(a) occurs with a non-zero coefficient and
that coefficient is i. It follows that A'(a) contains only one element which we denote o?
in the sequel. We have therefore proved the following:

IfV(o) as a module over Z^oc) has a trivial quotient, then | A'(a) | = i; the unique
element of A'(a) being denoted 3?.

If V(o) has no trivial quotient as a Z^ a)-module, the set

{(GoW-i)y[yeV(o), ̂ y(a)}

spans all ofV(o) as a vector space and an argument similar to what was given in (2.14)
now shows immediately that Jo(a) has maximal possible rank in V(o). We will now
show next that V(o) has no trivial quotient as a Z\ a) -module even in the case A'(oc)=i.
For this fix a maximal torus T" in Z(T) containing T and introduce an ordering
on X(T") compatible with those introduced on X(T) and X(T') already. Let A"
denote the simple roots of G with respect to T". Let 9 be a root of G with respect to T
which is an eigen-character ofT" for its action on the unique maximal quotient ofV(o)
on which Z^oc) acts trivially (on this unique maximal quotient, Z(oc) has a natural
action—note that Z^a) is normal in Z(oc)): we assume such a 9 exists. Then we see
that < 9 [ T ' , (B>=o for all (BeA'—a where < , > denotes the canonical scalar product
on X(T): equivalently <9 |^ , (B>==o for all ^-roots of the (reductive) group Z(a).
Since 9 [^ is a positive ^,-root, <9 [^, S^o. It follows that there is some root o^eA"
such that a*|^=a and <9,a*>^o. Now from the structure theory of semisimple
groups (over algebraically closed fields), one sees that either 9== a* or 9—0* is necess-
arily a positive root. Now since 9 occurs as a weight in V(o), there is at most one simple
root ye A" with T\^==^ which occurs with positive coefficient (==i ) in the expression
for 9 as a combination of the roots in A. Now if 9=0*, this would mean that o? is
orthogonal to all the other simple ^,-roots of T, a contradiction to the (^-) simplicity
ofG. We see therefore that 9—0*==? is a positive root of the reductive group Z(a)
(with respect to T".) Since 9!^ is trivial and a^^^al^ is non-trivial, ^—^)\^
is non-trivial and is therefore a positive A^-root. Now if we set Y==9—a l c , 9—y and 9
are roots. Again from the fact that y^ is non-trivial, it is easily concluded that y is
a positive root ofZ(a) with respect to T and that the corresponding i-parameter unipotent
group is then necessarily contained in Z*(a). It follows that <9, y>=o. From structure
theory now it is immediate that 9+y is a root and 9+2y is not a root. The Ghevalley
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commutation relations among the one parameter unipotent groups ;)C<p+y(^) and ^_ {t)
now give us (for t, se algebraic closure ofk) (see Steinberg [3])

(*) bccp^^ x-^)]-^).^-^)
modulo U(a)1 for a suitable ^. Now the character 9—y cannot occur in any quotient
of V(o) which is trivial as a Z*(oc)-module (note that 9—yl-p , is non-trivial) so that
the eigen-space corresponding to the character 9—y certainly is contained in the span

{(<ToW-i)^eV(o),xeZ*(a)}.

Since ^_y(^)eZ*(a) for all s, (*) shows that ^(f) belongs to this span as well for all t,
a contradiction to our choice of (p. This shows that V(o) has no quotient Z*(T)-module
which is trivial. We have thus proved that when | S | == i, for all ideals a =1= o in A,
Jo(a) has maximal rank in V(o). To prove the statement for thej^(a), i^>o, we observe
that arguments entirely analogous to those given above show that the span of Jt(a)
in V(i) would contain all eigen-spaces ofV(z) with the exception at most of those roots 9
on T which are trivial on T*. If we now again choose a root a*C A" with <cp, a*>>o
and a*|rp,=a, we conclude that 9—a* is a root (but now this is a root occurring as
eigen-character in V(z—i) ) . It follows that " a*-series " of roots through 9 are either
(9—a*, 9) or (9—2a*, 9—a*, 9, 9+a*). In the first case, using the Ghevalley commu-
tation relations, one sees immediately that the eigen-space corresponding to 9 is in the
image of the natural map V(o)®V(i—i)->V(z) given by commutation. An obvious
induction gives us now Claim (2.11) in this case. In the second case, we observe that
the group G is of type Gg, that a* is necessarily the short simple root, 9 a short root,
and i==2. Further 9—2a* is necessarily the long simple root (3, a root of Z(oc), so that
<9—2a*, 9>==o. Moreover, we note that Gg has only one isotropic ^-form, viz. the
split form (Tits [2]) so that T==T'==T", A=A'==A" and a, [BeA. If we then consider
the root (B in place of a, our arguments above would show that the claim is true for this
root and we conclude that U((B)ny(a) is a congruence subgroup ofU((B). But this
would mean that U^nU^^^a) is a congruence subgroup and then we can
conclude that its image in U^a^/U^a)2 contains the eigen-space corresponding to
9==(B4-2a in its image.

Remark. — The proof can be simplified in the case of the number fields where a
qualitative statement would have sufficed instead of the precise form of Chevalley
commutation relations. A slightly different approach can also be used in this case
and this was in fact done in an earlier preprint of the author.

3. The Action of G^ on G( , ).

In § i, we obtained the following exact sequence

i-^G( , )-.G( )-^G( )^i
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The group G(A)+ is a subgroup of G( ) in a natural fashion. It operates therefore
on the normal subgroup C( , ) of G( ). We will take a closer look at this action
in this chapter. The following is a well known theorem due to J. Tits [i].

Proposition (3.1). — The only normal subgroups of G(k)^ are central (in G) and finite.
In particular G^K)^ has no proper infinite normal subgroup.

Proposition (3.1) has the following consequence: to show that G(^)4' operates
trivially on a set X, it would be sufficient to show that an infinite subgroup acts
trivially on X.

Theorem (3.2). — Assume that k-rank{G)^2. Then G(^)4- centralizes CG(/, c).
In view of the remark made above it suffices to show that there is an infinite

subgroup A of G(^)4' such that A commutes with all of GG(/, c). From the discussion
in (i .21) it is clear that it is enough to find a infinite subgroup AC G(A) nG^)4' such
that [A, G(a)]CFG(a). Such a group A is obtained as follows: let T be a maximal
A-split torus in G. Fix an order on X(T) (= group of characters on T) and let U be
the unique connected unipotent ^-subgroup of G with the span u of all the positive
^-root-spaces (in the Lie algebra g of G) for its Lie algebra. Let [B be the highest k-root
and U^ the unique connected unipotent A-subgroup with c^ (= k-root space corre-
sponding to (B) as the Lie algebra. Then A=U(p)nG(A) is infinite and we assert
that [G(a), A] CFG(a). To see this we use the Bruhat decomposition in G{k): let
N(T) (resp. Z(T)) be the normaliser (resp. centraliser) of T and W a complete set of
representatives for N(T)/Z(T) with WCN(T)(AQ. Let TC : N(T) -> N(T)/Z(T) be the
natural map. The group N(T)/Z(T) acts on X(T) permuting the A-roots. For
weW, oceX(T) we write w(a) for 7r(w)(a). Now it is known that each geG{k) can
be written in the form

with ueU{k), weW, zeZ(T){k) and veU{k). If now ^eU(p), we see that

gxg~1 == uwzvxv~1 z~1 w~ lu~l

=uyu~1

where j^eU^3^: this is because Z(T) normalizes and U centralizes U^. Now

\=u-lxueU^

and u-^gxg-^u ̂ eU .̂

Since the A-rank of G is >_2, x andj are contained in the same yfe-QJSP: if w((B) and (3
are linearly independent, U^ and U^^ are both contained in the unipotent radical
of some proper ^-parabolic subgroup; if w((B)= r [3 with r>o, the same conclusion holds;
if ^((B)=—(B, U^ and U^^U^ are contained in a proper A-A-S of G. We
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see thus in any case, for any geG{k) and xeU^\ gxg~lx~l is contained in a proper
yfe-QPS so that

[A,G(a)]CFG(a).
This proves that G^)'^ centralises CG(/, c).

Corollary (3.3). — Let F == G (k) + n G (A). Then for every ideal a C A, a 4= o, we
can find a non-zero ideal a* such that [F, 0(0*)] CFG(a).

From Theorem (3.2) we know that F centralises CG(/, c). It follows that (taking
images in G(A)/FG(a)) rFG(a)/FG(a) commutes with the image of CG(/, c) in
G(A)/FG(a). On the other hand it is an immediate consequence of Lemma (1.24)
that we can find an ideal a^CA, a^+o, such that the image of CG(/, e) contains
G(cf)FG(a)/FG(a). It follows that we have [F, G(a*)] CFG(a).

(3.4). — The following theorem is due to Kazdan [i] (see also S. P. Wang [i]
and Delaroche and Kirillov [i]).

Let ^,, i <^y, be local fields, H, an absolutely almost simple ^-algebraic group
r

and H,(vy the locally compact group of ^-rational points ofH,. Let H= 11 H,(^<)

and 0 a lattice in H. If ^-rank(H^)^2, for all z, i<^*<.r, $ is finitely generated
and 0/[<I>5 0] is finite.

In the references cited above the theorem is not stated explicitly in the case of
fields of positive characteristic. However the proofs are valid in the case of positive
characteristic as well — at least the proofs as given in the last of the three references.
Now according to Harder [i] (also Behr [i]) an S-arithmetic group in G is a lattice
in I! G(AJ. If A-rank(G)>:2 we conclude from the theorem above that we have

v e s

Proposition (3.5). — If O C G is an ^-arithmetic subgroup and k-rank(G}~^ 2, O/EO, 0]
is finite.

Using results of Dieudonn^ [i, 2] and G. E. Wall [i] it is deduced in Raghu-
nathan [4] that G{k)|G{k)+ is abelian (and finite) if yfe-rank(G)^2. As a consequence
we have

Lemma (3.6). — If k-rank{G)>, 2 and 0 is an S-arithmetic subgroup of G, OnG^)4'
has finite index in $. In particular ^=G(A)nG(A)+ has finite index in G(A).

Corollary (3.3) combined with Lemma (3.6) gives us the following:

Corollary (3.7). — For every non-zero ideal aCA, FG(a) has finite index in G(A)
(G is assumed to have k-rank>,2).

The next result is similar to Theorem (3.2).

Theorem (3.8). — Assume that k-rank(G)>_2. Then G{k)'}' centralises CG{e,f).
Let P be a proper ^-quasi-parabolic subgroup. Let M be a ^-admissible subgroup
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to which P is adapted. Let P* be the A-parabolic subgroup associated to P and P*~
an opposite parabolic group containing M. Let U4" (resp. U~) be the unipotent radical
of P* (resp. P*~). Then M normalises U4' and U~. It follows that for any non-zero
ideal a C A, we have

[M(a), U^A)] C U+(a) C EG(a)
and [M(a), U-(A)] CU-(a) C EG(a),

so that [M(a),A]CE(a) and [M(a) .E(a), A] CE(a) where A = subgroup of G(A)
generated by U^ (A). Let E*(M(a))-M(a) .E(a) and DM(a)=E*M(a)/E(a). The
projective limit D(M) of the DM(a) can then be regarded as a subgroup of the projective
limit CG{e,f) = Lim FG(a) /EG(a). Then from what we have seen above, we conclude
that A centralises D(M). Now it is easy to see that M(&) normalises D(M) and that
M^'^nA intersects every non trivial ^-simple component of M in an infinite group.
Applying Proposition (3.1) (to these simple components in place of G) we conclude
that M.{k)+ centralises D(M). When M is trivial so is D(M). When M is non-trivial,
it is not difficult to see that M(^)4' and A generate all of G{k)+, We conclude then
that G(k+) commutes with D(M) for every ^-admissible M. Consider now the image
of D(M) in FG(a)/EG(a). Using the Main Lemma of § i applied to M, it is easily
seen that this image contains a subgroup of the form M(a') .EG(a)/EG(a), a'=a'(M)=t=o
depending on a and M. It follows then that if we set ^==G(&)+nG(A)3 we have

[r,P(a'(M))]CEG(a).

Now if we choose a (finite) set P^, . . . , P^ of representatives for the G(A)-conjugacy
classes of A-QPS, and for each of the P, a A-admissible subgroup M^ to which P^ is
adapted, we can find a single non-zero a'4=o contained in a such that

[r,P,(a')]CEG(a).

Since F is normal in G(A) and every A-QSP is conjugate by an element of G(A) to one
of the P^, we conclude that we have
(*) [r,FG(a')]CEG(a).

In the projective limit this implies that F centralises CG{e,f). Since F is infinite G{k)+

centralises CG{e,f). This proves Theorem (3.8).

Since rnFG(a') is an S-arithmetic subgroup for a non-zero ideal a 'CA
(Lemma (3.6) and Corollary (3.7)), we conclude from (*) above that we have

Corollary (3.9). — EG(a) has finite index in G{A) for all non-zero a {we assume of course
that k-rank{G)>_2).

Combining now this corollary with Theorem (2.1) we have the following:

Theorem (3.10). — If k-rank(G)^ 2 every normal subgroup $ in an S-arithmetic subgroup Y
is either finite and central in G or has finite index in 0.
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This generalises theorems of Bass-Milnor-Serre [i] and Matsumoto [i] for
split groups.

Corollary (3 .11) . — The topologies defined by the E(a), a a non-zero ideal in A, and the
^-arithmetic subgroups on G(^), are identical: in other words there is an isomorphism ofG{e) on G{a)
inducing the identity on G{K). The group G(A, e) is compact.

(3.12). — The main problem then is the determination of GG(^, c). Toward
this end we introduce some further notation. Let G^^e) (resp. G+{f)) denote the
closure of G^ in G{e) (resp. G(/)). The closure of G(A)4- in G(c) is all of G(^).
(This follows from Platonov [i] —viz. the truth of the Kneser-Tits conjecture for groups
over local fields). The density of G(A)+ in G{c) has the following consequence:
G^^A^G^). And, as remarked earlier, if G has ^-rank^2, G^/G^)4- is
abelian. Thus we have (see Raghunathan [4]) from Proposition (3.5):

Proposition (3.13). — If k-rank{G)>_2, G(^)/G(A)4' is finite (and abelian}.

(3.14). — Consider now the exact sequences
(*) i->CG(^, c)|CG+{e, c)^G{e)|GG+{e, c)-^G{c)-^i

and
(**) I^CG+{e,c)^G+{e)-^G{c)^I

where GG"^, c)==CG{e, ̂ nG4 '^). The second sequence is exact for the following
reason: the closure r(e) of G(A)nG(^)+==^ in G4'^) is an open compact subgroup
of G"^); the image of F(^) is a closed subgroup of G(A, c) of finite index and is hence
open; it follows that the image ofC^) in G{c) is open, hence closed, and contains G(A)4';
in view of the density of G(A)4" in G(^c) the map G4'^)-^^) is surjective. Since
G(^)/G(A)4' is abelian and finite one sees that CG{e, c)|GG+{e, c) is finite and abelian
and that the extension (*) is central. Theorems (3.2) and (3.8) together with the
fact that [G(^)4', G^^^G^) enable one to conclude that (**) is central as well.
Now the group CG^^e, c) can be imbedded in yet another exact sequence:

(***) i^CG+(^)-^r(o->r(^i
where F {c) == closure of F (=G(A)nG(^)4-) in G{c). To (**) and (***) we can
associate cohomology exact sequences, for cohomology groups based on continuous
cochains with values in the trivial module Q^/Z==I. These sequences are:

H(**) : Hon^G-^), I) -> Hon^CC-^, c), I) -> H^G^), I)
H(***) : Hom(r(^), I) -> Hom(CG4-^, c), I) -> H^f, I).

In fact, since G^K)^ is its own commutator, we have an injective homomorphism:

i -> Hon^CG ,̂ c), I) -°> H^G^), I).
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Further, since the sequence (**) splits on the group G(^)4-, a maps into the kernel ofy:
Y : H^GM.I^H^G^I).

We also know that Hom(r(<?), I) is finite. Finally Hon^GG4'^ c), I) is the Pontrjagin
dual of the compact abelian group CG"^, c). Thus GG"^, c) can be recovered from
the dual. This discussion is summarised in

Theorem (3.15). — Assume that k-rank(G)>_2. Let G+(<?) denote the closure o/G(A)4-
in G{e) and GG(^)nG+(<?)=CG+(^)=C+. We have then-.

(i) G/G'1" is finite and abelian;
(ii) C"1' is abelian and compact and central in G^);
(iii) the Pontrjagin dual M of G4' admits an infective homomorphism into the kernel of

y : HW), I) ̂ ?(0(^,1);

(iv) a quotient of M by a finite group admits an injection into H^F^), I) (where
t^closure of F (=G(A)+nG(A)) in G(^).

Theorem (3.15) reduces the problem of computation of G{e, c) (at least quali-
tatively) to one of computing certain cohomology groups of certain adele groups. The
rest of this paper is devoted to obtaining results on these cohomology groups.

Remarks (3.16). — We have used Kazdan's theorem repeatedly in the discussions
above. For certain groups for which the Kneser-Tits conjecture is known to hold it
is possible to solve the congruence subgroup problem first and then deduce Kazdan's
theorem in those cases. This is notably true for quasi-split groups.

4. Cohomology computations—1 (Groups over Local Fields)

Notation (4.1). — Throughout this chapter we adopt the following notation.

L will denote either a locally compact field of positive characteristic or the field 0,,
ofj^-adic numbers, p a prime in Z.

0, the ring of integers in L.
p, the unique prime ideal in 0.
F, the residue field 0/p and
p, the characteristic of F.
HCGL(%) a connected simply connected algebraic subgroup defined over L.
H(L)=HnGL(^L), H(0)=HnGL(7z, 0).
H will denote the group scheme over 0 associated to H nd the inci usion HCGL(%).

When the abelian group I=QJZ is treated as a module over a locally compact
group, it is always understood that the action is trivial and the topology on I is
discrete. Gohomology groups are always based on continuous cochains.
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For an integer i>o, let H(z) be the subgroup

{.yeH(D) | x == Identity mod p1}

ofH(O). The following lemma is obvious:

Lemma (4.2). — H(i)/H(z+i), i^i, ^ ^ finite abelian p-group. Hence H(i) ^
a pro-p-group.

Corollary (4.3). — For m^i, z^i, H^H '̂), I) ^ a p-torsion group. The group
H^H^O), I), m>i, has a p-torsion subgroup of finite index.

Corollary (4.4). — If 1^(11(0)/H(i), I)=o, H^H^), I) is a p-torsion group.
This follows immediately from the Hochschild-Serre spectral sequence.

Corollary (4.5). — If H^H^) /H(i), I) =o, H is quasi-split over L and if characteristic
L>o the natural map H^L), I) -^H^H^), I) is trivial.

When H is quasi-split, it is known (Moore [i] and Deodhar [i]) that H^H^L), I)
is a quotient of [L^==the group of roots of unity in L. Since IpiJ is coprime to p
Corollary (4.5) follows.

(4.6). — From now we assume that the characteristic of L is zero. Let q be
the smallest positive integer such that the exponential series converges on

{xeM{n, L) [ x==o{mod p3)}.

Then q==i if p +2 and q==2 if p=2. Moreover the logarithmic series

^X)= S (-I)^1^-!)-
»==!

converges for all xeGL(n, 0), x== i (mod^), and provides an inverse for exp on suitable
domains. More precisely, let I)(L) C M{n, L) be the Lie subalgebra corresponding
to H, I)(o)=A(L)nM(7z,0) and for an integer z>o,

i)(^)={xe^<D)\x==o (modp1)}.

Then exp(I)(z)) CH(i) for i^q and
exp: I)(i)^H(i)

is a homeomorphism with I for inverse. We denote by /', the map t restricted to H(z)
considered as a map into I)(i). It is easy to see that we have

(*) ^•j)=^)+^00 (modl)(2z))

for all i^q. From this it is immediate that for j<i, we have a continuous group
isomorphism

(**) ^ '' H(z)/H(z+j) -> WIW+J).
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also of course, one has (for i^q),
(***) [H(i),H(z)]CH(2z).

We note that u^ is compatible with the action ofH(o) on the two groups. Further
the map x^p^x obviously gives an isomorphism

I)(0)/I)(J) ̂  Wl^i+J), J<.i. i^q.

In particular as a group t)(^)/()(z+j) is isomorphic to dirn^L) copies ofZ/Q^'). This
suggests that the discussion below in (4.7) will be useful in our cohomology computations.

(4-7)- — Let R be the ring Z/(r), r some integer. Let M be a finitely generated
free R-module. We are interested in the cohomology of the group M with coefficients
in I. Let B(M)==Homz(M€)zM, I), the group of I-valued bilinear functions on M.
One has evidently B(M) == Honiz(M®z M, R). Since any bilinear function is a 2-cocycle
we get an inclusion

B(M)->Z2(M,I)

where Z2(M, I) = group of I-valued 2-cocycles on M, and hence a homomorphism

^ : B(M)->H2(M,I).

It is easily seen that kernel ( ^ ) is precisely S(M), the subgroup of symmetric bilinear func-
tions on M, leading to an injective homomorphism

^ : B(M)/S(M)->H2(M,I).

Lemma (4.8). — ^ is an isomorphism. Also W(M, 1)^ Hom (̂M, I). These
isomorphisms are moreover compatible with the action of Aut(M) on the various groups involved.

The first assertion is proved by induction on the rank of M as an R-module: one
need only show that the two groups (which are finite: note that H2(M, I^H^M, Z))
have the same cardinality. This is easily done using the Hochschild-Serre spectral
sequence.

We will next establish

Lemma (4.9). —Let U C H(0) be a compact open subgroup. Let E=Hom^(I)(0), 0),
B==Hom^(t)(0)®^I)(0),0) and SCB the subgroup of symmetric forms. Let F=B/S. Then
there exists a subgroup FC U with the following properties:

a) r is finitely generated'^
b) r is dense in U;
c) ]T(r, E<3F) is finitely generated as a C-module for i=i, 2$
d) H r̂, E) is finite (hence a p-torsion group).

(U C H(0) has a natural action on E and F; the cohomology groups are for this action^ F is given
the discrete topology.)
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It is easily seen that the problem can be reduced to the case when H is simple
over L. In this case we can find a finite extension L' of L and an absolutely simple
group H' over L' such that H is L-isomorphic to R^/i/H'). If D'CL' is the ring
of integers we have a natural isomorphism

H'^'^HGO).

Now according to the main result in Appendix III we can find a number field
k' C L' such that k ' is dense in L' and H' is L'-isomorphic to a group over k ' . In other
words, we may assume that H' is defined over k ' . Enlarging k' if necessary we may
assume the following:

k' admits two distinct archimedean valuations &i, v^ such that the completions k\
of k with respect to ^ are both isomorphic to C.

This has the following implication: if D^R^^H'), D is simple over Q^ and
R-rank(D)^ 2. Evidently,

D(R)= n H'TO
v £ oo

where oo is the set of archimedean valuations of k ' and, for yeoo, k^ is the completion
of k ' with respect to u. Let I) (resp. I)', b) be the Lie algebra ofH (resp. H', D). One
has then natural identifications

W^^)^^)®^^)
I)'(0(A'))^b(Z)

here a is 0-linear, (B is 0'-linear and y? Z-linear.
Now since D(R) is non-compact we can choose, using strong approximation, an

arithmetic subgroup FC D(Z) which is dense in U (cf. Platonov [i]). On the other hand,
the H^r, E®F) are finitely generated D-modules since E and F are finitely generated
0-modules (Raghunathan [5] or Serre [3]). In view of the isomorphisms a, (B, y above,
to prove the lemma we have only to show that

?(^^=0

for the above choice of F.
If D has Q;rank>o, this follows from the main results of Raghunathan [i, 2].

If D is anisotropic over Q^, this follows from a theorem due to Well (see for instance
Raghunathan [3, Ch. VII, § 5]). One has to note in the last case that D(R) may have
compact factors but the action of F on the various factors of b over C are equivalent
under Galois automorphisms.

This completes the proof of Lemma (4.9).

Theorem (4.10).—Let UCH(L) be a compact open subgroup. T hen the groups W(\]^V)
are finite for q==i, 2.
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The proof yields rather more precise information which is needed in the sequel.
We formulate therefore a more technical version of the theorem for convenient future use.

Proposition (4.11). — Let U C H(L) be a compact open subgroup. Assume that U C H(0).
Let m^o be an integer such that H(w)CU. If ?==2 assume that m>_2. Let FCU be
chosen as in Lemma (4.9). Let p0' be the smallest power ofp that annihilates the ( p - ) torsion
in H^r, E©F)eH2(r, E). Then the natural map

H^U/H^+S^+i), I) -^(U, I)

is surjective for ^==1, 2.
Note that since U/H(w+3^+i) is finite the group H^(U/H(m+3a+i), I) is

finite. By definition H^(U, I) is the inductive limit of the groups H^(U/H(r), I) as r
goes to oo. It follows that if a>o, Proposition (4.11) is a consequence of

Assertion (4.12). — Assume that a>o. Let i be any integer greater than or
equal to m+y+i. Then the groups H^(U/H(z+3<z), I) and H^(U/H(i+4^), I)
have the same image in H^U/H^' +5^), I).

(4.13). — The proof is a result of a careful examination of the Hochschild-Serre
spectral sequences associated to the following pairs:

(U/H(z+4^H(z+to)/H(z+4^)), i^3,
and (U/H(z + 5^), H(i + 3^) /H(z + 5^)).

We denote these spectral sequences by (E^, i^^3, and E^ respectively. We
discuss the case I = 2 in detail. The arguments for I == i are analogous and simpler.
Let r(j)=rnH(j) (j an integer). Then F{j) is dense in H(j) for j^m and the maps

^ : H(j)/H(j+^') ^i)U)I^U+f)

introduced in (4.6) induce isomorphisms of r(j)/r(j+j') on I)(j)/I)(j+j') as well.
The inclusions

H(i + 3^) c-> H(i + 20) ̂  H(i + a)

induce homomorphisms

^ ^^ ̂
^ ^t ̂

of spectral sequences. All the three spectral sequence <Ey converge to the same limit
viz. H^U/H^'^^a), I). The Ea terms relevant to the second cohomology can be
described in the following manner: consider first iE:

^ = H°(U/H(i + a), tP^i + a) /H(i + ̂ a\ I))
^1=H1(U/H(^+<^), Hl{H{i+a)|H{i+4a), I))
^^(VIH^+a),!).
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The discussion in (4.7) shows that we have natural isomorphisms (note that i^y)
.E^H^U/H^+^F/^F)
lEl^H^U/H^+^E/^E).

(*)

Entirely analogously, one has the following isomorphisms:

aEi^H^U/H^+aa), F/j^F)
^H^U/H^+s^E/^E)
gE^irOJ/H^+s^F/^F)
sE^H^U/H^+sa), E/^E).

(*)

Claim (4.14). — i2y (o, 2)2 is the trivial map.

Let TC : F/j&^F -> F/^F be the natural surjection and

7i* : HO(U/H(?+a), F/^F) ^H»(U/H((+a), F/^F)

the induced map. Using the identifications (*) it is easily seen that 12^(0, 2)2 is the
composite of the map H°(U/H((+a), F/^F) -> H°(U/H(i+2a), F/^F) and w*.
The map TC imbeds in the following commutative diagram with exact rows:

o —> F -p2^ F —> F/^F —> o
^ A A

^ . ̂ ' ^

o —> F -^> F —> F/^F —> o

Considering these as F-modules, we get the exact sequences

o=H°(r,F) —^ H°(r, F/j&^F) —> IF^F) -̂  H^F, F) . . .

7c*(r) p0

o=H°(F,F) —^ H°(r, F/j&^F) —> HI(F,F) -^ HI(F,F) . . .

in cohomology. The groups at the left end are zero because of the Zariski density
of F in H. Since p°' annihilates the torsion in IF(r, F), both the left end maps have
precisely the torsion in H^F, F) as their kernel; and multiplication by p°' annihilates
this kernel. This shows that TI*(F) is trivial. Since the natural maps

H°(U/H(z+a), F/^F) 5- H0(r/r(i+^ F/^F) -> HO(F, F/j^F)
and H°(U/H(z + 20), F/j^F) -^ H^F, F/^F)

are isomorphisms, n* is trivial.
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138 (-)• - - daim ̂ J^^^^^^-sequence .Eisinfact a .-stepone th terrn^ E ̂  ̂  ̂  ̂ ^ ̂  ̂  ̂

^'Tove8'^^^^^^^^^ nitration on ̂  and ,E^ as follows: consider

^co t̂ative diagram (with exact rows):

o __ E ̂  E -> E/^E —— o

"'I [u I"
^ __ E -^ E —> E/^-E —^ o

p ,̂ .0 co.o ,̂ .e ̂  ̂  .Uô  cc—————— ̂  "* - -
H,(r,E)-<H.(r,ErE)-HWE)-mr,E)

7t*(r)

H,(r,E)-H.(r,EyE)-H.(r,E)^H.(r,E)

Now the natural maps
HWH^+^E/^E)-IWE/^E)

and ffCU/H^+S.)^/^)-^^^^

„ ̂  seen to .e m^e. We ma. thus^en^ ̂  ̂ -^

ff(F, E/^E) and ff(F, E/^E) -P^61^^ ̂ e kernel... the {?-} torsion
the.maps at the right end of both^ow^^^ ̂  kernel. It follows that
in IP(r,E). The vertical map is ̂  ^his means that
^(F) maps ff(r, E/^E) mto the lmage of H ( ' )'

,3<p(i,i)2(X)CsES.
This discussion shows tha; the essential information ahout H- in the spectral sequence ^E

is contained in gEl^s^-

, -̂ ^ r̂neS^^^^^^^
^are3now dineLt.) As before, we have identifications

E^H^U/HCi+S^1^21'1^ etc-

The map <p •• ̂ ^ is the "̂  „ , _,.-.
IP(U/H(i+3^EW ^ff(U/H(i+3.),E/^ E)
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induced by the natural inclusion E/j^E -> E/j^E. Now a is imbedded in the following
commutative diagram with exact rows:

E - ^ > E E/^E

P°

-^ E -—. E —> E/^Eo o

Now consider the induced cohomology sequence (for F)

Hi(F,E) —> H^F.E/^E) —> H2(F,E)

a*(r)

IP(F, E)

HI(F,E) - H^F, E/^E) iP(r,E) -p-^ H^F.E)
This diagram shows that a^F) maps image of H^F, E) (in H^F, E/^E)) into zero.
The diagram

H^U/H^+s^ETO -^> Hi(U/H(z+3^),E/^E)

^(r, E/^E) a*(r)
?(1^ E/^E)

is commutative. The vertical maps, as was remarked earlier, are easily seen to be
injective. It follows from this that 9 maps gE^ into zero. This shows that the second
cohomology group H2(U/H(^+4a), I) maps into the first stage of the filtration of
H2{U|H{i+y),I) given by the normal subgroup H(z+3^)/H(t+5a). But this
is nothing but the image of H2(U/H(z + 3^), I) in H^U/H^' + 5^), I). This completes
the proof of Assertion (4.12) in case <z>o.

(4.17). — We now consider the case a==o. The arguments here are in fact
much simpler. Fix i'^m and consider the spectral sequence associated to the pair
(U/H(z), U/H(z+i)). As in (4.13), we have the following isomorphisms:

E^H°(U7H(z), E/j&E), E^H°(U/H(z), F/j&F)
and E^H^U/H^'), E/^E).

It suffices to show that these groups are trivial. This follows from the exact cohomology
sequences (for the group F) associated to

and
o->E4E-^E/j&E->o
o->F^F->F/j&F->o,
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since ?(1', EOF) and H^F, E) have no (p-) torsion. This completes the proof of
assertion (4.12).

Remark (4.18). — Let B be a simply connected semisimple algebraic group over
any local field K of characteristic o. Then B(K) is isomorphic as a locally compact
group to RK/Q</B) (Q.p) where Q^ is the field ofj^-adic numbers contained in K (Q^, is
the closure ofQ^in K). It follows from Theorem (4.10) that if MC B(K) is a compact
open subgroup ofB(K), H^M, I) is finite for i==i, 2.

5. Cohomology Computations—II (Adelic Groups).

(5.1). — We revert to the notations of §§ 1-3 now. Thus A is a global field and
G C GL(n) is a ^-algebraic subgroup which is ^-simple and simply connected. For
technical reasons, we do allow G to be not necessarily absolutely simple when k is of characteristic o.
When k has positive characteristic G is assumed to be absolutely simple. Except for this provision,
the notations are as explained in § ( i . i). We make one further hypothesis on G: G has
strong approximation, i.e. for any finite set S of valuations ofk with II G(^) non-compact,

v £ S

G{k) is dense in the S-adele group G(A(S)) (==the restricted product II G(AJ). When
v ^ S

k is a number field, this is known to be true for all G (Platonov [i]; earlier work of Kneser
covers all classical cases). When k is of positive characteristic, it is not known whether
strong approximation holds in general. However if A-rank(G)^ i, strong approximation
does indeed hold for G. This follows from strong approximation for connected unipotent
groups combined with the truth of the Kneser-Tits conjecture for local fields. (Pla-
tonov [i]: Platonov's methods work equally well for the proof of the Kneser-Tits
conjecture for all local fields though his proof of strong approximation cannot be carried
over to the case of positive characteristic.)

As in § ( i . i), V will denote the set of valuations ofk and for a finite subset S C V,
oo C S, A(S) will denote the ring of S-integers in k (we will have to consider more than
one finite set of valuations at the same time so it is necessary to indicate clearly dependence
on S). For S as above, A(S) will denote the S-adeles ofk and G(A(S)) the corresponding
adele group associated to G. For S 'DSDoo, S' finite, 71(8, S') : G(A(S)) -> G(A(S'))
will denote the natural map. Our main result in this section can now be stated.

Theorem (5.2). — Let U be a compact open subgroup of G(A(S)) (SDoo, any finite
subset of V). Then:
(i) If the characteristic p ofk is positive, IP(U, 1), j=i or 2, is a torsion group in which the

p-torsion subgroup has finite index. Also, there exists a finite subset S^= Si(U) such that
for all S'DSuSi, ?(^(8, S')U, I), for i==i, 2, is a p-torsion group.

(ii) Assume that characteristic k==o. Then ?(11,1), j==i, 2, are finite. Also, there exists
a finite subset Si= Si(U) of V such that for all finite S' 3 S U Si, ?'(71(8, S') (U), I) == o
for j==i, 2.
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(5 •3)* — ^e want t° ^ply tne results of § 410 obtain this theorem. However
the results we need from § 4 in the case of characteristic o are valid as they stand only
for completions of Q^. Because of this we need to make a preliminary reduction (when
k has characteristic o). Let H=R^/QG. Then H is a simply connected semisimple
group defined and simple over Q^. Let S be as in Theorem (5.2), let S* be the set
of valuations of Q^ lying below S, and S the set of all valuations lying over S*. Then
one has a natural identification (as locally compact groups) ofG(A(S)) and H(A(S*)).
On the other hand G(A(S))^( Ft Gy)xG(A(§)). It follows that U contains a subgroup

i?es— s
of finite index of the form ( II My)xU\ where each My, yeS—S, is a compact open

ues-s
subgroup of Gy and U\ is a compact open subgroup ofG(A(S)). Now from the results
of Chapter 4, we know that H^My, I) and H^My, I) are finite (Remark (4.17)).
Using the Kunneth formula, one sees that the finiteness of H^U, I) is equivalent to
that of the finiteness ofH^Ui, I). Next we can find a finite subset S^ 3 S* of valuations
on Q^with the following property: let ^ be the set of valuations of k lying over S^; then
7r(S, Si) (U) =7T;(S,^Si) (Ui) decomposes into a direct product of the form II My, each My

u^Si

being a compact open subgroup of Gy. Further, if Ug is considered as a subgroup
of H(A(S*)), 7c(S*, S^)(Ly decomposes also as a product II B ,̂ iw valuations of QJ,

w^ S?

each By, being compact and open in Hy,; moreover, for a valuation w of Q^, if S denotes
the set of all valuations of k lying over w, we have a natural isomorphism 11̂  My ̂  B ,̂

v GW

for w^S[. Appealing again to the Kunneth relations (for the product decomposition
of the B^,) one sees that the second assertions (of Part (ii)) in Theorem (5.2) need also
be proved only in the case A==Q^. This shows that for proving the Main Theorem
we may assume that if k is of characteristic o, k is the rational number field Q^.

We will now establish the following consequence of strong approximation (Pla-
tonov [i]; actually Platonov [2] has essentially proved the proposition; the proof below
is a variant).

Proposition (5.4). — We take k to be any globaljield (we do not assume that k is necessarily Q^
when the characteristic is zero). Let V be a compact open subgroup of G(A(S)). Then U
contains an open subgroup of finite index of the form Tl M ,̂, where each My is compact open in Gy

v^ S

and for almost all v, My=G(OJ is a maximal compact subgroup of G^. Moreover, UnG(A)
is an ^-arithmetic subgroup of G{k). Further, if TCG{k) is an ^-arithmetic subgroup, then
either F is finite or the closure of Y is open (and compact) in G(A(S)).

That U contains a subgroup of finite index of the form II My with My open and
v ^ S

compact in Gy and My, My==G(Oy) for almost all v is immediate from the definition
of the adele topology. Since the first assertion concerns only almost all v, we may
without loss of generality assume that G(A(S)) is infinite. Let My be a maximal compact
subgroup of Gy containing My. Then M^/(MynG(OJ) infinite for ol\ v^S. It follows
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that if U*== Ft M^ and xe\J*r\G{k), then the eigen-values of x are y-adic integers
i?^ s

for all y^S. Let P^ : G-^£2 (^universal domain), i<_^<_n, denote the /-th coefficient
of the characteristic polynomial. Then P^ is a ^-regular function on G and P^{x)ek
for all A:er*=U*nG(^). Now let R(G) denote the algebra of regular functions on G
and ECR(G) the smallest Q-subspace which contains the P^ and is stable under the
left regular action of G. Then E is a A-subspace of R(G) and the representation a
of G on E is defined over k. Now, let JSfCE be the A(S)-linear span of

M^IT^,!^^}.

J§f spans E over Q.—this follows from the Zariski density of F* in G; and F* is Zariski
dense in G since F* is dense in U* (strong approximation: note our hypothesis that
G(A(S)) is infinite.) On the other hand, since P^P) CA(S) for i<_^<n, /(P) CA(S)
for all y^oSf. It follows that JS^ is a finitely generated A (S)-module. Consequently
o(r*) is contained in an S-arithmetic subgroup of d(G). On the other hand since G
is ^-simple and a is defined over ky a is an isogeny. Hence if <I> C G-(G) is an S-arithmetic
subgroup, (7~ l(<I))nG(^) is commensurable with G(A(S)) (Behr [i], Harder [i]). It
follows that r*nG(A(S)) has finite index in P8. Now the closure of G(A(S)) is
contained in II G(OJ=U', say. We see thus (since ^17(^lcnG(A(S))) is finite) that

v ^ S

U*/(U'ltnU/) is finite. But this means that M^=G(OJ=M^ for almost all v. We
conclude therefore also that G(A(S))/(^ lcnG(A(S))) is finite as well, i.e. P" is arithmetic.
The argument given above shows the following. Let Y^G^O H G(DJ. Then T is

v(^ S

dense in V*= II G(OJ and T/G(A(S)) is finite. Since U" is open and the closure F'
vfS

of rnY has finite index in U*, F is open.

Lemma (5.5). — Let G be as above. Then there exists a finite subset SpCV, So^oo,
such that for any ^^-arithmetic subgroup $ of G, 0/[0, 0] is finite.

We give the proofs for positive and zero characteristics separately.

(5.6) Case A (Characteristic k=p>o). — We have assumed in this case that
G is absolutely simple. If the absolute rank o f G i s i , G i s isomorphic over k to SL(s) or
the group of norm i elements in a division algebra over k. In the former case we can
choose any Sg with So ^2 (Serre [i]). In the second case we have to choose So
with | So | ̂ 2 and G split over k^ for all ye So. That 0/[0, 0] is finite for an
So-arithmetic 0 follows from Kazdan-Bernstein [i]. Next, if G has absolute rank ̂ 2,
we claim that there exists v with ^-rank(G);>;2. If this claim is granted, the result
follows from Kazdan [i]. To prove the claim we observe first that since G is quasi-split
for almost all v, the relation A^-rank(G)^i for all v would imply that G is isomorphic
to SL(3) over the algebraic closure, and then that G is either an anisotropic or a quasi-split
not split form of SL(3) over k. This means that G is either one of the following two kinds
of groups: a) the group of norm i elements in a division algebra of degree 3 over k or
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b) the special unitary group SU(/) of a hermitian quadratic form f in 3 variables over
a quadratic extension k' ofk. In the former case, for almost all y, G is ^,-split, a contra-
diction. In the second case, one can find infinitely many v such that k' is isomorphic
to a subfield ofk^. For any such ̂ , G is A^-split, hence of ^-rank=2, a contradiction.

(5.7) Case B (Characteristic of A=o). — If G is anisotropic over k we choose Sp
such that | So| ̂ 2 for all yeSo; G is non-compact. That So has the required property
follows from Kazdan-Bernstein [i]. When G has ^-rank i, choose any So with | So | ̂  2:
this follows from Margulis [i] (which generalises the theorem of Kazdan-Bernstein
cited). If ^-rank(G)^2 we can take So==oo: this follows from Kazdan [i].

Corollary (5.8). — The notations are as in Proposition (5.4). Then, for almost all v,
[M,,MJ=M,.

This follows from Lemma (5.5) and Proposition (5.4) (applied to S == So and
r=[0,0]).

In the case of characteristic o, we also need the following:

Lemma (5.9). — Assume that characteristic k==o. Let Q{k)CM.{n,k) denote the Lie
algebra corresponding to G. Assume that G has no absolutely simple factor of rank i. Then
there exists a finite set SoCV, ooCSo, with the following property. For any ^^-arithmetic
subgroup OCG, ?(0, g(^))==o (where Q{k) is considered as a ^-module via the adjoint
representation).

Note that ifG has one absolutely simple factor of rank i, all the absolutely simple
factors are of rank i. Assume first that G(oo) is compact. The group G is of the
form R^H where H is absolutely simple. If G(oo) is compact, so is H(oo), H being
absolutely simple and of absolute rank^2, we can argue as in (5.6) to conclude that
there is a valuation v ' ofk' such that ^,-rank(H)^:2. Now, according to S. P. Wang [2],
HPCF, Q{k))=o for any { v ' ^arithmetic subgroup T of H(A')=G(A). (Since H(oo) is
compact, the adjoint action is equivalent to a unitary action.) Let v be the valuation
of k lying under v\ Then, for any y-arithmetic group 0, H^O, g(^))==o. To see this
observe first that any i-cocycle of 0 is cohomologous to one f which is trivial on
a y'-arithmetic subgroup T ofO. Now if aeO, and xe^V is chosen such that a^a-'le^F^
then we have

o =/(o^a- ̂  =/(a) + Ad of{x) + Ad a Ad ^/(a- ̂
-/(^-^(oaa-1!/^);

this means that y(a) is invariant under all of {xexF\oiXcx.~lexF}. But this last set is
Zariski dense in G, so that /(a)=o. This proves that ?(0, g(^))==o. Next, if G(oo)
is not compact, H^O, g(A))=o according to a theorem ofWeil (see Raghunathan [3,
Ch. VII, § 5]) and results of Raghunathan [i, 2] for any {oo ̂ arithmetic group 0.

We will be needing the following in the sequel.
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Lemma (5.10). — For almost all v, H^G^J^pJ, l)==o for i==i, 2.
This follows from the work of Steinberg [i] and Deodhar [i]. For almost all v,

reduction mod ?„ of G is a simply connected semisimple algebraic group over the residue
field F^ and G(OJ /G(pJ is isomorphic to the rational points of this group over the
field F^. Since F,, is finite, this group is quasi-split and the theorems of Steinberg (and
Deodhar) apply.

Lemma (5.11). — Assume that A=%. Then for almost all v, the natural map

H^OJ^pJ.^^H^OJ,!)
is surjective.

We appeal to Proposition (4.11). We see that we need to construct a finitely
generated subgroup I^CG(OJ (for almost all v) with the following properties:
(i) I\ is dense in G(OJ.
(ii) Let Q (k) be the Lie subalgebra of M{n, k) corresponding to G and

g(0)=M(7z,0)ng(A),

0 the ring of integers in k. Let E=Hom^(g(0), 0), B==Hom^(g(0)®^g(0), 0),
S = symmetric forms in B, and F=B/S. Then H'(r\,, EOF) has no p^-torsion
for i==i , 2.

(iii) Hi(r,,9(^)=o.

To do this we consider two cases separately.

Case A: All absolutely simple factors of G are of rank ̂ 2.
Case B: All the absolutely simple factors are of rank i.

(5.12) Case A. — Pick So as in Lemma (5.9). Let F be an So-arithmetic subgroup
of G. Let Si be the complement of the set

{y |^SoUoo, r is dense in G(DJ}

and Sg the complement of the set

{v [ y^Si, H*(r, E®F) has no ^-torsion}.

Then Sg is finite and if we set F=r,, for all z^Sg, F^ satisfies (i)-(iii) above.

(S^S) Case B. — In this case we have G=R^H where H is absolutely simple
of rank i. For almost all valuations v ' of A', H^SL(2) over k^ and one deduces easily

that one has isomorphisms G(OJ ̂  n^SL(2, £)„.) for almost all yeV, where 7 is the
v'e^

set of valuations of k ' lying over v. The mapping 9,, however need not in general carry
the integral Lie algebra 9(0,,) isomorphically onto II^sI(2, 0^). But ifk' is unramified

u'G^
at v, then 9,, does do this. Thus omitting some further finite set of valuations one gets
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an isomorphism a(£\,)^ II^sI(2,OJ. Now let SQ^OO be any set of valuations of k'
v'G^

with |So|^2 andlet F=SL(2, A(So)). Then we have inclusions of F 4. II SL(2, 0^)
X v' f So

and hence r<-^G(OJ for almost all yeV. There are only finitely many veV such
that H*(F, $1(2, 0^) has p^-torsion for some z/e7 and according to Serre [i],

H^r.^oj^o
for almost all v ' . We can now clearly take r\, = F.

I11 § (5 • 3) we showed that for the proof of the Main Theorem we can assume k==Q^
if characteristic of k==o. The Main Theorem thus follows easily from Lemma (5.10)
and (5.11) combined with Proposition (5.4) in the case of characteristic o; in the case
of positive characteristic Proposition (5.4) combined with Lemma (5.10) and Cor-
ollary (4.4) gives us the desired result.

We prove one final cohomological result. For this result, it is more convenient
to formulate it over any global field—we drop the assumption made in the discussion
above that when characteristic k=o, k=Q^. On the other hand we do assume that
G is absolutely simple. '

Theorem (5.14). — Let k be any global field and G an absolutely simple, simply connected
k-algebraic group. Let

Si={yeV | G is anisotropic over k^}

and Sa={yeV | G is not quasi-split over Ay}.

Let S be any finite set of valuations with S D oo. Then we have

HI(G(A(S,)),I)^ n IF(G,,I)v e bi — b
IP(G(A(S)), I).H^n_^, I)x^IP(G,, I).

If S3 Sg, H2(G(A(S)), 1)^ II ^ where for y^S, ^ is a quotient ofthe group ofroots ofi
v fiP S

in k^. In particular, it is a torsion group with all torsion coprime to p.
These Kimneth relations are a consequence of the following facts already proved:

for almost all y, G(OJ is a maximal compact open subgroup ofG^, [G(O^), G(OJ] =G(DJ
and for almost all v, the natural map H^Gy, I) -^H^G^), I) is trivial. The last
statement has not been explicitly proved so far, but it follows from Lemmas (5.10)
and (5.11) when k has characteristic o. In the case of positive characteristic p we
know that for almost all y, H^G^J, I) is a ̂ -torsion group for almost all v; on the other
hand according to Moore [i] andDeodhar [i], when G is quasi-split on R,,, H^G,,,!)^^,
a quotient of the group of roots of i in ̂ . The (c Klinneth relations 9? stated are easily
obtained from these considerations and the definition of the adele topology in view
ofthefact [G,, GJ=G, for all z^Si (Platonov [i]). (See Moore [i, Theorem (12.1)]
where the necessary arguments are given in detail.)
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Remark (5.15). — When G is anisotropic over ky, Gy is the group of norm i elements
in a division algebra over ky and ?(0,,, Q,/Z) is non-trivial. In fact, ifD^, is the division
algebra, R,, the maximal compact sub-ring of D,, and ̂  the unique maximal (2-sided)
ideal in R,,, D^/(D,,n(i+^,)) is isomorphic to a non-trivial cyclic group. (See for
instance Well [i, Gh. I, § 4].)

Theorem (5.16). — Let G be a connected, absolutely simple, simply connected algebraic
group defined and of rank^_2 over a global field k. Let S 3 oo be any finite set of valuations
of k. If characteristic A==o, 0(8,0) is finite. If characteristic k==p, the p-Sylow subgroup
ofC(S, G) has finite index in G(S, G). IfS contains all the primes at which G is not quasi-split
over Ay, G(S, G) is finite.

This is obtained by combining Theorem (3.15), (5-2) and (5.14).

6. " Stable " Results and Some General Remarks.

(6.1). — As hitherto, G will denote a connected simply connected absolutely
simple group over a global field k. We assume that G has strong approximation. (This
is known to be the case if k is a number field or if A-rank(G)^i.) As we will be
considering different finite sets of valuations of k, our notation will have to be more
precise to indicate the dependence on the finite set of valuations. We fix an imbedding
G C GL{n) of G as a A-group and for any finite set S of valuations ofk with oo C k, denote
as before by G(A(S)) the group of A (S)-rational points of G where A(S) is the ring of
S-integers. The first observation is

Lemma (6.2). — Suppose oo C S C S' and there exists veS such that G is isotropic at v.
Then the cokernel of the map C(S, G) -> C(S', G) is naturally isomorphic to II G(AJ where

^(S'—S)=={yeV [ G anisotropic over ky}.

In particular ifGis isotropic over ky for all yeS'—S, the map G(S, G) -> G(S', G) is surjective.
Also if ^(S'-S)=S'-S, the map G(S, G) ->G(S', G) is injective.

This lemma is easily deduced from the commutative diagram:

i —> G(S,G) —> G(S,<z) —> G(S,c) —> i

7T(S, S')

i —^ C(S',G) —> G(S',^) —> G{S\c) —> i

Observe that the map TT(S, S') at the extreme right is simply the natural map of the
group G(A(S)) into the group G(A(S')) (strong approximation). Passing to the quotient
by C(S, G) and its image in the second row we obtain the following diagram
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G(S,.).
7t(S. S')

i —> .G(S', G)/Im C(S, G) —> G(S', ^)/Im(G(S, G)) -^ G(S', ,) —> i

The image of a is a closed subgroup containing G{k). To see this we observe first that
the kernel of TT:(S, S') is the product II G(AJ. This group maps under a into the

v G S' — S

profinite group G(S', G)/Im C(S, G). Since all the G(AJ for G isotropic over ̂  admit
no infinite proper normal subgroups we see that a factors through G(SUJ^(S'—S), c)
(which projects onto G(S', e) with compact kernel). It is easily deduced from
this that the image of a is closed. Since it contains G(^), a is surjective and
G(S', G)/Image G(S, G) is isomorphic to II G(^). The second assertion isv e j^(s'— s)
immediate. The third follows from the fact that if G is anisotropic over k^ for all
yeS'—S, the families of S-arithmetic and S'-arithmetic groups coincide.

The preceding lemma suggests that it is best to consider only those sets S such
that, for all veS—oo, Gis isotropic at v. In the sequel we will in fact assume always
that finite sets of valuations which we consider do not contain any non-archimedian valuation v
such that G is anisotropic over k^ (unless explicitly stated otherwise). In order to overcome
technical difficulties that arise we need to make our choice of the imbedding GC GL(n)
somewhat carefully.

Lemma (6.3). — Let So^oo be any finite set of valuations (So may contain v at which
G is anisotropic). If^>Q is non-empty we can find an imbedding of G in GL{n) (as a k-algebraic
group) such that:

(i) For all V^SQ, G(OJ is a maximal compact subgroup of G(AJ.
(ii) For all S3 So, G(A(S)) is a maximal ^-arithmetic subgroup of G.
(iii) If S'3 S3 So and G is anisotropic over k^ for yeS'—S, G(A(S))=G(A(S')).

Start with some A-imbedding G^ GL(n). Then since G has strong approximation,
G(OJ=M^ is for almost all v a maximal compact subgroup of G(AJ. Let M^DM^,
be a maximal compact subgroup of G(AJ. Let L^===0^ if M^==M^ if M^=t=M^, let
Ly be a compact open subgroup of k^ containing 0^ and stable under M^. Let L C k"
be the subset

{ x e k n \ x E ' L y for all y^So}.

Since So is non-empty, L is dense in II Ly (strong approximation for a vector space!)
v(f: So

(and is in fact a A(So)-module of rank n). We now change the basis of^ to one which
generates L over A (So) and thus obtain a new imbedding of G in GL(/z) satisfying the
required conditions.

Note: When k is a number field, we can take So =00.
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(6.4). — In the sequel we fix once and for all a fixed finite set So with the following
properties:
(i) So 3 oo.
(ii) If ve So— oo, G is isotropic at v.
(iii) There exists veSo such that G is isotropic at v (this is of course redundant if

So 4=00).

We set ^/={veV—oo [ G anisotropic at v} and V'==V-—^. Unless otherwise specified
all finite sets considered (denoted S, S', S", etc.) will be assumed to contain So and to be contained
in V. We assume also that our embedding G <-^ GL(n) satisfies the conditions of Lemma (6.3).
This means in particular the map G(S, G) -^G(S', G) is surjective (Lemma (6.2)). A
corollary to this is

Lemma (6.5). — If S' 3 S, the centraliser o/C(S', G) in G{k) contains that o/C(S, G).
In particular if C(S, G) is central in G(S, a), C(S', G) is central in G(S', a).

Notation (6.6). — In the sequel, F(S) will denote the group G(A, S), JT(S, a)
(resp. F(S, c)) its closure in G(S, a) (resp. G(S, c)). If G(AQ* is any subgroup of G(A),
r*(S)=G(Arnr(S) and G*(S, ) (resp. r(S, )) denotes the closure of G (A)* (resp.
P(S)) in G(S, ); also G*(S, G) will denote the group

C(S, G)nG*(S, <z)=C(S, G)nr*(S, a).

With this notation, the following is proved exactly as Lemma (6.2).

Lemma (6.7). — Assume that G(A)* has finite index in G(^), and has a dense projection
on ̂ G(^). Then the map G(S, G) ->G(S', G) is surjective for all (SoC )SC S'( CV).
In particular if C^S, G) is finite (resp. central in G*(S, a)) G*(S, G) is finite (resp. central
in G*(S', a)).

Corollary (6.8). — The natural map r(S, a) -> F(S', a) is surjective.
We look at the commutative diagram:

G(S, G) F(S, a) r(s,.)(=nG(oj)
vfS

C(S', G) F(S', a) r(s',.)(= n G(O,))
vfS'

whose rows are exact. The maps at the extremes are surjective (lemma (6.7) and
our choice ofembeddings guarantee this). By five-lemma, the middle map is surjective
as well.
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Corollary (6.9). — If ̂  is an S'-arithmetic subgroup of G and 0=0'nr(S), S'DS,
then the natural map 6(S, a) -^6'(S', a) where $(S, a) (resp. 0'(S', a)) is the closure of O
(resp. 0') in G(S, a) (resp. G(S', a)), has finite cokernel.

Remark (6.10). — In the corollary above we need only the fact that S, S' contain
So—they may contain anisotropic places: this is because S-arithmetic groups and
(S—j^)-arithmetic groups are the same and a similar remark applies to S'.

The following consequence of Corollary (6.9) is perhaps of greater interest than
that corollary itself.

Corollary (6.11). — If S is any finite set such that for every S-arithmetic group $, $ is
infinite and 0/[<D, 0] is finite, then the same holds for every ^'-arithmetic group O'/or S'DS.
(We do not need to assume that S and S' are contained in V.)

Combining with Kazdan's theorem on the first Betti number of lattices in groups
without rank i or compact factors we obtain the following extension of his result.

Corollary (6.12). — Let S be ̂ finite set such that there exists veS with k^-rank(G)>_2.
Then for any ^-arithmetic group $, 0/[0, 0] is finite.

Corollary (6.13). — Let G{ky be a subgroup of finite index in G{k). Then
G(kYI\G{K)\ G(kY} is finite.

Replacing G{k)* by a subgroup of finite index we may assume that G(^)* is normal
in G(K). Let Y=[G(A)*, G(^)*]. Then Y is a normal subgroup of G(A). Now in
§§ (5-6), (5-7)? we have seen Aat there exists S such that G is isotropic at v for some veS
and for every S-arithmetic group 0, 0/[0, $] is finite. Pick one such S-arithmetic
group OCG^)*. Then OnT is S-arithmetic as well. Its closure is therefore open
in G(A(S)) (strong approximation). Thus the closure Y of Y in G(A(S)) is open as
well. Now for the natural identification ofG(^) (z^S) as a closed subgroup ofG(A(S)),
G(AJnY is open and normal in G(^). It is therefore equal to G(AJ for all z^S at
which G is isotropic (Kneser-Tits conjecture for local fields). It follows that Y has
finite index in G(A(S)), so that G(A)^=G(^)*nT has finite index in G(A)\ Now from
the density of Y in Y, we see that for any S-congruence subgroup A of G

G(A)^CY(AnG(A)^).
The desired result now follows from Corollary (6.12).

Proposition (6.14). — Assume that S C V, oo C S and that G*(S, G) is central in G*(S, a)
for some subgroup G(A)* of finite index in G(A). Then the p-Sylow subgroups of G(S, G) and
C*(S, G) are of finite index in these groups [p = characteristic of k).

We first pick S' C V— oo such that if S"= S u S' for any S'-arithmetic group 0,
<D/[0,$] is finite and G is quasi-split for all yeS'. Such a choice is possible by
§§ (5-6-5.7) and Corollary (6.11).
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Let H(S, a) (resp. H(S, c)) be the closure of r(S") in G(S, a) (resp. G(S, c)). Then
from strong approximation one sees immediately that H(S, <:)==( II G(^))xU where

v G S'

U is a compact open subgroup of G(A(S")). Consider now the central extension

i->G*(S,G)->H(S,fl)^H(S^)->i.

Associated to this one has a cohomology sequence (here I=Q^/Z)

.. . -> Hom(H(S, a), I) -> Hom(G*(S, G), I) -> H2(H(S, c), I) ->...

Now from Theorem (5.2) and the results ofDeodhar [i] and Moore [i], the ^-torsion
in H^f^S, c), I) has finite index in that group. On the other hand Hom(H(S, a), I)
is isomorphic to Hon^r^S"), I) and is thus finite. It follows that Hom(C*(S, G), I)
has j&-torsion of finite index. Taking the Pontrjagin duals we obtain the proposition.

Corollary (6.15). — I/there exists S C V, oo C S, such that C'(S, G) is central in G*(S, a)
for some subgroup G{ky of finite index in G(A), then the p-Sylow subgroup of C(S', G) is of finite
index in it for all S'DS, S'CV.

Remark (6.16). — One can refine the arguments given above in the case when
^ is empty. (We note that this happens when G is not of type AJ. In this case we
observe first that the map

CT(S, G) -^ C*(S', G)

is surjective for S'3S, so that for SCS'CS" both the extensions in the commutative
diagram below are central.

0(8', G) G*(S', a) G-(S'̂ ) =G(S',.)

i —> G*(S",G) —> G*(S",fl) —> G*(S"^)=G(S",^) —> i

Also the vertical maps are surjective. We also have the following commutative diagram:

G*(S', G) r(S', a) r^s',.)

i —> G*(S",G) —> r(s",fl) —> r^s",^) —> i
The corresponding cohomology sequences are again embedded in a commutative diagram:
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Hom(r*(S', c), I) —> Homes', a), I) —> Hom(G*(S', G), I) -^ IP(f-(S', ,), I)

151

P* Y*

Hom(r*(S", c), I) —> Hom(r(S", <z), I) —> Hom(G*(S", G), I) —> H^S", c), I)

Now according to Corollary (5.8), there exists So 3 S such that the groups at the extreme
left are trivial if S' D So and, by Theorem (5.2), we can also assume So so chosen that
the groups at the extreme right are p-torsion groups. We may also assume So so chosen
that for any S'"-arithmetic group $ with S'" 3 So, <!>/[$, 0] is finite. It follows (from
the injectivity of (B*) then that there exists Si D So such that

Hom(r(S', a), I) -Hom(r(S), I) ==Hom(G(^, I)

for all S'DSi. If characteristic A==o, we see immediately that
Hom(G*(S', G), I)^Hom(G(A)*, I)

for all S'DSi. When the characteristic is positive, we have to argue a little more
delicately: we look at the following exact sequence as well (for S'DSi):

Hom(r(S'), I) =Hom(G(A)*, I) -"> Hom(G*(S', G), I) -> H^G^S', c), I)

Hom(G*(S', a), I) H^S',.),!)

From the results of Deodhar and Moore (loc. cit.) the group at the extreme right has
no ^-torsion if G is quasi-split for all z^Si. On the other hand we have seen from the
earlier discussion that the cokernel of X is a ^-torsion group. We conclude therefore
that the cokernel of X is zero. We summarize this discussion in the following.

Theorem (6.17). — Assume that G is isotropic at all vfoo. Let G{k)* be a normal
subgroup ofG{k) of finite index and SCV (==V) be a finite set such that G*(S, G) is central
in G*(S, a). Then we have:

(i) The p-Sylow subgroup of G(S', G) has finite index in G(S', G) for all S' 3 S.
(ii) The maps G*(S, G) -> e(S', G) and C(S, G) ^C(S', G) are surjective.
(iii) There exists a finite set SiDS such that for all S'DS^, the map G(Si, G) ->C(S', G)

is an isomorphism', all these groups are naturally isomorphic to the finite group

G{kYI[G{k)\ G(^]^P(S')/[r(S'), I-(S')].

Corollary (6.18). — Assume that A-rank(G)^2. Then there exists a finite set So such
that for all S3 So, G(S, G) is central in G(S, a) and isomorphic to G(^)/G(^)+ (notation
as in § 3j.

Take G{ky==G{k)+. Since G(^)+ is its own commutator, G'(S, G) is trivial for
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all S D Si where Si is chosen as in Theorem (6.17). Once C*(S, G) is trivial, we know
that C(S, G) is central in G(S, a) and we can apply Theorem (6.17) to G{k) itself.

Remark (6.19). — There is one other situation to which Theorem (6.17) is
applicable: Kneser [i] has announced the following result: Let k be a number field. Let
G=Spin/, /a quadratic form in n>_^ variables over k. Let SDoo be a finite set
of valuations such that S A,-rank(G)^2. Then C(S, G) is central in G(S, a). The-

v G 8

orem (6.17) now furnishes the further information that G(S, G) is indeed finite in this
case. When / is isotropic over A, Kneser has a much more precise result.

7. Representations of Arithmetic Groups.

(7-1)- — Throughout this chapter, k will denote a number field, G an absolutely
simple A-group and S 3 oo a finite set of valuations of k containing oo. We assume
that G is simply connected and has in addition the following property:
(CSP) The group G(S, G) is finite.

(Note that if G has (CSP), it is necessarily isotropic at all yeS—oo.) We also assume
that there exists yeS such that G is isotropic at v (this to ensure that S-arithmetic groups
are not finite) and that G has strong approximation. With these notations our first
result is

Theorem (7.2). — Assume that G has (CSP). Let 0 be an ^'arithmetic group of G.
Let p be a finite dimensional representation of<S> on a finite dimensional vector space V over afield F
of characteristic o. Then there exists a subgroup 0' in 0 of finite index and a rational represen-
tation p" of R^(G) defined over F such that p'|o' = p |o..

When F==Q^, this result is proved in Bass-Milnor-Serre [i]. When F is a finite
extension of Q,, one can reduce to the case of F=Q^, by looking at the F-vector space
as a Q^-vector space. Since 0 is finitely generated one sees easily that this covers the
case when F is algebraic over % as well. Consider now the general case. We make
first an observation about representations over Q= algebraic closure of Q^. These
representations are all completely reducible since rational representations of semisimple
groups are. Equivalently for every finite dimensional representation G of 0 on Q-vector
spaces ?(0, CT)=O. Now, let 8S(T) denote the variety of all representations of 0
in GL(^, F) (F any field and F its algebraic closure). Then ^(F) is a variety defined
over %. If ae^(r) is a Q-rational point, ?((1), Ado(r)=o, where Ad is the adjoint
representation of GL{n) on its Lie algebra. According to A. Weil [i] this means that
the orbit of a in ^(F) under inner conjugation is Zariski open in ^(F). Let

^U^-^eGL^.F), oe^)^}.

Then ^ as well as it complement W are stable under the group of all automorphisms
of F (over QJ. Since ^ is Zariski open, W is a Q-subvariety. On the other hand
it has no Q-rational point. Hence ^=^(0>) and the theorem is established.
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Corollary (7.2). — Let p be any finite dimensional representation of an ^-arithmetic group 0.
7/'C(S,G) is finite, Hi(<D,p)==o.

Corollary (7.2). — If C(S, G) is finite, for any ^-arithmetic group 0, 0/[<!>, 0] is finite.

Theorem (7.2). — Assume that C.(S, G) is finite and that G is isotropic at all y^S. Let
F be a field of characteristic p>o. Then any homomorphism p : $ —^GL(n, F) is trivial on
a subgroup of finite index.

We will deduce this from

Lemma (7.3). — Let K be a locally compact field of characteristic o and H a K-simple group
isotropic over K. I^et M be a compact open subgroup o/'H(K). Then the kernel of any homo-
morphism of M into GL(%, F), F a field of positive characteristic, is open in M.

Let f : M -> GL(yz, F) be any homomorphism. Let U be any maximal unipotent
K-subgroup of M and T a K-split torus normalising U. Let B==TU. Then B is a
solvable group. The Zariski closure of f^B n M) is again a solvable group. It follows
that we can find a subgroup B^ of finite index in B n M such that f^B-s,) can be put in
triangular form (over the algebraic closure of F). Consequently [B^, B^] consists of
unipotents. It is not difficult to see that [B^, BJ contains an open subgroup U' of
M nU. NOW^CII') consists entirely of unipotents. Since F has positive characteristic
(=^,say), (/(^))P"==I for all xeV. Thus the set {xpn\XEV} and hence the group U"
generated by it is in the kernel of f. Evidently (since characteristic K==o), U" is
open in UnM. Now as U varies, we get different U" which together are easily
seen to generate an open subgroup of M. This proves the lemma. (The lemma is
probably true without the hypothesis that H is isotropic over K but the present proof
fails to cover that case.)

To deduce the theorem from the lemma we argue as follows: since 0 is finitely
generated, p(0) C GL(%, F'), where F' is a finitely generated algebra over the prime
field, which is a subring of F. We consider two cases separately.

Case (i): p(0) contains an element y one of whose eigen-values X is transcendental
over the prime field.

Case (ii): For all yep(O), the eigen-values ofy are algebraic over the prime field.

We will now show that Case (i) cannot occur. Let F be the algebraic closure
of the prime field in F'. Let Fo=Fg(X) and F* the algebra generated by FQ and F'.
Then F* is a finitely generated algebra over F(). Let a : F*->FQ be any homomorphism
of F* into a finite extension Fo of F() which is identity on Fg. (Such a 9 exists by the
Nullstellensatz.) If we now regard p as a homomorphism of$ in GL{n, F*), we obtain,
composing with a, a homomorphism pi : 0->GL(^, Fo). From our choice of a it is
clear that pi^) is infinite. Moreover p^O) is contained in GL(TZ, A) where A is the
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ring of T-integers for a suitable finite set of valuations T on F^. Now if we denote
by A (A) the ring of T-adeles, pi defines a continuous homomorphism

^: $(S,<z)^GL(^,A(A)).

Now since G(S, G) is finite, we can find an open compact subgroup Ac6(S, a) such
that A nC(S, G) is trivial. Then A is isomorphic to an open compact subgroup of 6(S, c).
Again passing to a subgroup of finite index we can assume that A is of the form Tl M

z^s u ?

M^ a compact open subgroup of G(^). Let TT : GL{n, A(A)) -^GL(^, K) be the
projection onto any one of the local factors; since ^\GH^A) ls injective it suffices to show
that Tc(pi(A)) is finite. For this again, it suffices to show that 7r(pi(MJ) is finite for
all v and trivial for almost all v. The finiteness for all v is proved in Lemma (7.3).
Now let 38 be the K-linear span of ^(A)) in M(n, K). Then 38 is also the K-algebra
generated by ^Ug 7r(pi(MJ) where Si is some finite set of valuations (with SiUS=0).
It follows that for ^SuS^, 7r(pi(MJ) C centre of 88. This means that 7r(pi(MJ) is
abelian for almost all y^S. Now we know that M^==[M^, MJ for almost all v (Cor-
ollary (5.8)). We see therefore that Tiopi is trivial on almost all M^ (^S). This
covers Case (i).

In order to prove the theorem in Case (ii) we will argue by induction on the length
ofFn as a module over $. We assume in fact—as we may by passing to an extension
of F if necessary — that the composition factors are absolutely irreducible. Consider
first the case when the length of Fn as a 0-module is i. This means that p(0) spans the
entire matrix algebra M(TZ, F). Consider now the smallest subspace E of the space of
all regular functions on GL{n) stable under p(0) and containing the function x h> trace {x).
Since trace {x) is in the algebraic closure of the prime field for all A;ep(0), one sees that
the representation of p($) in E takes p(0) into a finite subgroup of GL(E). We claim
now that if o- denotes the representation of p(0) on E, CT is faithful. In fact if a{x)=i,
we have trace {xy)= tracer) for all J/ep(0) or equivalently trace ({x—i)y)=o for
^ep(O). Since p(0) spans M(%, F), this means that x==i. Since cr(p((]>)) is finite, so is
p(0). To prove the general case we appeal to Corollary (7.3): let V=Fn and WC F"
be a maximal proper O-submodule. Then we have a natural homomorphism (deduced
from p)

^ : 0->GL(W)xGL(V/W).

By the induction hypothesis the kernel of ^ (=0', say) has finite index in 0. Now
p|<^ maps 0' into a unipotent, hence solvable, group. But from Corollary (7.3) any
solvable quotient of O' must be finite. This proves our contention.

Theorem (7.4). — Suppose that G(S, G) is finite for some S and p is a finite dimensional
representation ofG(k) over afield of characteristic o. Then we can find a subgroup G{ky of finite
index in G{k) and a rational representation 'p of R^(G) such that 'p | G(/C)* = P I G(/C)» •
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Let ^ be the set of valuations v of k, v^co, at which G is anisotropic. Then
G(S', G) is finite for all S' D S, S' C V =V-^. If 0 is any S'-arithmetic group, p \^
extends to a rational representation 'p of R^/qG, where 0' is a subgroup of finite index.
It is easily seen that ^ is indeed independent of the choice of S' and 0—this follows
from the fact that 0^ n Og is Zariski dense in G for S.-arithmetic groups 0, with S^ 3 S.
Let G{k)* be the subgroup generated by the collection of groups

{0 |0 S'-arithmetic with S':) S, S'C V, plo^o}.

One sees easily that G^k)* is normal in G[k) and it is open in the S-arithmetic
topology. Now the closure of G{k)* in G(S, c) is easily seen to be a open subgroup
of finite index (Kneser-Tits conjecture for local fields and strong approximation). This
means that for a subgroup YCG(A) of finite index, we have YCG^^A where A is
any S-congruence subgroup. Since S(A)* contains an S-arithmetic group, AnG(&)*
has finite index in A, so that G(k)* has finite index in Y. This proves Theorem (7.4).

Theorem (7.5). — Assume that C(S, G) is finite and that G is isotropic at all y^S. Then
G[k) has only finitely many normal subgroups of finite index.

Let pi and pg be homomorphisms of G{k) in GL(%) with p^(G(^)) finite. We
will show that the natural extensions p^ : G(S, a) —^GL{n) are equivalent if and only
if pt |c(s ,G) are equivalent. One implication is obvious. Suppose p^ and p^ restricted
to G(S, G) are equivalent. Consider the representation pi®p^ (p^=dual of ^). This
representation contains the trivial representation ofC(S, G). Let E be the representation
space of c r=pi®p^ and

'EQ={VEE\G{X)V=V for all ^eC(S, G)}.

Eg is non-zero and stable under G(S, a). Moreover the action of G(S, a) on Eg factors
through G(S, c), and from the Kneser-Tits conjecture for local fields, G(S, c) has no
proper subgroups of finite index. This shows that Eg is a trivial G(S, a) -module
i.e. p^ and pg are equivalent as representations of G(S, a). It follows that pi and pg
are equivalent. It is easily deduced from this that the family of subgroups of finite
index in G{k) are in bijective correspondence with a subset of the family of subgroups
of G(S, G). Since G(S, G) is finite, the theorem follows.

Remarks (7.6). — Most of the results obtained in this chapter overlap with results
obtained by Margulis by completely different methods. Margulis has in fact a much
more satisfactory result—his conclusions are drawn from the hypothesis

S^-rank(G)^2
v£S

whereas the finiteness of C(S, G) is not known for practically most of the pairs (G, S)
with this property. Theorem (7.5), however, does not seem amenable to Margulis5

techniques. It is possible to formulate some of the above results without the hypothesis
that G is isotropic at all v^oo but the formulations are cumbersome — and in any event
the essential ideas of proof would be the same.
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APPENDIX I

ARITHMETIC SUBGROUPS IN UNIPOTENT GROUPS

We collect together some results on unipotent groups which were used in the
main paper. These results are really known though perhaps not set down in print — at
least not in the present form. The first result below is standard commutative algebra.

Proposition (A.i). — Let G be a connected k-group and H a connected k-subgroup. If
G/H is k-isomorphic to a vector space (over k) as an algebraic variety (over k), there is an
isomorphism

0 : G->Hx(G/H)

ofk'varieties such that the Cartesian projection on G/H is the same as the natural map G->G/H.

Definition (A. 2). — A unipotent k-gro\ip V is k-split if it is connected and admits
a filtration

U=Uo3U^.. .3U,=(i)

by connected ^-subgroups U, such that for i<_i<r, U^ is normal in U,_^ and U^_i/U,
is isomorphic over k to a vector space (of dimension i).

Remark (A. 3). — (i) If U is unipotent ^-split, then any connected ^-subgroup is
also ^-split.

(ii) If G is a connected semisimple ^-group, the unipotent radical of a ^-parabolic
subgroup of G is A-split (Borel-Tits [i]).

Corollary (A. 4). — Let V be a connected unipotent split k-group and V be a connected
normal k-subgroup. Then U is k-isomorphic to a vector space (as an algebraic variety). Moreover^
there is an isomorphism

f: (uyv)xv-^u
of k-varieties such that the natural morphism U->U/V coincides with the cartesian projection
composed withf"1.

One argues by induction on the dimension ofU. By the induction hypothesis U/V
and V are A-isomorphic to vector spaces. The second assertion now follows from
Proposition (A. i). The first assertion follows from the fact that any split unipotent
k-group admits a connected (split) ^-subgroup of codimension i.
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Corollary (A. 5). — Let U be a connected unipotent k-group split over k. Let S3 oo be
any finite set of valuations ofk (co being the set of archimedean valuations). Then any ^-arithmetic
subgroup of U is Zariski dense in U for any non-empty S.

Observe that if 0 is a ^-isomorphism of a vector space V on U (as a ^-variety)
with 0(o)==i for any S-congruence subgroup F of U (resp. F" of V), O'^r) (resp.
<I)-1(^/)) contains a S-congruence subgroup of V (resp. U). Similar remarks applied
to an isomorphism of U with U'x(U/U') where U' is a connected normal ^-subgroup
leads us to conclude the following:

Corollary (A. 6). — Let U be a split unipotent k-group and U' a connected normal k-subgroup.
Let n : U-^U/U' be the natural map. Then for each ̂ -congruence subgroup T of U (S 3 oo, etc.),
Tc(r) is an ^-congruence subgroup of U/U'.
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APPENDIX II

Theorem. — Let k be any field and G a connected simply connected absolutely simple
quasi-split algebraic group over k. Let P be a k-parabolic subgroup of G and U the unipotent
radical of P. Let Q be the k-Lie algebra of G and u the (k-)Lie sub algebra of Q associated to U.
Let F C k be the prime field and A the group-algebra of G{k) over F. Then 9 is generated by u
as an A-module (Q is a module over A via the adjoint action).

The theorem is easily checked in the special case when A-rank(G)==i: in this
case G is A-isomorphic either to SL(2) or SU(/), the special unitary group of an isotropic
bilinear form / in 3 variables over a separable quadratic extension L of k. One can
verify the theorem in these cases by using these explicit realisations.

We will now deduce the general case from the special case above. Let T be a
maximal A-split torus in P and O denote the system of k-roots of G with respect to T.
We fix an ordering on X(T), the group of characters on T, such that ae0 is positive
if the root-space g" of a is contained in u. Let A be the system of simple roots for this
ordering. Let P^ be a minimal ^-parabolic subgroup determined by T and this ordering.
Let Pf be the (unique) opposite A-parabolic subgroup to Pi which contains T. Let Ui
(resp. Uf) be the unipotent radical ofP^ (resp. P -̂) and u^ (resp. uf) the Lie subalgebra
of Q corresponding to Ui (resp. U^-). Then u (resp. uf) is the sum of root spaces g"
as a varies over all the positive (resp. negative) A-roots. Now, let V be the smallest
A-submodule of g containing u. Since G(k) acts on Q as A-linear automorphisms, V is
a ^-vector-subspace ofg. Now, given any root ae0, we can find an element weN{T){k)
(where N(T)==normaliser of T) such that Adw{Q^==QW^Cu, hence we see that
UiOur C V. Now for each aeA, let T,, be the identity component of the kernel of a.
Then Z(TJ is a reductive subgroup of G. Let H(a) be the connected semisimple part
of Z(TJ. Then H(a) is a quasi-split simply connected group of A-rank i. Let I) (a)
be the Lie subalgebra of 9 corresponding to H(a) (I)(a) may be identified with the Lie
algebra of H(a) since the inclusion H(a)<-^G is a separable morphism). Moreover,
it is not difficult to see that the sum of the I)(a), aeA, and u^ and u[- is all of g (one
can for instance argue by going over to an extension of k over which G is split). Now
UiH I) (a) is the Lie algebra of the unipotent radical U(oc) of the minimal ̂ -parabolic group
P(a) =UinH(a) ofH(a). Applying the theorem to the rank i-group H(a), we conclude
that VDI)(a). Thus V D u + U - + 2 I)(a)=g. This proves the theorem.

<x e A
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APPENDIX III

Theorem. — Let G be a simply connected semisimple algebraic group defined over Q ,̂. Then
there exists a number field K C Q^ and a group H defined over K which is isomorphic to G over Q^ .

It is easily seen that the theorem is equivalent to the following. Let Q be a
semisimple Lie algebra over Q^. Then there exists a number field K C Q^p and a
(semisimple) Lie algebra I) over K such that Q is isomorphic to I)®KQ.p-

Consider a vector space V over Q^ of dimension equal to diniq (g). Let

V=V®Q%p and E =Hom^(A2V, V).

Let 90 : V—^9 be any Q^-linear isomorphism. Then the bracket operation on g gives
rise to an element fo^TL (through the isomorphism 90). Let X^, . . ., X,. be a basis
of V over Q^ and for ^^i^j^k^r, let

<!>,. : E^V
be the map

W)=/(X,,/(X,, X,))+/(X,,/(X,, X,))+/(X,,/(X,, X,)).

Then the setL of f which define a Lie algebra structure on V is precisely i^i<"^k<^r^>^kl{o)'
On the other hand the group GL(V) operates on E in a natural fashion and we have
the following diagram

GL(V) 4- E -^ n v
l^_i<j<k^_r

where i{x)=x{fo) and the image of i is contained in the fibre of $=={0^}^^^^^^^
over o. Now the tangent space to E at f can be identified with E itself. One checks
that the kernel of d0) at^o is the set of all closed 2-forms on V with respect to the Lie algebra
structure on V defined by^o with coefficients in the adjoint representations; the image
of di (at identity) similarly turns out to be the space of exact forms. Since the Lie
algebra Q is semisimple, H^g, g) =o. It follows that Image A*=kernel rfO (a-t^o). Now
from the implicit function theorem, one deduces that Image i is a neighbourhood of/Q
in (I)"1^) == L and that we can find coordinate projections p-^y .. ., p^ of E (with respect
to the standard basis ofE deduced from X^ . . ., Xy) such that p ==(^i, . . ., pn) '' L-^QJ^
is a diffeomorphism of a (non-singular) open neighbourhood offo in L onto an open
subset ofQJp. Now choose fe Image i such thatj^(y) are algebraic over Q^, i^i^m.
Then we claim that all the coordinates ofy are algebraic over Q :̂ this follows from the
fact that the O^ are polynomials on E with coefficients in Q^. This proves the theorem.

159



REFERENCES

BASS (H.), LAZARD (M.), SERRE (J.-P.), i. Sous-groupes d'indices finis dans SL(n, Z), Bull. Amer. Math. Soc.,
70 (1964), 385-392.

BASS (H.), MILNOR (J.), SERRE (J.-P.), i. Solutions of the congruence subgroup problem for SL(7i) (n^3) and
Sp(2n) (w^2), Publ. Math. I.H.E.S., 33 (1967), 59-I37.

BEHR (H.), i. Endliche Erzeugbarkeit arithmetischer Gruppen liber Functionenkorpern, Inv. Math., 7 (1969), 1-32.
BERNSTEIN (I. N.), KAZDAN (D. A.), i. The one dimensional cohomology of discrete groups. Functional Anal. Appl.,

4 (1970), i-4-
BOREL (A.), i. Introduction aux groupes arithmetiques, Paris, Hermann, 1969.
— a. Density properties of certain subgroups of semisimple groups, Ann. of Math., 72 (1960), 179-188.
BOREL (A.), TITS (J.), i. Groupes reductifs, Publ. Math. I.H.E.S., 27 (1965), 55-151.
—, — 2. Homomorphismes « abstraits » de groupes algebriques simples, Ann. of Math., 97 (1973), 499-571-
CHEVALLEY (C.), i. Deux theoremes d'arithmetique, J . of Math. Soc. Japan, 3 (1951), 36-44.
— 2. Sur certains schemas de groupes semi-simples, Sem. Bourbaki, Expose 219, New York, Benjamin, 1966.
— 3. Sur certains groupes simples, Tohoku J . of Math. (2), 7 (1955), 14-62.
DELAROCHE (C.), KIRILLOV (A.), Sur les relations entre Fespace dual d^un groupe et la structure de ses sous-

groupes fermes (d'apres D. A. Kazdan), Sem. Bourbaki 1967/68, Expose 343, New York, Benjamin, 1969.
DEODHAR (V. V.), i. On central extensions of rational points of algebraic groups (to appear).
DIEUDONNE (J.), i. La geometric des groupes classiques, Berlin, Springer-Verlag, 1955.
— 2. On the structure of unitary groups (II), Amer. J . Math., 75 (1953), 665-678.
GARLAND (H.), i. p-a.dic curvature and the cohomology of discrete subgroups of/»-adic groups, Ann. of Math., 97

(i973), 376-423-
GARLAND (H.), RAGHUNATHAN (M. S.), i. Fundamental domains for lattices in (R-) rank one semisimple Lie groups,

Ann. of Math., 92 (1970), 279-326.
HARDER (G.), i. Minkowskische Reductionstheorie liber Functionenkorpern, Inv. Math., 7 (1969), 33-54.
KAZDAN (D. A.), Connection on the dual space of a group with the structure of its closed subgroups, Functional Anal.

Appl., 1 (1967), 63-65.
KNESER (M.), i. Normal subgroups of integral orthogonal groups in algebraic K-theory and its geometric applications,

Lecture Notes in Maths. 108, Berlin, Springer-Verlag.
LANG (S.), i. Algebraic groups over finite fields, Amer. J . of Math., 78 (1956), 555-563.
MARGULIS (G. A.), i. Discrete Groups of Motions of manifolds of non-positive curvature (en russe), Proc. Intern.

Congress of Math., Vancouver 1974, vol. 2, 21-34.
MATSUMOTO (M.), i. Sur les sous-groupes arithmetiques des groupes semisimples deployes, Ann. E.J^.S. (4), 2 (1969),

1-62.

MENNICKE (J.), i. Finite factor groups of the unimodular group, Ann. of Math., 81 (1965), 3I-37.
— 2. Zur theorie der Siegelsche Modulgruppe, Math. Ann., 159 (1965), 115-129.
MOORE (C. C.), i. Group extensions of/?-adic and adelic linear groups, Publ. Math. I.H.E.S., 35 (1969), 5-70.
PLATONOV (V. P.), i. The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups,

Math. USSR-Izvestiya, 3 (1969), 1139-1147.
— 2. Maximal arithmetic groups (to appear).
— 3. To appear.
RAGHUNATHAN (M. S.), i. Cohomology of arithmetic subgroups of algebraic groups: I, Ann. of Math., 86 (1967),

409-424.
— 2. Cohomology of arithmetic subgroups of algebraic groups: II, Ann. of Math., 87 (1968), 279-304.
— 3. Discrete Subgroups of Lie groups, Berlin, Springer-Verlag, 1972.
— 4. A note on the Kneser-Tits conjecture for global fields (to appear).

160



ON THE CONGRUENCE SUBGROUP PROBLEM 161

SERRE (J.-P.), i. Le probleme des groupes de congruence pour SLg, Ann. of Math., 92 (1970), 489-527.
— 2. Cohomologie des groupes discrets, in Prospects in Mathematics, Princeton, 1970.
STEINBERG (R.), i. Variations on a theme of Chevalley, Pacific J . of Math., 9 (1959), 875-891.
— 2. Generateurs, relations et revetements de groupes algebriques, Colloque de Bruxelles (1962), 113-127.
— 3. Lectures on Chevalley groups, Yale University, 1968.
TITS (J.), i. Algebraic and abstract simple groups, Ann. of Math., 80 (1964), 313-329.
— 2. Classification of algebraic semisimple groups, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., 1966.
VASSERSTEIN (L. I.), i. Subgroups of finite index in Spin groups of rank 2 (Russian), Mat. Sbornik, 75 (1968), 178-184.
WALL (G. E.), i. The structure of a unitary factor group, Publ. Math. I.H.E.S., 1 (1959).
WANG (S. P.), i. The dual space of semisimple Lie groups, Amer. J . Math., 91 (1969), 921-937.
WEIL (A.), i. Discrete subgroups of Lie groups, II, Ann. of Math., 75 (1962), 578-602.
— 2. Adeles and algebraic groups. Institute for Adv. Study, Princeton, 1961.
— 3. Remarks on the cohomology of groups, Ann. of Math., 80 (1964), 149-157.

Tata Institute of Fundamental Research,
Bombay-5, India.

Manuscrit refu le 20 avril 1974,

Revise le 25 janvier 1976.

161
21


