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THE ALGEBRAIC TOPOLOGY OF SMOOTH
ALGEBRAIC VARIETIES

by Joun W. MORGAN

Introduction.

Let V* be a smooth, algebraic variety in CY. Any point p in C¥—V* can be
used to define a smooth, real-valued function d, : V>R, d,(v)=|lv—p||. According
to ([8], page 39), d, is a nondegenerate Morse function for an open dense set of peCN.
The number of critical points of 4, can be bounded above by the degrees of the polynomials
used to define V. In particular there are only finitely many critical points. Each
critical point has index <k. Thus V¥ which is an open smooth manifold of real
dimension 2k, is homotopy equivalent to a finite GW-complex of dimension 2. In
this paper we study which CW-complexes arise in this manner up to homotopy equivalence.
A subsidiary question to the question about the possible homotopy types for smooth
varieties is Serre’s question: which finitely presented groups appear as the fundamental
group of a smooth variety?

We by no means give complete answers to these questions. Rather we study
conditions imposed on certain algebraic topological invariants by supposing that the
space under consideration is a smooth algebraic variety. The algebraic topological
invariants that we consider are rational invariants in the sense that they are functors from
CW-complexes to algebraic structures on rational vector spaces. Examples are the
rational cohomology ring H*(V; Q), the tower of nilpotent quotients of the fundamental
group, the rational homotopy groups with the Whitehead product, considered as a
graded Lie algebra, and the rational cohomology rings of various stages in the Postnikov
system for V. We find that the assumption that V is a smooth algebraic variety implies
that these invariants have, in a natural way, enhanced algebraic structure. They
become algebraic objects (algebras, Lie algebra, etc.) in the category of rational vector
spaces with mixed Hodge structures.

Generalizing the classical notion of Hodge structures, Deligne introduced mixed
Hodge structures in [3]. In [4] he expanded the proof that the cohomology of a smooth
projective variety carries a Hodge structure by showing that the cohomology of a smooth,
open variety carries a mixed Hodge structure. In this paper we generalize Deligne’s
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results to include further algebraic topological invariants. We do this using his argument
as a model. He proceeds by defining certain filtrations on the differential forms of
an open variety, showing a spectral sequence degenerates, and then deducing the
existence of a mixed Hodge structure on the cohomology. We examine the steps in
his argument and show that his filtrations behave nicely with respect to the wedge
product and differentiation of forms. These operations are interesting for the following
reason. Sullivan [11] showed that from the differential algebra of forms on a manifold
one can algebraically recover all the real (or rational) algebraic topology (including
all the invariants mentioned before). Once we know the relation of Deligne’s filtrations
to the differential algebra structure of forms, we are in a position to carry the filtrations
through Sullivan’s theory.

The central object in Sullivan’s theory is the minimal model. This is a differential
algebra constructed from the differential algebra of forms on the manifold. It is. unique
up to isomorphism (!) and is equivalent to the real form of the rational homotopy type
of the manifold. (Two simply connected spaces have the same rational homotopy
type if and only if there is a third space to which they both map by maps inducing
isomorphisms on rational cohomology. In the extension of this notion to non-simply
connected spaces, one must allow the third space to be replaced by an inverse system
of spaces, see [1].) Deligne’s filtrations produce a family of mixed Hodge structures
on the minimal model. This family is parameterized by the automorphisms of the
minimal model homotopic to the identity. Thus, when we take an algebraically derived
invariant of the minimal model which is unique up to canonical isomorphism, that
invariant carries a canonical mixed Hodge structure. The four examples of algebraic
invariants given earlier all receive their mixed Hodge structures in this manner.

In the case of the cohomology ring the existence of a mixed Hodge structure,
though extremely important for other questions, does not impose any conditions on
the underlying ring. But in the case of the Lie algebras associated either with the
fundamental group or the higher homotopy groups, it does. For example, the tower
of rational Lie algebras associated to the nilpotent quotients of the fundamental group
is isomorphic to the tower of nilpotent quotients of a graded Lie algebra. Moreover,
the indexing set for the grading is the negative integers. The existence of this grading
with negative ‘“weights” is a non-trivial homogeneity condition on the relations in the
Lie algebra.

All these results concerning the existence of mixed Hodge structures are derived
from the theory of differential forms on a compact Kihler manifold. This theory,
of course, applies directly to a smooth projective variety. Beginning with an affine
variety we can form its projective version. This projective variety need not be smooth,
even if the original affine variety is. However, using Hironaka’s resolution of
singularities [6], we can find another projective variety which is smooth, and which

(1) This isomorphism is not a canonical one but is well defined up to homotopy.
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contains the given affine variety as the complement of a union of smooth divisors with
normal crossings. This is the requisite connection between compact Kéhler manifolds
and smooth affine varieties. Once we have this, it is simply a question of linear algebra
to deduce from the Hodge theory on compact Kdhler manifolds the stated results about
mixed Hodge structures.

From this point of view, there is no reason to restrict attention to affine varieties.
Any abstract smooth variety can be found as the complement of a union of divisors
with normal crossings in a smooth compact variety, and Hodge theory is valid for compact
varieties, not just projective ones. Consequently, our results are equally valid for any
open, smooth variety.

This paper may be viewed, not only as a generalization of Deligne’s work on the
cohomology of open smooth varieties, but also as a generalization of [5]. There it was
proved that the rational homotopy type of a compact Kéhler manifold is determined
by its rational cohomology ring. Such a statement is not true in general for open
varieties. The correct generalization of this result is given in terms of the Hironaka
completion. Let VCV be the complement of a divisor with normal crossings in a
non-singular, compact variety. Let D be the divisor and D? its subvariety of points
of multiplicity p. Define D? to be the normalization of D? for p> 1, and to be V for
p=o0. The rational homotopy type of V is determined by:

1) the cohomology groups of the D?, p=o,
2) the multiplication maps H(D?)®@H(D?) -~ H(D?*9) for p, g2 0, and
3) the Gysin maps H(D?) -~ H(D?-).

Deligne, in [4], showed that if one takes the Gysin spectral sequence associated
to V—D, then the E, term is the cohomology of the various “pieces”, d, is the Gysin
map, and E,=E_. Furthermore, he produced a natural isomorphism between E_
and H*(V) (over the complex numbers). Thus we can regard {E,, d;} as a differential
graded algebra whose cohomology coincides with that of X. In this paper we prove
that the minimal models of {E,, d,} and of the differential forms on V are isomorphic.
This isomorphism is canonical (up to homotopy) over G, but also exists over Q.

If we consider this theorem for the special case V=V, then we find the main
result of [5]: for a compact smooth variety the minimal models of the cohomology ring
and of the differential forms are isomorphic.

In general we see that the homotopy theoretic complexity of an open smooth
variety is no greater than the homological complexity of any Hironaka completion
for it. As an example of this, let V be an affine variety which is the complement of
a smooth hyperplane section of a smooth projective variety. The rational cohomology
ring of V determines its rational homotopy type.

The equivalence of minimal models above imposes further restrictions on the
possible rational homotopy types of smooth varieties beyond the homogeneity conditions
already mentioned. Let us use the tower of rational nilpotent Lie algebras associated
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with the fundamental group to illustrate. We already know that the tower is isomorphic
to the nilpotent quotients of a graded Lie algebra with negative weights. The new
results tell us that we can take this graded Lie algebra to have generators of weights —1
and —2 and relations of weights —2, —3, and —4. That these are the only possible
weights corresponds to the fact that the only possible weights of the mixed Hodge structures
on HY(V) and H?2(V) are respectively {1, 2} and {2, 3,4}. Consequently, once we
know the graded Lie algebra modulo its fifth order commutators, we can construct
the complete tower of graded, nilpotent Lie algebras. This contrasts sharply with Serre’s
result that any finite group is the fundamental group of a smooth variety ([10], § 20).

The paper is divided into two parts. The first comprises sections 1, 2, and 3.
It deals with various filtered algebras of differential forms associated to a smooth variety.
The main results are amalgamated into a mixed Hodge diagram of differential algebras
in section 3. The second half of the paper, sections 4-10, deals with the minimal model
of a mixed Hodge diagram. Here we study the various mixed Hodge structures that
result on invariants derived from the minimal model. This discussion is valid for any
mixed Hodge diagram, not just those which arise from forms on a smooth variety. These
sections are really just exercises in the complicated linear algebra of certain filtered
differential algebras.

Section 1 is a review of filtrations, gradings, differential algebras, and spectral
sequences. We also give Deligne’s definition of a mixed Hodge structure there. Section 2
and 3 produce the various algebras of differential forms associated to a smooth variety
and study some of their basic properties. In section 2 we work topologically and
construct a rational algebra with a filtration associated to a union of divisors with normal
crossings DCV. We show that the algebra calculates the cohomology (and in fact
the homotopy type) of the complement X =V —D. The filtration leads to a spectral
sequence generalizing the Gysin long exact sequence for X=V—D. The E, term is
the cohomology of the various “pieces” and d; is the Gysin map. In section g we
recall Deligne’s work in case V and the D, are compact, smooth algebraic varieties.
He found a complex algebra of forms which not only has the complex analogue of the
topological filtration in section 2, but also has a Hodge filtration. Using both, and
Hodge theory for compact varieties, he was able to show that the Gysin sequence
degenerates at E, in the algebraic case.

Section 4 extracts certain properties that Deligne’s filtered algebras have with
respect to the differential and wedge product. It is these technical results that eventually
let us pass to homotopy theory. Section 5 is a review of Sullivan’s theory relating
homotopy types and differential algebras. In particular we consider the existence and
uniqueness for his minimal model.

Sections 6, 7, 8 contain the heart of the matter. In them we use the technical results
of 4 to pass from the differential algebras of forms to the minimal model (i.e. homotopy
theory) carrying along the filtrations of sections 2 and 3. Section 6 is the purely complex
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discussion. We show that the natural bigrading on the complex cohomology of a
smooth variety, coming from its mixed Hodge structure, extends to a bigrading of the
complex minimal model. The resulting bigraded minimal model is unique up to
isomorphism and functorial up to homotopy preserving the bigradings. Section 7 is
a rational discussion. There we show that the filtration on the Q-forms of a smooth
variety passes to a nice filtration on the minimal model. This filtration on the minimal
model is characterized, up to isomorphism homotopic to the identity, by certain internal
properties and its effect on cohomology. This filtered minimal model is also functorial
up to homotopy compatible with the filtrations. Section 8 pieces the Q-filtration and
the C-bigrading of the minimal model together to form a mixed Hodge structure.
Even though both ingredients are unique up to isomorphism, the resulting mixed Hodge
structure will change as we change the isomorphism between the complexification of
the Q-minimal model and the C-minimal model. Thus we have not one mixed Hodge
structure on the minimal model, but a family of them.

Sections 9 and 10 translate the algebraic results of sections 6, 7 and 8 into more
classical homotopy theoretic language. In section g we deduce the existence of mixed
Hodge structures on many algebraic topological invariants, including the ones mentioned
at the beginning of the introduction. We also consider the resulting bigradings these
mixed Hodge structures give on the complex invariants. This section contains a proof
of the equivalence of the complex minimal model for X and the minimal model of
the E; term of the complex Gysin spectral sequence for V—D=X. In section 10
we turn to the rational homotopy theory and show that this equivalence of minimal
models also exists (unnaturally) over Q. We also give the proof that the complement
of a smooth hyperplane section has the rational homotopy type determined by its cohomo-
logy ring. 'This is a consequence of the Lefschetz theorems for hyperplane sections.

1. Filtrations and Mixed Hodge Structures - Generalities.

This section outlines some general results about vector spaces and differential algebras
with filtrations. We begin by introducing those definitions and elementary lemmas
required in the sequel, and then turn to Deligne’s theory of mixed Hodge structures. Most
of the results in this section are contained in either ([4] chapters 1 and 2), or ([5] chapter 1).

For us, a differential graded algebra, or differential algebra for short, over a field %
(k=Q,R, or C almost always) is a graded vector space over &, A= 1GjoA", with a

differential, d: A*— A'*1 and a product A'® A A APti) satisfying:
a) d*=o,
(x.1) b) d(xAy):dx{\_?z+(—I)‘anjz ff)r xeA’,
¢) xAny=(—1)"Ipax for xeA' and yeA,
d) A makes A an associative algebra with unit, 1€A°.

A’ is the component of degree i in A.
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A is connected if A%is the ground field. It is 1-connected if, in addition, A'=o0. The
cohomology of A, H(A), is a graded algebra which can be made a differential algebra
by defining d to be zero. We will always assume that H%(A) is the ground field. Unless
explicitly stated to the contrary, we also assume H'(A) is finitely generated for each i.

If V is a graded vector space, then the free graded-commutative algebra generated
by V is denoted A(V). IfV is homogeneous of degree r, then A(V) (also denoted A(V"))
is the symmetric algebra S(V) when 7 is even and is the exterior algebra when r is odd.

The algebra A(V) is generated in positive degrees when V is non-zero only in the
positive degrees. The augmentation ideal of a connected algebra A, #(A), is i6>90 A, The

indecomposables are the quotient £(A)/(F(A)A F(A)). We denote the indecomposables
by I(A). For A=A(V) we have a natural identification of graded vector spaces
I(A)=V.
A decreasing filtration on V, F(V), is a sequence of subspaces:
V=F(V)DF"*{(V)D...DF*(V)=o.
An increasing filtration, W(V), is a sequence:
0=W,(V)CW,, (V)C...CW,(V)=V.

Throughout this paper F will be a decreasing filtration and W will be an increasing
one. Notice that we assume all filtrations to be of finite length, unless otherwise specified.
In the case of an infinite filtration W(V) we always require that UW;(V)=V. We

state results here for decreasing filtrations; there are obvious analogues for increasing
filtrations. :

The associated graded object to F(V), Grp(V), is F(V) [F*+1(V). Given two filtered
vector spaces (X, F(X)) and (V, F(V)), or (X, F) and (V, F) for short, a homomorphism
f: XV is compatible with the filtrations if f(F{(X))CF/(V). The map is strictly
compatible, if in addition, f(X)NF(V)=f(F(X)). In terms of elements, the extra
condition for strictness is the following:

(veF(V) and v=f(x)) = (v=f(x") for some x'eF(X)).

If V is a vector space over 2 and %’ is a field extension of %, then any filtration F(V)
defines a filtration on V,, by F(V,)=(F(V)),. Here V,=V®,%. For a map
f: X-V to be compatible (respectively strictly compatible) with filtrations, it is necessary
and sufficient that f®,Id, be compatible (respectively strictly compatible) with the
extended filtrations.

If XCV, then any filtration on V, F(V), induces a filtration on X and on the
quotient V/X by:

F(X)=F(V)nX and F(V/X)=Im(F(V)).

Itis an easy lemma ([4], (1.1.9)) thatif X;CX,CV and if V has a decreasing filtration,
then the two naturally induced filtrations on X,/X; agree. (First, induce a filtration
on X, and then take its quotient, or induce a filtration on VX, and restrict it to X,/X;.)
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(x.2) In particular, a filtration on a cochain complex induces a unique filtration
on the cohomology.

Given filtrations F(V;) and F(V,), the multiplicative extension to V,®V, is defined
by F(V,®V,) =ZF~%V,)®F%V,). We also have the multiplicative extension

of F(V) to the tensor algebra of V, T(V) by:
F(Ti(V))= X FYV)®...®F4\V).

a+...+a =1
This induces a filtration on the quotient A(V). In either case, it is the unique filtration
on S(V) or A(V) extending F(V), such that multiplication S(V)®Si(V) — SiHi(V)
or A(V)®AI(V) - AiTi(V) is strictly compatible with the filtration. More generally,
given a free algebra A=A(V) generated in degrees > o, a multiplicative filtration on A,

F(A), is a filtration on each A’ such that wedge product A'® A A A+ s strictly
compatible with the filtration.

Lemma (x.3). — Let A=A(V), where V is a graded vector space non-zero only in positive
degrees.

a) Given a filtration F(V), we form the multiplicative extension F(A). This is a
multiplicative filtration.

b) If F(A) is a multiplicative filtration, then it induces a filtration on I(A)=V. By
restricting this to V* we get a filtration F(V¥).  The filtration F(A) is isomorphic to the multiplicative
extension of F(V) by an automorphism of A which induces the identity on 1(A).

c) If F(A) and ¥'(A) are multiplicative filtrations which induce the same filtration on I(A)
and if F(A)CF'(A), then F(A)=F'(A).

Proof. — a) is straightforward.

¢)=b): Given F(A) and the induced filtrations on I(A) and V*, it is possible to
choose maps o, : Vi~A such that V"i‘;A—>I(A) is the inclusion of V!CI(A), and
such that ¢;(F/(V)) CF/(A). We use the {¢;} to define ¢ : A(V)—>A. The map ¢
is an isomorphism of algebras. If we let F(A(V)) be the multiplicative extension
of the F(V%), then ¢ is compatible with the filtrations. Applying ¢), we conclude that
¢ is an isomorphism of filtered algebras.

¢) We prove by induction on ¢ that F(A")=F’'(Af). Suppose we know this for
1<n—1. We have an exact sequence:

D (AeA)YSAS D Vo

,j<n—1 {i|k;=n}
iti=n

The filtrations agree on D (A‘®A/) and on V" and wedge product as well as p
B, j<n—1

is strictly compatible with both filtrations. It follows easily that if F(A") CF*(A")
for all 7, then Fi(A™)=F"(An"). ‘
A decreasing filtration F(V) yields an increasing filtration F,(V*), (V*=Hom,(V, £)),
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by F,(V*)={¢ : V—>£k| ¥t (V))=0}. We change this to a decreasing filtration by
setting F{(V*)=F_,(V*). This is the dual filtration. If V, and V, have decreasing
filtrations, then Hom(V,, V,)=Vi;®V, receives the multiplicative extension of the
dual filtration on V; and the filtration on V,. More directly:

F(Hom(Vy, Vy))={¢ : V1= V,|Va, o(F(Vy)CF*(Vy)}
A decreasing filtration of a differential algebra A, F(A), is a decreasing filtration of
each component A’ such that both d: A*>Ai+! and A : A"® A - Ai*J are compatible

with the filtrations. By (1.2), H(A) receives a filtration induced from F(A), F(H(A)).
Such a filtration gives rise to a spectral sequence, { EP'%(A), d,},>,:

!

|a) EP9(A)= {xeFP(AP+9) | dxeFP+7(APT e+
r —{xeFP+1<Ap+q) (e FPF7 (AP T TFI)] 1 JF- T H A FH(APFY)

b) d, : E»9(A) - E?*tne="+1(A) is the map induced by d; it gives E (A) the
(x.4) structure of a differential algebra.

¢) EP?=Grj(A?*%) and d, is the map induced on associated graded objects.
d) Er3 (A)=H(EP?% with respect to the differential operator d,.
e) EZ7is naturally identified with F?(H?*4(A))/F? +1(H?+1(A)).

Lemma (x.5) ([4], (1.3.2) and (1.3.4)). — Let F(A) be a decreasing filtration on
a differential algebra, and let { EF'4(A)} be the resulting spectral sequence. {E,(A)} degenerates
at E,, that is E(A)=E, ;(A)=...=E_(A), if and only if FP(A)NdACIF?~**1(A)
Sor all p.  In particular E,=E_ if and only if d is strictly compatible with F(A).

Example. — Let & be the complex valued G®-forms on a complex manifold. Let
F?(&) be all forms which can be written locally near any point as Zdz,-l/\ .. .Adz,-p/\m
in a local holomorphic coordinate system. The filtration F(&) is the Hodge filtration,
and Grﬁ(ﬁ):(@o éP% where 677 is the space of forms of type (p,¢q). We have

d=0+2 where 3:&"7—>&+"1 and 3: 71— 1+ In the associated spectral
sequence EPY(&)=&P9 and dy=0. Thus E;=H;(&), the d-cohomology of &.
If the complex manifold is a compact Kihler manifold, then E;=E_ ([12], [5]). This
means that 4 : &—¢& is strictly compatible with F(&). As a special case of this, a
closed (p, o)-form (i.e. a global holomorphic p-form) is exact if and only if it is o.

Definition. — Let (A, F) and (B, F) be filtered chain complexes. An elementary
quasi-isomorphism from (A, F) to (B,F) is a map p : A—>B which is compatible with
the filtrations and which induces an isomorphism E}*(p) : Ep*(A) — Ep*(B). More
generally (A, F) and (G, F) are quasi-isomorphic if there is a finite chain:

(A’ F)Z(AO: F): (A19 F): ERY) (Ara F):(C’ F)

and elementary quasi-isomorphisms from each (A;, F) to either its predecessor or its
successor.

144






