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ERGODIC THEORY
OF DIFFERENTIABLE DYNAMICAL SYSTEMS

by Davip RUELLE

Dedicated to the memory of Rufus Bowen

Abstract. — If f is a C'** diffeomorphism of a compact manifold M, we prove
the existence of stable manifolds, almost everywhere with respect to every f-invariant
probability measure on M. These stable manifolds are smooth but do not in general
constitute a continuous family. The proof of this stable manifold theorem (and similar
results) is through the study of random matrix products (multiplicative ergodic theorem)
and perturbation of such products.

o. Introduction.

Let M be a smooth compact manifold, f a diffeomorphism, and p an f~invariant
probability measure on M. The asymptotic behavior for large z of the tangent map T, /"
is determined for p-almost all x by the multiplicative ergodic theorem of Oseledec [11].
This theorem (see (1.6) below) is a sort of spectral theorem for random matrix products.
It treats the ergodic theory of the diffeomorphism fso to say in linear approximation. The
aim of the present paper is to tackle the nonlinear theory, and our main result is an “ almost
everywhere > stable manifold theorem (see Theorem (6.3)). This theorem says that
for p-almost all x, the points y such that the distance of f”x and f"y tends to zero at a
suitable exponential rate (when n—>-+ o) form a differentiable manifold (). The
proof goes via a study of perturbations of the matrix products (Theorem (4.1)) occurring

b

in the multiplicative ergodic theorem. The proof of the multiplicative ergodic theorem
given by Oseledec is not appropriate for our discussion, and we use a proof due to
Raghunathan [15]. A version of this proof is reproduced in Section 1.

We have included in the present paper some results of general interest, which
fitted naturally, but are not needed for the proof of Theorem (6.3). The reader who
only wants to get to the stable manifold theorem may thus omit Section g and the

() That something like this should be true was suggested by Smale in [20].
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28 DAVID RUELLE

Appendices B and C. We have not tried to present all our results in the greatest gene-
rality. Since the articulation of the proofs is reasonably simple, the reader should be
able to obtain further results without too much work.

Our theorem (6. 3) is very close to results of Pesin ([12], [13], [14]) who has a stable
manifold theorem almost everywhere with respect to a smooth invariant measure,
assuming that such a measure exists. Our techniques are however rather different
from those of Pesin. We refer the reader to the monograph of Hirsch, Pugh and
Shub [6] for the much studied case where a continuous splitting of the tangent space
exists.

The present paper originated in an attempt at proving certain conjectures on the
asymptotic behavior of differentiable dynamical systems. These conjectures, presented
in [18], generalize results obtained for Axiom A systems (see [19], [16], [2]). The
results obtained here constitute a preliminary step towards proving the conjectures
of [18]. Another step is contained in [17] (see also Katok [8]). Ultimately, this
work should serve to determine the measures which describe hydrodynamic turbulence,
and more generally the asymptotic behavior of dissipative physical systems.

(0.x) Note on the multiplicative ergodic theorem.

Besides its applications to differentiable dynamical systems, the multiplicative
ergodic theorem has applications to algebraic groups. The idea is due to Margulis
(see Tits [21]), and involves extending the theorem to local fields. The original proof
of the multiplicative ergodic theorem is due to Oseledec, and applies to flows as well
as maps. In view of the applications to algebraic groups, Raghunathan [15] devised
a simpler proof, based on a theorem of Furstenberg and Kesten [4]. This theorem
in turn is a corollary (Corollary (1.2) below) of Kingman’s subadditive ergodic
theorem ([9], [10]) (see Theorem (1.1) and Appendix A). An extension of the sub-
additive ergodic theorem to quasi-invariant measures has been obtained by Akcoglu
and Sucheston [1], and would permit a similar extension of all our results. While
Raghunathan’s results apply to maps, an extension to flows, following the ideas of Oseledec,
is easy, and carried out in Appendix B (%).

(0.2) Terminology.

Here are a few definitions which might be helpful for what follows.

A class T of subsets of a space M is a c-algebra if JeX, and if X is stable under
countable intersections and complementation (Xt M\X).

A (finite) measure space (M, Z, p) is a space M with a oc-algebra X of subsets
(measurable sets) and a countably additive function p:X—R, . The function p is

(*) I am indebted to A. Connes, M. Herman, and D. Sullivan for pointing out to me the literature on the
subadditive ergodic theorem, and in general for encouragement in writing the present paper. I also want to thank
J. Tits who informed me of the work of Raghunathan.
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 29

a (finite positive) measure. We also assume completeness: if p(X)=o0 and YCX then
YeX (and p(Y)=o0). If o(M)=1, we say that (M, Z, p) is a probability space, and o
a probability measure.

Let M be a topological space; the elements of the c-algebra generated by the open
sets are called Borel sets. In particular, if M is compact metrizable, and p is a positive
Radon measure on M, one can define p(X) when X is a Borel set. A measure
space (M, Z, p) is then defined where the measurable sets are all the sets XUN with
NCY, X and Y Borel, and p(Y)=o.

Let S be a topological space and M a measure space (resp. a topological space).
A map ¢: M-S is called measurable (resp. Borel) if ¢~ '@ is measurable (resp. Borel)
for every open @ CS. These definitions extend to sections of fiber bundles, using local
trivializations. As usual a map from a measure space to a measure space is measurable
if the inverse image of a measurable set is measurable.

1. Some basic results.

In this section (M, Z, p) is a fixed probability space, and t: M—M is a measurable
map preserving p. Almost everywhere means p-almost everywhere.
We denote by f* the positive part of a function f:f*(x)=max(o, f(x)).

Theorem (x.1) (Subadditive ergodic theorem).
Let ( f,),o be a sequence of measurable functions M—~RU{—c0} satisfying the conditions:

a) integrability: fiTeL}(M, p);
b) subadditivity: f,, ., < fu-+Sio®" a.e.

Then, there exists a =-invariant measurable function f:M—>RU{—ow} such that

Sreli(M, p),

lim 1jﬂ,zf a.e.,

n-—>won

and lim * [ w)etd) = int X [ w)e(de) = [ Sw)elan).

n-—>0n

This is one version of Kingman’s theorem (see [10], Theorem (1.8)). In
Appendix A we reduce Theorem (1.1) to another version, for which an easy proof has
been given by Derriennic [3].

Corollary (x.2). — Let T: M—>M,, be a measurable function to the real m X m matrices
such that ‘

log™||T(-)||eLY(M, p).
Write Ti=T(t""'x).---.T(wx).T(x).
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30 DAVID RUELLE

Then there exists a v-invariant measurable function y:M—>RU{—o0} such that
2 eli(M, o),

lim * log]| T2 = x(x)
JSor almost all x, and
Jim, [ log T2/ lo(ds) — it [Log]| T2e(dx) = [ x(x)o(c).

This is proved by taking f,,(x);-log][TQI[ in Theorem (r.1).

Proposition (x.3) (). — Let (T,),~o be a sequence of real mXm matrices such that
(x.1) lim sup ~log|| T, || <o.
We write:
T™=T,..--.T;. T

and assume that the limits:

lim ~ log|| (T")A1]|

n—>wpn

exist for g=1, ..., m. Then:

a) hm (Tn*Tn)1/2n:A

7 —>

exists, where % denotes matrix transposition.

b) Let exp NI<. .. <exp A" be the eigenvalues of A (real A7), possibly \V=—o0), and
UW, ..., U the corresponding eigenspaces. Writing VO ={o} and V" =UM4 . 4+ U,
we have:

lim ~log || T"u||=A"  when ueVO\Vr-D
n—»oon
Sor r=1,...,5.

(1) If the assumptions of the proposition are satisfied, and det A 5% 0 (i.e. A; > —o), (1.1) can bereplaced by
1 1
1' - = i - ], =1 = .
”mzonlogHT,,H "hmwn og||Tp||=0

,

N
(In view of a), lim L % log|det T, | =log det A, hence lim 1log|det T,|=0, and since
No>wNgjZg o
ITa|[<[|Tpl[™=1/|det Ty,

we have limsup£10g|]T;1]|So).
n—>o N
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 31

Let t<...<#™ be the eigenvalues of (T™T"'. By assumption, the limits:
I - I
lim-log Il #P=1im ;Llog || (T™)Ae]

n-—>co Nl p=m—gq+1

exist for ¢=1, ..., m, and therefore also the limits:

lim ~log £ =

n-—>0on

for p=1,...,m. Let AW<...<A¥ be the distinct ¥”, and U be the space spanned
by the eigenvectors of (T™T")'? corresponding to the eigenvalues #® such that

.1
(x.2) lim - log #P'= ",
n—>on

We interrupt now the proof of Proposition (1.3) for a lemma. For simplicity
we shall assume that AUz —oo.

Lemma (x.4). — Given 3>o0, there is K>o0 such that, for all k>o,
(x.3)  max{|(s,u)|: ueUD, w'eUr),, ||u]|=||¢'|| = 1 }<K exp(—n(|x"—2A"|-3)).
We first prove (1.3) for r<r'. Equivalently, it suffices to prove that, if #*, is

the orthogonal projection of uetgrU,(,‘) in IET,U;’J)F % then

(r-4) 17, [| <K[u|| exp(—n(a"'—2"—3)).

It will be convenient to assume 3 less than all [A")—A"| for r+7’, and to write
3*=3/s. In view of (1.1) there is C>o0 such that, for all n,

log|]Tn+1[|§C+n§.
For large n we have thus:
<UT,p ol 1T u]|

< exp(C —}-n%) lud] exp(n()\(’)—}— %))

If n is so large that C‘””-F%Sﬂ%, this gives:
o5 || < ||ul] exp(—n(\")—2"—8§%).
From this we obtain in particular:
H”’r‘,r+1“_<_j§:l|u|lexp(—(n+j)(;\(r+1)__)\(r)__8*))
<K, ||| exp(—a(a+1—2a"—8))
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32 DAVID RUELLE

with K;=(1—exp(— A" *Y—A"—5"))~1 Therefore also:

k—1
HvI:,r+2H§j§0HuH CXp(—(n—[—j)()\(f+2)_;\(r)_8*))
k—1

+ 3 K, [|ul| exp(—n(a +I—xI—8)) exp(—(n-7) (A +—ar FI—3))
i=o

<Ko ||u]| exp(—n(" P =" —257)).
In general:
25 [ <K, [|u]] exp(—n(\")—2A"—(r' —1)3").

Since (r'—r)3*<3, this proves (1.4).

Notice that the lemma gives bounds on the elements of the m xm matrix S of scalar
products between the eigenvectors of (T"*T")'® and those of (T+H*Tr+k)I2  We
have proved up to now the bounds for the elements on one side of the diagonal of S.
The other bounds are readily obtained from the calculation of S*=S~' by the minors
of S. Allowing for change of § and K, it suffices to use the bounds already obtained,
and the fact that all matrix elements are bounded by 1 in absolute value. This conclude
the proof of the lemma.

Lemma (1.4) shows that (U?),., is a Cauchy sequence for each r. Part a)
of Proposition (1.3) follows from this and (1.2). Let U“’:}i_r»rgo UY; (1.3) then
becomes:

max {|(u, )| : ue UM, 2’ eUT, ||u||=]|v'||=1}<K exp(—n(]A"1—2"|—3)).
Therefore we have, for large n, if o+ueU®,
Tn
)\‘v’)—QSSEIOguSX(’)%—QS,
n | ful

hence:

lim Zlog || T u||=A" if weU\{o}

ﬂ—)GDn

and part b) of the proposition follows.

Corollary (x.5) (of Proposition (1.3)). — Let A'<a<A"™+V (put N'+V= 40 if
r=s). Then:

R ={ueR™: ||T"u||<e™ for all n> o0}
is a bounded open neighborhood of o in V.
That RCV™ is clear from Proposition (1.3) b). Furthermore, we have:

lim [|T”u|]e‘”":0

n —> 0
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uniformly for » in the unit ball B of V. Since RCB, there is N finite such that
R={ueV": || T u||<e™ for 0<n<N}

proving the Corollary.

Theorem (x.6) (Multiplicative ergodic theorem). — Let T : M—M,, be a measurable
Sunction to the real m X m matrices such that

(x.5) log™ ||T(-)[|eL}(M, o).

Write Tt=T(<t""'x).---.T(wx).T(x), and use * to denote matrix transposition.
There is TCM suck that ~I'CT, o(I")=1, and the following properties hold if xeT":
a) lim (T3 T7) " =A,

exists.

b) Let exp MN<...<exp N be the eigenvalues of A, (where s=s(x), the N\ are
real, and N may be — o), and UY, ..., UY the corresponding eigenspaces. Let m” =dim UP.
The functions x>\, m" are w-invariant. Writing V®={o} and VI'=Ul ...+ UV,
we have:

lim Zlog |[T"u|| =7 when uweVI\VI—D

n—>wopn

SJor r=1, ...,

According to (1.5) and the ergodic theorem, there is I';CM such that <I',CTY,
o(I'})=1, and

lim Zlog* || T(x"~!x)|| =0 if xel,.

n-—>on
By Corollary (1.2), there is also I'y such that <I',CT'y, o(I'y)=1, and, for ¢=1, ..., m,

lim = log ||(T7)"1||

n-—>wn

exists, and is a t-invariant function of x.
Let I'=I''NnT,. The theorem follows from Proposition (1.3) applied to
T,=T(z""'x) for xel.

Corollary (x.7). — Let xel', uecR™; then:

(1.6) lim  log || Thu|| = %(x, u)

n—>on
exists, finite or —oo. If AeR, the linear space
Vi—{ueR": y(x, u)<A}

is a measurable function of xel.

This is an immediate consequence of Theorem (1.6). We have y(x, u)=2"
if ueVO\VI=1 and V2=U{V?: \"<a}
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34 DAVID RUELLE

Remark (x.8). — (1.6) implies
x(wx, T(x)u) =y(x, u).

In particular T(x)VAC V2| T(x)VOCV®, If A+ —oo, T(x) is invertible and
therefore T(x)VP =V T(x)V2=V2. On the other hand, the U" do not transform
simply under T(x).

2. The spectrum.

As in Section 1, (M, X, o) is a probability space, and t: M—M a measurable
map preserving p; T :M-—>M,, is a measurable function such that

log™[|T(-)[|eLi(M, o).

We write Ti:=T(t""'x)...-.T(wx).T(x). According to Corollary (1.2) and the
multiplicative ergodic theorem (Theorem (1.6) and Corollary (1.%)), there is I'CM
with tI'CT, o(T')=1, such that,if xel', wecan define A,; s=s(x); AN<... <MW=y (x);
U, ..., U8 {0}=VOcVUC...CV®=R";, and the functions ur>y(x, ), A->V2.

Let m=dim U? =dim V?’—dim Vf~Y, The numbers A\ are called charac-
teristic exponents; with the multiplicities m{" they constitute the spectrum of (v, T), or T,
at x. We shall say that V'C ... CVY¥ is the associated filtration of R™. The spectrum
is t-invariant. If p is t-ergodic, the spectrum is almost everywhere constant. In what
follows we shall determine the spectrum of (r, T"), (+7!, T*) and (7, T*~%).

(2.x) Spectrum of (z, TM).
Let T/?: MHM(ZL) be the p-th exterior power of T. We have:
TAP(e"1x). -+ - VTP (1) . TAP(x) = (TT)MP
and lim ((T7) P*(Tr)Ap)lzn = AP,

n —> o

This determines the spectrum of T"? and the associated filtration of R<”).

m

Writing T = @ T"?, we obtain in particular:

p=0
.1 A — GG
}I_I}}onlogH(ch) Il—r:7\¥2;>0mx )‘z .

(2.2) Spectrum of (v—1, T*).

Suppose that T has a measurable inverse, we shall show that the spectrumof (z~*, T*)
is almost everywhere the same as that of (v, T). Let A,= lim (T37173)"*" where
Tr=T*(x"*'x).---.T*(r"'x).T*(x). Since the spectrum of A, is t-invariant it is also

the limit almost everywhere of the spectra of the (T%*T%)'", where

~

T =T (%) T*(xx) . - - . T* (=" 1x).
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 35

The spectrum of T,*T7 is the same as that of T,T,*=T*T%. Therefore the spectrum
of A, is the same as the spectrum of A,.

(2.3) Spectrum of (z, T*~1).

Suppose that T is almost everywhere invertible and that
log™ || T7*(-) [|eL'(M, p).

Define A,= lim (17171 where T7=T*~'(x"~1).---.T*~'(xx).T*"!(x). We have
then XzzA;l. Therefore the spectrum of (t, T*~!) is obtained by changing the sign
of the spectrum of (v, T):A\D=—28~"*1_ The filtration of R™ associated with

(t, T*~") is the orthogonal of the filtration associated with (1, T) :T/’,([)=Vf")l.

3. The invertible case.

In this section, (M, X, p) is a probability space, and =: M—M is a measurable
map with measurable inverse preserving p.

Theorem (3.x). — Let T : M—>GL, be a measurable function to the invertible real
mXm matrices, such that

log* || T(-)[], log™ [|T~*(-)||eL(M, p).
Write:
Tr=T(t""'x).---.T(wx).T(x)
T, =T Yt "x)..--. T (%) . T} (v™ 'x).

There is then ACM  such that A=A, p(A)=1, and a measurable splitting
xHWHS . .. OWE of R™ over A (with s=s(x)), such that

.1 n \
Jim_ - log || Toull =N i ofueWD.

Let again the numbers A/<...<A® with multiplicities m{", ..., m{¥ constitute
the spectrum of (r, T) at x. Let VWC...CVY be the associated filtration of R™.
From Sections (2.2) and (2.3) we know that the spectrum of (77, T~!o7™?) at x consists
of the numbers —A®<...<—Al with multiplicities m!, ..., m!. Let:

A/ S Y
be the associated filtration. .Suppose that we can show that
(3-1) Vi=In Vi ={o}
(3.2) Ve V=R
for r=2,...,s, and almost all x. Then, putting

W =VAvEn
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36 DAVID RUELLE

we obtain:
R*=VIIn(VI 4+ VENN(VELVED A, . AVE
=WloWle. . oW

T

and the theorem holds. It remains thus to prove (3.1) and (3.2).
Define S as the set of those x such that (3.1) does not hold. Given 3>0 and
re[2, s], let S, be the subset of S such that, if x€S,,

(3-3) | Tzu]|<[|u|| exp n(A{ =" +38)  and
(3-4) T ]| <[lu]| exp n(—2 +3)

for all ueVI=YAVE", From (3.4) we get, if xer"S
(3-5) | Tgul| > ||| exp n(A—?)

nd

for all ueVI=YnV{. For xeS,nt"S,, (3.3) and (3.5) yield A7—Ar—1<o93,
Since ¢(S,Nt"S,)—>p(S) we have AV—Ar~Y<2§ for almost all xeS and, since
d is arbitrary, we get po(S)=o0. We have proved (3.1); (3.2) follows because

dim V=Y 4 dim V-7 =m.

(3.2) Spectrum and associated splitting.

The characteristic exponents AV<...<A¥ with multiplicities m{=dim W
constitute the spectrum of (1, T) at x. We call W@®... ®WY the associated splitting
of R™. Notice that the A\) are all finite, and that:

TE)WOD =W r=1, ... s

(See Remark (1.8).)

The spectrum of (r, T"?) at x consists of the numbers p=2n " with
T

0<n,<m{, and 2n,=p. The subspace corresponding to u in the associated splitting

of R('I:‘) is generated by wu;A...Au, where ujeWi'i) and i A =u. (This follows
readily from Section (2.1).) =

The spectrum of (t=%, T~ !ot™!) at x consists of the numbers —AF<. . <—2ll
with multiplicities m®, ..., m{. The associated splitting of R™ is W{®.. o WD

The spectrum of (t, T*~!) at x consists of the numbers —AI<...<—2\! with
multiplicities m®, ..., m{!. The associated splitting of R™ is W 9@... oW
where W=7 is the orthogonal complement of % W{)in R™ (This follows readily
from Section (2.3).) merEr

The spectrum of (171, T*o7~!) at x is the same as that of (r, T). The associated
splitting of R™is W=Y®...®W(=%. (This follows from what has been said of (z, T*~1)
and (7, T~ tor™1).)
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 37

Corollary (3.3). — Define:
v,(x) =max {|(u, u')| : ueWU u'e 2# W), lu||=|v'|| =1}
(put v, (x)=o0 of s(x)=1). Then:
8,(x) =(1—1,(x)*)"*
— : . (—7) —
~ i max{|(u 9)] s e WL, [o]| =1)
N oy
and kLlrglmElog 3,(7"x)=o.
Letindeed p=m{", g=m—p, o+we(WM'?, oxw'e( 2 W) then:
rirEr
(T ") A((T5) 2) || < 8,() [|(T5)" 7] | - ||(T5)" 7'

and it suffices to apply what has been said on the spectrum of T” in Section (3.2).

4. A perturbation theorem.

Theorem (4.x). — Let T=(T,),~o be a sequence of real mXxm matrices such that (*)

(4.1) lim sup ~log || T, || < o.
We write T"=T,.-.-.T,. T, and assume the existence of
(4-2) lim (T"T")"= A

with det A+o0. Denote by "\V<...<A\ the eigenvalues of log A.
Let w>o0 be given and, for T'=(T}),-,, write

IT"=T||=sup || T,— T,|[&"
and T'"="TT,..--.T;. T{. Then there are 3, A>o and, given c>o0, there are B >o,

B.>1 with the following properties:
I IT=T|<3,

43 lim (T2 A
exists and has the same eigenvalues as A (including multiplicity). Furthermore, if P (T’) denotes
the orthogonal projection of A’ corresponding to exp A", and ||T""—T||<3, we have:

(4-4) [[PO(T) —PUT)||[ <A || T'—T"|]

(4-5) B, exp n(A"—e) < || T™"PO(T")|| < B exp n (A" +<).

(*) Instead of (4.1) one could write:
lim ~log || Ty,||=o.
n—>o n
See the footnote to Proposition (1.3).
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38 DAVID RUELLE

If (4.1) holds, it is known (Proposition (1.3) a)) that the existence of the limit (4.2)
is equivalent to the existence of the limits

lim ~ log || (T")"||

n—>on

for g=1,...,m. Since (4.1) and ||T'—T||<+c imply
lim sup%logHT,'LHSo,

(4.3) will follow if we can prove the existence of

lim = log [|(T"")||

n—>wyn

for ¢g=1, ..., m. Furthermore these limits determine uniquely the eigenvalues of A’.
Therefore, to prove (4.3) and the fact that A’ has the same eigenvalues as A, it suffices
to show that

(4.6) lim ~log ||(T"") || = lim ~log ||(T")"||.

n—>on n->wn

Let o<%'<% and define:

1T~ T = sup || T, 9 — T3] &
Then (4.1) implies the existence of E,>o0 such that
(4-7) | T —T" || <E, || T'—T]|

for 3<1. Therefore, the replacements T, T2 T, T reduce the proof of (4.6)
to the case ¢g=1, i.e.:

lim log || T || ="

n—>won

Equivalently, it suffices to find an open set UCR™ such that

lim llog||T'"uH=)\(s) for ueU.

n-—)oon
To see this take «, ..., 4™ linearly independent in U and notice that the matrix
norm ||| .||| defined by:

X = [ Xa] ..+ (| Xa)]

is equivalent to || - ||. The existence of the limit (4.3), and the fact that A and A’ have
the same eigenvalues, are therefore a consequence of the following result:

Lemma (4.2). — Let AW <\ =2 be the eigenvalues of log A repeated
according to multiplicity. Let £, ..., 9 be unit vectors spanning R™ and such that

(4.8) }im ! log || T"EQ || = A®),

-
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 39

There is then 3>0 such that

lim ~log || T"u|| =9

n-—->0on

whenever 0<a<1, ||T'—T||<8«, and ueU, where:

m—1 g(O)
U:{ 2 U, k
k=1

S ma (< Ju

The existence of £, ..., £9 satisfying (4.8) follows from Proposition (1.g) b).
The reason for not assuming the £ orthogonal will appear in Remark (4.7).

(4.3) Proof of the lemma and further inequalities.
By Proposition (1.3) a):

(4.9) lim log || T*0A. .. AT"EY)]| = X A,
nron -1

Let £ be a unit vector proportional to T"£, and write:
(4.10) T V=g,
Let also £} be the j-th component of (. The matrix & =(£})) satisfies [|E"[|<q/m
and, because of (4.9),

lim %log |det £7] =o.

n —> 00

Therefore

lim ~log ||£"~1]| =0

n—>wopn

and given >0, we have:
(4.11) D, =sup e "||EM 1| < +-o0.
We write D, =D.
In view of proving (4.5) we shall obtain a result somewhat stronger than the

lemma. We suppose that ||T'—T|/<8x and estimate the components «", ...,
ul™ |, ul™ of Ty along & /e, ..., £ _ Ja, £ for any u+o0 in R™

m—1s “m

Let p be the smallest integer such that

() (n)
(4-12) (Vn) max|u®|>max [s7].

(In particular if ueU, we have p=m.) Because of (4.10) and (4.11) we have:

L | <" |ufn =] +D8€‘2’”’§ [ufr 1]
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