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A TOPOLOGICAL RESOLUTION THEOREM
SELMAN AKBULUT and LAURENCE TAYLOR (1)

The eventual goal of this paper is to prove a manifold analogue of Hironaka's
resolution theorem for algebraic varieties [H]. Specifically, we show that every compact
PL manifold, M, carries an extra structure (A structure) which implies the existence
of a smooth manifold M, together with a degree one map (with Z/2Z coefficients)
n : M->M. In fact, n is a PL homeomorphism in the complement of a union of smooth
submanifolds of the form W^ X M^. This union is not disjoint, but the M^ intersect
each other transversally. Moreover, the map TT collapses each W^ X M^ to M^ in some
order. Put another way, every compact PL manifold M admits a smooth framed
stratification (every stratum has a product neighborhood) such that after a sequence
of ( < topological blow ups 53 performed along the closed smooth strata we get a compact
smooth manifold M (^M == 0 if ^M == 0) together with a degree one map n : M->M.
This theorem is used in [AK] to show that the interior of every compact PL manifold
is PL homeomorphic to a real algebraic variety. Another application is a way of
defining differential forms on a PL manifold by pushing down the relative forms from
the smooth resolution spaces.

The work in this paper is to study a certain type of structure, called a G-manifold
structure, on PL manifolds. We want to know when G-manifolds behave nicely. In
particular, when is there a classifying space BG and a map BC->BPL such that a
PL manifold M has a C structure if and only if the normal bundle, v^ : M->BPL, lifts
to BG ? This question was answered by Levitt [Le] who showed, roughly, that if one
can do the standard glueing construction; can collar boundaries; can do regular neigh-
borhood theory; and can form products with smooth manifolds, then one has a classifying
space, BG, with the desired properties. In Section i we give a discussion of this result
with more details than Levitt's, presumably at the expense of readability. We also
discuss G bordism theory and prove a fundamental result: for unoriented C bordism,
T]^, the usual map •y^-^H,(BG; Z/sZ) is monic.

In the second section we discuss a construction, also due to Levitt, for starting
with any category of G-manifolds and getting a new category of G-manifolds. Roughly
one does the following. Ghoose any countable collection ofC-manifolds, 2^, i = i, 2, . . . ,

(1) Partially supported by NSF Grants MCS 77-01763 and MCS 76-07158, respectively.
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164 S E L M A N A K B U L U T A N D L A U R E N C E T A Y L O R

where each 2, is a C structure on the ^-sphere, 7^2. A C(2)-manifold is a space
of the form MoUlJ(c(2,)xM,) where Mo is a G-manifold; <:(2,) is the unreduced cone
on 2,; and M, is a smooth manifold. The union is formed using a codimension zero
embedding (in C) US,xM,->aMo. The principle result of this section, which is
also due to Levitt, is that G (2)-manifolds will behave nicely. We briefly study the
relation between C-manifolds and C( 2)-manifolds.

Clearly we can now do the following. Start with smooth manifolds and cone
some spheres; take this new category and cone some more spheres; take this category...
Levitt [Le] proves that if at each stage one cones the exotic spheres, then one gets BPL
for BC.

In Section 3 we study A-manifolds. They are defined inductively also, where
now at each stage one cones the exotic spheres which are unoriented boundaries. It
is not hard to see that there are lots of exotic A-spheres, so PL/A (=the homotopy
theoretical fibre of BA->BPL) is definitely not a point. However, we do get the
surprising fact that an A sphere bounds an A disc if and only if it bounds an unoriented
A-manifold. This result plus the fact that T^-> H^BA; Z/sZ) is monic proves
BA=BPLxPL/A. In particular BA-^BPL has a section so all PL manifolds have
A structures. We conclude Section 3 by calculating the homotopy type of PL/A.

In Section 4 we discuss how an A structure on a PL manifold, M, gives rise to a
resolution of M which is unique up to concordance of resolutions. One can then easily
show that concordance classes of resolutions of M are classified by (DH^M; T^(PL/A)).
Since TT^PL/A) is infinite if *>8 (Proposition (3.2)), most M have an infinite number
of non-concordant resolutions. In particular, any PL manifold of dimension at least 9
has an infinite number of different structures (up to concordance) as an algebraic variety.

i. Smooth manifolds with singularities*

We wish to build an axiomatic framework to study smooth stratified sets where
the underlying space is a PL manifold. There are technical difficulties associated
with the statement that a smooth manifold is PL and things get no easier upon passage
to stratified sets. Our solution to these problems is inelegant but effective. We have
one category, %', to be thought of as smooth stratified sets and another category, J§f,
to be thought of as PL stratified sets which are naturally PL manifolds. In both ^
and J? we distinguish certain morphisms which we call cdz embeddings (short for codi-
mension zero). Finally we have maps from the objects of oSf to the objects of ^ which
can be thought of as stratified piecewise differentiable homeomorphisms. They are
called PC homeomorphisms in what follows.

The axioms which we now list merely reflect some of the properties one expects ^
and £f to have. To fix notation, hereafter Diff denotes the category of compact smooth
manifolds with corners and smooth maps; PL denotes the category of compact PL mani-
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A TOPOLOGICAL RESOLUTION THEOREM 165

folds and PL maps; and TOP denotes the category of compact topological manifolds
and continuous maps. There are natural transformations Diff-^TOP and PL->TOP
but there is no natural transformation Diff-> PL (which is the source of our difficulties).

We have tried to give a uniform treatment of the properties of both V and JSf
wherever possible. We use 3ft below to denote a category which in practice is often,
^ or J?, although two other examples do occur.

Axiom I. — There exists a unique object in 3ft with a unique map to every other object. We
note this object by 0. Given an object M, if there is a map M->0, then M==0.

To every object M in 3ft we assign a second object y ^M and a map i: ^M->M.
There is a natural transformation ^->TOP, denoted \ |. If f-^yf^ '. M—^N are maps

in 3ft\ then f^~=f^ if and only if \f^ ==\f^1- There exists a homeomorphism |^M|->^|M|
such that | ̂ M | -> ^[ M [ commutes. An object M in 3ft is 0 if and only if \ M | is empty.

^ ^
|M|

Suppose given a continuous map f\ M^ -> ^Mg such that the composite:

[Mi -^ I ^ M ^ I 'U I M ^ I

is the realization of a 3ft map h: M^—^M^. Then there exists a 3ft-map g: M^—^Mg such
that \g\=f and h==Log.

There is at least one object of 3ft whose realization is a point. Given two such objects there
exists a unique map between them. Any object M with \ M homeomorphic to S1 is 3ft-homeomorphic
to ^N, where N is an object with ]N| homeomorphic to D2.

Remark. — S 8M == 0 follows from I. We say that an object M in 3ft has dimension n
if [M| has dimension n. We say M is connected if [M| is.

There is a PL version of Axiom I, Axiom Ip^ in which the natural transformation
takes values in PL and the homeomorphism |^M|->^[M| is PL. Note that if 3ft
satisfies Axiom Ipj^ it also satisfies I.

Axiom II. — 3ft has finite disjoint unions^ i.e. given a finite collection of objects M^ in 3ft
there exists an object UM^ and maps i^ : M^->UM^ such that, given maps f^ '. M^->N,
there exists a unique map f: UM^—^N with f^=foi^.

The natural map U M^|->|UM^| is a homeomorphism. There exist maps

ai,: BM,-^(UMJ
such that L o 8}.^ -= i^ o L (so much is already forced from the above plus Axiom I ) and such that
the map II^M^—^UMJ is a ^-homeomorphism.

If M is an object of 8ft and if | M | == Ki u Kg then there exist objects Mi and Mg in 3ft
with maps Mi->M, Mg—^M and homeomorphisms |]VLJ->Ki, [Mg —^K^ such that the
map MiuMg-^M is a ^-homeomorphism and K^n Kg-^l Mi| u | Mgl-^MiiiMgl-^MI
is the original equivalence.
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166 S E L M A N A K B U L U T A N D L A U R E N C E T A Y L O R

Remark. — By induction on the number of components of |M|, any object of Sft
is the disjoint union of connected objects. Since M->0iiM and M->Mu0 are
^-homeomorphisms we will often form infinite disjoint unions in S^ if all but finitely
many of the objects are 0.

Axiom IIIw — There is a product ^xDiff-^^, i.e. given objects M in ^ and K
in Diff we assign an object MxK in ^. Given maps f: M^—^Mg and g : Kj—^Kg we
assign a map fxg : MiXKi-> MgXK^. We require that:

I M X I K = I M X K and that (/lX^i)o(/2X^)==(/iO/2)x(^iO^).

There exists a natural map 71:1: M X K—^M. We can have no TT^, since K is not necessarily
in 8^. We do however have a natural TT^ : |MxK|->|K|, also writing \ for the natural

transformation Diff-> TOP. The map [ M x K | TC1 ̂  | M | X [ K | is a homeomorphism. The
map n-^'.Mxp-^M is a ^homeomorphism. Thenaturalmap IlM^xK^ -> (UMJx(IlKp)
is a ^-homeomorphism.

There exists a natural 8^-homeomorphism

T] : (MxK^xK^Mx^xKg).

The product in TOP has a natural transformation ^rpop : (K^xK^xK^ -> KiX^aXK^).
We require that the diagrams

(MxKi)x(K,xK3)

^y^ ^s?
/ ^

( (MxK^xKaXKg) Mx(KiX(KgXK3))

T 1 X 1 \ ^ y^lXTlTop

Y /
(Mx(KiXKa))xK3^Mx((KiXK2)xK3)

(MxKi)xK2-lMx(KiXKa)

[(MxP^xKal^lMx^xKa)!

TTi X TCa | TTj

I M x K i I x I K a l " 2 ^ I K i X K ^ j

commute.
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A TOPOLOGICAL RESOLUTION THEOREM 167

Remark. — Although no formal use will be made of coherence theory, articles
like MacLane [M] will explain why these diagrams tend to occur.

There is also an Axiom IIIpL.

Now in our category ffi we have special types of morphisms, called cdz embeddings
in what follows.

Axiom IV^. — The cdz embeddings have the following properties:

1) Any ^-homeomorphism is a cdz embedding.
2) If the diagram

^
<f.

^M

commutes, and if h is a cdz embedding, then f is cdz embedding if and only if g is.
3) If the diagram

i)P-*P

< t1

^BM-^M

commutes, and if h is a cdz embedding, then f is a cdz embedding if and only if g is.
4) The disjoint union of cdz embeddings is a cdz embedding.
5Diff) V f'' N->M is a cdz embedding and if g: V-^W is a codimension zero embedding

in Diff, then fxg: NxV—MxW is a cdz embedding.
6) From Axiom I we know that the maps BNxW^NxW and NxBW-^NxW both factor

through B(NxW). The maps BNxW->B(NxW) and NxBW-^(NxW) are both
cdz embeddings.

7) If ^:N->M is a cdz embedding, then \e\: |N|—|M| is a cdz embedding.
8) If e : N— M is a cdz embedding, and if g : | P [ -> \ N [ is a continuous map such that \ e \ og

is the realization of a ^-map, then g is the realization of a ^-map.

Similarly there is also an Axiom IVp^.

Axiom V. — Given cdz embeddings e : N-»aM,, i=i,2, there exists an object M
and cdz embeddings ^ : M,->M, i==i, 2, such that

|N| ̂  M,|

IMJ ̂  1M|

is a pushout in TOP.
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168 S E L M A N A K B U L U T A N D L A U R E N C E T A Y L O R

If we are given cdz embeddings f,: M,->P, i = i, 2 such that e^o^of^ = ̂  010/3, ̂  ̂
can find M, ^ ^fl? 2/3 ̂  a&o^ ^ that the map [ M -> P| ^ ̂  realization of a cdz embedding.

Terminology. — We say that M is the result of glueing M^ and Mg along N.

Remark. — From I and IV it follows that B(NxW) is the result of glueing ^NxW
to NX aW along BMx^W.

Remark. — Glueing behaves well with respect to disjoint unions and products.

Definitions. — We say that a cdz embedding ^ :N-^M is complemented if there
exists objects A and X in Sft and cdz embeddings A-^BN, A->BX, X — M such that
the resulting square

|A| -^ |N|

|X| -^ M|

is a pushout in TOP.
We require

Axiom VI. — A cdz embedding e : N->M is complemented if there exists an object Q
in ^ and a cdz embedding Q,->aM such that, in |M[, |QJ = |N|n|aM .

Remark. — Any cdz embedding is complemented if ^M==0.

Remark. — Since ^M^==0, the cdz embeddings ^ in Axiom V are comp-
lemented. Let

A, —> N

X, BM,

display the glueing. Then A^-^N is a cdz embedding whose realization is a homeo-
morphism. It follows from I and IV that A,-^N is a ^-homeomorphism. It also
follows from I and IV that the maps X,—aM,->M^.->M factor through 8M so that
the maps X,->^M are cdz embeddings. By I

|aN| —> X,

W \8M\

is a pushout, so ()M is obtained by glueing X^ to Xg along ^N.
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A TOPOLOGICAL RESOLUTION THEOREM

Axiom VII. — Let /: N->BM be a cdz embedding. If

BN —> N

169

W

|/
^

BM

^ ^ ̂ wAo^ exhibiting/as complemented let us suppose given e : BN X [o, i] ->W a cdz embedding

such that BN^Nxo-^aNxCo, i] -^ W is h and such that (|aN| x(o, i])n|aW| =0.
Then we can find a cdz embedding e : Nx[o, i]->M such that

a) N ^ N x o - > N x [ o , i] -^M is Lof

b) the square BNx[o, i] —> W commutes, and

Nx[o, i] —> M

c) ((Interior J N |) x(o, i])n |aM =0.

Exercise i. — Any cdz embedding /: N-^M extends to a cdz embedding
Nx[o, i]->M. In particular, boundaries are collared.

Axiom V I I I . — Suppose Ip^ is satisfied. Also suppose given a cdz embedding N->BM
and a PL embedding Q->|M such that Qn 8M = |N[. Then we can find an object P
and cdz embeddings P->M and N-^P j^A ^^

BM

N M

ap p
commutes and such that |P[==Hi(QJ z^A^ H : M x [o, i] -> [ M| is a PL isotopy of
I I M | rel a |M|.

Remark. — If | N ( C 8 | M | is a regular neighborhood for a subcomplex X C 8 | M |,
and if YC |M| is a subcomplex with Y n a | M [ = = X , then we can find an object P
as above such that (|P|, |N|) is a regular neighbourhood in (|M , a |M|) for (Y^, X),
where (Yi, X) is isotopic rel X to (Y, X).

These eight axioms on categories will suffice for our needs. The reader should
be convinced that Diff satisfies axioms I^p, II, 11̂  IV^, V^, VI and VII; and
that PL satisfies axioms Ip^, II, HIp^, IVp^, VpL, VI, VII, and VIII.

169
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170 S E L M A N A K B U L U T A N D L A U R E N C E T A Y L O R

We next discuss the PC homeomorphisms. We assume given a category ^
satisfying Irpop, II, IH^ff? IV^, Vj^, VI and VII and a category JSf satisfying Ip^,
II, IIIpL, IVpL, VpL, VI, VII, and VIII.

We say that ^ and oS^ <2flfm^ PC homeomorphisms provided we can do the following.
Both V and JSf have natural transformations to TOP. Give Meob ̂  and XeoboSf
we must have a subset, PG(X, M), of Homeo([X[, |M[), where these subsets satisfy
the axioms below.

We adopt the notation "/: X->M is a PC homeomorphism 3? to mean that/, which
is a map from |X| to |M|, is in PG(X, M). For uniformity of notation we write
)/[ : [X[->|M[. Our axioms are

Axiom PC J. — Given any PC homeomorphism f: X->M; any J§f homeomorphism
A:Y—^X; and any ^ homeomorphism ^:M—^N, then gof and foh are PC homeomorphisms.

Given a PC homeomorphism f: X—^M there exists a PC homeomorphism c)f\ ^X->^M
such that

ax -8f-> 8M

X —> M

commutes.

Axiom PC 2. — Suppose given cdz embeddings e^ : X—^Y and e^: N->M; a PC homeo-
morphism f: Y->M and a continuous map ^:|X|->[N| such that \e^ og=\f\o\e^. Then
^ePG(X,N).

Suppose given two glueings

Z —> Xi N —> Mi

6?W
Y Y Y Y

Xg —> X Ma —> M

the first in JSf ^/zaf ̂  second in %7. 7/'w^ ^r^ '̂̂ 72 PC homeomorphisms / : X^->M^., 2=1,2 ,
wA^A ^r^ on Z, ^^ ̂  pushed-out map |X|—^|M| is in PG(X, M).

Axiom PC 5. — Given a PC homeomorphism f: X->M ^z</ ^ piecewise differentiable
homeomorphism g : K->W there exists a PC homeomorphism^ denoted fxg : XxK -> MxW,
such that \fxg\ is the composite

|XxK| ̂ ^ I X | X | K | ̂ "l |M|X|W| -^^ |MxW|.

-4A:^m PC 4. — 7w ^^A o ;̂̂ , M, in ^ and each PC homeomorphism f: X-^^M,
^r^ ̂ î  an object \ in S?\ an S homeomorphism h: X->8Y; and a PC homeomorphism
^:Y-»M j^A ^A^ Lof==goLoh.

170



A TOPOLOGICAL RESOLUTION THEOREM 171

Axiom PC j. — Suppose given PC homeomorphisms /o:Xo->M and /i:Xi->]VL
Suppose also given an JSf homeomorphism g : ^Xo—^Xi and a PC homeomorphism

H: ^XoXl-^BMxI

.y^A ^^ ^H==(/()U Sf^og. Then there exists an oSf homeomorphism G : XQ->X^ <zW a PC
homeomorphism H r X o X l — ^ M x I ^^A ^A^ ^G == ̂  <mrf SVJL ̂  H o% ^Xp x I; /o on X^ x o;,
and /i o G on X^ x i.

Axiom PC 6. — Suppose given a cdz embedding f: X-^Y in JSf and a PC homeomorphism
h: Y->M. Suppose further that we have cdz embeddings e^: Z~^X and e^ : Z->^Y such
that t.o^==/oio^; a PC homeomorphism g:Z—^W and a cdz embedding ?g : W—^M j"^
^a^ e'^og=c)hoe^. Then we can find an object N in ^; ̂  embeddings ^ : W-^^N ^^
f: N->M; ^^ <2 PC homeomorphism h: X->N J^A ^^

W - ^ B N ^ z - ^ a x x - ^ N
I N^ I I - 1 1 ^^ N, Q\ ^ , <z^rf q /^ / 3 4^ ^ 3 ^ ^

^ M — ^ M ^ \v-^>aN Y - ^ > M

<z^ commute.

Given ^, o§f and PC homeomorphisms as above, we can define the category of
G-manifolds. A C-manifold is a triple (X, M,/) when Xeob J?, Meob <^, and
y: X->M is a PC homeomorphism. A map of (X^, M^Yi) to (Xg, Mg,^) is a pair
of maps A i X i - ^ X g in oSf and ^Mi-^Mg in ^ such that \g\ o |/i[ == l /g) o \h\. A
cdz embedding is a map (A, ^) where both h and ^ are cdz embeddings. The obvious
definitions of composite and identity clearly makes the collection of G-manifolds and
maps into a category.

Since ^==Diff, JS?=PL with the piecewise differentiable homeomorphisms
being the PG homeomorphisms satisfies all our requirements ([Hi], [H-M], [Mu] and
[R-S]), we get the category, Tri, of triangulated smooth manifolds.

Note that the category of G-manifolds satisfies Axioms Ip^, II, 111']̂ ? IV, V,
and VI, when we leave the reader to make the obvious definitions. The necessary
proofs are tedious but not hard.

Axioms VIII and PG 6 combine to give a regular neighborhood theory for C-mani-
folds. Given a G-manifold, M, and a simplicial complex, K, with a map /: K—^|M|^
we say that K, or, properly (K,/), is a subcomplex of M if/is a PL embedding. We
say that a pair of complexes (K, L), with a map /: K-> M , is a proper pair if/is a
PL embedding; /(L) C 18M \; and /(K) n | 8M \ ==/(L).

We say that a cdz embedding e:'N->M is a regular neighborhood for (K,/) if,
in |M|, N| is a regular neighborhood in the usual sense. Given C-manifolds W
and N and cdz embeddings <?:N-^M, ^: W->^N, and ^: W-^BM such that
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172 S E L M A N A K B U L U T A N D L A U R E N C E T A Y L O R

eo^oe-^==Loe^ we say that (N, W) is a regular neighborhood for the proper pair (K, L) if
( | N | , | W | ) C ( | M | , ^ | M | ) is a regular neighborhood for (K, L) in the usual sense.
We have

Proposition (1.1). — Let (K, L) be a proper pair in M. Suppose given a regular neigh-
borhood e^: W—^M for L. Then there is a PL isotopy of |M| rel ^|M|, denoted H^, and
a C-manifold M with cdz embeddings e : N — M and e^: W—^N such that

a) MO-IIM)
b) eo^oe-^==ioe^
c) (N, W) is a regular neighborhood/or the proper pair (H^(K), L).

The proof is left to the reader. The reason for the isotopy in Axiom VIII, and
hence in Proposition (1 .1) will become apparent in Section 2.

The usual definitions in manifold theory all work for C-manifolds. Glueing
guarantees that bordism is an equivalence relation, so we have the unoriented bordism
group of C-manifolds, T]^. We say that a G-manifold, M, is oriented if we have chosen
an orientation for M . Oriented bordism is defined and we denote the groups by 0,^.

A C structure on a PL manifold K is a C-manifold M and a PL homeomorphism
a : K-> | M|. Given a codimension zero sub-manifold, L, of^K and a C structure (N, p)
on L, we say that the G structure (M, oc) extends (N, (B) if there is a cdz embedding
e : N-^M such that

LC B K — K

P a

|N[ ^> |M|

commutes. Two C structures on K, say (Mg, ag), (M^, oc^), are concordant if there
is a G structure on Kxl extending the obvious one on K x o u K x i .

If both (MO, ao) and (Mi, a^) extend a structure (N, (B) on L, we say that they
are concordant rel L if we can find a G structure on Kxl extending the following one.
Since i^j : [o, i] -> [o, i] is a Tri manifold, products with [o, i] make sense. We
have a C-manifold Nx[o, i] which, via ( B X I , is a structure on Lx[o, i]. In PL,
K x o u L x [ o , i ] u K x i is a codimension zero submanifold of 8(K. X I). By the glueing
axiom, the G-manifolds Mg, Lx[o, i], and Mi can be glued to get a G-manifold P and
an obvious PL homeomorphism y ^ K - x o u L x [ o , i ] u K x i — ^ | P | . This is the structure
we insist that our concordance extend.

Exercise 2. — Prove that concordance rel L is an equivalence relation.

We need one last axiom.
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A TOPOLOGIGAL RESOLUTION THEOREM i73

Countability axiom. — Given a G structure on a codimension zero submanifold
LC ^K, the collection of concordance classes of G structures on K rel L, denoted
^(K^relL), is a countable set.

We can now state our first main theorem.

Theorem I. — We suppose given a category of G-manifolds for which the countability axiom
holds. Then we have a GW complex BC with the following properties.

a) To every C-manifold M there is associated a unique homotopy class of maps v^ : | M | -> BG.
b) There is a map BC->BPL such that, given a C structure (N, (B) on L, L a codimension

zero submanifold of c^K, K a PL manifold, there is a one to one correspondence between concordance
classes rel L of C structures on K, and homotopy classes of lifts, rel L of the diagram

L |N| BG

K
\

BPL

c) There is a product BCxBO->BC such that BC—BGxBO->BC is the identity
and such that

BGxBO BC

BPL x BO
\

BPL

weakly homotopy commutes.

(Following Adams [A] we say that two maps f, g : X->Y are weakly homotopic
if, given any finite simplicial complex, T, and map a : T->X, fo a and ^ o a are
homotopic.)

The proof of Theorem I is well-known to the experts and Levitt [L] can be
profitably consulted for a more intuitive version of the same proof. In outline, we
follow Wall [W] and consider stable C-manifold thickenings. This gives a representable
functor with representing space BC. Part a) is then easy and part c) follows from the
lemma that B Tri ^ BO. Then we prove a Gairns-Hirsch theorem from which b)
follows.

Definition. — Given a finite simplicial complex, T, an ^-dimensional C thickening
ofT is an ^-dimensional G-manifold M and a simple homotopy equivalence a : T—^ | M|.
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Two thickenings (Mo, ao) and (Mi, 04) are equivalent if we can find an (TZ+ i) -dimensional
thickening (W, (3) of T and a cdz embedding E : MouMi->BW such that

TuT a^1 |Mo|u|Mi| -> |MouMi| -^ |BW| 1^ |W| and TuT^>3 |W|

are homotopic. Let H^(T) denote the equivalence classes of ^-dimensional thickenings
ofT.

Exercise j. — Prove that equivalence of thickenings is an equivalence relation
and that H^(T) is a countable set.

Given an Tz-dimensional thickening (M, a) of T we obtain an {n+i) -dimensional
thickening (MX I, ocX i) of T. It is easily checked that this extends to a set map
a : ̂ nW -> ̂ iC^- Let H(T) denote the direct limit and let a^ : H^(T) — H(T)
be the natural map.

To prove that H( ) is a representable functor we must first define /*: H(Tg) ->H(Ti)
for a map /: T^-^Tg. To begin we define a slight variant. For each n, define
f:H^T^-^ (subsets of H^(Ti)) as follows. If ^eH^(T,), i==i, 2, we say that
^/M ^we can find representatives (M,, a,) tor ^, i=i, 2, and a cdz embedding
e : Mi—Mg such that

Ti ——^ T,

|Mi| —> |M,|

homotopy commutes. If/(^) always has precisely one element, we let
/*: H,(T,)^HJTi)

denote the underlying map of sets.
Clearly/depends only on the homotopy class of/. Moreover, af{u) Cf{(j{u))

and, if g : T^T^ U^) C {gof){u). We also have
vE^

Proposition (1.2). — If yz>2dimTi+2, then f(u) contains precisely one element/or
each ^eH^(Tg).

Proof. — Given (Mg, 003), a representative for u, the composite T^T^IM^
is homotopic to a PL embedding. By Proposition (1.1) we can find (Mi, 04) and
a cdz embedding e : M^—^Mg such that

TI -̂ -> T,

|MJ —> |M,
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homotopy commutes, and \M^\ is a regular neighborhood for T\. In particular, o^ is
a simple homotopy equivalence. This shows that/(z<) is non-empty. A relative version
of the same argument shows that/(^) has only one element. •

Hence we get a map /*: H(Tg) -> H(T^) which depends only on the homotopy
class of/ and such that (^o/)*=/*o^ and I^=IH(T). Hence H( ) is a homotopy
functor.

To prove that H( ) is representable we use Brown's theorem [B]. Hence we
must show that H satisfies a wedge axiom, a Mayer-Vietoris axiom, and a countability
axiom. We proceed in reverse order.

That H(S7') is countable follows easily from the countability axiom and well-known
results about PL.

For the Mayer-Vietoris axiom let us be given finite simplicial complexes, S, T^,
Tg and simplicial maps / : S->T, z=i , 2. Let Z denote the double mapping cylinder.
We have simplicial maps h,: T,—Z, i=i, 2, such that ^o/i is homotopic to ^0/3.
We want to show that, given ^eH(TJ, z= i , 2, such that f^u,==f^ in H(S), then
there exists yeH(Z) such that h^v=u^ i = = i , 2 .

By well-known arguments, we can find, for some n, ^-thickenings (M,, a,)
representing^, i=i, 2; and thickenings (N,, ^) of S with cdz embeddings e,: N,-^M,
such that K|o[B^oc,o/. Moreover (N\, (B^) is equivalent to (N3, (Bg).

If (W, b) is an equivalence between N1 and N3, let P be (M^x [o, i]) u (MgX [o, i])
glued to W along N^uNg where

NiiiNg^ MiiiM2-.(MiXo)u(M3Xo)

—> a((MiX[o,i])u(M,x[o,i]))

is the required cdz embedding. It is easy to check that there is a simple homotopy
equivalence ^:Z->\^\ such that cr(M,, oc,)e/(P, y) i= i ,2 . The result follows.

For the wedge axiom we need to prove that H,,(pt) is a one element set, n>^o,
and that any orientable ^-thickening ofS1 is the boundary of an {n+1) -thickening ofD2,
n^_i. The results are obvious for n=o and n=i respectively from Axiom i.

If (M, a) is an /^-thickening of a point, p, notice that a:^->|M| can, by a
homotopy, be assumed to factor through | BM |. Use ( i . i) to find N and a cdz embedding
€ : ' N — Q M with [N | a regular neighborhood for a(^). Let p :^-^[N| denote a
restricted to [N|. Then (r(N, (B) is seen to be equivalent to (M, a) using the collaring
Axiom (VII). Hence H^(^) -> H^p) is onto and our result follows. The same
idea works for oriented thickenings of S1.

To prove the wedge axiom we proceed as follows. We use the same notation
as for the Mayer-Vietoris axiom only now we further assume that S is a point.

We want to show that h\ X h\: H(Z) -> H(T^) X H(Ta) is a set isomorphism. Since
H(S) has only one element, the Mayer-Vietoris axiom shows that h\xh^ is onto. In
fact, if n>2 max(dimTi, dimTg)+3, any element in H^(Z) is equivalent to one of
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the form we constructed in our proof of the Mayer-Vietoris axiom. To see this first
observe that by (1.2), H^(Z)^HJZ) is onto.

Let (M, a) be an (n—i) -thickening of Z. By general position and (1.1) we
can find thickenings (M,,oc,)ofT,, i=i, 2 and a cdz embedding ^u^ : MiuMg-^M
such that |^ |oa ,==ao^, z'=i, 2. By general position and (1.1) we can find an
{n+i) -thickening (W, (B) of S and a cdz embedding E : W-> M x [ — i , o] such that

MiuMg-—^ BW—^W

Ci-^a E

M -> M x o -> M x [— i, o]

commutes. We also have a cdz embedding

( ^ X i ) u ( ^ x i ) : (MiX[o, i])i i(M2x[o, i])-^Mx[o, i].

We can glue Mx[o, i] to M x [ — i , o ] along Mxo to get Mx[—i , i]. We
can glue W to (MiX[o, i ] )n(MaX[o, i]) along (MiXo)u (M^xo) to get P and
we can actually choose P so that we have a cdz embedding P->Mx[—i, i]. This
shows that (T(M, a) is equivalent to one of our special thickenings. Since H,^(Z) ->H^(Z)
is onto, any ^-thickening is equivalent to one of our special thickenings.

Now suppose we have (P, y) and (P, y), two special ^-thickenings of Z. If M^
is equivalent to M^, and if Mg is equivalent to Mg, via (Wi, (3i), (Wg, (Bg) respectively,
we can glue PuP to W^uW^ along M^uM^iiM^nM^ to get a C-manifold Q. It
turns out that Qis a thickening of T^vT^vS1. Use regular neighborhood theory ( i . i)
and general position to find an orientable 72-thickening ofS1, (R, 8), and a cdz embedding
R->Q. Let D denote an {n+i) -thickening of the disc that R bounds. Glue Q,X [o, i]
to D along R (R->Qxi) to get V. There is a simple homotopy equivalence X : Z — [ V |
and it is easy to check that there are cdz embeddings e : P->^V and e : P->BV such that
t .o^oY^X~[( .o^ |oY. Hence <T(P,Y) is equivalent to o(P, y) and so (P, y) is equivalent

to (P,y) since H^(Z) ->H^_^(Z) is monic by (1 .2 ) . This proves the wedge axiom.
Hence Brown's theorem [B] applies and we have a GW complex, BG, and a natural

transformation H(T) ^ [T, BC]. Given a C-manifold, M, and the map i,^ : M — M|
we have a thickening of M , and hence a map v^: |M|->BC well-defined up to
homotopy.

Adams5 [A] discussion of natural transformations is valid in our case also. Any
natural transformation of representable theories, whose representing spaces have coun-
table homotopy type, is induced by a map of representing spaces. The catch is that
the map is only well-defined up to weak homotopy.

To any G-manifold M we associate the homotopy class of the map v,^, : | M| -^BPL,
the PL normal bundle of |M|. This defines a natural transformation H(T)->A^(T),
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and hence a map BC->BPL unique up to weak homotopy type. Without further
mention we assume that the map has been made into a fibration.

Given the category Tri, by the above, we get a classifying space BTri. To any
Tri manifold M, we associate the smooth normal bundle map v^ : M->BO. This
defines a map BTri->BO. Now using PC 5 the reader can show that if (X, M,y)
and (Y, M, g) are C-manifolds, then they are concordant as structures on [X|. Since
BO classifies smooth thickenings (Wall [W]) one can use the above remark, plus its
relative version, to prove that B Tri->BO is a homotopy equivalence.

The space BG X BO classifies pairs consisting of a G thickening, M, of T and a
Tri thickening, W, of T. Then MxW is a C thickening of TxT and we use the
diagonal map to induce a thickening of T itself. This defines a natural transformation
BGxBO-^BC such that the map BG—BGxBO-^BC is weakly homotopic to the
identity. But such a map is a homotopy equivalence, so we can choose the map
BCxBO->BC so that BG-^BGxBO-^BC is actually homotopic to the identity. The
diagram

BCxBO —> BC

BPLxBO BPL

weakly homotopy commutes as the reader may check.
For part b) of Theorem I, let K. be a PL manifold; L a codimension zero submani-

fold of ^K; and (N, [B) a G structure on L. Part b) of Theorem I is well-known to be
equivalent to the

Cairns-Hirsch theorem. — With notation as above, and with G structure (N X I, (B X i)
on L X I, the natural map

^(K, rel L) -> e^(K x I, rel L X I)

is an isomorphism. ^(K, rel L) is the set of concordance classes of G structures on K, rel L.
(See the countability axiom.)

Proof. — We first show that the map is onto. We have a G-manifold M; a
cdz embedding e: NxI—^M; and a PL homeomorphism a : KxI->[M| such that

L x l — > (BK)xI—^ Kxl

3x1

|NxI| —> \8M\ —> |M|
commutes.
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There is an embedding L->Lxo—a(LxI) and Lxl is a codimension zero
submanifold of B(KxI). In fact, there is a PL manifold X and cdz embeddings
a(LxI)^BX, X-^a(KxI) such that

a(Lxl) —> Lxl

X a(Kxl)

is a glueing in PL.
The following illustration may prove helpful. Let K be a square (fig. i) with L

being one side. Then Kxl is a cube (fig. 2) and Lxl is the shaded side facing the
viewer. The two unshaded sides and the three hidden sides make up X.

FIG. FIG. 2

There is an embedding o f K i n X so that (K, L) is a proper pair in (X, BX). The
manifold X has a C structure defined as follows. The cdz embedding e is complemented
and we let

a(Nxl) Nx l

^
w BM

be a glueing exhibiting the complement. Then there is a PL homeomorphism y : X->W.
Now the thickening (N, [B) of L is a regular neighborhood for L, so by Proposition ( i . i) we
can find a C manifold V; cdz embeddings s : N-^BV and V-^W; and a PL isotopy H/
of [ W rel | aW [ with the property that (V, N) is a regular neighborhood for the proper
pair (K,L) in (W, BW). But the inclusion K->|V] can be homotoped through
embeddings rel L until it is a PL homeomorphism, since K is a codimension zero
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submanifold of its regular neighborhood [ V |. Let X : K->- [ V [ denote such a PL homeo-
morphism. It is clear that

L -^ |N|

BK -̂ > |av|
commutes, and it is easy to check that (Vxl, X X i) is equivalent rel (Lxl) to (M, a)
using the relative existence of collars, Axiom VII.

That the map e^(K, rel L) -> ^(K x I, rel L X I) is i — i follows by a similar
argument. Details are omitted. •

One corollary of theorem I is

Corollary. — The group T^.(PL/G) is in i—i correspondence with concordance classes of
G structures on S^

Remark. — Connected sum, which can be denned using our G-regular neighborhood
theory, gives a group structure on ^(S^. This group structure is the same as the one
coming from the correspondence with 7r^(PL/C) ifj&xS7 ' is the C structure on S" corre-
sponding tO OE7Ty(PL/G).

There is a map T]^ H,(BG; Z/sZ) denned by sending M" to
v^([M])eH,(BG;Z/2Z)

where [M]eH^(|M|; Z/sZ) is the fundamental class. It is easy to see that this map
is well-defined. If BSG is defined as the pull-back

BSC —> BC

BSPL —> BPL

then we get a similar map ^-^H^BSC; Z).

Theorem I I . — The map T^—H,(BC; Z/sZ) is monic.

Remark. — One can also prove ti^Z^ -> H,(BSC; Z^) is split monic.

proof. — Let X^CBG be the inverse image of an {n—i) -skeleton for BPL under
our map BG->BPL. Then the universal bundle over BPL has a unique representative
as an ^-dimensional bundle when pulled back to X^. If Yn denotes this bundle, let
T(yJ denote its Thorn space. We get a natural map 2T(yJ ^T(y^i), so we get
a spectrum, which we denote by MC. We also get a map of spectra MC->MPL.
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We have a map ^-^.(MC) defined as follows. For a given C-manifold M
we can embed M"[ in S ,̂ k large. Then the map |M|->BG factors through X^[
and so we get a map of spectra T(^)->MC where T(vJ is the Thorn spectrum
associated to the PL normal bundle for | M |. Since T(vy) has a reduction, a C structure
on M» defines an element in TC^MC). It is not hard to see that this element only
depends on the unoriented bordism class of M, and hence we get a map •^-^(MG).
It is easy to see that this map is a homomorphism.

Lashof [LA] has given us another way to think about TC.(MG). He shows that
TC.(MC) is the group of bordism classes of PL manifolds K and lifts of v^: K->BPL
up to EC. But by Theorem I b) this is the same as ̂ . Moreover the map described
one paragraph above gives the isomorphism.

(One can define MSG similarly and prove that i^TC.MSC is an isomorphism.)
The reader should check that the map

^ ̂  Tr.(MG) Hurew^ H,(MG; Z/2Z) -^ H.(BG; Z/aZ)

is the map we previously defined.
The following result is useful and easy to prove. Let X be a countable CW complex

and let ^,/a:X^BPL be weakly homotopic maps. Then the two Thorn spectra
constructed from /i and f^, say MF^ and MFg, are equivalent by an equivalence h
such that

^.MFi -^ TT.MF, H.(MF/; Z/2Z) -^ H,(MF,; Z/aZ)

J and Thorn ̂  /Thorn

7'•*MPL H.(X;Z/2Z/

commute. The proof is to observe that there are finite subcomplexes, X., of X with
oo

XoC X^ C . . . C X and X== U X,. We can construct a spectrum based on this decompo-
i==0 ±

sition of X and map it to both MF^ and MFg by equivalences. Details are omitted.
This means that, since the square in Theorem I c) weakly homotopy commutes,

we get a map of spectra MCAMO-^MG such that

H,(MCAMO) -> H,(MG)

H,(BGxBO) ———> H,(BC)

commutes.
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Then the map MG = MG A S° -> MC A MO -> MG is an equivalence since

H,(MC) —> H,(MCAMO) —> H,(MG)

H,(BG) —> H,(BGxBO) —> H,(BG)

commutes, and the bottom composite is the identity.

Remark to the experts. — Via lim1 arguments one can show that MG is an MO-module
spectrum and that MSG is an MSO-module spectrum.

But by work of Thorn [Th] (and see [Ta]) there is a map of the Eilenberg-MacLane
spectrum HZg to MO so we get that TT.MG -> H^MG; Z/sZ) -> MO^(MG) — T^MG
is an isomorphism. Hence T^ ->- H^(MG; Z/2Z) is monic. •

Remark. — The proof that ^®Z^ --> H,(BSG$ Z^) is split monic is in [Ta].
Also one could prove that MC and MSG^) are products of Eilenberg-MacLane spectra.
Origins of Theorem II can be traced back to [B-L-P].

2. New structures from old.

In section one we built an elaborate theory but provided few examples. The
case y^Diff, J?=PL, and PG being piecewise differentiable is our one example
so far. Here we wish to give a general process to construct a whole host of
examples.

We start with a category of G-manifolds. We also assume given a countable
set, S, of G structures on spheres. Hence an element in our set is an object S^ in ^f,
an object F^ in J?, a PG homeomorphism Uy.: I\.->2^ and a PL homeomorphism
Vy:Snr->\^y\. We then introduce the category of G-stratified sets with 2—like
singularities.

Specifically, we have a category ^(S), a category ^(S), and a class of PC(2)
homeomorphisms between the objects of oS^(S) and ^(S). To describe them let us
first fix an indexing set, ^\ for S.

Then an object in ^(2) consists of an object in ^3 denoted L.o; objects in Diff, L,.,
one for each re^ and a cdz embedding U ̂  : U (2y X L^) -^8Lo. Notice this is possible
only if all but finitely many of the liy are empty. We denote this object by (Lp, Ly, (By).
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A map in <<f(S) between (L^, L^, (3';') and (Li2', L^, (3?'), is a map f,: L^L;,2'
in ,̂ and smooth maps /,.: L^-^L*,2' such that

S,XLW ̂ i s,xU2'
pw| |pw

y 4-

3Lo1' aU2'
I1 i1

U1' ——''——> U2'

commutes for each re^. Composition is denned by (fo,fr)o(go,gr)=(fo°go,fr°gr)-
The category ^?(S) is defined analogously with objects (Xg, X,, b^) and a

map (/<,,/,) between (Xo1', X^>, ^)) and (Xo21, X;.2', ^2') is a map /„ : X^^X^
in ,̂ and PL maps /,: X'/'-^X® such that

r,xx^ -̂ . r,xx^
^i i6^

aXo1' aXo2'
i I

X^ Xo2)

commutes for each reJ^. We still require LI&, : U(r^xX,)->aXo to be a
cdz embedding.

Since ^(S) and oSf(2) are defined so similarly we shall mostly discuss ^(2) and
leave to the reader to produce the corresponding results for oSf(S).

The natural transformation ^(2) to TOP is given as follows. There is a natural
map p : | U (S.XL,) | ->U{c S.|x|LJ) defined as the composite

|^(^xL.)|^U|(S.xL.)|II^TJ^^(|2JxLJ)u^

where j: |2J->^[S. is the map which sends [2, to the boundary of ^|2,|, the
unreduced cone on |2, , in the usual fashion. Then, given an object L=(LQ, L,, (B.)
in ^(S), | L | is a choice of pushout for

IU(^XL.)| ^™ |I,|

U(^|x|4|
i.e. [L|=|Lo|uII(c|S, |x|L,
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The map i o (U (B,) | is a cdz embedding of the topological manifold | LI (2, x L,) |
into the boundary of the topological manifold |L[. The map p is also a cdz embedding
into the boundary since c S^| is just an (^+i)-disc. Hence |L| is a topological
manifold.

Given a map /=(/o./r)

|U(^x41))! l(u1^ HK^xU2))!

UMSJX 41))! "̂  u ^ s . i x i u 2 ) ] )

U(E,xL"l)| "̂S m"|

and | U ( i x / , ) l l /o l

IWXL?)! "̂'S! |U»i

both commute. Hence we get a unique map [/[ : [L^l -> L(2) making the map of
squares into a commutative cube.

It is easily seen that this gives a natural transformation as does the similar definition
for ^(S), which now lands in PL.

A PC homeomorphism /: X—^L is a homeomorphism |X ->|L| which is the
pushout of a PC homeomorphism f^: XQ-^LQ and piecewise differentiable homeo-
morphisms f^: X^->L^. A collection (/o^/r) w1^ g1^ a maP on the realizations if

r,xx, ̂  s.xL,

BXo -^ BLo

commutes for each reJ^. Hence we require that a PC homeomorphism f: X—^L
be one wdth |/| given by realizing a collection (/o, ^) as above.
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Given L==(Lo,I^., (By) we define ^L as follows. Let

U(S,xa4) u(l^ U(S,xL,)

^(HY,) 113,

X ————^———> BLo

be a square exhibiting U ̂  as a complemented cdz embedding. Then ^L = (X, ^Ly, Yr)-
The map ^L->L is given by L O ^ : X — ^ L ( ) and i : ^Ly.-^L^.

In order to get ^(S) to satisfy all of the axioms, we must require that Uy>o for
all re^. This requirement will remain in force for the rest of the paper.

We have a natural transformation ^-^^(S) given by sending L to (L, 0, p^)
where (B,.: S,.X0-^L is the map S^.X0 ===0->^L. Since ^>o, all points and circles
in ^(S) are in the image of this natural transformation, so our requirements on them
are fulfilled. We leave to the reader the task of finishing the proof of

Proposition (2.1). — ^(^) satisfies I; ^(S) satisfies Ip .̂

Now if L^==(L^\ L^, ^a)) is a finite collection of objects in ^(S), let UL^
be (UL^, UL^, UjB^). Define disjoint union similarly in ^(2). The reader
can check

Proposition (2.2). — ^(S) W ^f(S) ̂ ^ II.

If we are given an object in ^(S), say (Lp, L^, j^.)==L and a smooth manifold,
M, then let LxM be given as follows. The objects are L^xM and L^xM. The
cdz embedding U(L^xM) -> ^(LgXM) is the composite

II (L, x M) -> (UL,) x M(u0r)^ OL, x M -> 0(L, x M).

If (/o?/r) is a maP in ^(^ and <? is a smooth map, {fo,fr)Xg=={foXg,f,Xg).
We define 7^1: (L^xM, L^xM, py) -^(Lo, Ly, )̂ by LoXM-^Lg via 71:1 and

L,xM-^L, via 7^1. The maps |LoXM|-^ |M| and II(^|S,| x |L,xM|) -> ]M|
agree on |U(S^xL^)| so we get a pushout map TTg: |LxM|-^ |M[. With similar
definitions in JSf(S) the reader can show

Proposition (2.3). — ^(^) satisfies IIIp^ and °^(S) satisfies IIIpL.

It is easy to see that (/o?/r) ls a ^(^) homeomorphism if and only if/o is a ̂  homeo-
morphism and fy is a diffeomorphism for each reJ^. For cdz embeddings we have
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Definition. — A map (/o?/r) is a cdz embedding in 'g'(S) if /o : L(,^M(( is a
cdz embedding in ^; /,,: L,->M,. is a cdz embedding in Diff; and, in [M()|

|S,xM,|n|Lo|==|S,xL,|.

With this definition it is not hard to prove

Proposition (2.4). — ^(2) satisfies IV^si; ^(S) satisfies IVpL.

We also have

Proposition (2.5). — '̂(S) <wa? .S?(S) ja^ V.

The proof is a tedious check that the following definition is correct. Given
CO^NO^MO*' and e^-.'N^M.y such that (4*', c^) is a cdz embedding c.:N-.M,
?'=i, 2, let M(, be M^ glued to M^ along No, and let M, be M^ glued to M^ along N,.
The map U P,: U (S^ X Mr) -> aMg is the restriction to the boundary of the maps

U (S, x MW) ̂  aMg1' -> Mo1' and U (2, x M .̂2') -^ aMo2' -> M^'.

It must be a cdz embedding by IV 3).
Next we show

Proposition (2.6). — '̂(2) and -S^S) ^aft'̂ > VI.

Proof. — First show that under the hypothesis our cdz embedding (fo,fr) has
the property that /,.:N,->M, and /(^NQ-^MO are complemented. This involves
some elementary set theory, properties of smooth (or PL) manifolds, and Axioms I, IV,
V and VI for IS (or ^?).

Let

B, N. Bn Nn

^
X.

\
M.

and

Xn Mn

display the complements. Use elementary set theory to get maps | II (S, X X,) [ -> \ ̂ Xg |
and | U (S, X B,) [ -> \ 8^0 \ giving a commutative cube

|U(^xB,)| |U(S,XN,) |No|

|U(S,xX,)| -^ |U(S,xM,)| |Xo| -^ |M,|
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Use Axiom IV to show that there are cdz embeddings U(S,xX^)-^aXo and
U(S,xB,.)-^aBo realizing the above maps. Check that the maps (Bo,B,)-^BN;
(Bo, B,) — B(Xo, X,); and (XQ, X,) -> (MQ, M,) are cdz embeddings. •

The following is not hard to show.

Proposition (2.7). — ^(S) and JSf(S) satisfy VII.

Proof (very sketchy). — Fix notation as in the statement of Axiom VII. Let
M==(Mo, M,, p,) and N==(No, N,, a,). Since the axiom is true in Diff and PL
we can get the embedding defined correctly on the N^x[o, i]. This then gives a collar
on | BNo | n | SM^ \ union U (N^ x [o, i ]), which we extend to ^NQ X [o, i ] using
Axiom VII. It is then easy to check that the map (NoX [o, i], N^X [o, i]) -> (Mg, M,)
is a cdz embedding. •

We also have

Proposition (2.8). — J^(S) satisfies VIII.

Proof. — Inside |M| we have submanifolds (cone point) x[MJ. Along [N( ,
8Q^ is already transverse to (cone point) x|MJ, so by an isotopy rel |^M| we can
assume that SQ^ is transverse to (cone point) x|MJ. By a further isotopy rel |^M|
we can in fact assume aQn (^|SJ x |MJ)===<;|SJ xQ, for some PL manifolds Q^..
Let Qo denote the closure of Q--(U(^ 2,| x | M,|)).

Use Axiom VIII to extend the JSf structure N9 glued to U(2^xQ,^) along
U(SX^N,), on aQo to all of Qo. •

We now proceed to the PC(S) homeomorphisms.

Notation. — A collection of maps (/o?/r)? where /o:Xo->Mo, /^:X^->M, is
called a PC(S) homeomorphism provided f^ is a PC homeomorphism; the fy are piecewise
differentiable homeomorphisms; and

^xX, ̂  S,xM,

aXo -^ aMo
commutes, where for notational convenience we replace Uy by i.

Axioms PC(S) i, PC (2) 2, and PG(S) 3 are easily seen to be satisfied.
To see that PG(S) 4 is satisfied we first fix our notation. Let

(/o,/.): (Xo,x^)->a(Mo,M,,p,)
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be our PC (S)-homeomorphism. Hence we have piecewise differentiable homeo-
morphisms /,: X, -> BM^ which we can extend to piecewise differentiable homeo-
morphisms ^:Y^->M^ such that

X, BM,

Y. M,

commutes, where h, '. X^SYy is a PL homeomorphism. Let

US.xBM, —> IIS.xM,

W BM.

display the complemented cdz embedding U^. Then /o : XQ->W is a PC homeo-
morphism. In oS ,̂ form the glueing

U(2,xX,) —> U(S,xY,)

Xo Q.

and note that the pushout map |QJ-^|aMo| is a PC homeomorphism. Hence we
can find an object Yg in JS^; an JS? homeomorphism Ao : Q->aYo$ and a PC homeo-
morphism gQ: Yo->Mo.

The composite U(S,xY,) -^Q-^aYo is a cdz embedding so we have an object, Y,
and (<?o^r) 1s a PG(S) homeomorphism Y^M. The boundary of Y is (X^, X,, y,)
where the map X->Y is given by Xo->Q-^aYo-^Yo and X,->aY,^Y,. •

The verification ofPG(H) 5 is notationally more complex but the same idea works.
First fix things up on the X^-^My portion using the properties of Diff and PL and
then note that we can apply PC 5 to fix up the X^—Mo portion. Axioms PC(S) 6
follows from a similar line of argument. Details are left to the reader.

Hence we have the category of ^(2) -manifolds; namely A ^(S)-manifold is a
triple (X,M,/) with XeobJS?(2), Meob ^(S) and /: X—M is a PC(2)-homeo-
morphism, and the maps between ^(S)-manifolds defined in the usual way. It is not
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hard to prove the countability axiom and so we have a classifying space BG(S); a map
BC(S)->BPL; and bordism theories T]^ and Qqs) with a monic map

7^^H,(BG(S);Z/2Z).

The natural transformation ^—^(S) that we defined extends to a natural
transformation of the category of G-manifolds to the category of C(S)-manifolds. The
relation between these two categories is given by

Theorem I I I . -— There are exact sequences

. . . ——— ̂  -^ ̂  -^ ̂ -(n^ -> ^-1 ——— • • •

. . . -^ -^ QW _^ ®^_(^) ——> Q.°_, -^ . . .

where T^, ̂  denote the smooth unoriented, oriented bordism groups.

The maps are given as follows. The map ^ is just the map induced by the natural
transformation of G-manifolds to C(S)-manifolds. The map T is defined by

T(MQ, M,, p,)-(..., [M,], .. .)e ©.^-(^D-
re^

If (M, My, (B,.) is orientable so are all the My, so the same formula defines both T'S.
The map r is defined in both cases by the formula r(. . ., [MJ, . . . ) = = S [SyXM].

re^
The sum is finite. We leave it for the reader to check that our maps are well-defined
on bordism classes and that our sequences are exact.

The following result has some amusing consequences. Let I(C) denote the kernel
of the map H*(BPL; Z/sZ) -> H*(BG; Z/2Z). It is easy to check that this kernel is
independent of which map BG->BPL we choose in the unique weak homotopy class.
We have similarly defined ideals I(C(2)) and I(o) in H*(BPL; Z/sZ).

Theorem IV. — I(G) .I(o) CI(C(2)).

proof. — If A:eir(BPL; Z/sZ) does not vanish in H*(BG(S)), then we can find
a C(S)-manifold M such that, under the map Vj^ : |M[->BG(S), x pulls back non-zero
(in general the dimension of M is much larger than that of x). Hence we need only
show thsitjy.z pulls back to zero in every G(S)-manifold when j/eI(G), zel[o).

But | M | = | MO | u II [c \ SJ X | MJ). The class y restricts to zero on | Mo [ and
the class z restricts to zero in U (c[2j x |My[). Hence y . z vanishes on |M|. •

We also have the following useful result.

Theorem V. — Let a be the minimum dimension of any element of"L. By hypothesis a>_i.
Then 7i:y(G(S)/G)=o for o<_r<,a—i.
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Proof. — We have an exact sequence:

7r^(PL/G)->7r^(PL/G(2:)) ->^(G(S/G)^(PL/G) ->^(PL/G(2)).

This takes just a minute to see. Since BG-^BG(S) weakly homotopy commutes we
\ /

BPL
do not have an obvious map PL/G->PL/C(S). But if KC PL/C is any finite complex
we do get a map K->PL/G(2). Since PL/C is a countable complex, the homotopy
extension theorem implies that we have a map PL/G-^PL/G(2) and a diagram

PL/G ——> BC ———> BPL

PL/G(S) —> BG(S) —> BPL

such that the squares weakly homotopy commute. This gives our exact sequence.
But now a moment's pause convinces one that if M is a G(S)-manifold of

dimension <_a^ then M is actually a G-manifold because if M^+0 for any r,
dimM=((dimS,)+i)+dimM^a+i. •

Now that we have our general setup we can iterate the construction. Start with
Tri and cone some exotic spheres to get BCi; cone some G^ exotic spheres to get BGg;
and continue. Clearly we can get lots of theories this way. Levitt [Le] showed that,
if at each stage the exotic spheres one coned contained precisely one representative
from each non-trivial concordance class of exotic spheres, the limit space BCi—^BCg—^
was BPL. We wish to consider this construction in general.

We are to be given a countable sequence of categories Go==Tri, C^, G g , . . . where
G^i==G^(S) for some choice of exotic spheres S. There is our natural transformation
X : Gj^ -> C^i, which we recall has the property that any G^.^ map /: X(Mi) ->• X(Mg)
is of the form X(^) for a (unique) Gj^ map g : M^—^Mg. Define a limit category C as
follows. An object in G is just an object in Cj^ for some k. Given two objects Mo and M^
in C suppose MgeobG^ and MiGobC^. A morphism in C, f: MQ->M.^ is a
morphism in Cj^ from ^"^(Mg)-> ^"^(M^) where ^=max(^o,^i) and X° is the
identity. To compose two morphisms, apply X iterated until all three objects are in
one Cjc and then compose there. It is easy to check that we have a category.

It is tedious, but basically not hard to construct natural transformations C^->C
and G—»-PL such that G^-^G->PL is our natural transformation. Moreover one
can prove that C satisfies Axioms Ip^, II, Him 5 IV^, V, VI, and VII as well as
Proposition (1.1).

Hence we get a classifying space BC and maps BC^-^ BC and BG->BPL. The
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composite BG^—^BG^i weakly homotopy commutes. The reader can easily show
\ /

BG
that, for any finite simplicial complex, T, lim [T, BCJ == [T, BC]. In particular
H,(BC;G)=lim H,(BC^G); TT,BG= lim 7r,(Bc5; etc. We have a G bordism.
The map r^ ->• H^(BC; Z/sZ) is monic, and 7^==lim T]^. We also have the result

k ->oo

that T^(PL/C) is the set of concordance classes of C structures on Sr and that
7r,(PL/C)=H_m^(PL/C,).

Theorem IV can be used to prove a nice result. Levitt [Le] has proved that
every compact PL manifold has a G structure for a certain limit category described
above. We have a similar result in Section 3. However, we have the following

Proposition (2.9). — Let Cy be any category constructed from Tri by reiterates of our
construction. Then there is a PL manifold M8^^ such that no manifold which is unoriented
PL bordant to M has a Cy structure. The manifold M is independent of Cy.

Proof. — By calculations of Brumfiel, Madsen, and Milgram [B-M-M], there is
a unique element in H^BPL; Z/2Z) which goes to zero in H^BO; Z/2Z). This
element, x, generates a polynomial algebra and, by Theorem IV, xr+l must vanish
on any Gy-manifold. But results of Browder, Liulevicius, and Peterson [B-L-P] imply
that there is an 8(r+i) dimensional manifold, M, such that <A; r + l , [M]> is a non-zero
characteristic number. •

3. A-structures and PL manifolds

In this section we discuss in some detail the following special case of our general
construction in Section 2. Let Ao=Tri. Define A^i inductively from A^ by
A^i==A^(S) where 2 is defined by: S contains one representative, 2y, from each
non-trivial concordance class ofA^ structures on a sphere provided that S^ is an unoriented
A^; boundary.

By Theorem V and induction TC^(PL/A^)=O for o<^r<6. Hence 2 satisfies
the hypothesis that dim Sy>o for all reJ^, and since S is a subset of (BT^(PL/A^),
2 is countable by induction.

We let A denote the limit category. The following result is crucial to our analysis.

Proposition (3.1). — The natural map ^(PL/A)—-/]^ is monic.

Proof. — The map just assigns to the A structure, M, on Sr the underlying
unoriented bordism class of M. There is a similar map TT^PL/A^-^T]^ for each k
and the first map is just the limit over k of the latter maps.
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Consider an element N in the kernel of the map 7c,(PL/Afc)->7^. Then we
are permitted to cone an exotic sphere concordant to N in A^i manifold theory. Hence
N is in the kernel of ^(PL/A^) -> 7r,(PL/A^i).

In fact, one can prove that

ker(^(PL/AJ -> 7^)=ker(^(PL/A,) -> 7r,(PL/A^i)).

An easy corollary of Theorem III is that T^-^^I is monic. Hence 7]^->^
is monic. The proposition follows by a simple limit argument. •

An easy corollary of Proposition (3.1) is that TT:,(PL/A) is a Z/sZ-vector space.
It is also clear that

TC,(PL/A) —————> ^

H,(PL/A; Z/2Z) —> H,(BA;Z/2Z)

commutes, where the maps going clockwise have been described already and where
T^(PL/A) ->H^(PL/A; Z/2Z) is just the Hurewicz map followed by mod 2 reduction
and the bottom horizontial map is induced by the map PL/A-^BA.

But Proposition (3.1) and Theorem II show that the map
7r,(PL/A)->H,(BA;Z/2Z)

is monic: hence split monic!
We digress briefly. Let E be a product of Eilenberg-MacLane spaces: so E is

determined by T^E. IfXis any space, then given any homomorphism X : H^(X; Z) ->T^E
we can find a map /: X->E such that

H.(X;Z) —^ H,(E;Z)

commutes. We now return to our analysis of the map PL/A-^BA.
If E is a product of Eilenberg-MacLane spaces such that we have an isomorphism

9 : 7r,(PL/A)->-n:,E, let X : H,(BA; Z)-^E be the composite

H,(BA; Z) —> H,(BA; Z/2Z) ̂  TT,(PL/A) -^ 7r,E.

Construct f: BA—^E as above.
It is easy to show that 7r,(PL/A) -> TT,(BA) — TT^E is just y. Hence PL/A is a

product of Eilenberg-MacLane spaces and we have a map BA-^PL/A splitting the
inclusion of a fibre PL/A->BA. The map BA->BPLxPL/A is easily seen to be a
homotopy equivalence. In particular we have
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Theorem VI, — Every compact PL manifold has an A structure.

Remark. — One can even show that any paracompact PL manifold has an A structure
by writing it as a union of compact PL manifolds. We refrain.

For amusement we finish this section with a complete analysis of PL/A. All
that remains is to compute 7^ (PL/A) and we have

Proposition (3.2). — Since TT,.(PL/A) is a fL|2fi-vector space it is determined by its
dimension 8y. We have

o o<ir<:_^
S,= 26 r==8

infinite but countable r^.Q

Proof. — That 8y==o for r<_6 follows as we saw from Theorem V. For r=7,
any exotic Aj^ sphere must come from AQ and hence is coned in A^. Therefore
7T7(PL/Ai)==o, so Theorem V and induction show that 7T7(PL/A^)==o for k>^i.

Now suppose that rc^(PL/A^) has an element, 2, whose image in Q^ has infinite
order. Then, in ^^^(PL/A^^^) we have an element whose image in Q.^[ has infinite
order and we further have that the image of ^.^(PL/A^^i) -> r^^ is an infinite
dimensional subpace.

To prove this observe that if S does not bound in Y]^, then 22 does, so we can
assume that S bounds in T^ but has infinite order in 0,^.

Now in the passage to Aj^i we can assume that we cone yzS for all n^o. Consider
a set of integers {r^ r^, .. .} such that all but finitely many of the r^ are zero and such

00 00

that S w,.=o. Then, if r= S [rj, we have that 11^(^2) bounds an Aj, manifold, W,
n= 1 n= 1

PL homeomorphic to an r-holed sphere. Hence the A^+i manifold (W, ?„, (BJ, where
P^ is a set of points of cardinality r, is PL homeomorphic to S7'4'1. See figure 3.

FIG. 3
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In the exact sequence of Theorem III, r(W, P^, (3J is (r^, r^, . . . ) m o d 2 or
(/!, f2 ? • • • ) • I11 either case it is easy to choose the r^s to prove the result.

Now in dimension 8 we can still do the same construction. Since
7T7(PL/Ao)=Z/28Z

there are 27 non-trivial concordance classes of exotic 7-spheres. We can form an
27

8-sphere by choosing positive integers r^r^ .. ., r^ such that S nr^==o (28). Hence
n==l

we may choose r^, . . ., r^ arbitrarily and then r^ is forced. All this arithmetic is mod 28.
If some r^ 4= o, the resulting sphere has infinite order in t2^. Moreover, the image
of 7r8(PL/Ai)->7]^1 has dimension at least 26. Since any 8-dimensional A^ sphere
has only point singularities, the image has dimension precisely 26. Since ^(PL/A) —^T]^
and ^—^f^ are monic, ^(PL/A) has dimension at least 26.

But since 7r^(PL/A^)==o for o<r^<7 and k^i, by Theorem V we see that
7Cg(PL/A) has dimension exactly 26.

Since 7Tg(PL/A^) has elements of infinite order in 0^1, our earlier remarks show
that the dimension of TT^(PL/A) is infinite for r>8. •

4. Remarks on algebraic varieties

From the work of Akbulut and King [A-K] it follows that the interior of any
compact PL manifold with A structure is PL homeomorphic to a real algebraic variety.
If we start with a smooth manifold Nash [N] and Tognoli [To] showed that the variety
could be chosen non-singular. Clearly this is not possible for a non-smooth manifold,
but one gets good control on the singularity set. The variety one associates to an
A^ manifold has the property that the singular set (of the singular set (... (of the variety)))
(k +1 times) is empty.

The relationship between all varieties homeomorphic to PL manifolds and those
coming from A structures is less clear. In some sense, A structures correspond to "as
non-singular as possible " varieties, since, for example, we have permitted no cones
over the honest sphere, an operation which introduces non-essential singular points.
A conjecture which would make the above precise is

Conjecture I. — If a PL manifold is PL homeomorphic to a variety V for which

Sing(Sing(...(Sing(V))))==0

for k 4 i repetitions of Sing, then the PL manifold has an A^ structure.

Not as good but perhaps easier would be to show that the manifold M8^^ of (2. g)
is not PL homeomorphic to a variety V with Sing^^V)^ 0.

Since all PL manifolds are varieties one looks around for other natural objects
which might be varieties. Integral homology manifolds are an obvious class and one
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is tempted to try and use work of Maunder and Martin [M-M] to push the result through
by an attack similar to the above.

One fails because the Gairns-Hirsch theorem is false. Put another way, there
are homology cobordism bundles which are trivial but are not products. Still the
result remains an attractive

Conjecture II. — Any (triangulated) Z^ homology manifold is PL homeomorphic to a
real algebraic variety.

Hopefully there will be other uses for Theorem VI. In particular, any compact
PL manifold M has a resolution to a smooth manifold as follows. Let X^ be an Aj^ mani-
fold (Mo, M,, (B,) with M= XJ=[Mo|uU|^:,xM,|. Choose A^_i manifolds W,
with ^Wy===2^ and let X^__i be the A^_i manifold given by the glueing, in A^_i of

U(S,xM,) —> Mo

^
U(W,xM,) —> X,_,

i.e. |Xfe_J=|Mo|uU|W,xMJ. There is a PL map n : \X^_^\-> |X^ . The map TT
is a PL homeomorphism on | Mo | and on [ U Wy X M^ | has the form

|U(W,xM,)[ ->U( |WJx MJ)^!!^ x|MJ^|XJ,

where p y : |W^ ->^|2J is a fixed PL map extending the identity on the boundaries.
In fact by [A-K] if one wishes one can modify the W/s so that a spine ofW^ is the union
of transversally intersecting closed (empty boundary) A^_^ submanifolds ULy with -K

3

collapsing each L^-x M^ onto M^. Clearly we can iterate this process to get a resolution
sequence

M=|Xo|-^>|X,|-^ . . . -^>(XJ=M.
/^

Since XocTri, [Xo| is a smooth manifold. Furthermore it is clear that TT:M->M
collapses each W^ X M^ onto M^ in some order.

Now we can make a choice of the W^ and p^ once and for all. There is some
choice involved in a pushout which got us X^_i. It is easy to prove that any two choices
of X^_i are concordant (even in the smooth case you may or may not have corners as
you choose so you can do no better than concordance). Hence the resolution is well-
defined up to concordance once some universal choices have been made.

Notice that even if the PL manifold M is orientable, it is quite likely that the
smooth manifold M will not be. Notice also that if M does happen to be orientable
then the map M -> M will have degree one. Since Brumfiel [Br] has shown that there
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are oriented PL manifolds with no degree one map from a smooth manifold, there is
no hope of a general oriented resolution theorem. One can of course use the work
in the first two sections to construct a space BSA and a map BSA->BSPL such that
an oriented PL manifold M has an oriented resolution if and only if v^ : M->BSPL
lifts to BSA, but the above remarks show that honest obstructions exist to making the lift.
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