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REAL ALGEBRAIC STRUCTURES
ON TOPOLOGICAL SPACES

by SELMAN AKBULUT and Henry C. KING

A real algebraic set is a set of the form p~!(0) for some real polynomial p: R"—R"
This paper is part of an attempt to understand what these real algebraic sets look like.
In particular, which topological spaces are homeomorphic to real algebraic sets?

It is known that real algebraic sets are triangulable and by [7] we know that
each simplex of this triangulation is contained in an odd number of closed simplices.
We also know by [5] that the singularities of a real algebraic set can be resolved, but
it is not clear to us what this means topologically.

The purpose of this paper is to prove that certain topological spaces (which we
call A-spaces) are homeomorphic to real algebraic sets (Theorem (8.1)). These
A-spaces are smooth stratified sets which admit a certain topological resolution of
singularities. One can show that any P.L. manifold is an A-space [3].

Roughly speaking, A-spaces are topological spaces built up from smooth manifolds
by the operations of coning over boundaries, crossing with smooth manifolds and taking
unions along the boundary.

Although not every real algebraic set is homeomorphic to an A-space (for instance
the Whitney umbrella is not) it seems likely that the techniques of this paper combined
with a few more from [2] will allow a topological characterization of real algebraic
sets (i.e. a topologically defined class of spaces which up to homeomorphism is exactly
the class of real algebraic sets).

In this paper we use very little algebraic geometry, a great deal of elementary
differential topology and not much else. Thus very little background is needed to read
the paper although at times it would be helpful to have read our previous work [1].

We start with Section o in which we give a rough sketch of the proof, making
a few simplifications so as not to obscure the main ideas. In Section 1 through 7 we
develop the ideas which we need to prove the main theorem in Section 8. Unfortunately
we are in the position of developing the subject from scratch so the paper is rather long.

We recall a few definitions from [1]. A polynomial p:R"—>R is called overt
if p7'(0) is empty or o. Here p, is the homogeneous part of p of maximal degree. An
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8o SELMAN AKBULUT AND HENRY C. KING

algebraic set VCR" is called projectively closed if V=p~"(0) for some overt polynomial
p:R'>R,

Let M be a smooth manifold and let U and V be smooth submanifolds of M.
We say U and V intersect cleanly if UNV is a smooth submanifold of M and the tangent
space of UNV is the intersection of the tangent spaces of U and of V. This is equivalent
to having a coordinate system at each point of UNV so that U and V are both linear
subspaces in this coordinate system. Some examples of clean intersections are when U
and V are transverse or when UCV.

Let us set up a bit of notation. For a topological space X, ¢/(X) denotes the
closure of X, ¢(X) denotes the cone on X, i.e. XX [0, 1]/X X0, and ¢(X) denotes the
open cone on X, i.e. XXJ[o0, 1)/XXo0. In either case we denote the vertex X xo0/X xo0
by *. By convention:

¢(empty set) =¢(empty set) = a point *.

We set ec(X)=XxX[o,e]/X X0, (X)=Xx[o0,¢)/Xx0 and I=]o, 1].
We set eB"={xeR"||x|<e}. Also if T is a linear subspace of some R" we set
el ={xeT | |x|<e}. If T is a linear subspace of R* and yeR" we set:

y+T={y+xeR"|xeT}.

Also sﬁ”:{xeR’“| [x|<e} and eS""'={xeR"||x|=c¢}.

If M is a smooth manifold, then dM denotes its boundary and M or int M denotes
its interior.

A smooth submanifold N of a smooth boundaryless manifold M is called proper
if it is a closed subset and &N is empty.

The reader may take a spine of a smooth manifold M to mean the complement
of an open collar on ¢M. Thus if K is a spine of M then M/K is homeomorphic to ¢oM.
Since A-spaces have boundaries and collars on boundaries we may similarly have a
spine of an A-space. We only use this term spine loosely.
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o. — A SKETCH OF THE PROOF

The purpose of this section is to summarize this paper, by giving an overview
of some of the constructions and the proof of the main theorem.

Firstly we construct certain stratified spaces which we call A-spaces. An Ag-space
is a smooth manifold. An A;-space is given by Y=Y,UII(N,x¢Z,) where Y, and
N;’s are smooth manifolds and each X, is a closed smootTl manifold which bounds a
compact smooth manifold, ¢ ={¢,}, and each ¢,: N;x X, - Y, is a smooth imbedding
where we identify N; X Z; with N;X(Z;X1) CN;x¢Z,. Define:

0Y =(0Y,— U (N, x =) ULL 0N, x c%,.
¢

Inductively we assume that we have defined A, _,-spaces and the notion of boundary
¢

for A, _,-spaces is well defined. Then an A,-space is given by: Y——_YOU.H1 (N; % X))
@ i=

where Y, is an A,_;-space with boundary, N;’s are smooth manifolds and each X, is

an A,_ -space which is the boundary of a compact A,_-space, ¢={¢;}, and each

@ N; X2, — dY, is an A,_,-imbedding (this means a piecewise differentiable imbedding

preserving and respecting all the strata and the links of the strata). Also define:

0Y =(Yy— U o,(N, x =,)) UL oN; x =,
P

(see Figure o.1). We say Y is closed if it is compact and 0Y=a.

We call an entity an A-space if it is an A,-space for some £. Also the notion of
A-subspaces of an A-space and transversality between them are defined in the obvious
ways. Define an A-isomorphism between two A-spaces to be a stratum preserving
homeomorphism which restricts to a diffeomorphism on each stratum and preserves

NixE,

‘ Mo

an A;-space with boundary an A,-space
Fic. 0.1
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82 SELMAN AKBULUT AND HENRY C. KING

the links (%,’s). Let dim(Y)=dimension of the highest dimensional stratum; as usual
the superscript of Y” denotes dim(Y).
In Section 1 a slightly different (but equivalent) definition of A-spaces is given.
A-spaces are constructed so that they can be topologically blown up to smooth
manifolds: Let Y be an A;-space given by the usual decomposition M =Y UII(N; x¢Z))
L4

and let W;’s be compact A, _;-spaces with oW;=2;,. Then the A,_;-space
Y, =Y, UIL(N;xW,)
®

can be considered a one stage blow up of Y. There is the obvious map =,:Y,;—>Y
which is obtained by collapsing spines of the W;’s to points. The disjoint union IIN;
is called the center of m;. Continuing in this way we get the resolutions

Y, 2 Y, 23— Y, Y
where Y,’s are A, _;-spaces, in particular Y, is a smooth manifold. The composition
map m=Tm0m0...07;: Y,—>Y can be considered as a topological analogue of the
resolution map for algebraic sets.

AN

Y Y,

an A, space
2

Y,

Fi1c. 0.2

We now state the main theorem which we will prove in Section 8.
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 83

Theorem (8.1). — The interior of any compact A-space is homeomorphic to a real algebraic set.
In fact this homeomorphism is a stratified set isomorphism between the singular stratification
of the variety and the A-space.

The resolution theorem of [3] shows that the class of A-spaces is large enough
to contain all P.L. manifolds; hence we have the following corollary.

Theorem (8.2). — The interior of any compact P.L. manifold is P.L. homeomorphic to
a real algebraic set.

The idea of the proof of Theorem (8.1) is to make the smooth manifold Y, a
nonsingular algebraic set, where =n:Y,—Y 1is a resolution of an A, space Y. Then
blow down this set ¢ algebraically > to a singular algebraic set which is homeomorphic
to Y.

Roughly the proof goes in four steps:

Finding nice spines for A-spaces
Approximating submanifolds with subvarieties
Algebraic tower construction

Algebraic blowing down.

S

1. Finding nice Spines for A-spaces

Given an A,-space Y™ which bounds a compact A,-space, we prove that Y bounds
a compact A,-space W such that a spine of W consists of transversally intersecting
codimension one closed A,-subspaces with certain nice properties. For example if

Y—=S' then W=T*—D?, and Spine(W)=S!xbuUaxS'~S'vS' where (g,b)eT?

S

:

S1

F1c. 0.3

This interesting topological property shows that one can resolve an A;-space Y

™, k-1 !
Y, %Y, - ... —Y, —Y

83



84 SELMAN AKBULUT AND HENRY C. KING

in such a way that each w; is obtained by collapsing A, _;-subspaces N;; xL; of Y;
to N;; where L;; are unions of codimension one A, ;-spaces without boundaries and
the Nj; are smooth. This makes the resolution Y,—Y very analogous to a resolution
of singularities of an algebraic set (every stage corresponds to resolving along the
centers N;;, and L;; correspond to algebraic sets lying over N;;). We call this resolution
of an A,-space a good resolution.

We discuss the method of obtaining these spines in Section 7. Proposition (0.1)
gives the main idea (which derives from the smooth version in [1], Fact (3.2)).

Proposition (o0.x). — If Y™ is an Aj-space which bounds a compact A,-space W+,
then Y™ bounds a compact Ay-space W™t such that there are a finite number of codimension one
closed A-subspaces {S;} in the interior of W with the properties:

(i) US; is a spine of W.
(ii) 0S;=e.
(iii) Each S; has a trivial normal bundle in 'W.

Progf. — For the sake of clarity we first discuss the proof when Y is smooth (i.e. k=0)
(cf. [1], Fact (3.2)). We prove this by induction on m=dimension(Y). Let Wp+!

be a compact smooth manifold with ¢W, =Y. Pick a collection of balls {D*'} in W,
so that:

(1) UD; is a spine of W,.

(2) UD,-—UBDi:Uinterior(Bj'), where B;’s are (m-1)-balls with disjoint interiors.
J

See Figure o.4.

9B,

% UaD;
()

Fic. 0.4

Then remove an (m+-1)-ball B; from each B. Then the smooth manifold

W,=W, — Uinterior (B))
J

has UaD, as a spine.

Then by attaching 1-handles onto dW, as in Figure 0.5 we get a manifold W,
with 0W,=M#S8"# ... #S"~M with spine UaD,uU G, (Figure 0.6). But each
circle C; has a neighborhood N; diffeomorphic to S'xB™. By induction we can find
an m-manifold U™ with dU™~S™~! and satisfying the conclusions of the propo-

84



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 85

Fic. 0.6

sition. By replacing each N; by S§ x U™ in W5 we get a manifold W™*! with the required
properties.

For instance the example in Figure 0.3 can be obtained by applying this process
to D* which S' bounds.

Proof in the general case. — Let Y™ be an A,-space as above. We prove this again
by induction on m, clearly the theorem is true for m=o0. Assume that the theorem
holds for m—1. Without loss of generality we can assume that all the strata of W,
meet the boundary; because if W,=W;UNX¢X where N is a statum of W, which
is a closed manifold contained in the interior of W;, we simply replace W; by
W/UNXxW;" where W;" is an A,-space with W =2 (cf. Lemma (1.4)).

Fic. 0.7

Pick a fine triangulation of W, compatible with the stratification coming from
the A,-structure. Let K be a subcomplex of W; which is a spine of W,. Cover K
with Ustar(vj) where {7} are the barycenters of the simplicies in K, and star (z) is
J
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86 SELMAN AKBULUT AND HENRY C. KING

the closure of the union of all simplicies meeting »;. The star (;)’s can naturally be
isotoped to codimension zero A,-subspaces of Y, namely (D")'xc¢X if y; lies on an
r-dimensional smooth stratum N” and X is the link of this stratum and (D)’ is a smooth
ball in N” (in the smooth case star (y;) are just smooth balls).

N E° W \77

F1G. 0.8

(D )xex®

By shrinking the star (y;)’s slightly, call them D;, we can assume that:

(1) UD; is a spine of W;.

(2) D;=D; xcZ;, D;, Z; are as above.

(3) UDF‘U 3D,-=Uintcrior(Bj'), where B/’s are disjoint A,-subspaces of W,
i i

with disjoint interiors and with the A,-structures B = B’ x¢cZ;, where B;’ are discs lying
in some strata and X; are the links of these strata in W, (compare [1], Fact (3.2)).

(4) {2D;} have trivial normal bundles in W, and they are in general position
with respect to each other.

Let B; be a slightly shrunken copy of B; inside of B;, i.e. Bj=§Bj' ’ Xé(cEj) where
iij 'CB;’ and é(czj) is a subcone of ¢%;. Then clearly U 9D is a spine of the A;-space
2 i
W,=W,— U interior (B;).
j=1
9By

UaD;

Fic. 0.9

The spine U oD, of W, satisfies the conclusions (i), (ii) and (iii) of the proposition but

unfortunately W, is not equal to Y, dW,=YII U &B,. Inductively we reduce s by

j=1
changing W, to another A,-space whose spine satisfies the conditions (i), (ii) and (iii)
until we get such an A,-space W with ¢W=Y. Hence it remains to show that s can
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 87

be made to be s—1. Pick an «e{1, 2, ..., s} such that there is a smooth arc on the
. o1 . I " .
stratum N, on which B, lies, connecting 8(—Ba X % CoB, to 0W,; (where * is the vertex
2

in ¢X,), meeting only one of the dD;, and meeting this 9D, at a single point. Let
N'=NnoW,=0N (recall that N'& ¢ by the hypothesis). Then the link of N’ in oW,
is X, since the link of Nin W, is Z,. Let U, =D/ x¢X, where D, is a small codimension
zero ball in N,; hence U, is a small closed neighborhood of D; in 6W,. Let

U,/ =D, xcZ,
. . . . I m e
where D is a small codimension zero ball in ¢ —Ba) X % and hence U,/ is a small closed
2

neighborhood of DY in dW,. Let W=W,UIx (D xcZ,) where Ix(DxcZ,) is glued
onto dW, along I x(Dx¢Z,) U, U, and D is a smooth ball of the same dimension
as D, and D, .

F16. 0.10

Note that W is a compact A,-space with éW=YII U 0B; (because connecting Y
i*a o
to 0B, in this manner just gives Y back) and U oD, UC, is a spine of W where G, is
the smooth circle C,UC) with C,=Ixox*CIxDxcZ,, and C; is a smooth arc
in N connecting the end points of C, and intersecting U &D; only at a single point.

Fic. o.11

The circle C, has a neighborhood S!'xDx¢Z, in W. Since 9(DXcZ,) is an
A,-space of dimension less then m bounding D x¢Z,, by the induction hypothesis there
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88 SELMAN AKBULUT AND HENRY C. KING

is 2 compact A;-space W, with dW,==8(D x¢X,) and codimension one A,-subspaces {Z,}
of W, satisfying (i), (ii) and (iii) of the proposition. Let

W =[W—interior(S' x D x¢Z,)JUS'x W, .
(This should be considered as blowing up W along the circle C,.)

S Wy

Fic. o0.12

This process alters éD;, where d is the unique index with dD,NC, consisting
of a single point, to D, = (oD, — interior(D x ¢Z,))UW,. Then ﬁdu U oD, ulUStxZ,

i+ d v
is a spine of W, and the codimension one A;-subspaces {5d, D;, S'xZ,} ;atisfy (i), (i1) and
(iii) of the proposition by the construction and the inductive hypothesis on {Z,}’s. Also

s s—1
oW=0W,;=YII U oB;, i.c. after reindexing dW=YII U ¢B;. We are done. m
st
Remark. — It should be emphasized that the W which satisfies the conclusion
of Proposition (0.1) is obtained by first finding an A,-space W with dW=Y and
with Spine(W) consisting of codimension one closed separating A,-subspaces {Z,}
and circles {G;} such that each C; intersects only one Z, at a single point; then
blowing up W along these circles. More precisely each circle C; has a neighborhood
N(C)~ S'x(D;x¢X{) in W where D; is a smooth ball and X/ is a closed A;-space
which is a boundary. Then inductively d(D;x ¢Xj)=20dW;" where W;" are compact
A-spaces satisfying the conditions of the proposition, and:

W=(W—UN(G))uUS' x W}’

where the union is taken along oN(C;)~S'xoW;" for each j.

2. Approximating Submanifolds with Algebraic Subsets

This is discussed in Section 2. The Nash-Tognoli theorem states that any closed
smooth manifold is diffeomorphic to a nonsingular algebraic subset of R" for some n.
More generally we can start with a closed smooth submanifold M™ of a nonsingular

88



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 89

algebraic set V and try to isotop it to a nonsingular algebraic subset of VxR". Such
a result can be achieved under a bordism restriction: M gives rise to an element [M™]
of the unoriented bordism group .#,,(V). We say that [M] is algebraic in V if [M]

contains a representative which is in the form: PxN 2“3 Pes VX R? where P is

a nonsingular, algebraic subset of VxXR? for some ¢. (For example in case V=R"
then every such [M] is algebraic.) Then we have the following result which is proved
in Proposition (2.3).

Proposition (0.2). — If [M] s algebraic in V then M s isotopic to a nonsingular algebraic
set in VX R for some ¢ by a small isotopy.

3. Algebraic Tower Construction
T, 7 .
Let Y be a closed A;-space and Y, —> Y, ; —> ... — Y, —> Y be a good
resolution. Let N, be the center of m;. Here we construct a tower of nonsingular
algebraic sets

by Pr_y »
U,—U,_,—...—U 5 1U,=U

with N;,;CU; as a nonsingular algebraic set (and with U, , some kind of algebraic
resolution of U; along N;_, discussed in Section 4), and imbeddings Y CU; which
commute with the projections and which are in some sense stable over the projections.
(For the proof of Theorem (8.3) the imbeddings in (8.3) don’t actually need to commute
but for the purposes of this summary the reader should assume they commute with the
projections.) This means that if Y is a nearby copy of Y; then g,(Y/) is a nearby copy
of ,(Y,)=Y,_,. Thus if Q is diffeomorphic to Y, and is close to Y, in U, then
p(Q)~p(Y)~Y where p=p,opso...0p,. To do this construction we need to make
the following definition which is made more precise in Section 4. For a given nonsingular
algebraic set U and a nonsingular algebraic subset NCU we say that p: U—U is
a super multiblowup with center N if p is the composition of the maps

™ - LA Y21 T
U—>...>(UxR")xR® - (UxR?) > UxR* - U

where the =; are the obvious projections and p; are multiblowups whose centers are
some nonsingular algebraic subsets (& N x L for some L) lying over N. A multiblowup
of Q with center P means you first blow Q up along P, then find a copy of P upstairs
lying over P, then blow up again, etc., a certain number of times. (There is a technical
difficulty of blowing up a nonsingular variety Q along a subvariety P more than once
because after the first blow up Q we might no longer be able to find an algebraic copy
of P in Q to blow up Q along P again. But this can be done if we cross the space with R
before every blowup.)

Let Y=Ygu I (N;x¢Z}) be a usual decomposition of the A;-space Y. Further-

1=1
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90 SELMAN AKBULUT AND HENRY C. KING

more without loss of generality assume r=1 (otherwise repeat the following process),
ie. Y=Y;UN, xc%,. Since N, is a smooth closed manifold it can be made an algebraic
subset of Uy=R% for some large ¢, (Proposition (0.2)). Extend this imbedding to an
imbedding of Y such that N; is identified by N;Xx% < N;x¢X; Y. Let W; be a
compact A, _,-space with W, =X, with a spine of transversally intersecting codimension
one closed A, _,-subspaces (Proposition (0.1)). We claim that we can find a super multi-
blowup with center N, p,: U; -R?% and an imbedding of N, xW,;< U, so that:

(i) N, xW, is transverse to p; *(N,),
(i) £ (Ny) N (N; X Wy) = N, X Spine(W,),
(i) 7N, X W) ~ N, xc5,.

We prove this by induction on the dimension of W;.

By Proposition (0.1) and the Remark following it, we can assume that there is
an A, _,-space W, such that a spine of W, consists of transversally intersecting codimension
one closed A;_,-subspaces Z,’s and circles C;’s such that each C; intersects a unique Z, at
a single point. Furthermore W, is obtained by blowing W, along each circle G, i.e.:

W, =(W, —UN(G))uUs! xw;’

where N(G;) is an open neighborhood of the circle C; in W,, in fact the closure of
N(C)~S'x W, where W/ is an A, _,-space (it is the cone over the link of C; in W,)
and W’ is a compact A,_,-space (obtained inductively) satisfying the properties of the
proposition (0.1) with 9W;=0W;’. Also the A, ,-spaces Z, separate each other.

First identify R? by R%x0oCR%#*% and then multiblowup R%*? (algebraically)
along the algebraic subset N, several times. Let 7, be the composition of the multi-
blowup map and the obvious projection

Rat+? ™ Ra+2_RaxR® % REDN,.

For any peN,CR%, =;!(p) is transversally intersecting codimension one algebraic
subsets 7;;'(p, 0) and a codimension ¢, nonsingular algebraic subset R, (=the strict
preimage of p xR?) of ny*(0,), where 0, is the normal plane to N, in R%

Hence in =;*(0,), ny '(p) locally looks like transversally intersecting hyperplanes
and a codimension ¢;-dim N, plane in a euclidean space. Because the Z,’s have trivial
normal bundles and separate each other in W,, we can imbed a neighborhood Q of UZ,

(in W,) into nfl((vp)cf{q:“ as in Figure (0.13) such that:

(1) Q is transverse to my;'(p, 0).

(2) 7i'(p, 0)NQ~UZ,.

(3) R,nQ~UT; where UL is a disjoint union of arcs corresponding to the
intersection QNUGC; in W,.

(4) m1(Q) me(2Q).
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 91

R*

N, (a point)

Fic. 0.13

Now as in Figure o0.14 we extend the imbedding Q<> =;'(¢,) to an imbedding

W, <> ni71(0,) by attaching 1-handles to Q (in n7?(0,)) along the end points of I,
so that:

(1) W, is transverse to w5 (p, 0)

(2) mi'(p, 0) "Wy~ UZ,

(3) anWIz ) C; (extending the imbedding of U L) with each C; intersecting =7;"(p, o)
only at a single point (in L).

In particular =7 (p) "W, ~(UZ,)u U C;) = Spine W,. In fact first m;; collapses UZ,
to (p, o) then =, collapses UCj to p so that =, (W,) x¢(Z,).

91



92 SELMAN AKBULUT AND HENRY C. KING

a1- handle

T2

N,( a point)

Fic. 0.14

By doing this process continuously for each peN; we end up with an imbedding
N, x W, & R%+? such that:
(1) N;xW, is transverse to n (Ny)
(2) w7 (Ny) N (N, X W) & Ny X Spine W,
(3) m(Nyx W) & Ny X%y,

We can assume that the each naturally imbedded copy of N; X G; in R +1is a nonsingular
algebraic set (and they are disjoint for different j’s). This is not obvious to see, but
here is a way of visualizing it: we can imbed a bouquet of circles UX; (Figure 0.13)
into R? each as a nonsingular algebraic set with various degree’s of tangencies with
respect to each other so that the map m,, will lift N,xUX; to the right places in
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 93

R%*2, this will in turn imply that nj;'(N; X X;) contains an algebraic copy of N; X C; as
above (=the strict preimage of N, xX)).

We are now in a position to apply the induction. We have the disjoint nonsingular
algebraic sets N; X G; in l~1‘11+2, so by induction there is a super multiblowup with center
UN,xC;, U, " Ru+? and an imbedding U (N, xC)xXW/"< U, so that:

(1) U(N; xC)xW;" is transversal to =, "(UN,xC,)
(2) 75 {(Nyx Cy) N (N; x Gy x W) & (N, x G)) x Spine(W,")
(3) mo(Nyx G x W) &Ny x G xe(dW[").

We then extend this imbedding to an imbedding of
by simply lifting the imbedding N, x (W,—U N(G)) & Ro+? by m, and piecing with the
above imbedding. This the imbedding N,xW, < U, and the composite multiresolution

$,: U, BRe* 25 Re p =m om, satisfies the requirements of the claim. Of course the
above process requires some care (in fact it should be done slightly differently) and
we don’t indulge in the details in this section.

ﬂmm»’
TN

7

Fic. o.15

Having constructed p; we extend the imbedding of N; x W, C U, to an imbedding of
Y, =Y, UN,;xW,. This is done by lifting the imbedding Yj<R% via p, and piecing
together with the imbedding of N;xW,;. This imbedding easily can be arranged so
that Y, is transverse to p; *(N,), p,(Y,)=Y and p, is stable. Since Y, isan A,_,-space let
Y, =Y2UN, XcZ, be the usual A,_,-decomposition. Now suppose [N,] is algebraicin U,
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then by (0.2), N, can be made a nonsingular algebraic subset in U,=U,;xR* for
some s;. Let W, be an A,_,-space satisfying requirements of Proposition (0.1) so
dW,=3,. Then just as above we find a multiresolution p,: U,—U, with center N,
and an imbedding of Y,=Y;UN,Xx W, U, such that Y, is transverse to p; }(N,),
p:(Y,)=Y, and p, is stable. Continuing in this fashion we get the following tower:

Y, <— U, P
[
U, xRE1=T,_ON,
!
Yk—lc—" Uk—l v.}
.
/ :
. lis
U, x Rz =U,DN;,
7
Y, <« U, Pa
2 !
U, x Rt =U,;DN,
|
Y, «» U 71
! 2 ,,
Y c o Ra =UDN,

where Y, is a smooth manifold. Supposing [Y,] is algebraic in U,, Y, can be isotoped
(by a small isotopy) to a nonsingular algebraic set Q in U, xR% for some s,. Call
U,=U,xR%. The tower

b, Pr_1 p.
Uk —L Uk——l i? c e —> Ul ﬁl U=Rq1

U U v v
Y, ~Y , —...— Y — Y

has the required properties where p; is the composition U,=U,xR->TU, % U,_,.
In particular this tower is stable in the sense described earlier in this section. This
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is visualized by the Figure 0.16. Isotop Y, to an algebraic set Q which is close to Y,
then p(Q)~Y where p=p,opso...0p, (k=1 in the picture). This is true because
of the properties of p,’s.

One has to prove that [Y,] and [N;] for i=1, 2, ... are algebraic. This is not
obvious, one has to complicate the whole construction to see this, we refrain and refer
the reader to the main proof. (Note: Set p;=p,0p;,10...0,. Then in the proof
of (8.3), the projections #;:f; *(N;)—N; are fins in U,.)

£;71(Ny)
//f

_:90 01 xRS'=U,
=4
p;(N,) P

Lo B )
tﬁ,
A @“@—74,@

FiGc. 0.16

4. Blowing Down

Having found an algebraic set QCU, with p(Q)~Y where p:U,—-U is as
above, we need to prove that p(Q) is still an algebraic set. A priori there is no reason
to assume that p takes algebraic sets to algebraic sets (in fact a linear projection R?—>R
takes the unit circle to an interval). So we have to do a more complicated algebraic
blowdown than mere projection p. This is discussed in section 3.
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1. — STRATIFIED SETS AND A-SPACES

The natural topological object to use when dealing with algebraic sets is a smooth
stratified set. Any real algebraic set has a smooth stratification. In fact it is not hard
to show, using the Whitney conditions, that every real algebraic set is homeomorphic
to the interior of a compact TCSS space (these TCSS spaces are smooth stratified sets
with some extra structure defined below). The converse is not true, although we know
of no compact TCSS space which satisfies Sullivan’s even local Euler characteristic
condition and is not homeomorphic to any real algebraic set. In fact in dimensions <2
we can show that no such example exists, thus we topologically characterize real algebraic
sets of dimension <2 [2].

Resolution of singularities tells us that links of strata of algebraic sets must bound
in some sense, but what this bounding means is not clear to us. What we can show
is that if the links of the strata of a compact TCSS space bound in a certain naive sense
then this TCSS space is homeomorphic to a real algebraic set. We call TCSS spaces
with this naive bounding condition on the links A-spaces. Not all real algebraic sets
are homeomorphic to A-spaces, for instance the Whitney umbrella is not. However
the class of A-spaces is big enough to include all PL manifolds [3].

In this section we give definitions of stratified sets, TCSS spaces, A-spaces and
various auxiliary notions. Also we show how we may ¢ resolve the singularities > of
A-spaces by blowing up along closed strata.

The following definition of a smooth stratified set with boundary is the same as
the usual definition of smooth stratified set except that we allow a stratum to have a
boundary.

Roughly speaking a TCSS space is a smooth stratified set together with a trivia-
lization of a « tubular neighborhood ” of each stratum. The trivializations of different
strata are required to fit together nicely.

An A-space is a TCSS space so that the link of each stratum bounds. Thus we
can resolve the singularities of an A-space by replacing a (closed stratum)x(cone on
its link) by (closed stratum)x(A-space which its link bounds).

Definition. — A smooth stratified set with boundary is a topological space X with a
locally finite collection of disjoint subsets {X,} «e.e/ (which we call strata of X) so
that:
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1) X= U X,;
ac A

2) each stratum X, is given the structure of a smooth manifold with (possibly empty)
boundary;

3) the closure of each stratum is a union of strata;
4) the closure of the boundary of each stratum is a union of boundaries of strata.

A stratified set is called finite if it has only a finite number of strata.

The dimension of a smooth stratified set is the maximum dimension of its strata
(assuming a maximum exists).

The boundary of a smooth stratified set with boundary (X, {X,} xe2/) is the
smooth stratified set ( U 8X,, {6X,} aeo/). We denote this by (X, {X,}) or,
loosely, oX. e

If (X, {X,} xesZ) and (Y, {Y,} Be#) are smooth stratified sets with boundary
then we may define a cartesian product (X XY, {X,xYg} («, B)eo/x%) by standard
corner rounding on the X, xY,.

If (X, {X,} xea?) is a finite smooth stratified set without boundary we may
define the cone and open cone on X by:

(X, {*}U{X, X (0, 1]} ae L) =¢(X)
and (X, {*}U{X,x (0, 1)} ac.) =(X).

If X and Y are finite stratified sets with empty boundary we may define the join
X#Y of X and Y to be the union X xcYUSX XY with (x, (9, ¢)eXxFY identified
with ((x, 1—1),y)ecXxY.

Definition. — A smooth stratified morphism between stratified sets (X, {X,}) and
(Y,{Yg}) is a continuous map ¢:X—Y so that the image of each stratum of X is
contained in a stratum of Y and ¢ is a smooth map on each stratum.

Definition. — A trivially conelike smooth stratified space (or TCSS space for short) is
a 4'tuple (X> {Xa}ae.ﬂ’ {Yo&aeﬂ; {Za}ae.ﬁ) WhCI‘CZ

1) (X, {X,}eew) is a finite smooth stratified set with boundary.

2) Each X, is either the empty set or (inductively) a compact TCSS space
(Bas {Zaplpe #> { Nap) {Aup}) with empty boundary.

3) Each v, is the germ at X, X * of a smooth stratified morphism ¢, : X, X¢Z,—X
so that:

a) cy(x,*)=x for all xeX,.

b) ¢, is a smooth stratified isomorphism onto a neighborhood of X, in X.

¢) 0X, X, =c; ' (8X).
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d) For any BeZ, let a’es/ be such that ¢, (X, X(Zx(0,1)))CX,. Then
2, =AM, and the following diagram commutes.

(Xa X (EaB X (O, I))) xcoza' =X¢ X(zua X(‘?Aaﬁ) X (0, I)

Yo X id id x Nap X id
Xa' X“?za' on X(za X(O’ I))
X

That is, ¢, (%, (¢aa( D, 2), £)) = o (cu(%, 9, 1)), 2) for all xeX,, yeX,,, zecZ,, te(o, 1)
with z near x and ¢ near o. Here ¢, and ¢, represent v, and 7,5. (See Fig 1.1.)

Zap

X yfcone) NV\——»'E

zaﬁ"Aaﬁ

X« (@ point)

(4 is the link of X, in R® which is A,p)

Fic. 1.1

Notice that 3) ¢) above implies that the boundary of a TCSS space inherits the
structure of a TCSS space.

Defimition. — Let (X, {X,}, {v.} {Z,}) be a TCSS space and let X, be a stratum
of X. Then a neighborhood trivialization of X, is a map ¢, : X, X¢%,—~X satisfying g a),
b),c), d) in the above definition so that v, is the germ at X, X * ofc,. The TCSS space =,
is called the link of X,.

Notice that the cone and open cone on a boundaryless TGSS space set have an
induced structure of a TCSS space and the join and cartesian product of two TCSS spaces
have induced TGCSS structures.

For instance, if X and Y are TGSS spaces and U and V are strata of X and Y
and X and A are the links of U and of V, then the link of the stratum UxV in X XY
is the join T« A. (Note that ¢(Z*A)~cZ XcA).
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Lemma (x.x). — For any TCSS space X there is a smooth stratified imbedding f: X —R"
Sor some n.

The proof is clear.

Definition. — A TCSS isomorphism between two TCSS spaces (X, {X,}, {v.}, {Z.))
and (Y, {Yg}, {35}, {Ap}) is a smooth stratified isomorphism %:X—Y such that for
each a if Y, is the stratum of Y so that A(X,)=Y;, then there is a smooth stratified
isomorphism £, : £,— A; so that the following diagram commutes; where &, : ¢Z,—cA,
is the map A (x, t)=(h,(x), t).

o 3g
YBXcAB — 'Y
1\

h xRy h

X, %65, = X

In short a TCSS isomorphism is a smooth stratified isomorphism which preserves links
and neighborhood trivializations.
Notice that the %, above is automatically a TGSS isomorphism also.

Definition. — Let (X, {X,},{v.},{Z,}) be a TCSS space. Then YCX is a
TCSS subspace if (Y, {YnX,}, {Ym , {Z“}) is a TCSS space. In other words,

(YnXa)xcza}
YNX, must be a smooth submanifold of each X, and for each « there must be a

neighborhood trivialization ¢, : X, x¢Z,—~X so that ¢, ((YNX,)X¢Z,) is an open
subset of Y.

Fic. 1.2

Notice open subsets always are TCSS subspaces.

Definition. — A TCSS imbedding o : X—Y is a TGSS isomorphism onto a TCSS
subset of Y. We say « is open if its image is open in Y.

Lemma (x.2) (Collaring). — Suppose (X, {X.}, {Ya} {Ze}) @5 @ TCSS space with
compact boundary and U CoX is an open subset of X and KCU s compact and
0:Ux[o, 1)>X 1is an open TCSS imbedding with 6(u,0)=u for all ueU. Then there
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is an open T CSS imbedding ¢ : 0X X [0, 1) —>X so that ¢
Sor xeX.

Such a ¢ is called a collaring of 6X. The U, K and 6 only appear in order to
make the proof easier. Normally they would all be empty.

=0

K x[0,1)

and ¢(x, 0)=x

K x[0,1)

Proof. — The proof is standard. We prove by induction on the number of strata
of 9X not contained in K. If all strata are contained in K we are done since K =0X.
Otherwise, pick a stratum N of least dimension among those strata not contained in K.
Let L be the stratum of X with N=0L and let ¢:Lx¢Z—>X be a neighborhood
trivialization for L. Let K'CU be a compact neighborhood of K in dX. By the rela-
tive collaring theorem for smooth manifolds there is an open imbedding «:N X[o, 1) >L
so that «(x,0)=x forall xeN and « =0 . We may define U’

(NAK') x[0,1) (NAK') x[0,1)
to be the interior of K’ in X union a neighborhood of Nin 0X. Welet B:U’x[o, 1) >X

be defined so that B(x,#)=0(x,t) for xeK’, te[o, 1) and the following diagram
commutes

(NxcZ)x[o, 1)=(Nx[o, 1)) xc=
¥ X id a X id

U’ x[o, 1) Lxcx
\ /
Y
X

ie. Ble(x, (9,9)), t)=c(a(x,t), (9, 5)) for xeN, yeZ and s small. Well definedness
of B follows since 0 is a TGSS imbedding. Then B‘ =0 so by
. . (KUN) x [0,1) (KUN)x [0,1)
induction we are done. m

S04

X

Fic. 1.3

Definition. — A TCSS subspace X CY is full if X —0X is an open subset of Y.
The basic idea is that X is “codimension o” in Y.
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Lemma (x.3) (Bicollaring). — Suppose Y is a TCSS space and X CY is a full TCSS sub-
space with X NOY empty and 0X compact. Suppose U C X is open in 0X and KCU is
compact and 0 : U X (—1, 1)>Y is an open TCSS imbedding with 0(u, 0)=u for all ueU.
Then there is an open TCSS imbedding ¢ : 0X X(—1, 1)—=>Y s0 that ¢ =0
and ¢(x,0)=x for all xedX. Ex{=1,1)

Kx(—1,1)

Proof. — The proof is similar to the proof of Lemma (1.2). m

Definition. — A TGCSS space X bounds if there is a compact TCSS space Y so that
X =dY and X and Y have the same number of strata. (In particular X must have
empty boundary and be compact.)

Definition. — An A-space is a TCSS space (X, {X,}, {v.}> {Z,}) so that each I,
bounds.

Definition. — An A-subspace Y of an A-space X is a TCSS subspace Y of X. (Note
Y is automatically an A-space itself.) (See Figure 1.2.)

We define an A-map to be a smooth stratified morphism between A-spaces and
an A-isomorphism to be a TCSS isomorphism between A-spaces.

Suppose X is an A-space, N is a closed stratum of X and MCN is a union of
connected components of N. Let ¢: Nx¢X—X be a neighborhood trivialization for N
and suppose W is a compact A-space with the same number of strata as X so that
oW=2X.

We define an A-space B(X, M, W) as follows. As a point set B(X, M, W) is
X—MuUMXxW. Let n:XZx[o,1)>W be a collaring of dW=2ZX. Define:

A MxEx(—r1,1) > B(X, M, W)

by A(x, 3, 8)=(x, (9, ¢)eMxW if t>o0 and A(x,y, t)=c(x, (9, —t))eX—-M if
t<o. We put the unique A-structure on B(X, M, W) so that the three maps

X—M-BX, M,W),  Mx(W—adW)->BX, M, W)
and A: MXEx(—1,1) - B(X, M, W)

are all A-imbeddings. The basic idea is that we replace M by M X W, a process analogous
to blowing up in algebraic geometry.

We can define a collapsing map =(X, M, W) :B(X, M, W)—->X by letting
(X, M, W) be inclusion and letting =(X, M, W) be projection onto M.

X—M MxW
Note that although =(X, M, W) is continuous it is not an A-map since the image of

a stratum is not contained in a single stratum.
We call B(X, M, W) an A-blowup of X. Likewise an A-blowup map is =(X, M, W)
for some X, M, and W.
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{7
(XM W)

B(XMW)
Fic. 1.4

Lemma (x.4). — Let X be an A-space which bounds. Then X =0Y where Y is a
compact A-space so that each connected component of each stratum of Y has nonempty boundary.
(In particular Y has the same number of strata as X.)

Progf. — The proof will be by induction on the dimension of X. If dim X<o
then X is empty so the lemma is true (with Y empty) in this case.

In the general case, suppose the lemma is not true for some X. Let Y be a
compact A-space with the least number of components of strata with empty boundary
such that X=0Y and Y has the same number of strata as X. Pick a component M
of a stratum N of Y so that dM is empty and M has least possible dimension. Then
notice that M must be closed. Let ¢:Nx¢Z—Y be a neighborhood trivialization
for N. Note dim N>o0, otherwise Y would have more strata than X. Hence
dim X <dim X so by induction there is a compact A-space W with dW=2X so that
each connected component of each stratum of W has nonempty boundary.

Now let Y'=B(Y, M, W). Then 9Y'=X, Y’ has as many strata as X and Y’
has fewer connected components of strata with empty boundary than Y. Hence we
have a contradiction and the lemma is proven. (See Fig. o0.7.) m

Definition. — An A-disc is an A-space of the form B¥x¢X where X is a compact
A-space which bounds and B*={xeR*||x|<1}. An open A-disc is the interior of an
A-disc, i.e. an A-space of the form R*x¢X where X is a compact A-space which bounds.
An A-sphere is the boundary of an A-disc.

Definition. — Let X be an A-space and let Y;CX be A-subspaces i=1, ...,k
Then Y,,Y,, ..., Y, are in general position if for each stratum X, of X, Y;nX,,
Y,nX,, ..., Y,nX, are in general position in X,.
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II. — A-BORDISM, ALGEBRAIC BORDISM
AND ALGEBRAIC SETS

Given an algebraic set X, a closed, smooth manifold Y and a map f:Y—->X itis
useful to know when for some & we may approximate fx0:Y — X xR* by an imbedding
onto a nonsingular projectively closed algebraic set. This turns out to depend only
on the unoriented bordism class of f (this is an immediate corollary of Proposition (2.3)).
For this reason, it is useful to study A-bordism which we define below. Also, the question
of representing Z/2Z homology classes by algebraic sets turns out to be crucial.

Defimition. — Let X be a topological space and let «;:X;—X be continuous
maps where X; are compact A-spaces ¢=o0, 1. We say «, and «, are bordant if there
is a compact A-space Y and a continuous map B:Y—>X so that dY is the disjoint
union X,UX, and B| =u«,.

X

This bordism relation is an equivalence relation as usual so it gives rise to a
bordism theory 4™ where #4(X) is the group of bordism classes of maps from compact
A-spaces into X. The group operation is disjoint union. Every element has order two.

Suppose K CR". We may define a subgroup V% A(K)CAA(K) to be the
subgroup generated by maps ZXY—-Y—>K where Y is a nonsingular projectively
closed algebraic subset of K xR” for some % and where Z is any compact A-space and
the map ZxY—>Y is the projection and the map Y—K is induced by the projection
K xR¥—-K.

Now if YCXCR" we may define #/4(X :Y) to be the quotient group
NAX) [i A/ AY) where i, : /(YY) > #2(X) is induced by the inclusion.

We may define #/A(X) and #A(X:Y) to be the subgroups of #™*(X) and
AM(X :Y) generated by maps «:Z-—-X where dimZ=i.

Definition. — Let UCR" Then H#(U) will be the subgroup of the singular
homology group H;(U, Z/2Z) generated by homology classes of the form =,([V]) where
V CU xR is an ¢ dimensional nonsingular projectively closed algebraic subset of R"x R*
for some k; w:V—TU is induced by projection UxR*—~U and [V]CH,(V, Z/2Z)
is the fundamental class of V. Equivalently, H*(U) is generated by f,([V]) where
V is a compact algebraic set and f: V—U is an entire rational function (see [1]).

Definition. — Suppose U is an algebraic set and H}(U)=H;(U, Z/2Z) for all
i<n. Then we say U has algebraic homology up to n. If U has algebraic homology up to =
for all n, then we say U has totally algebraic homology.
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Lemma (2.x). — Let VCR" be a set and UCV a subset and suppose that:
Jot HY(U) - H(V, Z[2Z)
is onto for all i<n where j:U—V is inclusion. Then N2V :U) is the trivial group.

Proof. — For any ye#A(V:U) let a: X~V be a map representing y so that
dim X =n. We will prove this Lemma by induction on the number of strata of X.
Pick a closed stratum N of X. Let ¢:Nx¢X—X be a neighborhood trivialization
and let Z be a compact A-space so that ¢Z=23X. We know by [4] that generators of
A(V)=smooth unoriented bordism of V are of the form P;xM;—P;—~V where
the M; are generators for smooth unoriented bordism of a point and the P; generate
H,(V,Z/2Z). Hence there is a smooth manifold W and a map B: WV so that
P,xU; -V s

P; xU;
projection. Here each U, is a smooth closed manifold and each P; is a projectively

k
oW is the disjoint union Nu U P,;xU; and [3' =zx‘ and
1=1 N N

closed nonsingular algebraic set contained in U XxR% given by the hypothesis.
Let Z'=¢XUZ with Zx1CcX identified with 0Z=2. Let:

k
X'=Xx[o, JuWxcZu U P, xU;xZ'x[o, 1]
i=1
with (¢(x, (3, 2)), 1)e X X[o, 1] identified with (x, (9, 2t))eWxc¢Z for xeN, yeZ,
te[o, %] and with P,XU;xcZCW XX identified with:
P, xU;xcZx1 CP,xU;xZ'X[o, 1].  (See Figure 2.1.)
~——n UPxUixZ%0

~——rnn UPU; <25 [01]

~——ANAN WxCE

Xx[0,1] mr—

NG

Fic. 2.1

Now define «' : X'V as follows: On X x[o, 1]:

o (x, )=a(x) for (x,t)e(X—c(NxcZ))x[o, 1],
o' (c(x, (9, 9)), t)=wc(x, (9, s+t(s—1))) if t1—s5)<s
(el (), )=alx) i i—s)>s.
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On WxeX o'(w, (9 t))=p(w). On P,xU,xZ'X[o, 1], o'(p,u,»,t)=mn;(p) where
w;: P,V is induced by projection. Notice that o«'|P;xU;XZ’X0 represents an

element of #*(U) and « represents vy, hence «'| represents y where:
X x0 X

k
X'=(XX1=NxZ)UWX(Ex1)u UP,xU,;xZx1.
i=1
But X" has less strata than X or it is empty. So by induction, #A(V;U)=0. =

Lemma (2.2). — Let X be a compact A-space, let M CR" be a smooth manifold, let
KCM and suppose o:X—>M represents o in /"*(M:K). Then

a) If X'CX is a closed union of strata then o| :X'—>M represents o in /*(M : K).
-

b) If m:X' =X isan A-blow up map then aom: X'—>M represents 0 in /*(M : K).
c) If YCR™ is a projectively closed nonsingular algebraic set then:

identity X« : YXX >YXM

represents o in /(Y XM :Y xK).

d) If LCM—(Kua(X)) @ a sub-manifold and dim X +dim L+ 1<dim M,
then o:X-—>M—L represents o in /*(M—L:K).

e) If M’ is a smooth manifold and K'CM’';, MCM’, KCK’' then o:X->M
represents o in /A(M': K').

£) If v:X—>R"™ is any map and peR™ then axy: X —> MXR™ represents o in
AAMXR™: K xp).

g) There is an integer u, a compact A-space Z with the same number of strata as X and

k
amap B:Z—>M so that 0Z is the disjoint union XU U P;x U, where P,CKxR* are
i=1
projectively closed momsingular real algebraic sets, U; are compact A-spaces and B| =o and
X

B:P,xU,—>K 1is the composition of projections and an inclusion P;x U;—P,—~KxR*—-K.

Progf. — We first prove g). Let B:Z—>M be a map as in g above except that
Z might have more strata than X, but pick B:Z—-M so that Z has the least number
of strata possible. If Z has more strata than X then we may pick a closed stratum N
of Z which is disjoint from X. Let wm:Z'—Z be an A-blowup of Z along N. Note

oN = U P,xN; for some closed stratum N; of each U;. Then consider Bon:Z’'—M.

z has less strata than Z and 90Z’ is the disjoint union XU U P,xU; where U] is an
t=1

A-blowup of U, along N;. Also Bowx| =« and Bow is the composition
X P; x U]

P,xU;->P,~KxR*~K
so we have a contradiction.
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So Z and X have the same number of stratum and g) is proven. (See Figure (2.2.)

X

”H\

Fic. 2.2

For the remainder of this proof we take a f:Z—>M as in g).
To prove a), let Z’' be the union of the strata of Z which intersect X'. Then

Bl :Z'—>M is a bordism from X’ to maps representing elements of N 4(K).
"

To prove b), suppose X'=B(X, N, W) (see Section 1) then let L be the stratum
of Z containing N, note that L is closed, otherwise Z would have more strata than X.
Then Bon(Z, L, W) :B(Z, L, W)—>M is a bordism from aon(X, N, W)=aon: X'>M
to some maps representing elements of V% A(K).
To prove c), note that idXB:YXZ—->Y XM is a bordism from id X« to some
maps representing elements of N 4(Y xK).
To prove d), by general position we may assume that B(Z)NL is empty so the
result is proven.
To provef),let 3:Z—[o, 1] be asmooth function whichis 1 on X and o on ¢Z —X.
Define B':Z —>MXR"™ by B'(2)=(B(2),p+3(2)(y(2)—p)). Then B'| =axy and
! represents an element of N A(K xp) so we are done. 8
9% —X
The proof of e) is a triviality, notice the obvious homomorphism

NAM:K) > #AM :K). m

Proposition (2.3). — Suppose W is a nonsingular real algebraic set and MCW is a
smooth compact boundaryless submanifold so that the inclusion M<>W represents o in /" 4(W : W).
Then for some k, M 1is isotopic in WXR" to a nonsingular projectively closed algebraic set
VCWxRE We can make this isotopy as C* small as we wish.

Proof. — We know by Lemma (2.2) g) that there is a smooth manifold N and

b
amap «:N—->W so that N is the disjoint union MU U P;xU; and «| =inclusion
i=1 M

and « : P, xU;— P, WxR*>W is the projection where P; are nonsingular projec-
P; x U;

tively closed algebraic subsets of W XR" and U; are closed smooth manifolds. By [1],
Proposition (2.8), we may assume the U, are nonsingular projectively closed algebraic
sets U,CR" for some n. By translating we may assume the P;’s are pairwise disjoint.
So if n is large enough we have a smooth imbedding B:NX[—1, 1] > (WXR¥*)XR"XR
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so that pB(x, f)=((x, 0),0,¢) for xeM, ¢ near o and B((p, u),t)=(p, 4, t) for peP,,
ueU; and ¢ near o. The proof now proceeds as in the proof of Proposition (2.8) of [1].

More specifically, by Proposition (2.8) of [1] we may isotop BXxo fixing
8N x [—1,1])
UP,xU;x0 to an imbedding B': dNX[—1, 1]) > WxR*XR*"XRXR™ onto a pro-
jectively closed nonsingular algebraic set X. By Lemmas (2.2) and (1.6) of [1] there
is a nonsingular projectively closed algebraic subset V of X isotopic to p’'(Mxo). m
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III. — BLOWING DOWN

In this section we describe a procedure for  algebraically blowing down * an
algebraic set. The map &, is a quotient map which collapses certain algebraic subsets.

Suppose W CR™ is a real algebraic set and ¢ : R™—R is a polynomial of degree d.
We define for any n a function Z,: WXR"—>W xR" by

9,1(36,)’)::(90,} . "yl—za/(zd+1)(q(x))2/(2d+1)).

Notice that &, is a homeomorphism on (W—g¢!(0))xR" and a diffeomorphism on
(W—¢7%(0))x(R"—0). Also, if XCWxR" then Z(X) is homeomorphic to the
quotient space of X by the equivalence relation (x, y)~(x',»') if x==x'eq *(0). The
usefulness of this &, is indicated in the following Proposition.

Proposition (3.x). — If VCW XR" is a projectively closed algebraic set and q: W—->R
is an overt polynomial, then (V)L (¢ '(0)x0) is a projectively closed algebraic set.

Progf. — Let WCR™ and let p: R"XR"~>R be an overt polynomial of degree ¢
with V=p"*(0). Let d be the degree of g. Define a polynomial r:R"xXR"->R by

(%, ) =(q(x))*p(x, 3| y[*|*())
for xeR™ and yeR". (This ris a polynomial after clearing denominators.) Note that:
(%)~ (%3] 3 [ [¢*(x))

is the inverse of &, on (W—g~*(0))xR" Clearly 7(Z,(V))=0 and r(g~'(0)x0)=o.
In fact:
r4(0) = (V)Ug~*(0) xo

for suppose r(x,y)=o0. If g(x)+o, then (x,y|y**/¢’(x))eV, so (x,)eZ,(V). But
if g(x)=o0 then r(x,»)=p,(0,|»|*®) where p, is the homogeneous part of p of degree e.
Hence y=o, so r!(0)=2,(V)uUg *(o)xo.

0

q7(0)

FiG. 3.1
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To see that Z (V) is projectively closed, we show that r is overt. Notice that
the highest degree terms of r are '(x, y) = ¢%(x)p,(x, »| [?*/¢5(x)) where g, is the highest
degree terms of ¢. If 7'(x,p)=o0 and g (x)+0 then p,(x,y|»**/gi(x))=0 so x=o0
and y=o by overtness of p,. Butif r'(x, y)=o0 and g¢;(x)=o0 then r'(x,y)=p,(0,y|»[*%
so y=o0 by overtness of p and x=o0 by overtness of ¢. So 7'(x, y)=o0 if and only if
x=0 and y=o0 so r is overt. m

For example, if W=R? g¢(x,y)=x>+)’, n=1, then:

(%, 3, 2)=(%, 7, -, (# +y2)§)-
If we let X={(x,7, 2)eR®| s +»*+22=4} then:
Z(X)={(x, 2, 2)eR®| (& +)")° + 20 =4 (" +)°)*}.
For another cxample, suppose ¢'(x, y)=x*+3»*—1. Then:
Dp(%, 9, 2) =%, 7 z%(xz +7 _I)g)
and Dp(X)={(%, 9, 2)eR®| (** +)°) (** + 7 —1)* + 20 =4 (+* +* —1)"}.
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IV. — BLOWING UP

In this section we describe algebraic blowing up. We start out with the usual
blowing up of a nonsingular algebraic set along a nonsingular algebraic subset. It
will be useful to combine this process with the process of crossing with Euclidean space
which leads to the multiblowup B,(V, N). Even this multiblowup is not good enough
so we must do a sequence of multiblowups and crossing with Euclidean spaces. Such
a super-multiblowup is determined by resolution data defined below.

We need these processes to set the stage for the algebraic blowing down of Section 3.

The whole point of this process is that it is an algebraic process which has the
local description given by Proposition (4.6) and this local description is analogous to
a description which can be given to A-blowups. (The links of an A-space can bound
a compact A-space with a spine of codimension one transversely intersecting A-subspaces.)
This connection will be made less tenuous in Sections 5, 6 and 7.

Definition. — Let V; be nonsingular algebraic sets and let U,CV; be algebraic
subsets i=o0, 1. A map f:V,—Uy,—V,—U, is called a birational diffeomorphism if
fis a diffeomorphism and both f and f~! are rational functions. That is, if V;CR"%
then there are polynomials p,: Vo—R™, p,: V;—R™ and ¢;: V,—R so that ¢;*(0) CU,,
F(x)=po(%) [go(x) for all xeVy—U, and f~'(x)=p,(x)/q(x) for all xeV,—TU;.

It is easy to see that if f: V,—U,—V;—U, is a birational diffecomorphism and
W, CV, are algebraic sets then both f(Wy)uU,; and f~*(W,)uU, are algebraic sets
(see Lemma (1.3) of [1]).
Consider the map v:RP*~! - R¥=kxk real matrices defined by:
k
V([ : oot ) =wx/( 2 B i=1,...,k j=1,...,k
n=1
where v;; is the ¢, j-th coordinate of v.
The map v imbeds RP*~! onto the nonsingular projectively closed algebraic set

{LeR¥|L is symmetric, L*=L and Trace L=1}

where L is thought of as a £x% matrix. In fact X CRP*~! is a projective algebraic
set if and only if v(X) is an algebraic set.

Let U and V be nonsingular algebraic sets with UCYV. Then we may blow
up V along U to get a nonsingular algebraic set Z(V, U). This is a standard procedure
in algebraic geometry.
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We indicate how it is done. One takes a polynomial map p: (V, U) - (R* o)
for some % so that U=p""(0) and in fact the coordinates of p generate the ideal of
polynomials vanishing on U. Then #(V, U) is the closure in VxXR" of

{(x, v0p(x)) eV X R¥ | xe V—U}

where 0:R*—o0—RPF~* is the quotient map 0(xy, ..., %)=[*:%: ... :%] and
v is as above. The projection from VXR¥ to V gives us a map

=(V, U) : Z(V, U)—>V.
We denote &(V, U)==(V, U)"*(U). This blowup has certain nice properties:
=(V, U)

n(V, Uy Y{(V-1)

is a birational diffeomorphism onto V—U, & (V, U) has codimension 1 in #Z(V, U)

and =(V, U) I : & (V,U)—>U is the projectivized normal bundle of U in V. The
£(V,U)
actual set Z(V, U) is not canonically defined, it depends on a choice of p, but any two

choices will give blowups which are birationally diffeomorphic via a diffeomorphism
which commutes with projections to V. This diffeomorphism and its inverse are entire
rational functions so they take algebraic sets to algebraic sets.

For instance, let us find Z(R"xR¥, R"x0). Let y,, ..., be coordinates for R,
Then:

k
R*xo= N 57(0).
i=1

Hence Z(R"xR* R"x0) is the closure in R*XR*xR" of:

{(x9.y, V([yl . .yk]) I xeR”, yERk—'O}
which is:
2

{(%,9, 2)eR"XR*XR¥ | | yP2;;=1,y;, trace z=1, 2#=2z, z symmetric}

where z is thought of as a £x% matrix. We have a diffeomorphism
v: R"x(RP¥—point) - Z(R"x R, R"X 0)
given by:
v [ionige: o) =0 0/ 2P (il 15P)
for all xeR" and [¢:9,:...:9]eRPF—[1:0:0:...:0] where y=(y, ..., )-

We may describe Z(V, U) (up to diffeomorphism) as follows. Let p:P—-TU
be the projectivization of the normal bundle of U in V (so for each xeU, p~'(x) is
the projective space of lines in ¢~ *(x) where ¢: Q—TU is the normal bundle of U in V).
We have the canonical line bundle r:L-—>P (where r~!(y)=the set of points in the

line y if yeP isalinein Q). We include P in L and include U in Q as the zero section.
Notice there is a natural diffcomorphism A:L—P—Q—U. Then #(V,U) as a
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point set is (V—U)UP and we put the smooth structure on #(V, U) so that inclusion
V—U— #(V, U) is an open smooth imbedding and if »:Q-—V is a tubular neighbor-
hood of U then 6:L — #(V, U) is an open smooth imbedding where 6| is the identity
and 0(x)=uA(x) for xeL—P. ?

For many purposes we are only interested in #(V, U) up to diffeomorphism.
The above description then gives a definition of #(V, U) where V is a smooth boundary-
less manifold and U is a proper submanifold of V. It should be understood, however,
that in case V and U are nonsingular algebraic sets, #(V, U) will denote an algebraic
subset of some VXR¥ as described above.

Suppose now that U, V and W are smooth boundaryless manifolds, WCV, U is
a proper submanifold of V and U and W intersect cleanly. Then we have a natural
inclusion

ZW,WnU) - Z(V,U)
so that (W, WnU)==(V, U)

B(W, WAU)

In addition, if U, V and W are nonsingular algebraic sets then Z(W, WNU) is a non-
singular algebraic subset of #(V, U).
If X is a smooth boundaryless manifold we have a natural diffeomorphism

XxB(V, U)x BXxV, XxU),

so that idxX=n(V,U)=n(XxV,XxU). If U, Vand X are nonsingular algebraic sets
then this natural diffeomorphism and its inverse are entire rational functions.
The following Lemma gives the well known local description of blowing up.

Lemma (4.1). — Suppose V is a smooth manifold, U CV is a proper smooth submanifold
and o :R*XRXR*=V is an open imbedding so that «~*(U)=R"xoxo. Then:
7YV, U)(«(0)) N B(«(R"XR X 0), «(R"X 0 X 0))
is a single point q and there is an open imbedding

B: (R"XR xR 0)— (#(V, U),q)

so that n(V, U)o B(x, t, y)=a(x, t, ty)
and B~ HB(«(R"XR X 0), a(R"x0x0)))=R"XRXxo.
Proof. — Let:

n=n(V,U) ='==nR*'XRXR"R"'X0X0)
B’ =ZR"<xR xR R*x 0X0)
and B"=%R"XRxo0,R"xX0Xx0)CB'".
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Then « induces a diffeomorphism ¢ : B’ — n~! (Image «) so that the following diagram
commutes:

B Y 7 !(Im «)

R'XRxR* —> Ima
and so that:
B'={¢ Y Z(«(R"xR x0), «(R"*X0X0))).
We have a diffeomorphism
v: R'x(RP'**—[1:0:0])>B’
so that 'y (%, [s:t:p])=(x st/( + [ »[), 9/ +]2]))
for all xeR" seR, teR and yeR* and so that:
v HB")={(x, [s:¢:0]) CR*X(RP***—[1:0:0])}.
Thus Yy W (n  a(o) N B(a(R* X R X 0), «(R"X 0X0)))
=y ' 0)nyT'B"=(o, [0: 1:0]),
a point.
Define 6:R"XRXR*—R"X(RP'**—[1:0:0]) to be the open imbedding
0(x, t,9)=(x, (1 +|»P) : 1:]). Then =n'y0(x,,9)=(x, t, &y) so we may let B=1{yb
and we are done. m

Suppose V and N are smooth manifolds, NCV, N is a proper submanifold of V
and k>0 is an integer. We inductively define manifolds B,(V, N) and N,(V,N)
by setting:
B,(V,N)=V, N,y(V,N)=N,
B, ,(V, N)=#(B,(V, N)xR, N,(V, N)x0)
Ny 11(V, N) =& (N, (V, N) xR, N,(V, N)x0)
C& (B, xR, N,xo0) C#(B, xR, N, x0)=B,,(V,N).
For instance, if V=R, N=o0, 2=1 then:
B,(R, 0)=%(R’, 0)={((x,7), v([s : ])) eR* X v(RP") | gy = tx}
={((%,9)s (2115 %12 %21 20)) ERPX R | 235 =231, 233 + 20 =1,
2y =2+ 2y Za=2p+ 4 and 2y, )P+ 20’ =220,09}
NI(R> 0)= g(OXR3 0)=(<0a 0), V([O : I])):((O, 0)’ (0, 0, 0, I))GRZXR4‘

113
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By(R.0) ~~~ng(R20)

N,(R,0)

Fic. 4.1

There is also a projection
7 (V, N) : B,(V,N)—>V
defined by the composition
BB,_(V,N)XR,N,_,x0) - B,_;(V,N)xR—>B,_,(V,N) >V

where the first map is the usual projection, the second is projection and the third is =, _,,
(mois the identity). Notice thatif V and N are algebraic sets then B,(V, N) is an algebraic
subset of V X (R"—o0) for some zn and =,(V, N) : B,(V, N)>V is induced by projection
VXR"=>V. Also notice that m, restricted to N, is a diffcomorphism onto N. This
is because we have a diffeomorphism

N_{(V,N)X& (R, 0)=& (N,_;(V, N)XR, N,_,(V, N) x0)=N,(V, N)
and & (R, 0) is a point.
We may define a diffeomorphism
MV, N) : (V=N)XR*— B,(V, N)—m,(V, N)"(N)
as follows. Let Ay(V, N) be inclusion
(V=N)XR’=V—N o V=B,(V, N).
Let 2 (V, N) be the inclusion
(V=N)XR > VXR—-Nxo=%(VxR,Nxo0)—&(VxR, Nxo)
— B(VxR, Nxo)=B,(V, N).
We may then inductively define:
7‘lc(\}-a N) (x: (}'1, . ':.yk))
=N—1(By(V, N), Ny(V, N)) (0 (V, N) (%, 1) (02595 « - -5 %)
for xeV—N and (Jy, ..., %)eR":

Notice that if V and N are algebraic sets then A is a birational diffeomorphism.
If K is a smooth boundaryless manifold, we have a natural diffeomorphism from
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KxB,(V,N) to B, (KxV,KxN) which takes KxN,(V,N) to N (KxV,KxN).
This natural diffeomorphism is defined inductively to be the composition
KXxBy(V, N)=KxB,(B,_;(V, N), N,_,(V, N))
=Kx%(B,_,(V, N)xR, N,_;(V, N)xo)
~ BKxB,_,(V,N)xR,KxN,_;(V,N)xo)
BB, _(KxV,KxN)xR,N,_;(KxV, KxN)xo)
~B,(KxV,KxN).

The projection m(K XV, KxN) becomes (identity on K)Xx =, (V,N). If V, N and K
are algebraic sets then this diffeomorphism is birational.

Lemma (4.2). — Suppose U, V and W are smooth manifolds, U is a proper submanifold
of V, WCV and suppose U intersects W cleanly. Then & (UXR, Uxo) intersects
BWXR, (UnW)xo) cleanly in B(VXR, Uxo) and

E(UXxR,Uxo)nZ(WxR, (UnW)x0)=&((UnW)xR, (UnW)xo).
(Here #(W xR, (UnW)xo0) C#(VXR,Uxo) is the natural inclusion.)
Proof. — Let B=%(VxR,Uxo), B'=Z(WxR, (UnW)xo), T=& (UxR, Uxo)
and n=n(VxR,Uxo). For any peUNW we have an open imbedding
9: (R*XR*XR*XR? 0)—(V, p)

so that ¢ }(U)=R*xR’x0x0 and ¢ '(W)=R*xoxR’xo. (Thisis equivalent to
cleanness of the intersection of U and W.) Let:

N =(Image ¢)x RCV xR.

Then ¢ induces a diffeomorphism
e, REXR' X Z(R°xR*xR, 0) >~ (N)

so that e.R*XR*X & (0x0xR, 0))=n"*(N)NT
and e, (R*<ox BR°x0xR, 0))=n"}(N)nB".
Thus 7 {(N)NTNB'=¢,(R*X0x & (0 x0xR, 0))
since g(oxoxR,0) CHR*xoxR, o).

Also T intersects B’ cleanly in n~'(N). But:
o, (R*x0ox&(0x0oxR, 0))=¢,(ER*X0x0x0XR, R**X0X0x0X0))
=7 Y{N)N&((UnW)xR, (UnW)Xxo0).
So we have shown that T intersects B’ cleanly and
TNB' =& ((UnW)xR, (UnW)xo0). m
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As a consequence of Lemma (4.2) we see thatif U, V and W are as in Lemma (4.2),
we have a natural inclusion

B, (W, UnW) CB,(V, U)
so that (W, UnW) = r,(V, U)

By(W, U AW)
and so that B, (W, UnW) intersects N,(V, U) cleanly and:

B,(W, UnW)NN,(V, U)=N, (W, UnW).
For k=o this inclusion is By(W, UNnW)=W CV=B((V, U). Suppose by induction
that we have such an inclusion B (W, UnW)CB,(V,U). Then B,(W,UnW)xR

intersects N,(V, U)X o cleanly and their intersection is N, (W, UnW)xo. We thus
have a natural inclusion

B (B, (W, UnW) xR, N, (W, UnW)x0) CZ(B,(V, U)xR, N,(V, U)xo),

i.e. an inclusion B, (W, UnW)CB, ,(V,U). Lemma (4.2) shows this inclusion
has the required properties.

In addition, if U, V and W are algebraic sets then this inclusion is a birational

diffeomorphism onto its image.
Note also that:

MW, UUW) =2, (V, U) l(W_U) R

’ ) ~ A Bi(U,UAN)
I II/II/ Bk(V.N)

<—~v\u

\Y%
Fic. 4.2

Now we investigate m,(V, U)~*(U). Define submanifolds S, (V, U)CB,(V, U)
t=o0, 1, ..., & as follows. Let:

Si0(V, U)=B,(U, U) CB,(V, U)
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(the inclusion exists because U intersects itself cleanly)

and Sy(V, U)=£(B,_,(V, U)xR, N,_,(V, U)x0)
C A(B,_,(V, U)xR, N,_,(V, U)x0)=B,(V, U).
Then Su(V, U)=B,_;(S;(V, U), Ny(V, U))

C Bk—i(Bi(V5 U)a Ni(V> U)) =Bk(v3 U)

for 1<i<k (the inclusion exists because N;CS,; hence they intersect cleanly). Notice
that S;; has codimension 1 for :>1 and S,, has codimension equal to the codimension
of U in V by Lemma (4.2).

k
Lemma (4.3). — m(V, U)"1(U)= U S,(V, U).
i=0
Proof. — Suppose by induction that:
k—1
m—1(V, U)_I(U)zigosk—l,i(v> U).
Then the lemma follows from the observations that:
T‘k(va U)= “k—1(V, U) °7r1(Bk—1(V3 U), Nk—l(Va U))
and that if UCWCV then:
~(V, U)"H(W)=B,(W, U)u g (VxR, Uxo).
(Note N,(V,U)CS,(V,U) for all z.) m

(5>
jn
D

Fi16. 4.3

Lemma (4.4). — For all non-negative integers k and n there is an open imbedding
«: (R"XRE 0) - (B,(R", 0), N,(R" 0))
so that:
a) a 1S, (R" 0)=o0xRF¥;
b) «~'S,;(R", 0)=R"XR; where:
R,={(p1, ..., ) eR¥| =0} i=1,2,...,k;
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c) for any linear subspace T CR™
« *B,(T, 0)=T xR~

Proof. — By induction on £ we have an open imbedding
B: (R*xR*", 0) — (B,_,(R" 0), N;_;(R" 0))
so that B™'S;_1:(R", 0)=R"XR/
where R/={(yy, -+ s 1) R | y;=0}

and so that:

B !B,_4(T, 0)=TxR:!

for any linear subspace T CR"
Let m=n(B,_;(R" o) xR, N,_,;(R* 0)xo0) : B,(R" o) - B,_,(R" 0)xR.

By Lemma (4.1) there is an open imbedding
«: (R"XR*"1xR, o) - (B,(R" 0), N,(R" 0))
so that ma(x, 9, t)=(B(tx, ty), t).

Now for TCR" a linear subspace
a 1B, (T, 0)=a " (C¢(r*(B,_,(T, o) x (R —0))))
=Cla 'n (BT xR X (R—0))=TxR!xR.
In particular:
0”18, (R" 0)=a"'B,(0, 0) =0 X RF"!xR.
Likewise for :<k:
o 1S, (R 0) = a1 (CL(n (S, _; i(R", 0) X (R—0))))
=Cloa 'n 1 (BR"XR))X(R—0))=R"xR;xR.
Also 1S, (R% 0)=a (N, _,(R" 0)x0)
=a 'n7Y(B(0,0),0)=R"XR¥"'x0. =

Defimition. — We call o/=(M, (N;, Ny, ..., N,), (Byy o5 Ry) (515 -5 5)
resolution data if N; and M are smooth boundaryless manifolds
N;CM;
N, CB, (M XR? N; x0) xR,

N; CB, (B, (M xR? N; X 0) X R*XR? N, X 0) X R*
and so on. (Of course the above inclusions must all be proper.)
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We define a manifold B(«&/) as follows:
We set B((M, (N), (%), (5)))=B,(MxR?* Nxo)xR¢,
B((M, (N, Ny), (ky, &s), (515 55)))

=B, (B, (M xR? N; x0) x R"xXR?, N, X 0) x R**

and so on. We define:

H()=(M, (N}, Ny, ..., N)), (Byy o s &), (815 -5 8)
for any 0<i:<m and we define:

A —A (1) =B(L (7)), (Niy1> - Npbs Bigs oo s By (Sigrs oo v S))e
Notice N;CB(&/(¢—1)) for any i=1, ..., m. Also notice that B(&/)=B(& — (7))
for any ¢=o, ..., m. We define =n(o/):B(&/)—>M by the rules

() =n(A (1)) o (A — A (7))
and =((M, (N), (&), (5))) is the composition of the projection

B,(MxR* Nx0)xR*— B, (MxR? Nxo)
and (M xR% Nxo): B,(MxR? Nxo) > MxR?

and the projection M XR?*->M. We define P(&/)CM and T(/)CB(&) by:

Pat) = U (/) (Ney)

and T(A)= .Uln(M—&f(i))_l(NHl).

Then we have a diffeomorphism
M) : (M—P()) xR xR XR* - B() —T ().

Where k= X k;, and s= X s; defined by the rules
i=1 i1

1) MM, (N), (&), (5))): M —N)xR*xRFXR®
— B,(MXR% Nx0)XR*—m,(MxR% Nxo) }(NxR?*) xR’
is defined by:
A(M, (N), (&), (5)))(x, u, v, w) = (N(M X R% N x0)((x, u), v), w).
2) ML) (%, (g, 1), (295 01), (o, 1))
=N — (1)) (M (1)) (%, g, o, Wo), Uy, V1, Wy)
for all ¢=o,1,...,m and xeM—P(&)

uge R w,eR™ % peR¥ 9, eR weR¥, weR~¢
. .

where F=Yk and s=3 5
=1

119



120 SELMAN AKBULUT AND HENRY C. KING

If V is a smooth boundaryless manifold we may define Vx o/ to be the resolution
data
VXx=(VxM, (VXN;, VXN,, ..., VXN,),

(Bys s Rp)s (S15 < v v Sp))-
Notice that:

B(VX )=V xB(&)
in such a way that:
n(VX ) =idy X n(H),
P(Vx#)=VxP(«), T(VxL)=VxT()
and MVx): VX(M—P())xR*™XR¥XR* - B(V X )=V xB()
is the map
MV X L) ((9, %), u, v, w)= (9, M) (x, u, v, w)).
If UCM intersects N cleanly then we have a natural inclusion
B((U, (UNN), (&), (s)) CB((M, N, (%), (5))
since we have an inclusion
B,(UxR? (UNnN)xo) CB,(MxR? Nxo).
Thus it makes sense to say that:
' =U, (K, .., K,), Ryy oo Bp)s (S5 oo o5 Sp)
Cl=(M, (Ny, ..., N, (Byy o osBp)s (S15 - os Sp))e
This will mean that UCM and U intersects N cleanly and K;=N;nU hence:
B(s#'(1)) CB(£(1).
Then we require that B(«/’(1)) intersect N, cleanly and K,=N,nB(«’(1)) and so
on, so that we have a natural inclusion

B(«#'(2)) CB( (1))
for all 7 and B(«Z'(z)) intersects N; , cleanly and
B('(1))nN;, ,=K;,, i=o0,1,...,m—1.

In particular we have a natural inclusion

B(«/') CB().
We also have the properties
()| =n(A),
B(s")
P(#)=UnP(¥), T(&')=B(L')NT()
and M) (U—=P(&))xR™XR*XR* — B(&')—T (")

is the restriction of A(%7).
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In case &/'C/ as above, we will denote &’ by &ZNU. We will say o/nU
is defined if &7’ exists satisfying the above requirements.
Let:

=M, (Ny, ..., N, Ry, s Bp)s (515« o5 Sm))
be resolution data and let:
=M, (N, ..., N), (B1, .., &), (515 -5 8))
be resolution data also with M'CB(«&7). Then we may define resolution data o’% .2/ by
A xAd=M, (N, ...,N,,,Ni,N;, ..., N)),
(Byy oo es By Ryy oo oy Br)y (S1s o ooy Sy Sty -+ o5 S0))e
Let:
=M, Ny, ..., N,), By, - -, Bp)s (515 - - -5 8,))

be resolution data and let p:M-—->M’' be an imbedding. Then sometimes we can
define resolution data p,(s/) and an imbedding

() : B() > B(uy(o))
by

wy() = (M, (o(Ny), ta(Na)s - - o s (Nim))s (R - o5 )y (515 5 )
where po,=p and g;:B(H(i)) > B(uy(#(1))) is w=uw(L()). We define p, ()
to be (w),(F—LZ(i)) for any i=1,2,...,m—1 with:

w (M, (N), (%), (5)) : By(M, N)XR? — B,(M’, u(N)) xR*

defined to be the composition of the isomorphism
B,(M, N)xR*=B,(x(M), n(N)) xR*
and the natural inclusion

By (1(M), p(N))xR* — B,(M’, u(N)) < R".

(Of course for this to work we must have each w(N;,;) a proper submanifold.
This will be true if for instance p is a proper imbedding or if each N; is compact.)

Definition. — We say that the resolution data

( (Q..l’ QZ’ . Qm (kI’ "'akm)) (sla "':Sm))

is controlled if:
n(Z(1—1))(Q,)CQ, for all i=1,...,m (ie. P(H)=Q,).
b) /NQ, is defined.
¢) If '=(Q4, (Qyy .-, Q) (Byy ooy Ry)s (515 --+55,)) then Z'=/NQ,. Thatis:
Q,;CB(#'(i—1)) CB(H(i—1))

for all i=1, ..., m.
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d) Q, is in a general position with:
C(m(o (i —1)) 7" (x) —B('(i—1)))
for each xe€Q, and i=1,...,m.

¢) k>0 and M —Q, is dense in M. (This is just to assure that d) is not vacuous.)

Notice for controlled resolution data that:
T()=n() Q).
We define - S()=B(«/NQ,) CB(L).
For instance:
S((1))=S,,(MxR? Q, x0)xR™

Note that if &7 is controlled resolution data and K is a smooth manifold then K X .o
is controlled resolution data and S(KX&Z)=K XxS(«).

Lemma (4.5). — Suppose S;CR* i=1, ...,k are linear subspaces and suppose
MCR™”XR" is a smooth manifold with oeM so that M is transverse to

k
ox NS,
i=1

at o. Then there is an €>o0 a linear subspace T CR™ and a smooth function
h: (sB™XR", 0) > (R, 0)
so that if K :eBm"XR®— cBmXR" is the function K'(x,y)=/(x, k(x,)) then k' is an open
imbedding
K~ (M)=eB"xT
and
h'_l(EBmXSi)=€BmXS".
Proof. — Let TCR" be the tangent space to MnoxR"at o. Pick:
k
scns;
i=1

so that S is a complementary subspace to T in R". Let =n:R"XR"— R"XT be pro-
jection along S. Then by the inverse function theorem, there is a neighborhood V
of 0 in M and an ¢>o0 so that:

nl : Vo eB"X(TNneBY)

v

is a diffeomorphism.
Define:

g: eB"X(TNeB")—>S
by g=(1t’v)'1—id,

122



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 123

i.e. g is the unique function so that:
(%, +g(x,9))eV

for any (%, 9)eeB™ X (TNeB").

Pick 8>o0 so that ift
(x,09)e(M—=V)NeB"x((TNeB") +8)

then |7’ (x, 9) —gn(x, ¥)| >3

where n' ¢ R*"XR"—>S

is the projection id — .

Let ¢: R"—> (TneB") +(SNsBY)

be any radial diffeomorphism (i.e. |¢(x)|.x=|x|.¢(x) for all xeR"). Define:

h(x, ) = gr (%, 9(1)) + 2(1)

and we are done. B

The following proposition gives a very useful local description of a supermultiblowup.

Proposition (4.6). — Suppose:
=M, (Qq, .-+, Q) (Byy o SRy, (515 -+ 45 5))
is controlled resolution data and
9: R*XR!XR*—>M
is an open imbedding with:
o Q) =R*x0Xo0.
Pick any 7eB(Z No(R*xX R’ X 0))
so that () (q) = ¢(0).
Then there is an >0, and integer d, an open imbedding
0: (B*XR'XR*XR’, 0) > (B(), q)
and smooth functions
f: B xREXRI->R
and g: eBXRO X R>R?
and LCR? so that:
a) e_l(B(JZfﬁcp(RaXRbXO)))zsﬁ“XRbXRdXO
b) () o0(x, 9, 2, w)=o(x, 8%, , 2),f(%, 9, 2) . W)
c) Lisa um'gn of codimension one linear subspaces in general position
d) f~Y0)=eB*xR*x L .
e) g Y (0)=f"*(o) unless geS() in which case g~'(0)=f""(0)UeB*x0xR?
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Proof. — The proof will be by induction on m. For m=o0 we may let d=o,

e:CP, f=I: £=J), L=o.
Let o/'=so/(m—1) and let ¢'=n(o/—')(g). Suppose first that ¢'¢Q,.
By induction we have an open imbedding

0 : (s’f’»“XR”XR"XR”, o) - (B(«"), ¢'),
smooth functions
f B XRIXR* >R
and g B XRUXR >R
and L’'CR?® satisfying a), b), c¢), d) and e) with everything primed.
We may construct 0 as follows. Pick:

wye R2+¥m+ om
so that g=MA— L") (¢, wy).

Define 0: eBoXRYX(R* X R2+Hn+m) R B()

by 0(x, y, (u, w), 2)=NL — L") (0" (%, y, u, 2), w-+ w,).

Let L=L'xR?**m+sm and define:
[ B XRUXRE X R Hontm > R

and g: B XROX RO X R2Hn+tm_» R
by f(xJ, u, w) :f’(x,)’, u)
and g(x, 9, u, w)=g'(x, 3, u).

So we have done this case.
Now suppose ¢'€Q,. Then ¢'eS(«’) so:
¢ eB('Nne(R*X0X0)).
Hence by induction (with R° replaced by R?xR°® and R? replaced by o) we have an
open imbedding
0 : (¢"B*xXR°XR’XR’, 0) > (B("), ¢'),
a smooth function f: ¢'B*xR°~>R and a subset L”CR’ so that:
0”~1(S(&#")) =" B*xR*x 0 X0,
()0 (x, u, p, 2)=(x, f"'(x, u)y, f'(x, u)2),
L"” is a union of codimension one linear subspaces of R® in general position and
f""Yo)=¢"B*xL".
If b+o:
0"~ '(B(o' ne(R*xR’*x0)))
:6"‘1(Ct’(n(.52¢’)_1(<p(R“><(R”—0)><0))))=s"]°3"><R‘><R"><0.
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If b=o:
0" '(B(e' Nne(R*xR*%0)))=0""1(S(«"))
—¢"B*XR°X0ox0==¢"B*xR* xR’ X 0.
Notice that:
0" ()" (g(0))=0xL"XRXR°UoxR*x0Xo0.
Hence the fact that A is controlled implies that:
0"~1(Q,,) C"B*xR*x0X0
and 6”7*(Q,,) is in general position with the subspaces ox L’ xR’xR°.
By Lemma (4.5) there is an ¢>o0 and a smooth function
h: eB*xR*—>R®
and a linear subspace T CR® so that if:
B i eB*xR® > cB*xR*
is the map R (x, y)=(x, h(x, »))
then 4’ is a smooth imbedding:
(k' xid)~10” Q) =eB*x T x 0
and K=1(cB*x L") =cBex L".
Pick a linear subspace T’ complementary to T in R® so that T’ is contained in

all codimension one subspaces of R® which are in L”.
Define an open imbedding

§: eB*XTx T XR!XR® — B(o')
by $(x, u, v, y, 2)=0"(x, h(x, u+0v), 9, 2).
Note $~YQ,,) =eB*X T x0x0Xo.

Suppose the proposition were true with m =1 and with the additional conclusion
that if K CR? is any particular linear subspace and ¢¢B(No(R*xK x0)) then we
could pick 6, f, ¢ and L so that g=*(K)=f"(o).

Since m=1 for &/ —«/' we would then (after perhaps making ¢ smaller) have
an open imbedding

0: (B*xR'XR°XT xT’' xR, 0) - (B(&L), ¢)
and smooth functions
f*i B R X TXT xRI>R

and (g, g): eB*XRXTXT XRi > R X T
and L*CR/
so that (ol —L')o0(x, y, 2, u, v, w)=1Y(x, u, &, &, 2-f*),

FH0)=eB* X ROX T X T' x L*
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and L* is a union of codimension one linear subspaces in general position. In addition,
if ¢¢S(«/) then ¢¢B((F—L')NYP(eB*XT XT" X0Xx0)) so we may assume (by our
additional conclusion) that:
(g1, &)1 (0XT")=(g], &) (0xX0)=f"""(0).
On the other hand, if ¢eS(&/)—S(&/—') then:
geB((A—o£") N Y(eB*X T X T’ X 0% 0)) — S (A — L")
so we may assume that gi(x, 9, 4, v, w)=/*(x, 9, u, v, w)-y, g~ '(0)=f*"1(0) and f*is
independent of y. Finally, if ¢geS(&/—/") then we may assume that (g, g3)=(y, v) -f*
and f* is independent of y and v.
We may now define RI=TxXT' xR}, L=TXT xL'U(TNL")XT'XxR/ and
let f and g be defined by:
f(x’.y’ u’ v’ w) =f”h,(x’ u+g;(x’y’ u’ v’ w)) .f‘(x’y’ u’ v’ w)
and g(%, 9, uy v, w)=f"k'(x, u+g3(x, y, u, v, w)) - gi(x, y, u, v, w).
Then these are the 0, f, ¢ and L. we want, as the reader may verify.
So it only remains to prove the proposition and the above extra conclusion with
m=1. We may as well prove it with s;=o0. But in this case, if:
A"'=M, (Qy), (k,—1), (1)) and if NCB(«")
is N _;(MxR? Q xo0)xo0, then B(&)=%(B(«"),N). Thus the result follows
readily by induction on 2, and by Lemma (4.1). m

Lemma (4.7). — Let =M, (Q1, ..., Q) Ry oo ky)s (515 ...,5,) be
controlled resolution data and suppose p:M-—>M' is a smooth imbedding. Then py(of) is

controlled resolution data (assuming py(of) is defined).

Proof. — Pick any peQ,.. Let ¢: (R*XxR!*XR’ 0) - (M, pon()(p)) be an
open imbedding so that:
¢~ (u(M)) =R*xR’X0
and o~ Hw(Q))=R*x0Xo0.
Notice:
w(H (m—1))(p) C (A (m—1))(S( (m—1))) CS(uy(H (m—1))).

By induction we know that p,(2/(m—1)) is controlled resolution data so by Propo-
sition (4.6) there is an open imbedding

0: (B*XR*XR°XRY, 0) — (B(up(s# (m—1))), p(# (m—1)) ($)),
a smooth function f:eB*xR?*>R and an LCR? so that:

0~ 1(S (s (m —1)))) = eB*x 0 x 0 X R,

T(uy( (m—1))) 0 0(x, 3, 2, w) = (%, f(x, w)y, f(x, w)2),
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. . . . . . . . -]
L is a union of codimension one linear subspaces in general position and f~!(0)=eB*x L.
Notice:

07 (i, (o (m —1)) (B(/ (m—1))))
=07} (Ce(m(uy(f (m—1))) M (w(M — Q,)))) = eB* X R* X 0 X R".
Also 0~ e (py(H (m—1))) " (pom( (m—1))(p)) =0x0X0XRIUOX REXR°x L.
Since &7 is controlled resolution data, we know that 6 'y (&(m—1))(Q,,) is
in general position with 0xXR’x0xXL as a submanifold of eB*xR®xoxR% Hence

0 'y, (#(m—1))(Q,,) is in general position with 0o XR®XR°XL as a submanifold of
B*XR*xXR°xR%  Thus pg(/) is controlled resolution data. m

Lemma (4.8). — Let:

oA :(M’ (QU ey Qm)a (kln .. '>km)5 (‘S‘U ey Xm))
and A =B, (Qy -y QL) (Bl oy B, (s ey 51))

be two controlled resolution data and suppose /' (1) % o is controlled resolution data. Then of'* o
is controlled resolution data.

Progf. — Conditions a), b), ¢) and e) in the definition of controlled resolution
data are clearly satisfied so it remains to prove d).
Pick =1, ..., u—1 and pick peQ}, ;. Pick an open imbedding
¢: (R*XR’, 0) — (M, () on(' (1)) (9)),
so that ¢~ !(Q,)=R®xo. By Proposition (4.6), we have an open imbedding
6: (B*xR*XR, 0) — (B(), n('(3))(p)),
an LCR® and an f:s]%"ch»R so that:
n(sf) oO(x, p, 2) =0, f(x, 2)3), f(0)=cB*XL,

and L is a union of codimension one linear subspaces in general position.

By Lemma (4.5) we may also assume there is a linear subspace TCR® and a
smooth k: (eB*XR®, 0) — (R’, 0) so that if " :eB*XxXR* —>eB xR is ' (x, y)=(x, h(x, »))
then 4’ is a smooth imbedding,

(k' xid) =10~ 1(Q’,) =B*x T X0
and K =1(eB*x L) =eBx L.

Pick a complementary subspace T’ to T in R° so that T’ is contained in every
codimension one subspace of R® which is contained in L. Thus L=(TnL)4T".

Again by Proposition (4.6) there is an open imbedding

0 : (BEXREXTXT XRE, 0) - (B('(5) ), ),
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an L'CR® and an f':<'B*XTxR‘ >R so that:
(' (1)) 0 0'(x, 3, u, v, W) =0(x, f'(x, u, w)y, h(x, u+f'(x, u, w)v)),
fYo)=e'BexTx L,
and L’ is a union of codimension one linear subspaces in general position.
Notice that:
0~ n(’ (1)) " (n('(3)) (p)) =0x0ox0ox0oXxRUOXR*’xox T' X L
and 6'~1S(o'(i))=0x0ox0x0oxR?

so since %" is controlled, 6'~*(Q’; , ;) must be in general position with o XR’xoxT’"x L.
Also:

0" (27 (i) " () T () o (3)) (9))
=0oXOXTXT' XRWWoXRXTXT' xL'Uo xR X(TNL)xT' xR%
But 6'~*(Q’;,,) is in general position with:
OoXR*XTXT' xL'UoxRx(TNL)x T' xR
at o. Hence Q’;,,, is in general position with:
Cl(m (" (1) x )~ (n(" (1) % L) (p)) — S(L' (i) x )

at p, so &'+ .o/ is controlled resolution data. m
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V. — FINS

The local description of B(2/) given by Proposition (4.6) will be very useful and
it will be convenient to put its important features in a formal setting. Thus we define
a fin.

Let us recall the promised method of proof, for now we have defined enough
concepts to describe it more accurately. We start with a compact A-space Y without
boundary and pick a closed stratum N;CY. Then let Y, be an A-blowup of Y with
center N;. We then pick a closed stratum N,CY,; and let Y, be an A-blowup of Y,
with center N,. Keep on doing this until finally we get Y,, which is a smooth manifold.

Now we pick an imbedding Y CR” so that N, is a nonsingular algebraic set.
We then find some controlled resolution data &4 =(R" (N;,...),...,...) and an
imbedding Y, CB(%4) so that N, is a nonsingular algebraic set and so if N, = g;*(0)
then 9, (Y,) is isotopic to Y. We keep on doing this, i.e. we find controlled resolution
data = (B(_,), (N;,...),...,...) and imbeddings Y,CB(%4) so that N,
1s a nonsingular algebraic set and so 9, 09, 0...09,(Y;) is isotopic to Y.

In the end we make sure Y,, is a nonsingular projectively closed algebraic set,
hence Z,0...09, (Y,) is an algebraic set homeomorphic to Y.

The value of fins is that they keep track of the collapsing that the maps %, do.
Each of the controlled resolution data 7 gives rise to a fin, hence we also wish to define
what it means for a collection of fins to be compatible enough so that we can work
with them.

Notice that in the tower construction above we wish to make sure the N;’s and
Y,, are nonsingular algebraic sets. We do this by isotoping a smooth manifold to an
algebraic set. We must then make sure that after doing this isotopy the & still collapse
the same subsets. This requires the notion of stability and its consequence, Prop. (5.5).

Let M and N be smooth manifolds, let VCM be a union of proper immersed
submanifolds in general position and let =:V—->N be a map. Then = is called a fin
in M if = is a “ submersion . In other words, for each peV there is an open neigh-
borhood U of o in R™, a smooth open imbedding ¢ : (U, 0) - (M, p), linear subspaces
R;CR™ j=1, 2 and a subset LCR, so that:

a) R, and R, are complementary subspaces of R™.
b) L is a union of linear subspaces of R, in general position.

¢) T : RinU—N is an open imbedding.

R,NU
d) ¢7'n 7' (x)=(p+L)NU for each xeN and yeR; such that mg(y)==x.
)) ¢ (V)=(R, +1)U.
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A fin in a torus

Fic. 5.1

Given U, ¢, R;, R, and L as above it will be convenient to define an R;CL.
This R; is a subspace of R, and is defined to be the intersection of all maximal linear
subspaces contained in L. Equivalently R; is the subspace of vectors » such that
translation by » leaves L invariant. The importance of Rj is that a linear subspace
is transverse to Rj if and only if it is in general position with L.

7

! M:=R3=R%x R3
i . e
.
T
o N(a point)
Fic. 5.2

We call (U, ¢, {R;, Ry, Rg}, L) as above local data at p for the fin = It
will be convenient to define local data at points geM —V also. This will be
(U, ¢, {Ry, Ry, Rg}, L) with ¢:(U,0) - (M—V,q) an open imbedding, L empty,
R;=0 and R,=R;=R".

Lemma (5.1). — Let (U, ¢,{R;}, L) and (U, ¢', {R;}, L) be two local data at p
for a fin ©: V=N in N. Then ¢ 1o (RjnU')CR,, o o' (R{+Ry)NU)CR,+R,
and ¢ o' (L'nU") CL.
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Proof. — The set n!(n(p)) Ne(U)Ne'(U)=o(LNU)N¢'(U")=¢'(L'nU") ng(U)
is a union of cleanly intersecting manifolds whose intersection is:
?(R;NU)No'(U) =" (RsnU") no(U).
Hence ¢ '¢'(R;NnU’)CR, and ¢ !¢ (L'nU’)CL. Likewise:
Vne(U)ne'(U)=¢((Ry+ L) nU) ne’ (U) =o' (R{+ L) nU") ng(U)
is a union of transversely intersecting manifolds whose intersection is:
(R +Ry)NU) N o' (U) = ¢'((R{+Rg) nU") N p(U).
So 7' ((Ri+R;)NU)CR,+R;. m
Definition. — Suppose w;: V,;—N; i=1, ...,k 1is a collection of fins in M. We
call the fins =; compatible if for each peM there is a U and ¢ and linear subspaces
R;CR" i=1, ..., k j=1, 2, 3 and subsets I,CR;, i=1, ..., % so that for each

i=1, ...,k (U, ¢ {R;;, R, Ris}, L) is local data at p for the fin n;. We call such
(U, @, {R;}, {L;}) local data at p for the fins «; i=1, ..., k.

V, =8 X R
V)
V,=S'xL

L = figure eight

Compatible fins in R3

FiGc. 5.3

Definition. — Let m;: V;—N; i=1, ..., £ be compatible fins in M and suppose
NCM is a submanifold and =:X-—>M is a smooth map from a manifold X. Then
we say that = and N augment the fins if =n]:V;—>N; i=1, ..., k41 are compatible

fins in X where Vi=n"%V,) i=1,...,k Vi ,=7n"'N), N/=N; i=1, ..., %
Niy1=N, nj=mr| i=1,...,k and = == . Wesay that the fins =;: V] >N/
Vi’ vI':+1

i=1, ..., R+ 1 are the augmented fins.
Likewise we say that = extends the fins if =;:V/—>N,; i=1, ..., 2 are compatible
fins,. We call ={: V=N, i=1, ...,k the extended fins.

Definition. — Suppose w;: V;—~N,; ¢=1, ...,k are compatible fins in M and
suppose «:Y—>M is a smooth stratified morphism from an A space Y. We say that
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o is stable over the fins =, if for each x€Y there is local data (U, ¢, {R;}, {L;}) at a(x)
for the fins w; ¢=1, ..., & so that if X is the stratum of Y containing x and ¢: X X¢Z Y

is a neighborhood trivialization then:

k
a) «| is transverse to (M R;;nU).
X =1

b) The following diagram commutes (if we take the germ at (x, *)e X X¢X):

—1

X 25 o(U) =5 R"
N k

X XEE (ARt
N ) A 7

[

Y 5 ¢(U) = R”
k
where w: R"‘—>(Dl R;;)! is orthogonal projection. In other words:
k
o (D)€ u(y)+ N Ry

for all veX near x and 2zecX near *.

/,):\ _ RSA:L <
o= 24—
v | I X

\,

ln
« N(=a point)

o is stable over the fin V —E>N

Fi6. 5.4

We call such local data (U, ¢, {R;},{L;}) compatible with «. Notice that if
X is a smooth manifold and «: X—+M is stable over the fins =; then every local data

is compatible with « by Lemma (5.1).
By the following Lemma we can straighten out any stable submanifold.

Lemma (5.2). — Suppose =,: V;—=N; i=1, ...,k are compatible fins in M, Q s
a smooth manifold and o: Q—~>M is a smooth imbedding which is stable over the fins w;. Then
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Jor each qeQ. there is a linear space U and local data (U, ¢, {Ry}, {Ly}) at «(g) so that
TNU=0¢"'a(Q) and R,;CT for eackh i=1, ... k.

Proof. — This follows from the inverse function theorem. Pick any local data

k
(U, ¢, {R§}, {L;}) at «(g). Then ¢'~*(a(Q)) is transverse to .ﬂl R/;.
Let T be the tangent space to ¢'~'(«(Q)) at 0. We may pick a linear subspace

k
SC N R}, so that S is a complimentary subspace to T. Let =:R™>T be projection
i=1

along S (so w(x+yp)=y for xeS, yeT). We may pick a smooth submersion f: R"—S
and a neighborhood V of 0 in R”so that VNnf~!'(0)=Vne¢'~*a(Q). Define ¢:V—->R"
by {¢(x)=m=(x)+f(x). Then dy has rank m at o so by the inverse function theorem
there is neighborhood U of o in R™ and an open imbedding 6: (U, 0)—(V, 0) so

that 6~'=¢| . Notice that 6'(y+L,)Cy+L, for each i and yeR], since
6(0)

k
x—P(x)eSC _r_]l R/, for all x.

Define R;;==(R};) and Ry;=Rj; for 1=1,2, ...,k and j=2,3. Then (U, ¢6,
{R;}, {L;}) is local data at «(g) and:

/ (@6) 71 («(Q))=1(¢' '2(Q)NB(U))=TNU. m

Lemma (5.3). — Let w;:V,—>N, i=1, ...,k be compatible fins in M. If N is
a smooth manifold then the projection w: M XN—>M extends the fins.

Proof. — Take any (p, ¢) in M XN, pick any open smooth imbedding
¢: (R%0) > (N,q)

and pick local data (U, o, {R;}, {L;}) at p for the fins =;. Let R CR"XR" be
R;;x0 and let Ry=R;XR" j=2,3. Then (UxR" ox{, {R;}, {L;xR"}) is local
data at (p, q) for the fins mom: V,;xN—N, i=1, ...,k So w extends the fins. m

Lemma (5.4). — Let w;:V,—>N;, i=1,..., k be compatible fins in M and let
a:Y—>M be a mapping from an A-space Y which is stable over these fins.

a) If N is a smooth manifold and B:Y—>N is a smooth stratified morphism then
aXB:Y—>MXN is stable over the extended fins V;xN—>V;—>N; i=1, ...,k where
V,x NV, s projection.

b) If N is a smooth manifold then axidy:Y XN —>M XN is stable over the extended fins.

c) If M is a smooth submanifold of M’ and =;:V{—N; t=1, ...,k are compatible
fins in M’ so that V;=VNM and w,=m=;| and the inclusion M—>M' s stable over the

Vi
fins ' then «:Y—>M' is stable over the fins ;.

d) If k=1, N, =a point and M’ is a smooth manifold and V'—point is a fin in M,

then axid:YXM' — MXM' is stable over the fin V;x M'UMXV’ — point.
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Progf. — To prove a) pick any peY and let (U, ¢, {Ry}, {L;}) be local data
at a(p) compatible with . Then if ¢: (R", 0) (N, B(p)) is an open smooth imbedding
then (UxR" X ¢, {R;}, {L;}) islocal data at («(p), B(p))e MXN where Rj;=R,
Ry =R, xR", R;=R;;xR" and L/=L;xR" Then notice that this local data is
compatible with ax 8 so a) is proven.

To prove b) pick (p,9)eY XN and let (U, ¢, {R;}, {L;}) be local data at «(p)
compatible with « and let ¢: (R 0) - (N, ¢) be an open smooth imbedding, then
(UXR", ox4, {RE}, {Li}) is local data at (a(p), 9)e MXN compatible with «xid
where Rj; and L are defined as above.

To prove c), pick peY and let X be the stratum of Y which contains p. Let
(U, ¢, {Ry}, {L;}) be local data at «(p) for the fins = : V{—>N; so that ¢"'M=UNT
for some linear subspace T of R™ and R,;CT i=1,...,# (we may do this by
Lemma (5.2)).

k

Let T’C‘_n1 R;; be a linear subspace complementary to T. Then let (U’, ¢,
{R;}, {Li}) be local data at «(p) for the fins =;: V;—=N; i¢=1, ..., & compatible
with «. Suppose also that ¢'(U’) Ce(U). Define local data (U”, ¢”, {R}}, {L{'})
at a(p) for the fins =] : V/—N, by letting U"”"={(u, )eU’'XT' | p7'¢'() +teU}, and
o (u, t)=o¢(e '¢'(u) +1). Let R{=R/ xo and let Ry=RixT' j=2, 3 and
L"=L/xT". Then (U", 9", {R}}, {L{'}) is compatible with a.

To prove d) pick any (p, ¢9)eYXxM'. Let (U, ¢, {R;}, L) be local data for the
fin 7, :V;—>point at «(p) compatible with « and let (U’, ¢’, {R/}, L") be local data
at ¢ for the fin V'—point. Then (UxU’, ¢Xx¢,{R;xR/}, {LXxR"UR"XL'}) is
local data for the fin V;xM'UM XV’ — point which is compatible with axid. m

Definition. — Let w,:V,—N, i¢=1, ...,k be compatible fins in M and let
h: X - MXxR" te[o, 1] be a homotopy. Then we say that &, is a homotopy over the
fins w;: V;—=N; if for each ¢=1, ...,k »eN; and tefo, 1]:

b (w7 ()X R =k (w7 () X RY).
This definition also applies to isotopies.
Proposition (5.5). — Let =,: V;—=>N, i=1, ...,k be compatible fins in M. Suppose
QCM is a compact boundaryless smooth submanifold so that Q<M is stable over the fins ;.

Suppose also that Q is isotopic to a smooth submanifold Q' by a C! small isotopy. Then there
is an isotopy H,: M—M, telo, 1] over the fins w;: V;—N; i=1, ..., k so that:

H,=identity and H,(Q)=Q.

Progf. — The proof will be by the usual Thom isotopy device. By the covering
isotopy theorem we may pick a C' small isotopy #,: M—M with hy=identity and

0
£(Q)=Q!. We wish to construct a vector field v———(v'> 5) on. MX[o, 1] which is
tangent to Y={(k,(x), {)xeQ,, telo, 1]}
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and is “ tangent” to each fiber n;(x)x[o, 1]xeN;, i=1, ..., k (thefibers =;(x)x[o, 1]
are immersed submanifolds so at multiple intersections we would want the vector field
to lie in several tangent spaces at once). Since we may piece together with a partition
of unity and retain these properties, we only need to construct v locally. In addition
we wish v to have compact support. Once we have this vector field, we integrate it to
obtain a flow u on M X [o, 1] and then define H,(x)=pp,(¥, 0) where p: M Xx[o, 1]->-M
is projection.

So take any (p,u)eMx[o, 1]. If p¢h,(Q) we may take v:(o, %) locally.

If peh,(Q) we pick local data at p (U, ¢,{Ry}, {L;}). Then £,(Q) is transverse to
(p(ifiRi?,nU) since Q is transverse to cp(iélRmr\U) and the isotopy #, is C' small.
Hence we may by Lemma (5.2) assume that there is a linear subspace T CR™ so that
R, CT i=1,...,k and UnT=¢ '4,(Q). Let T'C‘ifiRi3 be a complementary
subspace to T. Let =:R"—T and =':R"—T’ be the projections so that:

7 + =’ =identity.
We may find a neighborhood W of (p, u) in ¢(U)x[o, 1] so that the map

¢: W—R"X]o, 1]
is defined and is an open imbedding where {(x, {)=(ne~(x)+n'@ A,k (x),t). Let

0
our vector field » be locally defined on W by v=d¢—1(—) where d¢ is the map on
. . . ot
tangent spaces induced by ¢. This v works since:

WnNY=4¢ YT x[o, 1])
and W (r(x)x [0, 1]) =47 ((» + L) X[o, 1])
for any xeN; and yeR;; so that mp(y)=nx.
Hence v is tangent to Y and to each =; !(x)x[o, 1].

0 .
If v=(v’, 3_t) is the global » we get after piecing together the local »’s with a

0
partition of unity, then »’ has compact support since the local v’s equalled (o, '37:) except

in a small neighborhood of Y which we could take to be compact. m

Lemma (5.6). — Suppose «:Y—>M is a map from an A-space Y which is stable over
some compatible fins w;: V;—>N, i=1, ...,k Suppose also that h: M—~>M is a diffeo-
morphism so that h(w;'(x))=mn;"(x) for each i=1, ...,k and xeN;. Then ha is stable
over the fins ;.

Proof. — Suppose peY and (U, ¢, {R;}, {L;}) is local data at «(p) compatible
with «. Then (U, kg, {R;}, {L;}) is local data at ha(p) compatible with hx. Hence
ha is stable. m
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VI. — THE RELATIONS BETWEEN BLOWING UP
FINS AND A-SPACES

In this section we tie together some of the notions we have been discussing.
Proposition (6.1) indicates what happens to the representability of Z/2Z homology classes
when we blow up. Proposition (6.2) and Lemma (6.3) relate the notions of controlled
resolution data and fins which you may recall was the reason for defining fins in the
first place.

Proposition (6.x). — Suppose V and U are nonsingular algebraic sets with UCV and
U compact and suppose V and U both have all algebraic homology up to n. Then B(V, U) has
all algebraic homology up to n.

Progf. — Denote n==n(V,U), B=4(V,U), T=€(V,U) v=dimV and
u=dim U. Let 7:L—T be the canonical line bundle over T=the projectivized
normal bundle of U in V. We may identify L. with a tubular neighborhood of T in B.
Let ¢:Q—U be the normal bundle of U in V, we may identify QQ with a tubular

neighborhood of U in V, and in fact assume that = is a diffeomorphism onto Q —U.
L-T

Pick «eH;(V) with ¢<n (the coefficients of all homology groups will be Z/2Z).
Pick a nonsingular projectively closed algebraic set X CVxR™ for some m so that
[X] represents «. Then by Proposition (2.3) we may isotop X in some VxR™xRF
to a nonsingular projectively closed algebraic set Y CVxR™xR* so that Y is transverse
to UxR™xR" In particular, Y intersects UxR™xR* cleanly so:

BY,YNUXR"XR" & Z(VXR"XRE, UxR"xR¥)=BxR"xR".

The nonsingular projectively closed algebraic set Z(Y, YNUxR™xRF) represents
some o'€eH;(B) and clearly =,(o')=«. Hence the maps =, : H;(B) - H,(V) and
HA(B)—~H,(V) are onto. So if there is a BeH;(B)—H2#(B) then we may assume
that B is in the kernel of =,. From the exact sequences

—> H(L) 2> H(B) — H,(B,L) —
— H(Q) — H(V) — H(V,Q) —

we see that there is a yekernel(H;(L) - H;(Q)) so that j,(y)=p. (Note that
H;(B, L) —~ H(V, Q)
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is an isomorphism since H;(B, L) ~ H;(B—T, L —-T) ~ H,(V-U,Q—-U)~H(V,Q).)
So if we can show j,(H;(L)) CH}(B) we will be done since this would imply
H;(B)=H;}(B).

Since T« L is a homotopy equivalence it is sufficient to represent H,(T). The
cohomology H*(T) is a free H*(U) module with generators 1, o, w?, ..., ®*~*~! where
weH'(T) is the first Stiefel-Whitney class of the line bundle r: L—T. (For instance
this is implied by Theorem (5.7.9) of [6] after observing that the map

6: H*RP ~* ') - H*(T)

is a cohomology extension of the fiber for the bundle =:T-—-U where 6(generator
of HI(RP*~*~1)) =)

Let ¢:H,(T) - H*(T) and ¢:H,(U) > H*(U) be the Poincare duality iso-
morphisms. We claim that ¢ 'n*oHA(U) CHA(T) and ¢ }(eU¢(HA(T))) CHA(T).

v—u—1
This implies the H}(T)=H,(T) for all :<n since if aeH(T) then ¢(a)= X BV
. i=0
where Ben*H' ™' I(U)=n"oH; ;,,,, ,(U) Cn'eHNU) (since i+j+1+u—0<3i)
so BeyHA(T). But if HNT)=Hy(T) for all i<n then jHy(L)CH}B) so we
are done once the claim is proven.

So take «xeH2(U) and a nonsingular projectively closed algebraic set Z CUXR"™
so [Z] represents «. Consider Z'={(x, y)eT xR"| (n(x), y)eZ}, so Z’is the projective
space bundle over Z induced from the bundle T—U. Then [Z'] represents:

bt p(a)eH;y,4(T).
Hence ¢~ !n*oHA(U) CHA(T).

Now take e HA(T) and a nonsingular projectively closed algebraic set W C T xR™

so that [W] represents «. By Proposition (2.3) there is a small isotopy of W to a

nonsingular projectively closed algebraic set W/ CLXR™xR* so that W' is transverse
to TXR™xRE, Then [W'NTxR"xR¥] represents ¢~ (wU(«)). Hence:

¢~ U HY(T) CHY(T)).

(Recall that ¢~*(w)=[TNT’] where T'CL is a copy of T isotoped a little until it
is transverse to T.) m

Proposition (6.2). — Suppose =,: V,;—>N; t=1, ...,k are compatible fins in a smooth
manifold M and o=(M, (Q1, Qoy ...y QL) (B, -« s RY), (515 --+598,)) s controlled
resolution data with Q<M stable over the fins =;. Then:

a) n() :B(F)>M and Q,CM augment the fins w,:V,—>N;, i=1,...,k
b) If PCM is any smooth submanifold so that P> M s stable over the fins =; and
Q,CP, then B(ANP)>B(F) is stable over the augmented fins.

Proof. — Let b=2u-+ 2 (k,+s5). We have a diffeomorphism
i=1
M) : M—Q ) xR — B(A)—T()
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so that =(%)oA(/) is projection to M—Q ;. Hence to prove a), it suffices by
Lemma (5.3) to find local data for the augmented fins at any peT(/). To prove b),
note that we have a commutative diagram
B(o/NnP)—T(#/NP) < B(H)—T()
4 1

~x | M#NP) | M)

P-Q)xR’ < (M—Q,)xR’
so by Lemma (5.4) b) it suffices to find local data compatible with B(./ N P)<s B(/)
at all peT(LNP).

Let us now prove b). Pick any peT(o/NP). By Lemma (5.2) we may pick
local data (U, ¢, {R;}, {L;}) at =(o)(p) for the fins =;: V;—N; and a linear sub-
space T so that ¢ '(Q,)=TnNU, R,,CT for each i=1, ...,k and T is transverse

k k
to _nl R;;. Let T'C N R;; be a complementary subspace to T.
i== i=1

By a relative version of Lemma (5.2) we may in fact assume that there is a linear
subspace SCT’ so that ¢~ }(P)=(T+S)nU.

Let S'CT’ be a complementary subspace to S in T’. By Proposition (4.6) we
have an open imbedding 0: (T xS xR®xS’, 0) — (B(/), ), smooth functions

f: eTxSXxR* >R and g: cTxSxR’-S
and a KCSXR® so that:
eTCU, 67'(B(&NP))=TxSxR’xo,
7‘(&’)09(%% w, Z)=<P(x+g(x:)’> w) —}—f(x,], w) .Z),
K is a union of linear subspaces in general position, and f~!(0) Cg~!(0)=¢T xK.
Now for any ¢=1,...,& =xeN; and yeR; neT with =;¢(y)=x we have
07 n() tn () =((p+ L) NeT)x SXR*xS’. Also for any xe¢(cT) we have:
0~ ln(H) " (x) =09 x) x K xS
Define L{=(L;nT)xSxR’xS’, Rj=R;;xoxoxo0, R;=(R;nT)xSxR*xS’
j=2,9 for i=1,...,k Let:
L; ,=0oxKxS, R;,;=Txoxoxo,
Ri . ,=0xSXR’xS’, R;,.,;;=0xNx¥
where N is the intersection of the maximal subspaces of K. Then (T xSxXR’xS’, 6,
{R;}, {Li}) is local data at p for the fins n; augmented by (/) and Q,CM. Since
k

k+1

NR,=(NR,;NT)xNxS and 6~B(«#/NP))=TxSxR’Xo, this local data is
i=1 i=1

compatible with B(«/NP)< B(«).

138



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 139

Since we could have let P=M we would have obtained local data at all points
of B(&), so both a) and b) are proven. m

Lemma (6.3). — Suppose =w;: V;—N,; i=1, ...,k are compatible fins in a smooth
manifold M, of=(M, (Q,, ..., Q) (B, -, kp)s (515 -, 5,)) s controlled resolution
data and Q> M is stable over the fins 7;. Suppose P is a smooth submanifold of some B(.o/ (7))
so that P intersects S(s/ (1)) cleanly, PNS(L(i)=Q;.y, (Z—A()NP is defined,
(A — (1)) P s controlled resolution data and P—Q ;< B(Z (1)) is stable over the fins =;
augmented by w(2f (1)) and Q,CM.

Then B((of—A (1)) OP)—S((— (1)) NP)> B(sZ) is stable over the fins =;
augmented by (/) and Q,CM.

Proof. — Let o/'=(o/ —of(i))NP. Notice that by Lemma (5.4) b) the stability
of P—Q;, , implies the stability of B(&/')—T(«") <~ B(&/) since:

B(o/") ~T() CB(/)—T(/ /() and if c= 3 (2-k-+s)
then M —f (i) ((P— Qs 41) X RY) = B(a') —T(s#").

So it suffices to find compatible local data at all peT(/')—S(&/’). So pick
any peT (') —S(«/"). Let (U, 9, {R;}, {L;}) be local data for the fins =; at =(2Z)(p)
so that there is a linear subspace T so that R;CT for all i=1, ...,k and:

UnT=¢71(Q,).
k
Pick T'C M R;; so that T/ and T are complementary subspaces.
i=1

By Proposition (4.6) there is an open imbedding
0: (cTXRIXT’, 0) - (B(L(2)), =(Z")(p))

and a smooth f:eTxR?—>R and a subset LCR? so that 67'(S(+/(¢)))=<TxR?xo,
(L (1)) o 0(x, 9, 2)=@(x+f(x,9)2), L is a union of codimension one linear subspaces
in general position and f~!(0)=¢T x L.

By Lemma (4.5) we may make € smaller and find a linear subspace JCR? and an
h: (T xR% 0) — (R% 0) so that if A'(x, y)=(x, h(x, »)) then %’ is an open imbedding,
B0 Y(Q;,1)=cTx]J and A" "'(eT xL)=¢cT xL. By a similar arguement there is a
linear subspace K CT’ and an (A, k) : €T xR*X T - R*X T’ so that if:

h”(x,y, z) :(x9 h(x:.y) +h1(x».y’ z): hz(xa))) z))

then A" is an open imbedding, A"7'07}P)=cTx]JxK, £k '(0)=cTxR*x0 and
h1(0) Dhy*(0), and A7 (eTXLXT')=cTxLxT'. (Hence £"~'07Y(Q, )=<cTxJxo0.)
Let J' and K’ be complementary subspaces to J and K in R? and T" respectively.
We also require J’ to be contained in each maximal subspace of L.
By Proposition (4.6) there is a smooth open imbedding

0": (T xJxKxRx]J' XK', 0) — (B(), p)
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and an L’ CR’ and smooth functions f’: eT XJXKXR*~R and g': eTxJxKxR*>K

so that w(&")o0'(x,, 2, u, v, w)=0k"(x, y+0v.f'(%,, 2, u), & (%, 9, 2, u)+w.f'(x, 9, 2, u)),
L’ is a union of codimension one linear subspaces in general position and:

fHo)=g"Yo)=eTxJxKxL"
For ¢=1,...,2 define:

Rij=R;Xoxoxoxoxo and R;=(R;NnT)xJxKxR*X]J XK'

for j=2,3 and Li=(L,NT)XJXKXxR*x]J'xK’'. Also let:
R;.;1=TXo0oxXoXo0Xx0Xo0,
Ry i ,=0xJXKXR*X]J XK/,
L i=oX(LN])XKXR*xJ' xK'UoxJxK XL x]J xK’,
Riiy3=0x]J " XKXL"x]J xK’

J’ and L” are the intersections of the maximal subspaces of LNnJ and L’

respectively.
Then (eTXJXKxR*x]J' XK', 0, {R;}, {L}) is local data at p for the augmented
fins which is compatible with B(&")—S(/'). m
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VII. — GETTING NICE SPINES

This section gives the final ingredient in the proof of our main Theorem (8.3).
Recall that when doing an A-blowup we need an A-space W which a link £ bounds.
We want to be careful picking this W.  We want to make sure that W has a spine of codi-
mension one transversely intersecting sub A-spaces with empty boundaries. Furthermore,
we wish to imbed W in some supermultiblowup so that W intersected with the associated
fin is this spine and so W is in fact stable over the associated fin (the W we refer to above
is the W’ of Proposition (7.2)).

The following Proposition (7.1) is an A-version of Fact (3.2) of [1]. It is
extremely technical, the reader should first read the proof of Proposition (0.1) which
contains a more intuitive and less precise form of Proposition (7.1). Proposition (0.1)
also contains some of Proposition (7.2).

Proposition (7.1). — Let Y be a compact A-space so that each connected component of each
stratum of Y has nonempty boundary. Then there are A-spheres A;CY, smooth stratified mor-

'R

k
phisms f;:Y—>[—1,1] i=1, ..., k, pairwise disjoint A-discs B;CY— U A,, A-dises Y,
s=1

k as
A-imbeddings oy : YyxX [—1, 1] - Y— UUintB,=V i=1,...,k j=1,...,4, a

(F)
s=1t=1

collaring x: oV X [0, 1)—>V and integers o
so that:

a) ?f R,CR" 15 a’eﬁned by R;:{(xl, Koy oves xk)ERk | xi_———"O} then:
(fisSas -+ sf) : Nt Y>RF

=1 S=1, ...,k i=1,...,k j=1,..., ¢4

k
is stable over the fin U R;—point;
i=1

N C=

A);

1

b) fiH0)=A; i=1, ...,k (Hence (fi, ...’f;‘)—l('—LleRi)Zi
c) k(dVxJ[o, 1))=V— QIA‘- (so UA; is a “spine” of V);

k a;
d) o(V— U U e;(int Yyx[—1, 1])) is A-isomorphic with 8Y;
i=1j=1
e) By is a full A-subspace of Y and is A-isomorphic with Yyx[—1,1] i=1,...,k
J=1, ..., 4.
f)y aYCS (1) i=1,...,k;
g) foui(, =0y for all (p,t)eYyX[—1, 1] unless s=i in which case fin;(p, t)=cyt;
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h) oz 1(0V)=Y,;x{—1,1} and o5 (eBy)=Y;X1;
1) w(ay(p, £1), )=y, £ (1—1)) for all yeYy, telo, 1).

5

oresors ‘ .
NNNNRall? /2428 . =

SNTRM

97} (Y// X,[_1,1] )

Y

Fic. 7.0

Proof. — The first step is to get full A-discs D,;Cint Y so that the A,=0D; are
k

in general position, there is a collaring x’:3Y x[o, 1) =Y with Image(x')=Y— U D;
i=1

k k
and so that each component of U D,— U A; is an open A-disc. This is done as in
i=1 i=1
Proposition (0.1) so we will not repeat the construction. The general idea of this proof
will be as follows. We can construct f; satisfying a) and b) because the A; are in general
position. In each component of UD,—UA,; we take a full A-disc B;, then we may
find a x satisfying c). The «; are thickened paths connecting various boundary
components of V. These paths are the v of Proposition (0.1), hence we have d). The
conclusions f), g), h) and i) are technical conditions which we need later.
Let us now proceed with the proof. Let # be the set of connected components
k k
of UD,— UA,. Then for each pe# pick an A-disc By in the component B of
i=1 i=1

UD,—UA, so that —int By is A-isomorphic with dBgx[o, 1). Let V=Y— U intB,.
Be#

k
We may then extend x’ to a collaring k" : V x[o, 1) >V with Image(x’)=V— U A,.
i=1
Let #'C# be a maximal subset so that for each Be%’ there exists a
Yg: [—1, 1]V so that y,is a smooth imbedding into a stratum of V, yz'(dV)={—1, 1}

I
and v,(1) is in the lowest dimensional stratum of @B, y~*( U A;)={0} and each y4(0)
=1

is in exactly one A;, the vyg([—1, 1]) are pairwise disjoint and the complex % is

contractible where ¥=0YU U (y4([—1, 1])U@B;) with Y identified to a point and
Be#

each 0B, identified to a point.

Suppose that %'+ %. Take the stratum Y, of least dimension so that Y,n U B,
p¢z
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is nonempty. Since each component of Y, has nonempty boundary we may choose
a path in Y, from some component in Z—%' to dY,. We may assume this path is
in general position with the Y,NnA;. Then at some point this path must leave a
component B’ in #— %’ and enter either a component in 4’ or Y—UD,. In either case
we may then choose an imbedding yg :[—1, 1] =V NY, so that y;'(dV)={—1, 1},
Yg(1) is in the lowest dimensional stratum of Bg, vz ([—1, 1]) is disjoint from all
vo([—1,1]) BeZ’, vz'(UA)={o} and vy, intersects exactly one A; and:
Ye(—1)e U aBuUaY.
Bex

But then the complex €'=%U~y,([—1, 1])UdB; with 9B, collapsed to a point is
contractible so #’ was not maximal, hence %' =4%4.

So for each Be# pick v, so that the above properties are true. Note also that
for each B, if V, is the stratum of V containing Image(y;) then we may assume that
vg is in general position with the V,nA; i=1, ...,k

We rename the B; and vz as By and y; i=1,...,% j=1,...,4 so that
va(0)€A; means that v, and B are renamed as vy; and By; for some j. Now the normal
bundle of each v;([—1, 1]) in its stratum V,i]. is trivial so we have pairwise disjoint
open imbeddings v;: [—1, 1] X R"% ~>V7ij so that v;7'(0V)={—1, 1}xR% and
Y5 '(A)=o0xR% and v;7!(A,) is empty for s+i. If ¢;: V, . X7Z, >V is a neigh-
borhood trivialization of the stratum V,j then we let:

[

Y,.j={(y, (2, t))eRnifxé’E,ij | 17| <1 and tgé}z ng-disc X ¢,

and define o; by a;((9, (2, 1)), 5) =¢;(v5(5, ), (2, 1)) for (, (2 t))eY‘-jCR"ich"Zrij and
se[—1, 1]. Notice that h) is satisfied.

We now adjust the collaring k'’ to a collaring k: 9V [o, 1)V so that ¢) and i)
are satisfied. Notice that e) is satisfied by our choice of Y;; and d) follows because
the complex € above is contractible (cf. [1], Fact (3.2)). So it remains to find o
and f;: Y—>[—1, 1] so that a), b), f) and g) are satisfied.

Let o4=—1 if B;CD, and o=
Y %[0, 1]=0az(D;) and if oy=1, Y;X[—1,0]=0az"(D,).

By Lemma (1.3) we may pick bicollarings, open A-imbeddings

& AX(—1,1) >Y—0Y

stj

1 otherwise. Then if o;=—1,

so that g(A;x0)=A,;, Image(g,)NImage(a;) is empty if i%s and so:

oa(x, 1) = g(a5(x, 0), o;3t)  for all  xeY; and te[—1,1].

Then we may define f; by fg(x,t)=¢t for (x,8)eA;x(—1,1) and f(y)=—1
yeD;—Image g; and f(y)=1 for yeY—(D,ulmage g). We also smooth out the f
a little near the frontier of Image g;. Then these f; will satisfy a), b), f) and g) so our
proposition is proven. W
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The reader should be aware that the important conclusions of Proposition (7.2)
are that X =0W’, v is stable, W’ has the same number of strata as X, the collaring p
exists and vy(Z) CB(«/)—T(&/). Conclusions 5 and 6 are there only to allow an
algebraic bordism condition to be satisfied in Theorem (8.3). If the algebraic homology
conjecture were true, they would be unnecessary [8].

Proposition (7.2). — Suppose X is a compact A-space which bounds and suppose
n>dim X +2.  Then there are compact A-spaces W, W' and W'’ and controlled resolution data
H=[R"(0,Q4,...,9,) (By, ..., k), (515 ---55,)) and a smooth stratified imbedding
y: W—=B(&) so that:

1) W=WUW" and WNW'=dW'=0W"=Z;

2) W has the same number of strata as X;

3) ¥ is stable over the fin w(Z):T()—o0;

4) there is a collaring p: X X[o, 1)>W’ s0 that:
Image(p) =W'—y~ ' T ()

(i.e. YOW)NT () s a spine of Y(W'));
5) v represents o in AA(B() : S(H));
6) v(W") CB(&)—T(H).

Fic. 7.1

Progof. — The proof will be by induction on the dimension of Z. If dim X<o
then X is empty so we may let W, W' and W”’ be empty and «/=(R", (0), (0), (0)).
So we may assume the proposition is true for dimensions less than the dimension of Z.

By Lemma (1.4) we may pick a compact A-space Y so that X is A-isomorphic
to Y and each component of each stratum of Y has nonempty boundary. Now by
Proposition (7.1) there are A;, f;, o;, B;, Y,
Proposition (7.1).

Notice that dim 6Y,-j<dim2 so for each i=1,...,k j=1,...,a4 we may
by induction find compact A-spaces Wy, W;; and W' and controlled resolution data
;=R (0, Q%, ..., Q¥), (K, ..., K8), (s§, ..., s8)) and a smooth stratified
morphism y%: W;;— B(s#;) so that y¥ represents o in A™(B(s%) : S(;
stable over the fin T(<2f;) — point. Also:

W, =WiuWy,  WinWy'=0oW;=0oW=0Y,

a"j N

V and « satisfying a)-i) of

) an 9 is
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and there are collarings p;: 0Y;Xx[o, 1) >Wj with:
e 0¥ [0, 1)) =Wy—(9)*(T(4)).

In addition, W;; has the same number of strata as 8Y; and y9(W;') CB(%;) —T ().
Note also that y¥(W;)NS(s7) is empty since y¥ is stable and the dimension of Wy
is less than the codimension of S(%;) which is n—1.

We define now an A-space Z. Loosely speaking, Z is a boundary connected sum
of Yx[o, 1] with the (Y;UzW)xannulus and W;Xxannulus. (See Figures (7.2)
and (7.3).) More precisely, let ¢ : [—1, 1]—S' be a smooth imbedding onto a subset K
of the circle S. Define Z to be'

k
Y %o, I]UU ( i< [—1, 1]x[1, 2]
V(Y W) xSt X2, 3]
UWy x[—1, 1]x[3, 4]UW; xS [4, 5])

with the identifications (x (9, ?), 1)eY X [0, 1] equals (y,¢ 1)eY;x[—1, 1]X[I1, 2]
for all yeYy, te[—1,1], also (y,t, 2)eY;x[—1, 1]X[1, 2] equals:

(9, (1), 2)e(Y,;UW() xS x[2, 3] for all yeY,, te[—1, 1],
in addition 9Y;x8'x[2, 3]=0W;/xS'x[2,3] and (y, (t), 2)e(Y;UW;) xS x[2, 3]
equals (,t, 3)eW; xX[—1, 1]X[3, 4] for yeW; and fe[—1, 1] and also:

(})a t) 4.)EW,-'J~IX[—I, I]X[3, 4‘]

equals (y, §(t), 4)eW;xS'x[4, 5] for all yeWy, te[—r1, 1].

In other words the Y;x[—1, 1]x[1, 2] are tubes reaching from Y X[o, 1] to
(Y; UW;)xS'x[2, 3] and thc Wi/ X[—1, 1]X[3, 4] are tubes reaching from

(Y;uW5)xS!x[2,3] to  W,xS'X[g, 5].

B; f0)  £7(0)

“” "1',;" \\‘\\\\\ “/, W\
& N ‘
\~

;i (Yyx[11])

Yx[0.1]
(flower pot)

Fic. 7.2
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(W;xS")x[4.5]

Z,inside boundary)

Z

(second generation growth)

Fic. 7.3

We define Z,C0Z i=o,1,2,3 as follows:
Zy=U ((Y;UW})xS' X §UW,; X S'x 5)
2y

Z,=(V— U o
“)

S0t Y x[—1, I]))XIUH(aYin[_I> 1]x[1, 2]
VoW X[—1, 1]X[3, 4] YW xS x4
Z,=(2(Y x[o, 1])—V X I)UU(Yin{——I, 1}x[1, 2]
u(Y‘.qu,fj')x(Sl—K)x21’L]JW{J-’><{—I, 1}X([3, 4] UW,-’J-’X(S‘~K)><4.)
Z3=(3V-Haij(Yijx{—1, I}))XIUH(@Yin{—I, 1}x[1, 2]

VoW x{—1, 1}X[3, 4]V OW X (8'—K) x 4).
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2Z,(Unshaded boundary)

Fic. 7.4

Notice that Z is a bordism from Z, to Z,UZ, and also Z,NZy,=7Z,;=0Z,=0Z,.
Also, Z; is A-isomorphic to  (see Figure (7.4)) since Z; is A-isomorphic with:

a(V— ﬁ ﬁloci(int Y;x[—1, 1])

=1 j=
which by Proposition (7.1) d) is A-isomorphic with dY.
Our planis to let W=Z,UZ,, W'=Z; and W"=Z,. We will find controlled

resolution data  and a map y: W — B(«&/) with the desired properties. This Z will
be the bordism we use to show that y represents o in A ™(B(s7) : S()).

Let S—B,(0xR? 0) CB,(R*XR? 0)=B, let =:B-»R'XxR® be m(R'xR? o)
k

let A=n(R"XR%0) and S;=S,(R"xR%0), §;=US; for i=o0,1,2,...,k Note
=0
k i#i

that n='(0xR?)=Sun~!(0)=Su US; by Lemma (4.3). By Lemma (4.4) there is

i=1
an imbedding «: (R"XR*XR¥, 0) — (B, N,(R"XR? 0)) so that a *(S)=0xR*xRY,
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e
S EEAE X U

e E NG < )
X -77,,‘ Ng»
/ ;/;/ Wi /I;II{///////////;;/I;; ///////

e
Ui

2Z,(Shaded region)

Fic. 7.5

a1(Sy) =0oxoxR*¥ and o« !(S;)=R"XR®xR; where R;={(x;, ..., x)eR"| x;=0}
i=1,2,...,k Define B:YXx[o, 1]>R* by:

B(2 )=(AH0)s -+ i)+ (1—=8)(2, 2,2, ..., 2).
Define v,:YX[o, 1]=B by yi(p, t)=a((1,0, ...,0), (0,0), B(»,?)). Notice:

v1(Y x[o0, 11N Z,) Cx }((R"—0) X R?)

k
and yiln i oxR)NZ, =y (Su US,)nZ,
i=1
k k
= (UR)nZ,=(U Ax1)nZ,.

Also, by Proposition (7.1) a) and Lemma (5.4) a), v, is stable over the fin
7~ (oxR?) —o. Yxini
Let g¢;€S;—5S; be the point

«((1, 0,0, ..., 0), (0, 0), (6145 Oaij> ++ -5 Gi_1,i> 05 Gi 14> * - +5 Okij))
i=1,...,k j=1,...,4. Notice that o«;(Y;x0)x1Cy;'(g;). There is a smooth
imbedded circle G;CS—S§/ so that G; is transverse to §;, C;NS; is a point and
C;N3S; is in the same path component of §;—35§; as ¢;. To see this, take a smooth
arc D;; in S—8; transverse to S; so that D;NS; is a point and DN, is in the same
path component of S;—S; as ¢;. For instance we may let the arc D; be:

d(o, (I, O), (clij’ 0'2"1', ceey [_I, I], eeey th'j))‘
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Let a; and b; be the endpoints of D;. Then we may pick a smooth arc E; in
(0xR*—o0)x R* from A~ *(g;) to A~'(b;). We may then construct C; by smoothing out
the two corners of the circle D;UA(E,;).

C,'/ =Djju E;/'

Yi(aj(Y;x0) x1) =
0 ((1.0,00000),(0,0),(21 000010, 10000 1))

The arc’s © and D;; are given by:
Dyt ¢~ a((o, ., 0), (1,0), (£1, 1, ., £, £1, ., 1))
T it (1(([, o, "0), (l———t, 0): (:I:Ia .3 j:I’O’ :I:I’ (¥ il))

Fic. 7.6

Now by Proposition (6.1), H2(S)=H;(S, Z/2Z) for all i so by Lemma (2.1)
and Proposition (2.3) we may find an s and pairwise disjoint nonsingular projectively
closed algebraic subsets L;CSXR® which are two parallel copies of G, i.e. for
i=1,...,k j=1,...,4 r=o0,1, each L, is isotopic in SXR’ to C;Xo by a small
isotopy. In particular, Lj;C(S—S))xR’ S§xR’NnL; is a point in the same
component of (S;—S])xR* as (g;, 0), and L, is transverse to 5;xR".

We now define &'=(R" (0), (), (s)) (so B(&')=BxR’. Define a full
A-subspace Z'CZ by:

Z' =Y x[o, 1]JulU (Y;x[—1, 1]x[1, 2]
1']
U (Y,;UW) x 8t x [2, 3JUWY X [—1, 1]X[3, 7/2]
(see Figure 7.7).
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(Y uW;)xS[2,3] Wi [-11]x[3, 35]

Yix[11]x[1.2]

Yx[0,1]

z

(first generation of growth)

Fic. 7.7

We also define:
Z,=2'v U (W), x[—1, 1]1X[7/2, 4 UW, ,XS'X[4, 5])

v, wEA;]
where Ay={(v,w)|v=1,2,...,0; w=1,...,a, and w<j if v=1}
={(v, w) | (v, w) < (7, j) where < is the lexicographical order}.
Notice that Z,,CZ; if (u,0)<(sJ).
Our plan will be to extend y; X0 to v,:Z — B(&')=BXxR°’. We will then blow

up B(&’) some and extend vy, to vy : Zy; — blown up B(«/’), then blow up some more
and extend to vjs: Z;,—> more blown up B(&/’), etc. until we have:

Yhay © ZLya,=Z — very blown up B(2").
For a final step we will change v, | a little bit so that it becomes an imbedding.
w

Notice SXR*=S8(&/’) has codimension z in B(.&7’)=B XR* so the normal bundle
of S xR’ restricted to the circle L, contains a trivial n—1 bundle. Hence there are
imbeddings g, : S'XR"™'—B(/’) —S/xXR® so that p;,(8'x0)=L;,, pg'(S(«"))=58"xo,
i (S'XR*™1) intersects S(#’) cleanly and p;'(S;xR*)=1{(0)xR*"!.  There are

also imbeddings ¢;: [—1, 1]X[o0, 2] - B(#') —(S5;US)XR’ so that:
95 ' (S;xRY)=0X[o, 2],
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Wﬂ X S1>< [4, 5]

Zq

Fic. 7.8

¢; is transverse to S;xR’, and for some peR""'—o:
@5t 1) =wyo(P(8)s 0)s (8, 2) = w2 ($(2), p)
and <pij(t, o)=ua((1,0, ...,0), (0, 0), (o-h.j, ooy B4y e ck,;j))

for all te[—1, 1]. (See Fig. 7.9.)
We define v,:Z'—>B(&’) by:

vo(2) =v1(2) X0 for zeYx|o, 1],

Ya(9) & u) = @;(t, u—1) for (y,t u)eYy;x[—1, 1]X[1, 2],

Ya( s t, w) = pyio(t, (3—u)p) for (9, t, u)e(Y;0WS) xSt X2, 3]
and Ya(p) £, u) = ¢;(t, 2u—5) for (y,t, u)eW; x[—1, 1]X[3, 7/2].

In particular vy, first crushes:
Y x[—1, 1]x[1, 2] U(Y;UW) xSt X [2, 3JUW; X [—1, 1]1X[3, 7/2]
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ijo(S'xR™)

Fic. 7.9

to a disc union an annulus in an obvious way (going from Figure 7.7 to Figure 7.11)
then maps them into B(2/") as in Figure 7.9 (i.e. the shaded region in Figure 7.10 gets
mapped to the shaded region in Figure 7.9).

sk[2.3
given by 23]

ijo(t,(3-u)p)

|
[‘1(1]
~—[o2]—

FiG. 7.10
Notice that
Y2(Z;NZ') CB(") =T ("),
v2 (T())NZ,
=(illeAix1nZl)uH(3Y,-j><o><[x, 2] VW, X0 [3, 7/2]),

Ya is stable over the fin T(&/’) — point and v, represents o in:
ZNZ ZenZ

NA(B(L') : S(')) (note S(&')=B,(0xR? 0x0)xR*=SxR?.
The stability of v, follows from stability of v;, Lemma (5.4) a) and the fact that
LT
the ¢, are transverse to S;xR".
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Fic. 7.11

We now consider the resolution data
A= P-m#(sl X M)
:(B(d,)’ (Llll’ Llnx 121’ LS Lllle.lr}z)’ (kila .. ')9 (‘yil’ .. ))
and A = * ' =(R" (0, Lyyy, Liyy X Q. 00), (B R, .0), (s, 882, . .0).
Note B(#;)=B(&,). Theimbedding u,,,: S'XR"~! > B(&’) gives us the imbedding
Baars © S'XB(#,) — B(4;) =B(&4;). Notice that 27, is controlled resolution data by

Lemma (4.7) and &7 is controlled resolution data by Lemma (4.8). We may now
define +v,,:Z,,—~ B(&,) by:

Y11 (%) = M) (e (%), 0) for xeZ’
and Y11(% b, #) = py0.(8 ¥1(2))  for (2, ¢, u)eW,,; X 8" X[4, 5].

Notice in particular if we let A(Z,) " vy (2)=(9"'(2), ¢’(2))e(R*~!—o0)xR? for some ¢
for zeW;; then

Y11(% 1, ) = g1, (5 M) (07(2), 97(2)))
= M) (k1 (® 97 (2)), (%))

(by the following commutative diagram):

B(#") X R?D (B(.a") —Ly;,) X R

A Nati)
Wy X id
1 n—1 q id X A(&/1,) 1 Hate B '
S (R1H—0)XRY e S'X (B(##yy) —T(4yy)) ——— B(A)
idx o’ x¢ ’,,””

-

SIxWiix{4} - =7~
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we then extend vy, on the tube (=Wx[—1, 1]X[7/2, 4]) connecting Z’ to
W, x8'X[4, 5] (see Figure 7.8). Since dim Wj;<n—2 there is a homotopy

o : Wi—>RTI—0 7/2<u<yq4 with gp(z)=p o/(z)=¢"(2).
Let vy (2, 8, ) =N (011 ($(2), 91/ (2)), (24 —7)9'(2)); then it is easy to check that

vy is well defined.
We claim that:

a) yu(ZyNZy,) CB(oAy) —T ()
k
b) yi (T(HY))NZ=( _UlAiX 1nZ,)uU (9Y;x0x[1, 2]
= )

UaWy x0x[3, 7/2]) UW; X0 [7/2, 4] UW;; X $(0) X 4
U(Wn(y") " (T (#4y))) x S x 4
¢) Yu

d) Y11

is stable over the fin T(&4])— point

Zy Ty,

represents 0 in A A(B(,)) : S(s£))).

Zo O\ Zyy

Claims @) and b4) follow immediately from the definition of vy;;. To see claim d)
note that y'': W, — B(%4,;) is bordant to a map %:X — S(&4;) which represents o
in #/4(S(4yy) : S(s4,)). Hence vy, is bordant to

Wiux8'x5b

idx i Lygy XX = Lyyy X S(#y) = S(Layy X ;) CS(y) CS(Ay).

But id X 7 represents 0 in A (L X S(4,) ¢ Lijn XS(44;)) by Lemma (2.2) c), hence
it represents o in AA(S(o)) : S(s4;)) by Lemma (2.2) €). To see that vy,
represents o in A A(B(y) : S(4;)) use Lemma (2.2) f).

We must now show claim ¢), that yu! is stable over the fin T(«4])— point.
Z,N7y,
Lemma (5.4) a) shows us that Ynl is stable. Lemma (6.3) shows
ZiNZy—Wiyx 8t x 4

us that py,,, is stable so by Lemmas (5.4) c¢) and (5.4) d), v,
8t X (B(11) — 8( 1))

is stable, so ¢) is demonstrated.
In the same manner we may find v,,: Z;, > B(&4,) where:

Ay =1 4 (S'X AP ¥ o] and  pp 0 S'XR'TI - B(oA))
is defined by {5, (%, ) =M} (121(%, ), 0)-

By repeating this process we eventually find v, : Z;, — B(#4,). But Z=7
so we may let y'=v,, and &/"=s;. This y" was constructed so that:

a) ¥'(Z,) CB(")—T(L")

ZoNZ'

Wi x 8 x4

kay,

b) Y'—I(TW'))nzl———(‘QAfxle>uU.(3Y.~j><°><[I’2]

VoW X 0X[3, 4] UW;X §(0) X 4
u(W,-jn(y‘f')—l(T(.saz-j)),)><S‘><4)=a “spine ” of Z,.

154



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 155

¢) Y'IZ is stable over the fin T(&/"')— point

d) ¥'| represents o in AA(B(Z") : S(")).

Z,

Figure 7.12 geometrically describes the map y’, note that it factors through the
complex G.

The map ¥y’ is almost everything we want except that y’| might not be an
w

imbedding. This is easily fixed up. By Lemma (1.1) there is a smooth stratified
imbedding B:W-—R"™ for some integer m. Let &/=(B(&"), (9), (0), (m))*L",
so B(&)=B(&")xR*xR™ Then we let y: W—>B(&/) be y=y x0xB. Then y
satisfies all our required properties.

We may define p:Zyx[o,1) > Z,—y 'T(&) by po(( 1), 8)=(x(,¢), 1) for
tefo, 1), yedV—Uuo;(Y;x{—1,1}) where x comes from Proposition (7.1) and
)

P((}” +1I, u): t)=()’: :tt’ u): for tE[O, I),
()’, :tla u)anin{—I5 I}X[Ia Q]aniljlx{-“la I}X[3: 4]
and P((ya u, 4‘): t):(Pij(.y> 8(”9 t)): s(u: t): 4‘) for .yeaw’l{j" uESI_K> tE[O, I)
where (3, ¢) : (S*—K)x[o, 1) = (S*—¢(0))x [0, 1) is a homeomorphism with:
S(Y(+1), t)=¢(£t) and (3, ¢)(u, 0)=(u,0) for ueS'—K.

Figures 7.5 and 7.13 describe the inverse images y'~}(US;) on Z and on Z,.
Figure 7.5 factors through 7.14 under the map v'. m
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VIII. — THE MAIN THEOREM

We have finally done enough preparation to be able to prove the main theorems
we are after. Theorems (8.1) and (8.2) are essentially corollaries of Theorem (8.3)
the theorem which gives the actual proof. We do not explicitly do the tower cons-
truction of Section o, but this construction is implicit in the proof. Instead we prove
(8.3) by an inductive argument so that we only have to do one story of the tower
construction. The fins are there to keep track of the collapsing we want to do.

More explicitly, suppose we wish to show an A-space Y is homeomorphic to an
algebraic set. The idea is to find controlled resolution data .27, overt polynomials
¢;:B(#_,)—>R, and a tower of imbeddings

Y, CB(s4,)
'r:(dm)l
Nm C Ym—-l C B(ij—l)

l
l

N, CY,CB()
"(dl)l
N, CY,CB(%)

so that:
1) Ni=g o) i=1,...,m;
2) M,z(B(M__l), (N’i’ Q«il’ .. .), c ey o .) i=I, e ooy m;
3) N; is a closed stratum of Y;_; ¢=1, ..., m;
4) Y;is an A blowup of Y;_, along N; i=1, ..., m;
5) for each i=1, ..., m, Y, is stable over the compatible fins =;: V;—N, j=1,...,1

where w;=mn()on(, 1)o...on(H) and Vy=n;"(N);

J J
6) for each i=1, 2, ...,m, 9,(Y,) is isotopic to Y;_, over the fins w;_, ;: V;_; ;—>N;
J=1, ...,1—1;
7) Y., Q,; and B(s) are nonsingular algebraic sets;

8) Y=Y0 .

Suppose we can construct £ stories of this tower so we have Y,CB(%4) and
N,;1CY, so N, , is a nonsingular projectively closed algebraic set. Then in the proof

of Theorem (8.3) we are essentially showing that we can construct the next story of
the tower Y, ,CB(%,,,).
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158 SELMAN AKBULUT AND HENRY C. KING

Theorem (8.x). — Let X be a compact A-space. Then int X is homeomorphic to a real
algebraic set W.

Proof. — Let Y=XuU¢dX where X x1C¢oX is identified with X CX. Then
Y is a compact A-space without boundary. By Lemma (1.1) there exists a smooth
stratified imbedding o : Y—>R" Note that « is stable over the empty fin in R*. Hence
by Theorem (8.3) below there is an imbedding H; of Y onto a real algebraic
set VCR"XR®’ By Proposition (4.2) of [1] there is a real algebraic set W homeo-
morphic to V—H,(*) where #* is the vertex of ¢dX. But V—H,(*) is homeomorphic
to Y—* which is homeomorphic to int X. m

Remark. — In fact it follows from the proof of (8.3) that the natural singular
stratification of the real algebraic set W is isomorphic with Y as a stratified set.

Theorem (8.2). — The interior of any compact P.L. manifold is homeomorphic to a real
algebraic set.

Proof. — By [3] every P.L. manifold is homeomorphic to an A-space in such a
way that boundaries go to boundaries. The result now follows from Theorem (8.1). m

Theorem (8.3). — Let M be a nonsingular algebraic set and let w,: V,—N,; i=1,...,k
be compatible fins in M. Let Y be a compact A-space without boundary and suppose o :Y-—>M
is a smooth stratified imbedding which represents o in NA(M : M) and suppose « is stable over
the fins ;.

Then for some b there is a projectively closed real algebraic set VCMXR® and smooth
stratified isotopy H,: Y — M xR, te[o, 1] over the fins m; so that Hy=a«x 0 and H,(Y)=V.

Proof. — Take any closed stratum N of Y. Then by Lemma (2.2) a), a’ :N->M
N

represents 0 in #™(M : M) so by Proposition (2.3) there is a p and a C! small isotopy
of «(N)xo to a projectively closed nonsingular algebraic set QCMXxR?. By Pro-
position (5.5) and Lemma (5.3) there is a small smooth isotopy #,: MXR? - M xR?
te[o, 1] over the extended fins V;xRP—N, so that k, is the identity and:

h(x(N)x0)=Q .
(Here we use stability of «| .) Note that by Lemma (5.6), A0(axxo0):Y—>MxR?
N

is stable over the extended fins. Also %0 (xX0) represents o in A4(MxXR?: M xRP)
since it is homotopic to « X o which represents o by Lemma (2.2) f).

Hence we have reduced to the case where a(N) is a nonsingular projectively closed
algebraic subset Q CM. Notice in particular that if Y had just one stratum then we
would be done since then «(Y)=a(N)=Q.

Now let ¢:NxcZ—Y be a neighborhood trivialization of N in Y and pick any
n>dim X+ 2. Then by Proposition (7.2) there are compact A-spaces W, W’ and W",
controlled resolution data &/=(R" (0,Q,, ..., Q) By, -- s R)s (S15---58)), a

oy Iy,
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smooth stratified imbedding y: W—B(%/) and a collaring p: XX [o, 1) >W’ satisfying
the conclusions of Proposition (7.2). Let:

L'=MXR" (Qx0,AXQq, ..., QAXQ,), (Byy .-, k)5 (515 -+ -5 8))-
Lemma (5.4) a) implies that Q X0~ M xR" is stable and Lemma (4.%) implies that
&/’ is controlled. Hence =n(27’):B(&') > MXR" and QxoCMXR" augment the
fins V;xR'>V,—»N; i=1, ...,k by Proposition (6.2) a).

Let =;:V/—>N/ i=1,...,k+1 be the compatible fins in B(«/’) obtained by
extending w; by MXR'—>M and then augmenting by =n(%/’') and QxoCMXxR"
(That is, N/=N; i=1,...,k N;,.;=QXxo, V/=xn(') 1 (V;xR" i=1,...,k,
Vi=n(#) 7 (QX0), mi=monon(&’) i=1,...,k m =n(L’) where: n: MXR"->M
is projection.)

Let ¢: MXR"—>R be any overt polynomial with ¢ '(0)=Qxo0 and let d be
such that B(&/') CMxXR"x(R%—0) and =(%/’) is induced by projection onto M x R™

Let Y'=B(Y, N, W’). We claim that there exists a smooth stratified imbedding
« :Y' - B(') so that:

1) o tn() (%, 0)=a " Hx) XY HT(H))(=a"(x) X (spine of W')) for each x€Q.
(So Z,a" crushes N x(spine of W’) in Y’ to N xpoint, see Section 3.)

2) o' is stable over the fins =« i=1, ..., k41I.

3) o represents o in A4(B(’) : B(&')).

4) There is a smooth stratified isotopy of imbeddings g,: Y - MXR"XR? over the
fins m; i=1, ...,k so that go=axoxo and g(Y)=2«(Y').

Given this claim we may finish the proof as follows. By induction and 2) and 3)
there is an e, a projectively closed algebraic set V' CB(&/’) X R® and a smooth stratified
isotopy of imbeddings H; : Y’ — B(&') xR, telo, 1] over the fins =] =1, ...,k+1
so that Hy=a'x0 and H;(Y')=V’. Since H; is an isotopy over the fin

n(’): T(H') - QXo,
then for each xeQ and tefo, 1]:

(H;) ™ (m(2") " (x, 0) x R*) = (Hg) ! (m(") 7" (%, 0) XR?)

= o~ (x) Xy~ (T())

by condition 1). Also for each xeQ:

(') "1 (x, 0)x R*=B(') xR Nxx 0 x R? xR’
since ©(s#’) is induced by projection MXR"XR? - M xR". Thus we have an isotopy

F,: Z(«'(Y')x0) > MXR"XR*xXR°
over the fins m;=V,—>N; ¢=1, ...,k defined by letting F,(Z(«'(1), 0))=ZH;(»)
for all yeY’. This is well defined because H, is an isotopy over the fin n(2/’). Also
for each stratum S of Y’, F, imbeds Z(«'(S —N Xy~ !(T(&/)))x0) since 7, is a diffeo-
morphism on (M XR"—Q x0)X(R*xR*—(0, 0)). In addition, F, is inclusion.

Now by 4) of the claim g,xo isotops a(Y)x0x0x0CMXR"xR?xR* over the
fins m; to Z(«'(Y'))x0 and then F, isotops Z(«'(Y'))X0=Z(«'(Y')X0) over the
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fins m; to G H{(Y')=9(V'). But Z(V’) is a projectively closed algebraic set by
Proposition (3.1) so we are done, modulo proving claim 1), 2), 3) and 4) above.

Let us now prove the claim. Let a=2u+3k,+3s;. Let «,:B(Y,N,W')->M
be o;=aon(Y, N, W’). Pick any (a5, a3):B(Y, N, W’) > (R"—0)xXR® so that
(az(y, w), ag( , w))=\() " (y(w)) for all (y, w)eNxW”. (Hence ay(y, w)=mn()oy(w)
for all (y, w)eNXW"”.) Let Z be the A-space

Z=B(Y,N, W) x[o, 1]]JUNXWx[1, 2]
where NXW"x1CB(Y, N, W”)Xx[o, 1] is identified with NXW"x1 CNXxWx[1, 2],
and corners are rounded off. Then dZ has three pieces, B(Y, N, W”’)xo0, NxWx2
and (B(Y, N, W’)—NXxW")x1UNXW’x1. The last piece is A-isomorphic with

B(Y, N, W')=Y". (See Figure 8.1.)
NxWx2

wa'xz\ /"“

NxWx[1.2]

B(Y.N,W")x[01]

Fic. 8.1

We define o : Z — B(&') as follows:

Let p: QXxB(«) - B(%’) be the imbedding induced by Q xR"<> M XR" Let
o’ (9, w, t)=p(x(), y(w)) for (p, w,t)eNXxWx[1,2]. Otherwise let:

o«''(2, £) =MA") (a1(2), 2(2), %3(2))  for (2, ¢)eB(Y, N, W”')x[o, 1].
is well defined on the intersection pick (y, w, 1)eNXW" x{1}, then:

(9, ) =a()
and w0 ), Y(0)) = (), M) (0(3, @), 05(3, ))

=)‘('M’) (“1(.}’9 w), “2(}’: w), “3()’: w))

because we have the following commutative diagram.

Qx(R*—0)xR® QxB()

’

To see o

id X M«7)
——

(QAXR"—Q x0)xR*

AMs') ®
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We define o =a’

Notice that o’

v
represents o in A *(B(«’) : B(#’)) by Lemma (2.2) c)

NxWx2

and o represents o by Lemma (2.2) b), d), f). Hence « represents o
B(Y,N, W) x 0

in #/4B(&'): B(«/")) also. In addition & and o are stable over

Nx oW x1 NxintW’' x 1
the fins =; by Lemma (5.4) b) and (5.4) c¢) since u is stable over the fins =, by Pro-

position (6.2) b). Also oc" is stable over the fins = by Lemma (5.4) a).
(B(Y,N,W"") =N x W) x 1

Hence «' is stable over these fins.
Let Y'=Y'—Nxy Y(T(&)). We define an isotopy

b Y' > (MXR'—Q xo0)xR*
as follows. For zeY—¢(Nx¢Z)CY"” we define:

hy(2) = (21(2), tag(2), tag(2)) e M X R* X R%
For z=¢(y, (x,5))ec(NX(CE—*))CY":

h(2) = (ac(p, (%, (st45s—t+1)[2)), tog(2), tog(2)) € M X R? 5 R
and for z=(y, p(w, s))eNX (W' —y T(H))):

hy(2) = (oc( p, (w, (1—18)(1—15)/[2), M) Lyp(w, 5)) e M X (R*x R?).

(Recall p:Xx[o, 1) >W' —y (T (&)) is the collaring given by Proposition (7.2).)
Notice that A () :Y" - B(/')—T(&’') is a continuous isotopy over the
fins =;: V,—>N, and that A(&Z')h;=0a" and A(&/')hy is an imbedding of Y’ onto
M"Y (x(Y—N) X 0X0). Y
Let ¢:Y—N - R'XR? be the function so that:
Z,(M") (), 0, 0)) =(a(), (1)) e MX (R"XR)

for all yeY—N, i.e. ¢ is the composition

ax0x0

YN 2P0 (MxR"—Qx0)xR* 7, Bz &» MxR"x R
2 MxR'XR! — R R%,

Let ¢:Y—N—Y" be the homeomorphism so that ZN")hyd ()= (a(y), ¢(»))
for all yeY—N. Then the isotopy g,: Y- MxR"XR? required by condition 4) of
the claim is obtained by smoothing out the following isotopy.

Let g(y)=a(p)xoxo for yeN. For yeY—N and o<t¢<r1/2 let g(») be
((9), 2tp(»)). (This takes Y—N to A (') («(Y—N)Xxoxo).) For yeY—N and
1/2<t<1 let g(») be GNA )y 19(»). (This takes Y—N to Z,a"'(Y").)

- This isotopy g, is in fact continuous. (The hardest part is for 1/2<¢<1. Take
zeQ) and pick r so that:

o' (NXW') CM xR"x rB?
where B ={xeR?| | x| <r}.
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For any >0 and neighbourhood U of zin M pick 3>o0 and a neighborhood U* of
a”!(2) in N so that:
ac(Utx Z) X (L) yp(6W' X (1—3, 1))
C UX <B"n q—1<<_(e2b+1/r)1/2’ (s2b+1/r)]/2))

where & is the degree of ¢ and 8% ={(x, ¢)ecZ|t<8}. Then:
(UL (3/2)8) =Ut U §=2 (U X o (8W'x (1—3, 1)))

is a neighborhood of «7*(z) in Y which is mapped by each g, into U xeB"XxeB?,
1/2<¢t<1. Hence g, is continuous for 1/2<t<1.)

To make the proof of (8.3) precise, one would have to complicate the various
constructions to make the maps all smooth. This can be left to the reader. m

There are a number of alternate methods of proof of Theorem (8.1). One
attractive method is to change Theorem (8.3) by assuming that the stratification on «(Y)
satisfies the Whitney conditions, deleting all mention of fins and concluding that the
isotopy H, is very small. Then you would get stability from the Thom isotopy theorems.
The proof of Theorem (8.3) would be more or less the same, but a bit messier. The
advantage would be that the notion of compatible fins would be unnecessary. The
disadvantage would be that a certain amount of messy analysis would be needed. The
concepts developed in this paper will be useful in our future work.
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