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REAL ALGEBRAIC STRUCTURES
ON TOPOLOGICAL SPACES

by SELMAN AKBULUT and HENRY C. KING

A real algebraic set is a set of the form^'^o) for some real polynomial p : R^R^.
This paper is part of an attempt to understand what these real algebraic sets look like.
In particular, which topological spaces are homeomorphic to real algebraic sets?

It is known that real algebraic sets are triangulable and by [7] we know that
each simplex of this triangulation is contained in an odd number of closed simplices.
We also know by [5] that the singularities of a real algebraic set can be resolved, but
it is not clear to us what this means topologically.

The purpose of this paper is to prove that certain topological spaces (which we
call A-spaces) are homeomorphic to real algebraic sets (Theorem (8.1)). These
A-spaces are smooth stratified sets which admit a certain topological resolution of
singularities. One can show that any P.L. manifold is an A-space [3].

Roughly speaking, A-spaces are topological spaces built up from smooth manifolds
by the operations of coning over boundaries, crossing with smooth manifolds and taking
unions along the boundary.

Although not every real algebraic set is homeomorphic to an A-space (for instance
the Whitney umbrella is not) it seems likely that the techniques of this paper combined
with a few more from [2] will allow a topological characterization of real algebraic
sets (i.e. a topologically defined class of spaces which up to homeomorphism is exactly
the class of real algebraic sets).

In this paper we use very little algebraic geometry, a great deal of elementary
differential topology and not much else. Thus very little background is needed to read
the paper although at times it would be helpful to have read our previous work [i].

We start with Section o in which we give a rough sketch of the proof, making
a few simplifications so as not to obscure the main ideas. In Section i through 7 we
develop the ideas which we need to prove the main theorem in Section 8. Unfortunately
we are in the position of developing the subject from scratch so the paper is rather long.

We recall a few definitions from [i]. A polynomial p : Rn->R is called overt
ifj^^o) is empty or o. Here p^ is the homogeneous part ofp of maximal degree. An
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8o S E L M A N A K B U L U T A N D H E N R Y C. K I N G

algebraic set VOW is called projectively closed if V^^'^o) for some overt polynomial
p : R^R.

Let M be a smooth manifold and let U and V be smooth submanifolds of M.
We say U and V intersect cleanly if UnV is a smooth submanifold of M and the tangent
space of UnV is the intersection of the tangent spaces ofU and ofV. This is equivalent
to having a coordinate system at each point of UnV so that U and V are both linear
subspaces in this coordinate system. Some examples of clean intersections are when U
and V are transverse or when UCV.

Let us set up a bit of notation. For a topological space X, cl{'K) denotes the
closure of X, c(X) denotes the cone on X, i.e. Xx[o, i]/Xxo, and c{X) denotes the
open cone on X, i.e. Xx[o, i) /Xxo. In either case we denote the vertex Xxo/Xxo
by *. By convention:

^(empty set) ==<?(empty set) == a point *.

We set ^(X)==Xx[o,c]/Xxo, ^°(X)=Xx[o, s)/Xxo and I==[o,i] .
We set £Bn=={^eRn | [^|<s}. Also if T is a linear subspace of some Rn we set

eT=={xeT [ \x\ <s}. If T is a linear subspace of Rn and J/eRn we set:
j+T^-^+^eR^eT}.

Also ^Bn=={xeRn\\x\<^} and ^-^{xe'R11 \x\ =s}.
If M is a smooth manifold, then 8M. denotes its boundary and M or int M denotes

its interior.
A smooth submanifold N of a smooth boundaryless manifold M is called proper

if it is a closed subset and 8N is empty.
The reader may take a spine of a smooth manifold M to mean the complement

of an open collar on ^M. Thus if K is a spine of M then M/K is homeomorphic to c8M..
Since A-spaces have boundaries and collars on boundaries we may similarly have a
spine of an A-space. We only use this term spine loosely.
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o. — A SKETCH OF THE PROOF

The purpose of this section is to summarize this paper, by giving an overview
of some of the constructions and the proof of the main theorem.

Firstly we construct certain stratified spaces which we call A-spaces. An A^-space
is a smooth manifold. An A^-space is given by Y==YoUU(N,x^) where Yo and

cp

N/s are smooth manifolds and each 2, is a closed smooth manifold which bounds a
compact smooth manifold, 9 ={9,}, and each ^ : N, x S, -> BYo is a smooth imbedding
where we identify N, x S, with N, x (2, x i) C N, x c^,. Define:

aY=(aYo-U9,(N,x^))UnaN,x^.v
Inductively we assume that we have defined A^_ ̂ -spaces and the notion of boundary

for A^-spaces is well defined. Then an A^-space is given by: Y=YoU ll (N,x^)
cp i == 1

where Y() is an A^_^-space with boundary, N/s are smooth manifolds and each S, is
an A/^-space which is the boundary of a compact A^_^-space, ^^{(pj, and each
9, : N,xS, -> 0Yo is an A^ .^-imbedding (this means a piecewise differentiable imbedding
preserving and respecting all the strata and the links of the strata). Also define:

BY= (BYo- U 9,(N, X S,)) U U BN, x ̂
CP

(see Figure o. i) . We say Y is closed if it is compact and BY==0.
We call an entity an A-space if it is an A^-space for some k. Also the notion of

A-subspaces of an A-space and transversality between them are defined in the obvious
ways. Define an A-isomorphism between two A-spaces to be a stratum preserving
homeomorphism which restricts to a diffeomorphism on each stratum and preserves

NixS1xZ^

N2><c£2

an A^-space with boundary

FIG. o. i

an Ag-space
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82 S E L M A N A K B U L U T A N D H E N R Y C. K I N G

the links (S/s). Let dim(Y) == dimension of the highest dimensional stratum; as usual
the superscript of Y^ denotes dim(Y).

In Section i a slightly different (but equivalent) definition of A-spaces is given.
A-spaces are constructed so that they can be topologically blown up to smooth

manifolds: Let Y be an A^-space given by the usual decomposition M ==YQ U II (N, X c^,)
<p

and let W/s be compact A^_^-spaces with BW,==S,. Then the A^_^-space
Y^YoUII(N,xWJ

<p

can be considered a one stage blow up of Y. There is the obvious map TT^ : Yi->Y
which is obtained by collapsing spines of the W/s to points. The disjoint union UN,
is called the center of 7^. Continuing in this way we get the resolutions

^_^...->Y,-"1>Y^k ^r "k-l
———> ^fc-l ———>Y,-->Y,_,->...—>Y,-->Y

where Y/s are A^._,-spaces, in particular Y^ is a smooth manifold. The composition
map TC ==71:107130.. . o7^ : Y^-^Y can be considered as a topological analogue of the
resolution map for algebraic sets.

FIG. 0.2

We now state the main theorem which we will prove in Section 8.
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 83

Theorem (8.1). — The interior of any compact A-space is homeomorphic to a real algebraic set.
In fact this homeomorphism is a stratified set isomorphism between the singular stratification

of the variety and the A-space.

The resolution theorem of [3] shows that the class of A-spaces is large enough
to contain all P.L. manifolds; hence we have the following corollary.

Theorem (8.2). — The interior of any compact P.L. manifold is P.L. homeomorphic to
a real algebraic set.

The idea of the proof of Theorem (8.1) is to make the smooth manifold Y ;̂ a
nonsingular algebraic set, where n: Y^->Y is a resolution of an A^ space Y. Then
blow down this set (< algebraically " to a singular algebraic set which is homeomorphic
to Y.

Roughly the proof goes in four steps:

1. Finding nice spines for A-spaces
2. Approximating submanifolds with subvarieties
3. Algebraic tower construction
4. Algebraic blowing down.

i. Finding nice Spines for A-spaces

Given an A^-space Y^* which bounds a compact A^-space, we prove that Y bounds
a compact A^-space W such that a spine of W consists of transversally intersecting
codimension one closed A^-subspaces with certain nice properties. For example if
Y=S1 then W^T2-!)2, and Spine(W)-Slx6 uax^w S^S1 where {a, b)eT2.

FIG. 0.3

This interesting topological property shows that one can resolve an A^-space Y

v nk. v 7TA-1 _. v 7T1^ vv 7TA. v 7TA-1 _^ v "\ v
^Tc ——^ ^k-l ——> • • • ——> ^l ——> 1

8S



84 S E L M A N A K B U L U T A N D H E N R Y C. K I N G

in such a way that each rcj is obtained by collapsing A^-subspaces N^xL^ of Y^
to N^ where L^ are onions of codimension one A^-spaces without boundaries and
the N^ are smooth. This makes the resolution Y^—^Y very analogous to a resolution
of singularities of an algebraic set (every stage corresponds to resolving along the
centers N^, and L^ correspond to algebraic sets lying over N^). We call this resolution
of an A^-space a good resolution,

We discuss the method of obtaining these spines in Section 7. Proposition (0.1)
gives the main idea (which derives from the smooth version in [i], Fact (3.2)) .

Proposition (0 .1) . — If Y771 is an A^-space which bounds a compact A^space W^^,
then \m bounds a compact Aj^-space W7^1 such that there are a finite number of codimension one
closed A^-sub spaces {S^} in the interior of W with the properties'.

(i) US, is a spine of W.
(ii) ^S,=0.
(iii) Each S, has a trivial normal bundle in W.

Proof, — For the sake of clarity we first discuss the proof when Y is smooth (i.e. &=o)
(cf. [ IJ5 Fact (3 .2)) . We prove this by induction on m== dimension (Y). Let W^4'1

be a compact smooth manifold with ^W^ ==Y. Pick a collection of balls {Dm+l} in W^
so that:

(1) U D, is a spine of W^.
(2) UH— U^D,= U interior (BJ), where BJ's are (m+i)-balls with disjoint interiors.

j

See Figure 0.4.

U9D,

FIG. 0.4

Then remove an (?72+i)-ball Bj from each Bj. Then the smooth manifold

W2==Wi-Uinterior(B^.)
j

has U ^D^ as a spine.
Then by attaching i-handles onto cWg as in Figure 0.5 we get a manifold W3

with BW3 --= M # ̂ m # . . . # S^ w M with spine U S D, u U C^ (Figure 0.6). But each
circle C. has a neighborhood N diffeomorphic to S^B^ By induction we can find
an m-manifold U^ with W^^S^"1 and satisfying the conclusions of the propo-
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 85

FIG. 0.6

sition. By replacing each N, by S X U^ in Wg we get a manifold 'Wm+l with the required
properties.

For instance the example in Figure 0.3 can be obtained by applying this process
to D2 which S1 bounds.

Proof in the general case. — Let Y^ be an A^-space as above. We prove this again
by induction on m, clearly the theorem is true for m==o. Assume that the theorem
holds for 772—i. Without loss of generality we can assume that all the strata of W^
meet the boundary; because if Wi==W^uNx<"S where N is a statam of W^ which
is a closed manifold contained in the interior of W^, we simply replace W^ by
W^uNxWi' where W^ is an A^-space with aW^'==Z; (cf. Lemma (1.4)).

/ ) W^Y'Wi')[^-J

FIG. 0.7

Pick a fine triangulation of W^ compatible with the stratification coming from
the A^-structure. Let K be a subcomplex of W^ which is a spine of W^. Cover K
with Ustar(^) where {v,} are the barycenters of the simplicies in K, and star (y,) is

?
85



86 S E L M A N A K B U L U T A N D H E N R Y C. K I N G

the closure of the union of all simplicies meeting v,. The star (^)'s can naturally be
isotoped to codimension zero A^-subspaces of Y, namely (D^'xrS if v, lies on an
r-dimensional smooth stratum ̂  and S is the link of this stratum and (D^' is a smooth
ball in N7' (in the smooth case star (^) are just smooth balls).

FIG. 0.8

By shrinking the star (y,)'s slightly, call them D,, we can assume that:
(1) UD, is a spine of W^.
(2) D,=D;x^, D;, S, are as above.
(3) UD,— U ^D,== U interior (BJ), where BJ's are disjoint A^-subspaces of W^

with disjoint interiors and with the A^-structures BJ ==B.' X6:S , where B77 are discs lying
in some strata and Sy are the links of these strata in W^ (compare [i], Fact (3.2)).

(4) {^DJ have trivial normal bundles in W^ and they are in general position
with respect to each other.

Let B, be a slightly shrunken copy ofBJ inside of Bp i.e. B—-B.' x-(^S.) where

-BJ' C BJ' and -(^S,) is a subcone ofc^. Then clearly U SD, is a spine of the A^-space

Wa=Wi- U interior (B,).
j=i

U9D/

FIG. 0.9

The spine U SD^ ofW2 satisfies the conclusions (i), (ii) and (iii) of the proposition but
1

unfortunately 3Wg is not equal to Y, 3W2=YU U 3Bj. Inductively we reduce s by
j = = i

changing Wg to another A^-space whose spine satisfies the conditions (i), (ii) and (iii)
until we get such an A^-space W with 8W=Y. Hence it remains to show that s can

86



REAL ALGEBRAIC STRUCTURES ON TOPOLOGIGAL SPACES 87

be made to be s—i. Pick an ae{ i , 2, ..., s} sach that there is a smooth arc on the

stratum N, on which B '̂ lies, connecting a(-B^|x * C BB^ to BWi (where * is the vertex
\2 /

in c^), meeting only one of the ^D,, and meeting this 8D^ at a single point. Let
N'==NnaWi=aN (recall that N'+0 by the hypothesis). Then the link ofN' in BWi
is Z^ since the link ofN in W^ is S^. Let U^ = D^ x c\ where D^ is a small codimension
zero ball in N^; hence U^ is a small closed neighborhood of D^ in ^W^. Let

U^D.'x^

where D^' is a small codimension zero ball in q-B^l x* and hence V^ is a small closed
_ \2 /

neighborhood of D^' in BWg. Let W==W^uIx{Dxc^) where Ix(Dx^2J is glued
onto ^W2 along BI x (D x cS^) % U^ u U^ and D is a smooth ball of the same dimension
as D^ and D".

FIG. 0 .10

Note that W is a compact A^-space with ^W=YlI U ^B- (because connecting Y
J'+a __

to 8Q^ in this manner just gives Y back) and U ^D^ u C^ is a spine of W where G^ is
i

the smooth circle C^ u C^ with C a = = I x o x * C l x D x ^ , and C '̂ is a smooth arc
in N connecting the end points of C^ and intersecting U ^D^ only at a single point.

FIG. 0.11

The circle C^ has a neighborhood S^Dx^a m W. Since ^(Dx^SJ ls an

A^-space of dimension less then m bounding Dxc^, by the induction hypothesis there

87



88 S E L M A N A K B U L U T A N D H E N R Y C . K I N G

is a compact A^-space W^ with ^W^ == ^(D x ̂ SJ ^d codimension one A^-subspaces {ZJ
of W^ satisfying (i), (ii) and (iii) of the proposition. Let

W= [W—interior(S1 X D X^SJ] uS1 X W^.

(This should be considered as blowing up W along the circle G^.)

FIG. 0.12

This process alters c^D^, where d is the unique index with ^D^nC^ consisting
of a single point, to D^=(BD^— interior (Dx^SJ) uW^. Then D^u U BD.uLJS^Z,

J + d r

is a spine ofW, and the codimension one A^-subspaces {D^, D^, S1 X Zy} satisfy (i), (ii) and
(iii) of the proposition by the construction and the inductive hypothesis on{Zy.ys. Also

S S — 1

aW=aW3==YU U BBj, i.e. after reindexing aW=YU U ^. We are done. •
j = i j = l
j + a

Remark. — It should be emphasized that the W which satisfies the conclusion
of Proposition (0.1) is obtained by first finding an A^-space W with ^W==Y and
with Spine (W) consisting of codimension one closed separating A^-subspaces {Zy}
and circles {CJ such that each Cj intersects only one Zy. at a single point; then
blowing up W along these circles. More precisely each circle Gj has a neighborhood
N(Gj)%; S lx(Dj X6-SJ) in W where D -̂ is a smooth ball and SJ is a closed A^-space
which is a boundary. Then inductively ^(Dj x ^SJ) == cWJ' where WJ7 are compact
A^-spaces satisfying the conditions of the proposition, and:

W^W-U^G^uUS'xW;'
j

where the union is taken along ^N(G-) w S1 X ^WJ' for each j.

2. Approximating Submanifolds with Algebraic Subsets

This is discussed in Section 2. The Nash-Tognoli theorem states that any closed
smooth manifold is diffeomorphic to a nonsingular algebraic subset of R71 for some n.
More generally we can start with a closed smooth submanifold Mm of a nonsingular
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REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 89

algebraic set V and try to isotop it to a nonsingular algebraic subset of V X R". Such
a result can be achieved under a bordism restriction: M gives rise to an element [M^]
of the unoriented bordism group ^(V). We say that [M] is algebraic in V if [M]

contains a representative which is in the form: P x N project1^ P <-> V x R^ where P is
a nonsingular, algebraic subset of VxR^ for some q. (For example in case V=Rn

then every such [M] is algebraic.) Then we have the following result which is proved
in Proposition (2.3).

Proposition {0.2). — If[M] is algebraic in V then M is isotopic to a nonsingular algebraic
set in VxR^j^r some q by a small isotopy.

3. Algebraic Tower Construction

Let Y be a closed A^-space and Y,, -"̂  Y^_^ -^ . . . —> Y^ -^-> Y be a good
resolution. Let N, be the center of TC,. Here we construct a tower of nonsingular
algebraic sets

T T ^ T T ^-1 ___, T T p! T T T T
^k ———> ^k-1 ———> • • • ———> ^1 ———> UQ == U

with N^^CU, as a nonsingular algebraic set (and with U,^i some kind of algebraic
resolution of U, along N,^.1 discussed in Section 4), and imbeddings Y C U, which
commute with the projections and which are in some sense stable over the projections.
(For the proof of Theorem (8.3) the imbeddings in (8.3) don't actually need to commute
but for the purposes of this summary the reader should assume they commute with the
projections.) This means that ifY,' is a nearby copy ofY, thenj^Y,7) is a nearby copy
of j^(Y,)==Y,_i. Thus if Q is diffeomorphic to Y^ and is close to Y .̂ in U^ then
jKQ^jK^^Y where p==p^op^o. . .0^. To do this construction we need to make
the following definition which is made more precise in Section 4. For a given nonsingular
algebraic set U and a nonsingular algebraic subset N C U we say that j&:U-^U is
a super multiblowup with center N if p is the composition of the maps

U -> . . . -^ (U^R^xR^2 ̂  (iT^R^) -^ VxW1 ̂  U

where the TT, are the obvious projections and p^ are multiblowups whose centers are
some nonsingular algebraic subsets {w N x L for some L) lying over N. A multiblowup
of Q with center P means you first blow Q^ up along P, then find a copy of P upstairs
lying over P, then blow up again, etc., a certain number of times. (There is a technical
difficulty of blowing up a nonsingular variety Q^ along a subvariety P more than once
because after the first blow up Q we might no longer be able to find an algebraic copy
of P in Q to blow up Q along P again. But this can be done if we cross the space with R
before every blowup.)

y

Let Y=Y^u U (N^x^) be a usual decomposition of the A^.-space Y. Further-
i ==1

89
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90 S E L M A N A K B U L U T A N D H E N R Y C. K I N G

more without loss of generality assume r=i (otherwise repeat the following process),
i.e. Y===Y^U NI X cL^. Since N^ is a smooth closed manifold it can be made an algebraic
subset of Uo^R31 for some large q^ (Proposition (0.2)). Extend this imbedding to an
imbedding of Y such that N3, is identified by N^x* ̂ N^X^S^Y. Let W^ be a
compact A^_i-space with ^Wi==S^ with a spine of transversally intersecting codimension
one closed A^_^-subspaces (Proposition (o. i)). We claim that we can find a super multi-
blowup with center N^, j^ : U^-> R^ and an imbedding of NiXWi<->Ui so that:

(i) N^xWi is transverse to A"1^!),
(") A~W^(NiXW,)=NiXSpine(W,),
(iii)A(N3XWi)^N,x^.

We prove this by induction on the dimension of Wi.
By Proposition (o. i) and the Remark following it, we can assume that there is

an A^_^-space Wi such that a spine ofW^ consists of transversally intersecting codimension
one closed A^_^-subspaces Z/s and circles C/s such that each Cj intersects a unique Z^ at
a single point. Furthermore W^ is obtained by blowing Wi along each circle C-, i.e.:

Wi^Wi-U^G^uUS^xW/

where N(Cj) is an open neighborhood of the circle C, in W^, in fact the closure of
'N{G^wSlxVfj where WJ is an A^-space (it is the cone over the link of Cj in W^)
and WJ' is a compact A^_^-space (obtained inductively) satisfying the properties of the
proposition (0.1) with aWJ==aWJ\ Also the A^-spaces Z,. separate each other.

First identify R^ by R31 x o C R^+ 2, and then multiblowup R314-2 (algebraically)
along the algebraic subset N^ several times. Let TT^ be the composition of the multi-
blowup map and the obvious projection

R^x+2 -^ R^+^R^xR2 -^ R^DNi.

For any ^eN^CR^, Tc^1^?) is transversally intersecting codimension one algebraic
subsets TT^1^, o) and a codimension q^ nonsingular algebraic subset R (==the strict
preimage ofj&xR2) of T^"1^), where Qy is the normal plane to N^ in R31.

Hence in 7^l'l(6p), ^ l { p ) locally looks like transversally intersecting hyperplanes
and a codimension ^-dim N^ plane in a euclidean space. Because the Z/s have trivial
normal bundles and separate each other in W^, we can imbed a neighborhood Q^of U Z,.
(in Wi) into ^~^~l{fflp)CRql+2 as in Figure (0.13) such that:

(1) Q^is transverse to ^ii1^ o).
(2) ^(AO^Q^UZ,.
(3) R^nQ^Ul, where Ul, is a disjoint union of arcs corresponding to the

intersection Q^n (J C- in W^.

(4) ^(QJ^(aQ).

90



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 9i

(R^i +2

NixQ

Ni><c(3Q)̂ ^Q^^^
/C%^

R^xR2

7Ti2

1 1 x [^^/UI,]

R^

Mi fa po/W

FIG. 0.13

Now as in Figure o. 14 we extend the imbedding Qj—>T^^{Gy) to an imbedding
W^Trf1^) by attaching i-handles to Q^ (in ^{(Py)) along the end points of I/s,
so that:

(i) W\ is transverse to ^^{p, o)
(2) Tcn^o^w^uz,
(3) R^nWi^ U Cj (extending the imbedding of U 1̂ ) with each Gj intersecting -^^{p, o)

only at a single point (in Ij).

In particular Tri-1^) nWi% (U Z,) U (U C^) = Spine Wi. In fact first ̂  collapses U Z,
to {p, o) then n^ collapses UCj to p so that ^i(Wi) »c(S^).
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a 1 - handle

N,xWi

^12

NixcS

By doing this process continuously for each j&eNi we end up with an imbedding
N^ x Wi ̂  R^ + 2 such that:

(1) N^xWi is transverse to Tr^N^)
(2) Trr^Ni^NiXW^NiXSpine W^
(3) ^(N^xW^NiX^.

We can assume that the each naturally imbedded copy ofN^ X C- in R^14'1 is a nonsingular
algebraic set (and they are disjoint for different j's). This is not obvious to see, but
here is a way of visualizing it: we can imbed a bouquet of circles LJX (Figure 0.13)
into R2 each as a nonsingular algebraic set with various degree's of tangencies with
respect to each other so that the map TC^ will lift N ^ x U X to the right places in
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R^14-2, this will in turn imply that ^(NiXX^.) contains an algebraic copy o fN^xC. as
above (=the strict preimage ofNiXX^.) .

We are now in a position to apply the induction. We have the disjoint nonsingular

algebraic sets NiXC^. in R914-2, so by induction there is a super multiblowup with center

U N i X q , Ui^R^2 and an imbedding (J (NiXG^.)xW;' ̂ U^ so that:
(1) L^NiXC^xW;7 is transversal to ^(UNiXC,)
(2) 7To- l(N,xq)n(N3xqxW, / ')^(NlXq)xSpine(W, / /)
(s) ^(Nixqxwj'^Nixqx^aw;').
We then extend this imbedding to an imbedding of

NlXW^-NlX(Wl-UN(C,) )uUNlXqxW, / ' ^Ul

by simply lifting the imbedding N^ X (W^- U N(G^.)^-. R^2 by 7^ and piecing with the
above imbedding. This the imbedding NiXWi^Ui and the composite multiresolution
^i : Ui -^ R^+2 -> R^ p^ == 71:1 o7T:o satisfies the requirements of the claim. Of course the
above process requires some care (in fact it should be done slightly differently) and
we don't indulge in the details in this section.

FIG. 0.15

Having constructed^ we extend the imbedding ofNi X Wi C U\ to an imbedding of
^^S^iXWi. This is done by lifting the imbedding Y^R^ via ̂  and piecing
together with the imbedding of NiXWi. This imbedding easily can be arranged so
that YI is transverse to A'^Ni), p^) =Y andj^ is stable. Since Y^ is an A^-space let
YI ==Y2 u N3 X c^ be the usual A^_^-decomposition. Now suppose [N3] is algebraic in U^
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then by (0.2), Ng can be made a nonsingular algebraic subset in Ui==UiXR81 for
some j-i. Let Wg be an A^_g-space satisfying requirements of Proposition (0.1) so
aW2==22. Then just as above we find a multiresolution p^ :V^->V^ with center N3
and an imbedding of Y^Y^uNgXWg^Ug such that ¥3 is transverse to A" ̂ N2^
PaCYsO =^! ^d ^2 i8 stable. Continuing in this fashion we get the following tower:

R^ -U.

Pk

U^xR^-U^pN,

-^^N3

P2

==UpN2

pi

==UDN,

where Y^ is a smooth manifold. Supposing [Y ;̂] is algebraic in U^;, Y ;̂ can be isotoped
(by a small isotopy) to a nonsingular algebraic set Q^ in U^xR^ for gome ^. Call
U^UfeXR^. The tower

U,
u
Y.

Pk u,-i
u

Y.-i

Ui
u
Y,

U^R'i
u
Y

has the required properties where p^ is the composition U^U^xR^—^U^-^U^i.
In particular this tower is stable in the sense described earlier in this section. This
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is visualized by the Figure o. 16. Isotop Y^ to an algebraic set Q which is close to Y^
then j&(QJ»Y where p==piop^o.. .oj^ (k= i in the picture). This is true because
of the properties ofj^'s.

One has to prove that [Y^] and [NJ for z=i , 2, . . . are algebraic. This is not
obvious, one has to complicate the whole construction to see this, we refrain and refer
the reader to the main proof. (Note: Set A^A^A+i0 • • • °A- Then in the proof
of (8.3), the projections p,\ ̂ (N^N, are fins in U^.)

UixIR^Ui

Pi(Q)

FIG. 0.16

4. Blowing Down

Having found an algebraic set CK:U^ with ^(QJwY where p : U^->U is as
above, we need to prove that p{QJ) is still an algebraic set. A priori there is no reason
to assume that p takes algebraic sets to algebraic sets (intact a linear projection R2-^
takes the unit circle to an interval). So we have to do a more complicated algebraic
blowdown than mere projection p. This is discussed in section 3.
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I. — STRATIFIED SETS AND A-SPACES

The natural topological object to use when dealing with algebraic sets is a smooth
stratified set. Any real algebraic set has a smooth stratification. In fact it is not hard
to show, using the Whitney conditions, that every real algebraic set is homeomorphic
to the interior of a compact TCSS space (these TCSS spaces are smooth stratified sets
with some extra structure defined below). The converse is not true, although we know
of no compact TCSS space which satisfies Sullivan's even local Euler characteristic
condition and is not homeomorphic to any real algebraic set. In fact in dimensions <2
we can show that no such example exists, thus we topologically characterize real algebraic
sets of dimension ^2 [2J.

Resolution of singularities tells us that links of strata of algebraic sets must bound
in some sense, but what this bounding means is not clear to us. What we can show
is that if the links of the strata of a compact TGSS space bound in a certain naive sense
then this TCSS space is homeomorphic to a real algebraic set. We call TGSS spaces
with this naive bounding condition on the links A-spaces. Not all real algebraic sets
are homeomorphic to A-spaces, for instance the Whitney umbrella is not. However
the class of A-spaces is big enough to include all PL manifolds [3].

In this section we give definitions of stratified sets, TCSS spaces, A-spaces and
various auxiliary notions. Also we show how we may " resolve the singularities " of
A-spaces by blowing up along closed strata.

The following definition of a smooth stratified set with boundary is the same as
the usual definition of smooth stratified set except that we allow a stratum to have a
boundary.

Roughly speaking a TCSS space is a smooth stratified set together with a trivia-
lization of a (< tubular neighborhood " of each stratum. The trivializations of different
strata are required to fit together nicely.

An A-space is a TGSS space so that the link of each stratum bounds. Thus we
can resolve the singularities of an A-space by replacing a (closed stratum) X (cone on
its link) by (closed stratum) X (A-space which its link bounds).

Definition. — A smooth stratified set with boundary is a topological space X with a
locally finite collection of disjoint subsets {XgJ aej^ (which we call strata of X) so
that:
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i) x= U x,;
ae^/

2) each stratum X^ is given the structure of a smooth manifold with (possibly empty)
boundary;

3) the closure of each stratum is a union of strata;
4) the closure of the boundary of each stratum is a union of boundaries of strata.

A stratified set is called finite if it has only a finite number of strata.
The dimension of a smooth stratified set is the maximum dimension of its strata

(assuming a maximum exists).
The boundary of a smooth stratified set with boundary (X, {X^} aej^) is the

smooth stratified set ( U BX^ {BXJ aej^). We denote this by B(X, {XJ) or,
loosely, BX. aet0/

If (X, {XJ aej^) and (Y, {Yp} (3e^) are smooth stratified sets with boundary
then we may define a cartesian product (XxY, {X^xYp} (a, (B)e^x^?) by standard
corner rounding on the X^xYp.

If (X, {XgJ aeja^) is a finite smooth stratified set without boundary we may
define the cone and open cone on X by:

(,X, {*}u{X,x(o, i]} ae<)=,(X)

and (<?X, {*}u{X^x(o, i)} a6^)=^°(X).

If X and Y are finite stratified sets with empty boundary we may define the join
X*Y of X and Y to be the union X x c Y u ^ X x Y with {x, {y, t))e'Kxc°Y identified
with ((A:, i—t),y)ecXxy.

Definition. — A smooth stratified morphism between stratified sets (X, {XgJ) and
(Y, {Yp}) is a continuous map 9 : X->Y so that the image of each stratum of X is
contained in a stratum of Y and <p is a smooth map on each stratum.

Definition. — A trivially conelike smooth stratified space (or TGSS space for short) is
a 4-tuple (X,{XJ^^,{yJ^^,{SJ^^) where:

1) (X, {X^}^^) is a finite smooth stratified set with boundary.
2) Each 2^ is either the empty set or (inductively) a compact TCSS space

(sa5{Sap}pe^{^c3UAa3}) with empty boundary.
3) Each Ya ls ihe germ at X^ X * of a smooth stratified morphism ^ : X^ X^—^X

so that:

a) c^(x,^)==x for all A:eX^.
^ ^ is a smooth stratified isomorphism onto a neighborhood of X^ in X.
c) ax.x^^^X).
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d) For any (3e^ let oc'ej^ be such that ^a(XaX(S^x(o, i ) ) )C X^. Then
S '̂ == A^ and the following diagram commutes.

(XaX(S^x(o, l)))X^=X,x(S^X<?A^)x(o, i)

YaXid id X n^ X id

X^X^ X,x(S,x(o,i))

That is, c^x,{c^z),t))=c^{c^x,y,t)),z) for all ^eX^, jeS^, °̂S^ ^e(o, i)
with ^ near * and t near o. Here c^ and ^p represent Ya7 ^d 7]^p. (See Fig 1.1.)

X^(cone)

Sa^xAap

(S^' ls Ae link of Xg^ in R3 which is A^ra)

FIG. i. i

Notice that 3) c ) above implies that the boundary of a TCSS space inherits the
structure of a TGSS space.

Definition. — Let (X, {XJ, {ya}, (SJ) be a TGSS space and let X^ be a stratum
of X. Then a neighborhood trivialization of X^ is a map ^ : X^x^S^->X satisfying 3 a ) ,
b ) , c ) , d) in the above definition so that Ya is the germ at X^ X * of^. The TCSS space S^
is called the link of X^.

Notice that the cone and open cone on a boundaryless TCSS space set have an
induced structure of a TGSS space and the join and cartesian product of two TCSS spaces
have induced TGSS structures.

For instance, if X and Y are TGSS spaces and U and V are strata of X and Y
and S and A are the links of U and of V, then the link of the stratum UxV in XxY
is the join S * A. (Note that ^(S * A) w <?S x cA).
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Lemma (i. i). — For any TCSS space X there is a smooth stratified imbedding f: X-^R"
for some n.

The proof is clear.

Definition. — A TGSS isomorphism between two TCSS spaces (X, {XJ, {yj, {SJ)
and (Y, {Yp}, {8p}, {Ap}) is a smooth stratified isomorphism A : X->Y such that for
each a if Yp is the stratum of Y so that A(XJ =Yp then there is a smooth stratified
isomorphism h^ : 2^—>Ap so that the following diagram commutes; where h^ : ̂ S^—^Ag
is the map h^{x, t)={h^{x),t).

YpX^Ap Y

hxh'^

X,X^ X

In short a TCSS isomorphism is a smooth stratified isomorphism which preserves links
and neighborhood trivializations.

Notice that the h^ above is automatically a TCSS isomorphism also.

Definition. — Let (X,{XJ,{Ya},{SJ) be a TCSS space. Then Y C X is a
TCSS subspace if /Y, {YnXJ, ̂  L {2J\ is a TCSS space. In other words,

\ I (YnXa)xcSaJ /
YnX^ must be a smooth submanifold of each X^ and for each a there must be a
neighborhood trivialization ^:X^x^-^X so that ^((YnXJx^SJ is an open
subset of Y.

FIG. I .2

Notice open subsets always are TCSS subspaces.

Definition. — A TCSS imbedding a : X-^Y is a TGSS isomorphism onto a TCSS
subset of Y. We say a is open if its image is open in Y.

Lemma (1.2) (Collaring). — Suppose (X, {X^}, {yj, {SJ) ^ a TC^ ^^ w^
compact boundary and U C 8X ^ fl% open subset of 8X a^f K C U is compact and
6 : Ux[o, i)->X is an open TCSS imbedding with Q{u,o)=u for all ueV. Then there
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is an open TCSS imbedding 9 : ^Xx[o, i)-^X so that 9 and (p(A:, o)==A:
/or ^eX. |KX[O, I ) | K X [ O , I )

Such a <p is called a collaring of ^X. The U, K and 6 only appear in order to
make the proof easier. Normally they would all be empty.

Proof. — The proof is standard. We prove by induction on the number of strata
of aX not contained in K. If all strata are contained in K we are done since K = BX.
Otherwise, pick a stratum N of least dimension among those strata not contained in K.
Let L be the stratum of X with N==BL and let c : Lx^S->X be a neighborhood
trivialization for L. Let K' C U be a compact neighborhood ofKin BX. By the rela-
tive collaring theorem for smooth manifolds there is an open imbedding a: N X [o, i) ->L
so that a(^,o)=^ for all xe~N and a We may define U'

| (NnK' )x[0 , l ) . , _ . . ...,,,,.,./(NnK')x[0,l)
to be the interior ofK' in BX union a neighborhood ofN in BX. We let (B : U' X [o, i) ->X
be defined so that ?>{x, t)==Q{x, t) for x e K ' , te[o, i) and the following diagram
commutes

(Nx^)x[o, i)==(Nx[o, i))x<?S

Y X i d ax id

U'x[o,i) Lx^S

i.e. ^{c{x, (js .$•)), t)=c(oi{x, t), {jy,s)) for A:eN, j^eS and s small.
of (B follows since 6 is a TCSS imbedding. Then (B
induction we are done. • (KuN)x[0 , l )

Well definedness
so by

(KuN)x[0,l)

Definition. — A TCSS subspace X C Y is full if X — 3X is an open subset of Y.
The basic idea is that X is " codimension o 3) in Y.
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Lemma (1.3) (Bicollaring). — Suppose Y is a TCSS space and XC Y is a full TCSS sub-
space with XnBY empty and BX compact. Suppose UCBX is open in BX and KCU ^
^^ W 6 : Ux(—i, i)-^Y ^ a% o^ rCA? imbedding with Q{u, o)==u for all ueV.
Then there is an open TCSS imbedding 9 : ^Xx(—i5 i)—^Y so that 9 =6
and ^{x,o)==x for all xe^X. KX(-I,I) KX(-I,I)

Proof. — The proof is similar to the proof of Lemma (1.2). •

Definition. — A TCSS space X bounds if there is a compact TGSS space Y so that
X == 8Y and X and Y have the same number of strata. (In particular X must have
empty boundary and be compact.)

Definition. — An A'space is a TCSS space (X, {XJ, {y^}, {SJ) so that each S^
bounds.

Definition. — An A-subspace Y of an A-space X is a TCSS subspace Y of X. (Note
Y is automatically an A-space itself.) (See Figure 1.2.)

We define an A-map to be a smooth stratified morphism between A-spaces and
an A-isomorphism to be a TGSS isomorphism between A-spaces.

Suppose X is an A-space, N is a closed stratum of X and M C N is a union of
connected components of N. Let c : Nx^S-^X be a neighborhood trivialization for N
and suppose W is a compact A-space with the same number of strata as S so that
aw=s.

We define an A-space B(X, M, W) as follows. As a point set B(X, M, W) is
X — M u M X W. Let T] : 2 x [o, i) ->W be a collaring of BW== S. Define:

X : MxSx(-i, i)->B(X,M,W)

by X(^j^)=(^,7](;^))eMxW if t^o and \{x,^t)=c{x, (j/, ^))eX-M if
t<o. We put the unique A-structure on B(X, M, W) so that the three maps

X-M-^B(X,M,W), Mx(W-BW)^B(X,M,W)

and X : MxSx(-i, i) -> B(X, M, W)

are all A-imbeddings. The basic idea is that we replace M by M x W, a process analogous
to blowing up in algebraic geometry.

We can define a collapsing map 7r(X, M, W) : B(X, M, W)-^X by letting
7c(X, M, W) be inclusion and letting TT;(X, M, W) be projection onto M.

X-M M x W
Note that although 7c(X, M, W) is continuous it is not an A-map since the image of
a stratum is not contained in a single stratum.

We call B(X, M, W) an A-blowup of X. Likewise an A-blowup map is TT:(X, M, W)
for some X, M, and W.
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7r(X,M,W)

B(X,M,W)
FIG. i .4

Lemma (1.4). — Let X be an A-space which bounds. Then X=BY where Y is a
compact A-space so that each connected component of each stratum of Y has nonempty boundary.
(In particular Y has the same number of strata as XJ

Proof. — The proof will be by induction on the dimension of X. If dim X<o
then X is empty so the lemma is true (with Y empty) in this case.

In the general case, suppose the lemma is not true for some X. Let Y be a
compact A-space with the least number of components of strata with empty boundary
such that X == 8\ and Y has the same number of strata as X. Pick a component M
of a stratum N of Y so that 8M is empty and M has least possible dimension. Then
notice that M must be closed. Let c : N X c°2 ->Y be a neighborhood trivialization
for N. Note dimN>o, otherwise Y would have more strata than X. Hence
dimS<dimX so by induction there is a compact A-space W with ^W==2 so that
each connected component of each stratum of W has nonempty boundary.

Now let Y'=B(Y, M, W). Then BY'=X, Y' has as many strata as X and Y'
has fewer connected components of strata with empty boundary than Y. Hence we
have a contradiction and the lemma is proven. (See Fig. 0.7.) •

Definition. — An A-disc is an A-space of the form B^x^X where X is a compact
A-space which bounds and B^^eR^ [ |A:|^i}. An open A-disc is the interior of an
A-disc, i.e. an A-space of the form R^x^X where X is a compact A-space which bounds.
An A-sphere is the boundary of an A-disc.

Definition. — Let X be an A-space and let Y^ C X be A-subspaces i = i, ..., k.
Then Y^, Yg, . . . , Y ^ are in general position if for each stratum X^ of X, Y^nX^,
Y^nX^ ..., Y^nX^ are in general position in X^.
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II. _ A-BORDISM, ALGEBRAIC BORDISM
AND ALGEBRAIC SETS

Given an algebraic set X, a closed, smooth manifold Y and a map /: Y->-X it is
useful to know when for some k we may approximate fx o : Y -> X x K^ by an imbedding
onto a nonsingular projectively closed algebraic set. This turns out to depend only
on the unoriented bordism class of/(this is an immediate corollary of Proposition (2.3)).
For this reason, it is useful to study A-bordism which we define below. Also, the question
of representing Z/2Z homology classes by algebraic sets turns out to be crucial.

Definition. — Let X be a topological space and let a^:X^X be continuous
maps where X^ are compact A-spaces z==o, i. We say oco and o^ are bordant if there
is a compact A-space Y and a continuous map (B :Y-^X so that 8Y is the disjoint
union XoUX^ and (S ==a^.

x»
This bordism relation is an equivalence relation as usual so it gives rise to a

bordism theory ̂ A where ^rA{'X.) is the group of bordism classes of maps from compact
A-spaces into X. The group operation is disjoint union. Every element has order two.

Suppose KCR1. We may define a subgroup ^(K) C^T^K) to be the
subgroup generated by maps ZxY->Y—^K where Y is a nonsingular projectively
closed algebraic subset of KxR^ for some k and where Z is any compact A-space and
the map ZxY->Y is the projection and the map Y-^K is induced by the projection
KxR^—K.

Now if Y C X C Rn we may define ^{X : Y) to be the quotient group
^(X^^Y) where z,: ^(Y) — ̂ (X) is induced by the inclusion.

We may define ^(X) and ^(X : Y) to be the subgroups of ^(X) and
./^(X : Y) generated by maps a : Z->X where dim Z=z .

Definition. — Let UCR1. Then H^(U) will be the subgroup of the singular
homology group H^(U, Z/2Z) generated by homology classes of the form T^([V]) where
VCU xR^ is an i dimensional nonsingular projectively closed algebraic subset of R^xR^
for some A; n : V->V is induced by projection UxR^U and [V] CH,(V, Z/2Z)
is the fundamental class of V. Equivalently, H^(U) is generated by /,([V]) where
V is a compact algebraic set and /: V—^U is an entire rational function (see [i]).

Definition. — Suppose U is an algebraic set and H^(U)=H»(U, Z/2Z) for all
i<_n. Then we say U has algebraic homology up to n. If U has algebraic homology up to n
for all n, then we say U has totally algebraic homology.
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Lemma (2.1). — Let VCR" be a set and UCV a subset and suppose that:

j^: Hf(U)^H,(V,Z/2Z)

is onto for all i<n where j : U—V is inclusion. Then ̂ ^(V : U) is the trivial group.

Proof. — For any y^^n^V : U) let a : X->V be a map representing y so that
dim X = n. We will prove this Lemma by induction on the number of strata of X.

Pick a closed stratum N ofX. Let c: Nx^S-^X be a neighborhood trivialization
and let Z be a compact A-space so that BZ == 2. We know by [4] that generators of
^(V)= smooth unoriented bordism of V are of the form P,xM ->P^->V where
the Mj are generators for smooth unoriented bordism of a point and the P^ generate
H^(V,Z/2Z). Hence there is a smooth manifold W and a map (B : W->V so that

k
^W is the disjoint union Nu U P^xU, and (B and (B ..p^xU^V is

P.xU,
projection. Here each U, is a smooth closed manifold and each P^ is a projectively
closed nonsingular algebraic set contained in U X R^ given by the hypothesis.

Let Z'=^SuZ with S x i C ^ S identified with BZ=S. Let:

X'=Xx[o, i]uWx^Su U P,xU,xZ'x[o, i]
z=l

with {c(x, (j,<)), i)eXx[o, i] identified with {x, [y, 2t))eWxc^ for A:eN,j/eS,

te o, ^ and with P, x U, X cL C W X c^ identified with:

P,xUx^2xiCP,xU,xZ'x[o, i]. (See Figure 2.1.)

<^3 ĵ̂ —^ UP/xU/xZ'xO
J ^—^AUP/xU/xZ'x[0,l]

WxcS

Xx[0.l]

X'

FIG. 2. I

Now define a' : X'->V as follows: On Xx[o, i]:

a'(^ t)=^x) for (^, ^)£(X-<;(NX^S))X[O, i],

a'(^ (^^))^)=a^ (j/^+^-i))) if t{i~s)<s

a(^(^ (^ ^)), ^)=aM if t{i-s)>,s.

104



REAL ALGEBRAIC STRUCTURES ON TOPOLOGICAL SPACES 105

On Wx^S a'(^, (j^))==(B(w). On P,xU,xZ'x[o, i], ^{p, u,y, t)=n,(p) where
7r,:P^-»V is induced by projection. Notice that a ' |P^xU,xZ'xo represents an
element of c/^CU) and a' represents y? hence a' represents y where:

x x o x"
k

X"=(Xxi -Nx^)uWx(Sxi )u UP,xU,xZxi .i==i

But X" has less strata than X or it is empty. So by induction, -^(V; U)==o. •

Lemma (2.2). — Let ̂  be a compact A-space, let MCR" be a smooth manifold^ let
KC M and suppose a : X->M represents o in ^^(M: K). Then

a) If X' C X is a closed union of strata then a : X'->M represents o in ^^rA(M.: K).
x7

b) If TC : X'—^X ij <a^ A-blow up map then (XOTT : X'-^M represents o ̂  .̂ (̂M : K).
c) If V C R^ ^ a projectively closed nonsingular algebraic set then:

identity X a: YxX-^YxM

represents o m ^rA(Y x M : Y x K).
d) If LCM-—(Kua(X) ) is a sub-manifold and dim X+dim L+i <dim M,

then a :X->M—L represents o in .^(M—LrK.).
e) If M' ^ ^ ^o^A manifold and K'CM', MCM', KCK' then a:X-^M'

represents o ^ ̂ (M' : K').
f) 7/' Y^-^11'" ^ <3^ m^ ^^ peW then a X y ^ X - ^ M x R ^ 1 represents o m

^rA(MxRW ^:Kx^).
g) TA^r^ z'j an integer u, a compact A-space Z with. the same number of strata as X and

k

a map [B : Z->M j-o ̂  ^Z is the disjoint union Xu U P,xU, where P.CKxR" are
i =1

projectively closed nonsingular real algebraic sets., U^ ar^ compact A-spaces and p = a a^rf
x

(B : P^xU^->K ^ the composition of projections and an inclusion P^xU^-^P^—^KxR^-^K.

proof. — We first prove g). Let (B : Z -> M be a map as in ^ above except that
Z might have more strata than X, but pick (B : Z-^M so that Z has the least number
of strata possible. If Z has more strata than X then we may pick a closed stratum N
of Z which is disjoint from X. Let TT : Z'->Z be an A-blowup of Z along N. Note

k
BN= U P^xN, for some closed stratum N, of each U,. Then consider (BOTT : Z'-^M.

i^i fc
Z' has less strata than Z and ffL' is the disjoint union X u U P» X U,' where U,' is an

i==i
A-blowup of U, along N,. Also (BOTT == a and POTT is the composition

x P, x u;
PzXU^P^KxR^K

so we have a contradiction.
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So Z and X have the same number of stratum and g) is proven. (See Figure (2.2.

FIG. 2.2

For the remainder of this proof we take a [B : Z —>• M as in g).
To prove a), let Z' be the union of the strata of Z which intersect X'. Then

(B : Z'->M is a bordism from X' to maps representing elements of^^K).
z'

To prove b), suppose X'=B(X, N, W) (see Section i) then let L be the stratum
of Z containing N, note that L is closed, otherwise Z would have more strata than X.
Then [Bo7r(Z, L,W) : B(Z, L, W)->M is a bordism from ao7i(X, N, W)=ao7r : X'-^M
to some maps representing elements ofc/T^K).

To prove c), note that i d x ( B : Y x Z - > - Y x M is a bordism from idxa to some
maps representing elements of^^YxK).

To prove d), by general position we may assume that [B(Z)nL is empty so the
result is proven.

To prove f), let S : Z -> [o, i] be a smooth function which is i on X and o on VL — X.
Define (B ' lZ -^Mx^ by 1B'(<)=(P(<)^+S(^(Y^)-^))- Then (B' = a X y and
JB' represents an element of ^rA('Kxp) so we are done.

8Z-X

The proof of e) is a triviality, notice the obvious homomorphism

.^(M : K) -> ̂ (M': K'). •

Proposition (2.3). — Suppose W is a nonsingular real algebraic set and MCW is a
smooth compact boundary less submanifold so that the inclusion M<->W represents o in .yf^W : W).
Then for some k, M is isotopic in WxR^ to a nonsingular projectively closed algebraic set
VCWxR^. We can make this isotopy as C00 small as we wish.

Proof. — We know by Lemma (2.2) g) that there is a smooth manifold N and
b

a map a : N-^W so that ^N is the disjoint union Mu U P,xU, and a = inclusion
1=1 M

and a : P^xU^—^P^^WxR"—^^^ is the projection where P^ are nonsingular projec-
P, x na-

tively closed algebraic subsets o fWxR^ and U^ are closed smooth manifolds. By [i],
Proposition (2.8)3 we may assume the U^ are nonsingular projectively closed algebraic
sets U^CR" for some n. By translating we may assume the P/s are pairwise disjoint.
So if n is large enough we have a smooth imbedding (B : N X [— i, i] -> (W X R") X R" X R
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so that ^{x, t)={{x, o), o, t) for xeM, t near o and (B((^, u), t)=={p, u, t) for j^eP,,
^GU, and ^ near o. The proof now proceeds as in the proof of Proposition (2.8) of [i].
More specifically, by Proposition (2.8) of [i] we may isotop (Bxo fixing

^(Nx[- l , l ] )
UP,XU,XO to an imbedding [B' : B(Nx[—i , i ] ) -^WxR^X^xRxR^ onto a pro-
jectively closed nonsingular algebraic set X. By Lemmas (2.2) and (1.6) of [i] there
is a nonsingular projectively closed algebraic subset V of X isotopic to (B'(Mxo). •

ior



III. — BLOWING DOWN

In this section we describe a procedure for " algebraically blowing down " an
algebraic set. The map ̂  is a quotient map which collapses certain algebraic subsets.

Suppose W C R™ is a real algebraic set and q : R^R is a polynomial of degree d.
We define for any n a function ^ : W X R1 -> W X R~ by

^^)=(^J/.l^l-2d/(2d+l)(yW)2/(2d+l)).
Notice that ^ is a homeomorphism on (W—^ - l(o))xRn and a diffeomorphism on
(W-^-l(o))x(Rn-o). Also, if XCWxR n then ^(X) is homeomorphic to the
quotient space of X by the equivalence relation {x,y)^{x1^1) if x=xleq~l{o). The
usefulness of this ^ is indicated in the following Proposition.

Proposition (3. i). — If V C W X R" is a protectively closed algebraic set and q : W->R
is an overt polynomial, then ^{V)^{q~l(o)xo) is a projectively closed algebraic set.

Proof. — Let WCR"1 and let p : R^xR^R be an overt polynomial of degree e
with V^^'^o). Let d be the degree of q. Define a polynomial r : R^xR^R by

r{x^)={q{x))2ep{x^\y\2d|q\x))

for xeJV and j^eR^ (This r is a polynomial after clearing denominators.) Note that:

(^M^bWW)
is the inverse of ̂  on (W-^o^xR^. Clearly r(^(V))=o and r^-^xo^o.
In fact:

r-^^V^-^Xo

for suppose r{x,y)=o. If ^)+o, then (^j^l2^2^))^ so (^)E^(V). But
if ^)==o then r{x,Jy)=p,{o,Jy\y\2d) where ̂  is the homogeneous part of p of degree e.
Hence j/=o, so /-"^^^.S^V^u^^xo.
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To see that ^(V) is projectively closed, we show that r is overt. Notice that
the highest degree terms of r are r^x^^^p^y^^x)) where q, is the highest
degree terms of q. If r'(^)=o and ^)+o then p^y\y\2d|f^x))=o so ^=o
andjy=o by overtness ofj^. But if r'(^)==o and ^W=o then r' (A:, j/) =A(o^l^n
so ^=o by overtness of^ and ^==0 by overtness of q. So r'(A:,^)=o if and only if
x=o and jy=o so r is overt. •

For example, if W=R2, q{x,y)=x2 +y, T Z = = I , then:

^j^)-^ ̂ .(^+y)5).
If we let X={(^^,^eR 3[^+/+^=4} then:

^(x)={(^, ^eR3] (^+y)5+^o==4(^+y)4}.
For another example, suppose ^(^.j^^+y—i. Then:

^(^J/^)=(^^^(^+y-I)^)
and ^(X)={(^,j;, ̂ eR3 | {x2+f)(x2+f-ly+zlo=^+f^}.
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IV. — BLOWING UP

In this section we describe algebraic blowing up. We start out with the usual
blowing up of a nonsingular algebraic set along a nonsingular algebraic subset. It
will be useful to combine this process with the process of crossing with Euclidean space
which leads to the multiblowup B^(V, N). Even this multiblowup is not good enough
so we must do a sequence of multiblowups and crossing with Euclidean spaces. Such
a super-multiblowup is determined by resolution data defined below.

We need these processes to set the stage for the algebraic blowing down of Section 3.
The whole point of this process is that it is an algebraic process which has the

local description given by Proposition (4.6) and this local description is analogous to
a description which can be given to A-blowups. (The links of an A-space can bound
a compact A-space with a spine ofcodimension one transversely intersecting A-subspaces.)
This connection will be made less tenuous in Sections 5, 6 and 7.

Definition. — Let V^ be nonsingular algebraic sets and let U^CV^ be algebraic
subsets i==o, i. A map f: Vo—Uo-^V^—U^ is called a birational diffeomorphism if
f is a diffeomorphism and both f and f~1 are rational functions. That is, if V^CR^
then there are polynomials ?Q : Vo-^R^, p^: Vi-^R"0 and q,: V,-^R so that q^(o) C U,,,
/W^oW/^oW for all ^eVo-Uo and f~\x)=p^x)^{x) for all xeV^-V^

It is easy to see that if f: Vo—Uo->Vi—U\ is a birational diffeomorphism and
W^CV, are algebraic sets then both /(Wo)uUi and /"^(W^uUo are algebraic sets.
(see Lemma (1.3) of [i]).

Consider the map v : RP^"1 -> H^^kxk real matrices defined by:
k

^(|>1: . . . :^])=^./( S A:?) i==I, . . . , k , J-I, ...,k
n = 1

where v^ is the z, J-th coordinate of v.
The map v imbeds RP^"1 onto the nonsingular projectively closed algebraic set

{LeR^ | L is symmetric, L^L and Trace L==i}

where L is thought of as a kx k matrix. In fact XCRP^"1 is a projective algebraic
set if and only if v(X) is an algebraic set.

Let U and V be nonsingular algebraic sets with U C V. Then we may blow
up V along U to get a nonsingular algebraic set ^?(V, U). This is a standard procedure
in algebraic geometry.
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We indicate how it is done. One takes a polynomial map p : (V, U) -> (R^ o)
for some k so that U^'^o) and in fact the coordinates ofp generate the ideal of
polynomials vanishing on U. Then ^?(V, U) is the closure in VxR^ of

{{x, vOj^eVxR^ | xeV—U}

where 6 : R^—o -> RP^""1 is the quotient map 6(^:1, ..., x^)=[x^ : x^: ... : x^] and
v is as above. The projection from VxR^' to V gives us a map

TT(V,U) :^(V,U)->V.

We denote ^(V, U)=7r(V, U)"1^). This blowup has certain nice properties:

TT(V, U)
Tc^ur^v-u)

is a birational diffeomorphism onto V—U, ^"(V, U) has codimension i in ^(V, U)
and 7r(V, U) : ̂ (V, U)->U is the projectivized normal bundle ofU in V. The

r(v,u)
actual set ^(V, U) is not canonically defined, it depends on a choice of p, but any two
choices will give blowups which are birationally diffeomorphic via a diffeomorphism
which commutes with projections to V. This diffeomorphism and its inverse are entire
rational functions so they take algebraic sets to algebraic sets.

For instance, let us find ^(R^R^, R^'xo). Letj^, . . .,j^ be coordinates for R^.
Then:

kR»»xo= n^^o).» = = i
Hence ^(R^R^, R^o) is the closure in R^R^xR^ of:

{(^, v([^ : . .. :^]) | ̂ R^eR^—o}
which is:

{(^^5-2 ')eRnxR fcxRA;2 I M2^^^ trace 2:= i, ^^^ asymmetric}

where z is thought of as a kxk matrix. We have a diffeomorphism

Y : R^^ x (RP^ - point) -> ^(R" x R\ Rn x o)

given by:

T(^ [^ ̂ i ̂ 2: • . . :A])-(^ ^/l^l2, ̂ -/l^l2))

for all ^eRn and [^ :j^i: . . . :^]eRPfe—[I : o : o : . . . : o] where y==[y^ . . .,^).
We may describe ^(V, U) (up to diffeomorphism) as follows. Let p : P—^U

be the projectivization of the normal bundle of U in V (so for each xeV, p"1^) is
the projective space of lines in q~l(x) where q : Q,->U is the normal bundle ofU in V).
We have the canonical line bundle r :L->P (where ^(j^^he set of points in the
linej^ if j^eP is a line in QJ. We include P in L and include U in Q^as the zero section.
Notice there is a natural diffeomorphism X : L — P - > Q ^ — U . Then ^(V, U) as a
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point set is (V—U)uP and we put the smooth structure on ^(V, U) so that inclusion
V—U -> ^?(V, U) is an open smooth imbedding and if T\ : Q-̂ V is a tubular neighbor-
hood of U then 6 : L -> ^?(V, U) is an open smooth imbedding where 6 is the identity
and 6(A:)==7]XW for xeL—P. p

For many purposes we are only interested in ^(V, U) up to diffeomorphism.
The above description then gives a definition of^?(V, U) where V is a smooth boundary-
less manifold and U is a proper submanifold of V. It should be understood, however,
that in case V and U are nonsingular algebraic sets, <^(V, U) will denote an algebraic
subset of some VxR^ as described above.

Suppose now that U, V and W are smooth boundaryless manifolds, W C V, U is
a proper submanifold of V and U and W intersect cleanly. Then we have a natural
inclusion

^(W,WnU) c-^(v,U)

so that 7i:(W,WnU)==7r(V,U)
^(W,WnU)

In addition, if U, V and W are nonsingular algebraic sets then ^?(W, WnU) is a non-
singular algebraic subset of <^(V, U).

If X is a smooth boundaryless manifold we have a natural diffeomorphism

Xx^(V,U)»^(XxV,XxU),

so that idX7T;(V, U)=7r(XxV, XxU). If U, V and X are nonsingular algebraic sets
then this natural diffeomorphism and its inverse are entire rational functions.

The following Lemma gives the well known local description of blowing up.

Lemma (4.1). — Suppose V is a smooth manifold^ U C V is a proper smooth submanifold
and o^R^xRxR^V is an open imbedding so that oL~l{'U)==K^xoxo. Then:

Tr-^V.UKa^n^o^xRxo^o^xoxo))

is a single point q and there is an open imbedding

(3 : (R^RxR^, o) -> (^(V, U), q)

so that TT:(V, U) o (B(.y, t,y) = y.{x, t, ty)

and [B-^o^xRxo), a(RnXoxo)))=RnxRxo.

Proof. — Let:

^=7T(V,U) TT'^T^XRXR^XOXO)

B' =^(RwxRxR f cR nxoxo)

and B'^^R^RXO.R^OXO^B'.
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Then a induces a diffeomorphism ^ : B' -> n~1 (Image a) so that the following diagram
commutes:

B' -^ TT-^Ima)

R^RxR^ -̂ > Ima

and so that:

B'^-^o^xRxo), o^xoxo))).

We have a diffeomorphism

Y : R^RP14^-^ :o:o])->B'
so that TT'Y^, [s:t:y])={x,st|{t2+\y\2),sy|{t2+\y\2))

for all xeR^ jeR, teR and j/eR^ and so that:

Y-^B")^, [̂  : t: o]) CRMx(RP l+fc-[I : o : o])}.

Thus Y - l^ - l(7^- la(o)n^(a(RnxRxo), a(Rnxoxo)))

^Y-^'-^nY-1^^ [0:1:0 ] ) ,
a point.

Define 6 : R^^ x R X R^ -> R^1 X (RP1 + & ~ [i : o : o]) to be the open imbedding
Q(x, t^)={x, [t{i+\y\2) : i :jp]). Then TC'YO^, ^J/)=(A:, t, ty) so we may let (B-^y8

and we are done. •

Suppose V and N are smooth manifolds, N C V, N is a proper submanifold of V
and k>_o is an integer. We inductively define manifolds B^(V, N) and N^(V, N)
by setting:

Bo(V,N)=V, No(V,N)=N,

B,4-i(V, N) = ̂ (B,(V, N) x R, N,.(V, N) x o)

N^i(V, N)=r(N,(V, N)xR, N,(V, N)xo)

cr(B^xR, N^xo)C^(B^xR, N^xo)=B^(V, N).

For instance, if V=R, N==o, A = i then:

B^(R, o)=^(R2, o)={((^^), v([. : ^]))eR2xv(RP l) | sy=tx}

^{{^y). (^11, ^12. ̂  ^2))eR2xR41 ^12=^21. ^n+^^i.
1̂1 ==^1+^2 5 ^22 ==^J2+^2 and ^if+^^^^Wy}

Ni(R, o)=r(oxR, o)=((o, o), v([o : i]))=((o, o), (o, o, o, i^eR^R4.
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R-
0

FIG. 4. i

There is also a projection

TT,(V,N): B,(V,N)->V

defined by the composition

^(B,-i(V,N)xR,N,_,xo)->B,_,(V,N)xR^B,_,(V,N)^V

where the first map is the usual projection, the second is projection and the third is 7r^_i,
(no is the identity). Notice that ifV and N are algebraic sets then B^(V, N) is an algebraic
subset ofV^R^—o) for some n and T^(V, N) : B^(V, N)->V is induced by projection
VxR^V. Also notice that T^ restricted to N^ is a diffeomorphism onto N. This
is because we have a diffeomorphism

N,-i(V, N) x r(R, o) = r(N,_i(V, N) x R, N,_,(V, N) x o) = N,(V, N)

and ^(R, o) is a point.
We may define a diffeomorphism

X,(V, N) : (V-I^xR^ B,(V, N)-^(V, N)-^^

as follows. Let Xo(V, N) be inclusion

(V-N)xR°=V-N^V=Bo(V,N).

Let Xi(V, N) be the inclusion

(V-N)xR^VxR-Nxo=^(VxR,Nxo)-r(VxR,Nxo)
-> ̂ (VxR, Nxo)=Bi(V, N).

We may then inductively define:

X,(V,N)(^0^...,^))
-^(BiC^ N), N,(V, N))(^(V, N)(^^), (^^3, .. .,^))

for ^eV-N and (^, .. .^eR^.
Notice that if V and N are algebraic sets then X is a birational diffeomorphism.
If K is a smooth boundaryless manifold, we have a natural diffeomorphism from
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KxB^(V,N) to B,(KxV,KxN) which takes KxN^(V,N) to N^(KxV,KxN).
This natural diffeomorphism is defined inductively to be the composition

KxB,(V, N)=KxB,(B,_,(V, N), N,_,(V, N))

=Kx^(B,_,(V,N)xR,N,_,(V,N)xo)

»^(KxB^_i(V, N)xR, KxN^_i(V, N)xo)

»^(B^(KxV,KxN)xR,N,_i(KxV,KxN)xo)
»B^(KxV,KxN).

The projection 7r^(KxV, KxN) becomes (identity on K)XT^(V, N). If V, N and K
are algebraic sets then this diffeomorphism is birational.

Lemma (4.2). — Suppose U, V and W are smooth manifolds^ U is a proper submanifold
of V, W C V and suppose U intersects W cleanly. Then ^(UxR, Uxo) intersects
^(WxR, (UnW)xo) cleanly in ^(VxR,Uxo) and

r(UxR,Uxo)n^(WxR, (UnW)xo)==r((UnW)xR, (UnW)xo).

(Here ^(WxR, (UnW)xo) C^(VxR, Uxo) is the natural inclusion.)

Proof.—-Let B=^(VxR, Uxo), B'=^(WxR, (UnW)xo), T==r(UxR, Uxo)
and 7T=7r(VxR, Uxo). For any peVr\W we have an open imbedding

9: (R^R^xR'xR^o)-^^)

so that (p'^^^R^R^Xoxo and 9~ l(W)=R axoxRCXo. (This is equivalent to
cleanness of the intersection of U and W.) Let:

N== (Image <p)xRCVxR.

Then 9 induces a diffeomorphism

<p,: R^R^^R'xR^xR^-^Tr-^N)

so that ^{^^Lax'ELbX^'{oxoxR,o))='^:~l{'N)r^T

and 9,(Raxox^(RCXoxR,o))=Tc- l(N)nB'.

Thus TT-^nTnB^cp^xox^oxoxR, o))

since ^°(oxoxR, o) C^(RcxoxR, o).

Also T intersects B' cleanly in T^^N). But:

^{J^xox^^oxoxR, o))=9,(^'(RaxoxoxoxR, R^^xoxoxoxo) )

=7^- l(N)nr((UnW)xR, (UnW)xo).

So we have shown that T intersects B' cleanly and

TnB'=r((UnW)xR, (UnW)xo). •
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As a consequence of Lemma (4.2) we see that ifU, V and W are as in Lemma (4.2),
we have a natural inclusion

B,(W,UnW)CB,(V,U)
so that T^(W, UnW) = T^(V, U)

Bjfc(W, UnW)

and so that B^(W, UnW) intersects N^(V, U) cleanly and:
B^(W, UnW)nN^(V, U)=N,(W, UnW).

For k==o this inclusion is Bo(W, UnW)=WCV=Bo(V, U). Suppose by induction
that we have such an inclusion B^W, UnW) CB^V, U). Then B^(W,UnW)xR
intersects N^(V,U)xo cleanly and their intersection is N^(W,UnW)xo. We thus
have a natural inclusion

^(B,(W, UnW)xR, N,(W, UnW)xo)C^(B,(V, U)xR, N,(V, U)xo),

i.e. an inclusion B^(W, UnW) CB^^.i(V, U). Lemma (4.2) shows this inclusion
has the required properties.

In addition, if U, V and W are algebraic sets then this inclusion is a birational
diffeomorphism onto its image.

Note also that:
X,(W,UuW)=X,(V,U)

(W-U)xB*

B^(UUnN)

7T

FIG. 4.2

Now we investigate T^(V, U^^U). Define submanifolds S^(V, U) CB^(V, U)
z=o, i, ..., k as follows. Let:

S^(V,U)=B,(U,U)CB,(V,U)
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(the inclusion exists because U intersects itself cleanly)

and S,,(V, U) = r(B^(V, U) X R, N^(V, U) X o)

C^(B,_i(V,U)xR,N^_,(V,U)xo)=B,(V,U).

Then S^(V, U) =B,..(S..(V, U), N.(V, U))
CB,_,(B.(V, U), N.(V, U)) =B,(V, U)

for i<_i<k (the inclusion exists because N,CS,, hence they intersect cleanly). Notice
that Sjy has codimension i for i>_ i and S^ has codimension equal to the codimension
of U in V by Lemma (4.2).

Lemma (4.3). — 7t,(V, V)-1^} = U Sy(V, U).
t=0

Proof. — Suppose by induction that:

^-i(V, U)-1(U)=^US,_^(V, U).

Then the lemma follows from the observations that:
Tr,(V, U)=7T,_,(V, U)o7T,(B,_,(V, U), N,_,(V, U))

and that if U C \V C V then:

^l(V,U)- l(W)=Bl(W,U)ur(VxR,Uxo).

(Note N,(V,U)CS^(V,U) for all i.) •

7T

FIG. 4.3

Lemma (4.4). — For all non-negative integers k and n there is an open imbedding

a : (R-xR^ o) -> (B^R-, o), N^R", o))
so that:
a) a-^R^^oxR^
b) a-lS^(Rn,o)=RnxR, where:

^=={(^1. •••.A)611^^} ^"==^2, ...^;
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c) for any linear subspace TCR":

a-^C^c^TxR".

Proof. — By induction on k we have an open imbedding

1B : (IfxR"-1, o) -> (B,_i(R", o), N,_i(R», o))
so that p-lS„_l,,(R»,o)=R»xR.'

where R;={(A, • • •.A-i^R^l.^o}

and so that:

r'B^CT.o^TxR"-1

for any linear subspace TCR".

Let TT = 7t(B,_i (R", o) x R, N^.^R", o) x o) : B,(R», o) -> B)^(R", o) x R.

By Lemma (4.1) there is an open imbedding

a : (R»xRft-lxR, o) -> (B,(R», o), N,(R" o))

so that ^{x,y,t)={^(tx,ty},t).

Now for TCR" a linear subspace

a-^CT, o)=a-l(C^7t-l(B,_,(T, o)x(R-o))))

=G/'a-17t- l(p(TxR'fe- l)x(R—o))=TxR&- lxR.
In particular:

a-lS^a,(R», o) =01-^(0, o)=oxR&- lxR.

Likewise for i<^:

a-^R", o)=a-l(C^7t-l(S,_^^(R'>, O)X(R-O))))

=C/'a-17^:-l(p(R"xR,')x(R—o))=R"xR,'xR.

Also a-^R", o) = a-^-^N^.^R", o) x o)

=a-17t- l(j3(o,o),o)=R"xR'c- lXO. •

Definition. — We call ^=(M, (N^, N3, ..., NJ, (k,, ..., k^), (s,, ..., ̂ ))
resolution data if N( and M are smooth boundaryless manifolds

N^CM;

N3 C B^(M x R2, NI x o) x R81,

N3 C B^(B,/M x R2, NI x o) x R81 x R2, N3 x o) x R9'

and so on. (Of course the above inclusions must all be proper.)
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We define a manifold B(e^) as follows:
We set B((M, (N), {k), (J)))=B,(MxR2, Nxc^xR8 ,

B((M,(N,,N,),(A,,^),(^,^)))

= B^(B^(M x R2, Mi x o) x R81 x R2, N3 x o) x R82

and so on. We define:
^(z)=(M, (N,, N3, . . . , N,), (^, . . . , k,), (^ ...,.,))

for any o<_i<m and we define:

^-^(i)=(B(^(i)), (N^,, . . . , NJ, (k^ . . . , AJ, (^, .. . , ,J).

Notice N,CB(j^(i—i)) for any z = = i , ...,m. Also notice that B(^)=B(^—j^(z))
for any i=o, . . . , TTZ. We define 7r(^) :B(J^)->M by the rules

7r(^)=7r(^(l))o-n:(J^-^(z))

and Tc((M, (N), {k), (J))) is the composition of the projection
B^MxR2 ,Nxo)xRS-^B^MxR2 ,Nxo)

and ^ (MxR^Nxo) : B^(MxR2, Nxo) -> MxR2

and the projection MxR2-^]^. We define P(J^)CM and T(^)CB(^) by:
m-l

P(^)= U 7t(^))(N^,)
t=0

w-1

and T(^)= U ̂ (^-^(i))-^^,!).
t==0

Then we have a diffeomorphism
X(^) : (M-P(^))xR2w^xRfcxRS->B(^)-T(^).

w w

Where k == S ̂  and ^ == S ̂  defined by the rules
<=1 i=l

1) X((M, (N), (A;), M)) : (M-^xR^R^xR8

->B„(MxR2 ,Nxo)xRS—•^;ft(MxR2 ,Nxo)- l(NxR2)xR a

is defined by:

X((M, (N), ^), M))(A;, y, v, w)=(VMxR2, Nxo)((A-, u), p), w).

2) X(^)(^, (MO, Mi), (z'o, yi), (wo, Wi))

=X(^—^(t))(X(J3/(!'))(A-, MQ, PO. »'o)» "1^1, Wi)

for all i=o, i, . . . , O T and xeM.—P(^)

MoeR2*, «ieR2"'-2*, v^R1'1, ^eR^-^ WoeR'1, ^eR8-8'
< (

where k' = 2 ,̂ and j* = 2 s,.
j-i j-i

^^
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If V is a smooth boundaryless manifold we may define Vxj^ to be the resolution
data

Vx^=(VxM,(VxNi ,VxN2, . . . ,VxNJ,
(^1 , . . . , k^) , (^ , ... , S^) ) .

Notice that:
B(VXJ^)=VXB(^)

in such a way that:
7r(V X J^) == idy X TC(^) ,
P(Vx^)==VxP(^), T(VXJ^)=VXT(^)

and X(Vxj^) : Vx(M-P(^))xR2wxR fcxRS-^ B(Vx^)=VxB(jaQ
is the map

X(Vx^)((j/, A:), u, v, w)={y, W){x, u, v, w)).

If U C M intersects N cleanly then we have a natural inclusion
B((U, (UnN), W, M) CB((M, N, (^), (.))

since we have an inclusion
B^UxR2, (UnN^xo^B^MxR^Nxo).

Thus it makes sense to say that:
^'=(U, (K,, ..., KJ, (^, .. .,^), (.„ ..., .J)

C ̂ =(M, (Ni, ..., NJ, (^, ..., AJ, (^, .. .,.J).

This will mean that U C M and U intersects N cleanly and K^^NiHU hence:
B(^'(i))CB(^(i)).

Then we require that B(j^'(i)) intersect N3 cleanly and IC^NgUB^^i)) and so
on, so that we have a natural inclusion

B(^(0)CB(^(Q)

for all i and B(^/(z)) intersects N^i cleanly and
B(j^'(z))nN^i==K^i i==o, i, . . . ,m-i.

In particular we have a natural inclusion
B(^')CB(J^).

We also have the properties
TT(^) =7T(^'),

B(^')

P^') = U n P(^), T(^') == B(^') n T(^)
and X(^'): (U-P(^ /))xR2wxRfcxR8-^B(^ /)-T(^)

is the restriction of X(e^).
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In case ^'Ce^ as above, we will denote ^ ' by e^nU. We will say jafnU
is defined if s^9 exists satisfying the above requirements.

Let:
^=(M, (N,, . . . , NJ, (^, .. .,AJ, (^, ..., .J)

be resolution data and let:
^'=(M', (NL ..., N,), (k[, . . . , A,), (^ ..., <))

be resolution data also with M' C B(^). Then we may define resolution data s / ' * ̂ / by
^'*^=(M, (N,, . . . , N,, Ni, N3, ..., N^),

(^1 , . . . , k^y k^, . . . , ̂ J , (^ , . . . , J^, J^ , . . . , S^) ) .

Let:
^=(M, (Ni, ..., NJ, (^, .. .^J, (.1, ..., .J)

be resolution data and let (JL:M-^M' be an imbedding. Then sometimes we can
define resolution data (J^(<^) and an imbedding

pi^): B(^)-^B(^(^))
by

^)=(M', ((.o(Ni), ^(N3), ..., ^_i(NJ), (^, .. .,^), (.1, . . . , .J)

where [LO==[L and ^: B(^(i))-> B(^(j^(i))) is (Ji,==^(^(i)). We define [i,(^)
to be (^.),(^-~j^(i)) for any i=i, 2, . . . , w — i with:

ti,(M, (N), (A), M) : B,(M,N)xRS->B,(M', ^(N))xR5

defined to be the composition of the isomorphism
B^M^xR^B^^M), ^(N^xR5

and the natural inclusion
B,((I(M), (JL(N))xR8^B,(M', ^(N))xR8.

(Of course for this to work we must have each (JI,(N,_^) a proper submanifold.
This will be true if for instance [JL is a proper imbedding or if each N, is compact.)

Definition. — We say that the resolution data
^=(M, (Qi, Q^, . . . , QJ, (^, .. .,AJ, (^, .. .,.J)

is controlled if:
a) 7r(^(t--i))(Q,)CQ, for all i = i , . . . , m (i.e. P(^)=Qi).
^ ^^tQ,i is defined.
c ) If ^'=(Q^ (Q,, . . . , QJ, (A,, .. .,^J, (^, ..., sj) then ^=^n^. That is:

^CB(^(z-i))CB(^(i--i))

for all i = i, ..., m,

121
16



122 S E L M A N A K B U L U T A N D H E N R Y C. K I N G

d ) Q^ is in a general position with:
C^(^-i))-i(^)-B(^-i)))

for each xeQ^^ and ^===15 . . . , y 7 z .
^ AI>O and M—Q^ is dense in M. (This is just to assure that d) is not vacuous.)

Notice for controlled resolution data that:
T^^O-^i).

We define • S(^) = B(^nQi) C B(^).

For instance:
S(^(i))=S^o(MxR2, Q^xo)xR51.

Note that if ja^ is controlled resolution data and K is a smooth manifold then K X ̂
is controlled resolution data and S(KXJ^)==KXS(^).

Lemma (4.5). — Suppose S^CI^ z=i, . . . 5 ^ are linear sub spaces and suppose
MCR^xR^* is a smooth manifold with oeM so that M is transverse to

ox n s,1 = 1
at o. Then there is an s>o a linear subspace TCR" and a smooth function

h: (sirxR^-^R^o)

so that if h': sB^xR^ £BwxRn is the function h\x,y)=={x,h[x,y)) then V is an open
imbedding

hf-l{M)==^Bmx^

and
A'-^B^xS^sB^xS,.

Proof. — Let TCR" be the tangent space to MnoxR^t o. Pick:

sc ns,1=1

so that S is a complementary subspace to T in R". Let TT : RwlxRn -> R^xT be pro-
jection along S. Then by the inverse function theorem, there is a neighborhood V
of o in M and an e>o so that:

7r : V-^cB^xCTnsB^
v

is a diffeomorphism.
Define:

g : sB^xCTneB^S
\-1 ;/-!by g==(n ^--id,

V v/V/
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i.e. g is the unique function so that:

(^+^y»)eV
for any (^j^esB^xCTnsB^.

Pick 8>o so that if:

(^^(M-V^sB^xaTneB^+S)
then \^{^j)-gn{x^)\>S
where TT ' : R^xR^S

is the projection id—TC.
Let 9 : R^^ -> (Tn sB") + (Sn SB^

be any radial diffeomorphism (i.e. |<p(A:)| . x= \x\ .9^) for all ^eR"). Define:

^J^)^^ ?00)+9(j0
and we are done. •

The following proposition gives a very useful local description of a supermultiblowup.

Proposition (4.6). — Suppose:
^=(M, (Q,i, . . . , QJ, (^, .. .,AJ, (,„ .. .,,J)

ij- controlled resolution data and
9: R^R^R^M

is an open imbedding with:
^(Q^R^XOXO.

Pick any ^eB^nq^R^R^Xo))
jo that n {^) (?)==9 (o).

r^n ^r^ ^ ^TZ £>o, and integer d, an open imbedding
6: (si^xR^R^xR^o)-^^)^)

and smooth functions
f: s^xR^R^R

and g : sI^xR^R^R6

and LCR^ jo ^^:
a) O-^B^n^R^R^o^^i^xR^R^Xo
b) 7r(J^)o6(^^ ^ ̂ )=<p(^(^ ^),/(^^ ^.w)
c) L is a union of codimension one linear subspaces in general position
^/-^o^sI^xR^L
e) <§^-l(o)::=J~l(o) unless ^eS(J^) in which case ^- l(o)=/- l(o)U£BaxoxRd.

2^5
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Proof. — The proof will be by induction on m. For m==o we may let d==o,
6=9? /=1. g==y, L=0.

Let j^'=j^(m—i) and let qf=n[^~^t){q). Suppose first that ^Q^.
By induction we have an open imbedding

6': (s'J^xR^R'xR6, o) -> (BGO, ^),

smooth functions

/': s'^xR'xR^R
and g ' : s'^xR^R'-^R6

and L'CR6 satisfying a), b), c), d) and e) with everything primed.
We may construct 6 as follows. Pick:

WoeR24-^8-
so that ^X^—ja^)^', z^o).
Define 9 : s'B^xR^R'xR^^^xR'-^B^)

by 6(x,j/, (u, w), z)==\{^-^)(Q^x,^ u, z), w+Wo).

Let L^L'xR24-^-1-5- and define:

/: e'^xR^R^xR^^-^^-^R
and g : s'BaxR6xR<?xR2+^+8-->R6

by f{x,y, u, w) =f\x,y, u)
and g{x,y, u, w)==g\x,y, u).

So we have done this case.
Now suppose ^'eQ^. Then y'eS(J^') so:

^^(^'nq^xoxo)).

Hence by induction (with R6 replaced by R^R0 and R6 replaced by o) we have an
open imbedding

6" : (e'^xR^R^R6, o) -> (BGO, q ' ) ,

a smooth function /" : ̂ '^xP'-^R and a subset L^CR6 so that:
e"-l(S(^/))=£"BaxRexoxo,
7rGOo6"(^ u^, z)=^r{x, u)^r{x, u)z),

L" is a union of codimension one linear subspaces of R8 in general position and
/"-^^"J^xL".

If 6+0:

O'-^B^'n^xR^o)))

=e"-l(G^(^/)-l(9(Rax(R6-o)xo))))=£"BaxR<xR6xo.
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If b^O:

e"-l(B(^/ncp(RaxR6xo)))=e"-l(S(^'))

=£' 'B axR exoxo=£' 'B axR< ?xR6xo.
Notice that:

e"-17^(^')- l(<p(o))=oxL' /xR6xRcuoxRexoxo.

Hence the fact that A is controlled implies that:
^"'(Q.m^'i^xR^xoxo

and ^'"^(O^) is in general position with the subspaces oxL/'xR^R'.
By Lemma (4.5) there is an s>o and a smooth function

h: s^xR'-^R6

and a linear subspace TCR6 so that if:
h1: si^xR'-^xR6

is the map h'{x,y)=={x, h{x,y))

then A' is a smooth imbedding:
(A'xidr^'-^J^i^xTxo

and A'-^xL^si^xL''.

Pick a linear subspace T' complementary to T in R6 so that T' is contained in
all codimension one subspaces of R6 which are in L".

Define an open imbedding
^: sI^xTxT'xR^xR^B^')

by ^{x, u, i),y, z)==Qff{x, h{x, u+v),jy, z).
Note ^(QJ^I^xTxoxoxo.

Suppose the proposition were true with m == i and with the additional conclusion
that if KCR 5 is any particular linear subspace and ^^(j^n^R^Kxo)) then we
could pick 6,/, g and L so that g~l(K')=f~l{o).

Since 772=1 for s / — ^ ' we would then (after perhaps making s smaller) have
an open imbedding

6 : (s^xR^R'xTxT'xR^ o) -> (B(^), q)

and smooth functions
/*: s^xR^xTxT'xR^R

and C?L^): ^xR^xTxT'xR^-^R^T'
and L*CR^
so that T^-^) o6(^^ z, u, v, w) = +(^ u, g^ g^ z-f),

/*-l(o)=£BaxR6xTxT'xL*
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and L* is a union of codimension one linear subspaces in general position. In addition,
if ^S(e^) then ^B^—^n^si^xTxT'xoxo)) so we may assume (by our
additional conclusion) that:

{g^gir^oxT^^^g^-^oxo)^-1^).

On the other hand, if ^eS(^)—S(^—j^') then:

^eB((^~^')n^(£BaxTxT /xoxo))-S(^-^')

so we may assume that g^x.y, u, v, w)=f*{x,jy, u, v, w) -j/, ^-^o)^/*-1^) and /* is
independent ofj. Finally, if qeS^—^) then we may assume that Q^, ^)==(j/, v) •/*
and/* is independent of y and v.

We may now define R^TxT'xR^, L^TxT'xL-u^nL'^xT'xR^' and
let f and g be defined by:

f[x,y, u, v, w) ==/"A'(A:, u+g^x,jy, u, v, w)) •/*( ,̂ u, y, z<;)

and g{x,y, u, v, w) =.f"V{x, u +g^{x,jy, u, v, w)) 'g^x.y, u, v, w).

Then these are the 6, /, g and L we want, as the reader may verify.

So it only remains to prove the proposition and the above extra conclusion with
m=i. We may as well prove it with ^=o. But in this case, if:

^"=(M, (Qi), (^-i), ( i ) ) and if NCB(^")

is N^_i(MxR2, Q,iXo)xo, then B(^)=^(B(^"), N). Thus the result follows
readily by induction on k-^ and by Lemma (4.1). •

Lemma (4.7). - Let ^=(M, (Qi, . . . , QJ, (^...,^J, (^,...^J) be
controlled resolution data and suppose [ji:M->]Vr is a smooth imbedding. Then ^(Ja^) is
controlled resolution data (assuming ^(^) is defined).

Proof. — Pick any pe^. Let 9 : (R^R^R6, o) -> (M', [Lon{^/){p)) be an
open imbedding so that:

^-^(M)) ==1^x^x0
and (p-^^Q^^R^xoxo.

Notice:
^(^(m--i))(^)C^(^(^--i))(S(^(77z-i)))CS(^(^(^---i))).

By induction we know that ^(j^(m—i)) is controlled resolution data so by Propo-
sition (4.6) there is an open imbedding

6 : (d^xR^xR^R', o) -> (B(^(^(m-i))), ^(^~i))(j&)),

a smooth function /: £BaxRd->R and an LCR^ so that:

e- l(S(^(^(77^-I))))=£BaxoxoxR(^,
7^(^(^(m-I)))oe(A<,^, z, w)==^{xj{x, w)y,f{x, w)z),
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L is a union of codimension one linear subspaces in general position and /"^(o) = el^x L.
Notice:

6-l(^(^(m-I))(B(^(m-I))))

=6- l(C^Tc(^(^(m-I)))- l(pL(M-^))))=£BoxR6xoxRd.
Also e-l^(^(^(^-I)))-l(^o•^;(^(m-I))(^))==oxoxoxR(^uoxR6xRcxL.

Since ^ is controlled resolution data, we know that ^"^(^(^—^KQ^) is
in general position with oxR^oxL as a submanifold of s^xR^oxR^ Hence
e71^(^(^--I))(Q,J is in general position with oxR^R'xL as a submanifold of
d^xR^xR^R^. Thus ^(^) is controlled resolution data. •

Lemma (4.8). — Let:

^ -(M, (Q,, ..., QJ, (^, ..., AJ, (^ ..., .J)

and ^=(B(^), (Q:,, . . ., Q,), (^ . . ., ̂ ), (.„ ..., ,,))

be two controlled resolution data and suppose ̂ '(i) * ̂  is controlled resolution data. Then ̂ '* ̂
is controlled resolution data.

Proof. — Conditions a), b), c) and e) in the definition of controlled resolution
data are clearly satisfied so it remains to prove d).

Pick i=i, . . . , u—i and pick ^eQ^. Pick an open imbedding

9 : (R^R5, o) -> (M, 7T(0 o7r(^'(i))^)),

so that 9-l(Q^)=Raxo. By Proposition (4.6)3 we have an open imbedding

6 : (s^xR^R0, o) -> (B(J^), ^(^'(i))^)),

an LCR6 and an /: s^xR'-^R so that:

7r«)o6(^ z)=^{xj{x, ̂ ), f-^^^x^

and L is a union of codimension one linear subspaces in general position.
By Lemma (4.5) we may also assume there is a linear subspace TCRC and a

smooth ^.(sB^xR^o) -> (R6, o) so that if h ' : si^xR'-^xR6 is A'(^^)=(^, h{x,jy))
then A' is a smooth imbedding,

(A'xid^e-^Q^d^xTxo
and A'-^s^x L) = £B°X L.

Pick a complementary subspace T7 to T in R6 so that T' is contained in every
codimension one subspace of R6 which is contained in L. Thus L==(TnL)+T'.

Again by Proposition (4.6) there is an open imbedding

6': (s 'B^xR^xTxT'xR^ o) -> (B(^'(i) *^),^),
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an L'CR^ and an/ ' : s'i^xTxR^R so that:
7r(^(i)) o6'(^, ̂  y, ^)=6(^/'(^ ^ ̂  A(^ u+f^x, u, w)v)),
/'-l(o)==s'BaxTxL',

and L' is a union of codimension one linear subspaces in general position.
Notice that:

6'-17^(^'(^))~ l(7^(^'(^))(^))=oxoxoxoxRduoxR6xoxT'xL'
and ^-^(^(^oxoxoxoxR^

so since ^ ' is controlled, C^^Q^ ̂  ̂  must be in general position with o x T^X o X T' x L'.
Also:

e'-^^^^-^^-^TT^oTT^^z))^))

^oxoxTxT'xR^uoxR^TxT'xL'uoxR^x^n^xT'xR^.

But O^^Q^+i) is in general position with:
oxR^TxTxL'uoxR^CTnI^xT'xR^

at o. Hence Q^+i is in general position with:
^(^(^'(i) •^-^^(^'(z) *^)(j&))--S(J^'(i) *j^))

at j&, so j^'*ja^ is controlled resolution data. •
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V. — FINS

The local description ofB(^) given by Proposition (4.6) will be very useful and
it will be convenient to put its important features in a formal setting. Thus we define
a fin.

Let us recall the promised method of proof, for now we have defined enough
concepts to describe it more accurately. We start with a compact A-space Y without
boundary and pick a closed stratum N1 C Y. Then let Y^ be an A-blowup of Y with
center N1. We then pick a closed stratum NgCYi and let Yg be an A-blowup ofY^
with center Ng. Keep on doing this until finally we get Y^ which is a smooth manifold.

Now we pick an imbedding YCR" so that N1 is a nonsingular algebraic set.
We then find some controlled resolution data ^=(1^, (N^, .. .), . . ., . . .) and an
imbedding YiCB(^) so that N3 is a nonsingular algebraic set and so if Ni^f^o)
then ^(Y^) is isotopic to Y. We keep on doing this, i.e. we find controlled resolution
data j^==(B(^_i), (N,, . . . ) , . . . , . . . ) and imbeddings Y,CB(^) so that N,+1
is a nonsingular algebraic set and so Q oQ o . . .0^ (Y^) is isotopic to Y.

In the end we make sure Y^ is a nonsingular projectively closed algebraic set,
hence ^o...o^(YJ is an algebraic set homeomorphic to Y.

The value of fins is that they keep track of the collapsing that the maps ^ do.
Each of the controlled resolution data j^ gives rise to a fin, hence we also wish to define
what it means for a collection of fins to be compatible enough so that we can work
with them.

Notice that in the tower construction above we wish to make sure the N/s and
Y^ are nonsingular algebraic sets. We do this by isotoping a smooth manifold to an
algebraic set. We must then make sure that after doing this isotopy the Q still collapse
the same subsets. This requires the notion of stability and its consequence, Prop. (5.5).

Let M and N be smooth manifolds, let V C M be a union of proper immersed
submanifolds in general position and let n: V-^N be a map. Then n is called ajfe
in M if TT is a (c submersion 3?. In other words, for each peV there is an open neigh-
borhood U of o in R"1, a smooth open imbedding <p : (U, o) -> (M,j&), linear subspaces
R^.CR^ j=i, 2 and a subset LCRg so that:

a) RI and Rg are complementary subspaces of R^.
b) L is a union of linear subspaces of Rg in general position.
c ) wp : R^nU-^N is an open imbedding.

BiHU

d ) 9~'17r - - l(^)==(^+L)nU for each xe'N and j^eRi such that ^{y)=x.
e ) cp-^V^Ri+I^nU.
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A fin in a torus

FIG. 5.1

Given U, 9, R^, Rg and L as above it will be convenient to define an R3CL.
This Rg is a subspace of Rg and is defined to be the intersection of all maximal linear
subspaces contained in L. Equivalently R3 is the subspace of vectors v such that
translation by v leaves L invariant. The importance of R^ is that a linear subspace
is transverse to R^ if and only if it is in general position with L.

IV^lR^IF^xIR3

• N (=a point)

FIG. 5.2

We call (U, 9, {R^, Rg, R3}, L) as above local data at p for the fin TT. It
will be convenient to define local data at points yeM—V also. This will be
(U, 9, {RI, Rg, Rs), L) with 9 : (U, o) -> (M—V, q) an open imbedding, L empty,
RI=O and R2==R3==RW.

Lemma (5.1). — Let (U, 9,{R,}, L) and (U', 9', {Rj}, L') be two local data at p
for a fin n : V-.N in N. Then 9-V(R3nU') CR3, 9-19'̂  4-^3)0 IT) CR^+R3
and 9-19'(L'nU')CL.
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Proof. — The set Tr-^Tr^n^n^U')^ ̂ (LnU^^U^^L'nU^n^U)
is a union of cleanly intersecting manifolds whose intersection is:

q^nl^ncp'CLD^ ̂ (RenlDn^U).

Hence (p-^RgUU') C R^ and (p-V^'nU') CL. Likewise:

Vn9(U)n9 /(U /)=(p((Rl+L)nU)n9 /(U /)=y /((Rl+^0^)09^)

is a union of transversely intersecting manifolds whose intersection is:

^((R.+R^n^ny'^^y^CR.+R^nU^ny^).

So (p-VOR^+R^nU^CR.+Rs. •

Definition. — Suppose TT, : V,->N, i=i, .. .,k is a collection of fins in M. We
call the fins n^ compatible if for each peM there is a U and 9 and linear subspaces
RyCR^ i==i , . . . , k j=i , 2, 3 and subsets L,CR,2 i==i , . . . , A so that for each
i==i, . . ., k, (U, 9, {R,i, R,2, R^}, L,) is local data at p for the fin TT,. We call such
(U, 9, {Ry}, {LJ) local data at j& for the fins TT, i=i, . . .5 Vfe.

Vg === S2 x R
U
Vi = S1 x L 9

L == figure eight
Compatible fins in R3

FIG. 5-3

Definition. — Let TT, : V^->N, i==i , . .., k be compatible fins in M and suppose
NC M is a submanifold and n: X—^M is a smooth map from a manifold X. Then
we say that TT and N augment the fins if 7̂ ' : V^->N^ ^'=i, . .., A+ i are compatible
fins in X where V^TT-^V,) i = i , . . . , ^ , V^^-^N), N;=N, i - i , . . . ,^ ,
^A^^1^ ^1=^ i=i, ...,^ and ^+i==7i;

vLi
. We say that the fins TC^V;-^^

i == 15 . . . 5 A + i are the augmented fins.
Likewise we say that TT extends the fins if 7̂ ' : V^->N^ i==i , . . ., k are compatible

fins. We call n^: V^N^ i==i, . . ., A the extended fins.

Definition. — Suppose 7^:^—^ ^==1, . . . , A are compatible fins in M and
suppose a : Y—^M is a smooth stratified morphism from an A space Y. We say that
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a is stable over the fins TC, if for each XE\ there is local data (U, 9, {R^.}, {LJ) at v.{x)
for the fins TT, i = i, ..., k so that if X is the stratum of Y containing x and c: X x cS -»Y
is a neighborhood trivialization then:

a) a is transverse to <p( fl R^nU).
x

n* » = i
&J The following diagram commutes (if we take the germ at {x, *)eXx^S):

X -^> (p(U) -^ IT
^ \^T

Xx.S (riR^)1

\c ^ i. = 1

Y -^ y(U) ̂  R"1

fc

where 7^:Rm->( f1 R.s)1 is orthogonal projection. In other words:

9-la^,^)6q)-la(^)+ H R,3i == i

for all veX near ^ and zec^ near *.

r
• M(=a point)

a is stable over the fin V —> N

FIG. 5.4

We call such local data (U, 9, {R^.},{LJ) compatible with a. Notice that if
X is a smooth manifold and a : X->M is stable over the fins ^ then every local data
is compatible with a by Lemma (5.1).

By the following Lemma we can straighten out any stable submanifold.

Lemma (5.2). — Suppose TT, : V,->N, i=i, ..., k are compatible fins in M, Q is
a smooth manifold and a : Q^-M is a smooth imbedding which is stable over the fins 7^. Then
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for each yeQ, there is a linear space T and local data (U, 9, {Ry}, {Ly}) ^ oc(y) so that
TnU^-^QJ ̂  R^CT/or^A i==i,...,k.

Proq/l — This follows from the inverse function theorem. Pick any local data

(U', 9', {R^.}, {LJ) at a(^). Then ^-^(QJ) is transverse to H R^.

Let T be the tangent space to ^'"^(QJ) at o. We may pick a linear subspace

SC d R^, so that S is a complimentary subspace to T. Let TT : R^—^T be projection

along S (so n{x+jy)=^jy for xeS, jeT). We may pick a smooth submersion /: R^-^S
and a neighborhood V o f o i n R^ so that Vn/"1^)^^?^'--1^^). Define ^ : V-^R^
by ^(^^Tr^+y^). Then ^ has rank m at o so by the inverse function theorem
there is neighborhood U of o in R™ and an open imbedding 6 : (U, o) ~^(V, o) so
that e--1^^ . Notice that O-^+L,) CJ/+L, for each i and yeR^ since

e(U)
^-^MeSC n R,'3 for all x.

i =-- 1

Define R,i==-n:(R^) and R^Ry for i == i, 2, . . ., k and ^=2 ,3 . Then (U, 9'6,
{R^.}, {LJ) is local data at a(^) and:

(9'6)-l(a(Q,))=^(9'-la(a)n6(U))=TnU. •

Lemma (5.3). — Z^ TT, : V,-^N^ i=i, . . ., k be compatible fins in M. If N z^
^ smooth manifold then the projection n : MxN->M extends the fins.

Proof. — Take any (j&, ^) in M x N, pick any open smooth imbedding
^ : (R-, o) -> (N, ?)

and pick local data (U, 9, {Ry}, {LJ) at p for the fins TC,. Let R^CR^R" be
R,iXo and let R^R^xR'1 ^=2,3. Then (UxR^ 9X^, {Ry}, {L^xR^) is local
data at (j^ y) for the fins T^OTT : V,xN->N, z= i , . . ., k. So TT extends the fins. •

Lemma (5.4). — 1^ 7^:V,->N,, i==i, . . . , A 6^ compatible fins in M ^rf /^
a : Y-^M be a mapping from an A-space Y which is stable over these fins.

a) If N z'.? ^ smooth manifold and (B : Y->N ^ ^ smooth stratified morphism then
aXp :Y-^MxN ^ jte&fe oy^r the extended fins V,xN—V^->N^ i=i, .. ., k where
V^ x N-^-V^ is projection.

b) If N zj ^ smooth manifold then a X id^ : Y x N -^ M x N ^ j^6/^ oy^r the extended fins.
c) If M is a smooth submanifold of M' and n^: V^—^ i=i, . . ., k are compatible

fins in M' so that V^==V^nM and ^=T:[ and the inclusion M—^M' is stable over the
v;

fins n' then a : Y—^M' is stable over the fins TT,'.
d) If k=i, Ni==apoint and M' is a smooth manifold and V'-^ point is a fin in M',

then a X id : Y x M' -> M x M' is stable over the fin V^ X M' u M x V ->• point.
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Proof. — To prove a) pick any pe\ and let (U, 9, {Ry}, {LJ) be local data
at a(^) compatible with a. Then if ^ : (R", o) -> (N, (B(^)) is an open smooth imbedding
then (UXR^X^MR^UL;}) is local data at (ocQ&), [B(j&))eMxN where R,'i=R^
R^-R^XR^ R^R^xR^^ and L^L^xR^ Then notice that this local data is
compatible with a X (B so a) is proven.

To prove b) pick (^ ^eYxN and let (U, 9, {Ry}, {LJ) be local data at a(j&)
compatible with a and let ^ : (R^ o) -> (N, ^) be an open smooth imbedding, then
(UxR^ 9X^, {Ry.},{L;}) is local data at ( a (^ ) , ^ )£MxN compatible with axid
where Ry and L '̂ are defined as above.

To prove c), pick pe\ and let X be the stratum of Y which contains p. Let
(U, 9, {R^.}, {LJ) be local data at oc(^) for the fins TT; : V;->N, so that (p-^M^UnT
for some linear subspace T of R7" and R,iCT i=i, . . . , k (we may do this by
Lemma (5.2)).

k

Let T' C n R,3 be a linear subspace complementary to T. Then let (U', 9',
{^•LW}) be local data at a(^) for the fins n,: V,^N, i=i, . . . , k compatible
with a. Suppose also that q/(U') C <p(U). Define local data (U7', 9", {R^'}, {L;'})
at a(^) for the fins ^ : V;->N, by letting U"=={(^ ^)eU'xT' | 9-19/(^)+^U}, and
9 / /(^ ^=9(9-19'(^/)+^. Let R^=R;,xo and let R^R^.xT' ^ = 2 , 3 and
L;'=L;xT'. Then (U", 9", {R^'}, {L;'}) is compatible with a.

To prove d) pick any {p, q)eYxM\ Let (U, 9, {RJ, L) be local data for the
fin TCI : Vi->point at a(^) compatible with a and let (U', 9', {Rj}, L') be local data
at q for the fin V'->point. Then (UxU', 9X9', {R^.X Rj}, {LxR^uR^xL'}) is
local data for the fin Vi xM'u MX V -> point which is compatible with axid. •

Definition. — Let TT, : V,->N, i==i , . . . , A be compatible fins in M and let
hf: X->MxR n ^e[o, i] be a homotopy. Then we say that h^ is a homotopy over the
fins T^:V,->N, if for each i==i,...,k, j^eN, and te[o, i]:

h7l^^l^X1Kn)=^l{^l^xKl).

This definition also applies to isotopies.

Proposition (5.5). — Let TT, : V,->N, z==i, . . ., A ^ compatible fins in M. Suppose
Q^C M ^ a compact boundaryless smooth submanifold so that Qj->M is stable over the fins TT,.
Suppose also that Q^ is isotopic to a smooth submanifold Q^ by a C1 small isotopy. Then there
is an isotopy H( : M->M, ^e[o, i] over the fins TT, : V,->N, i=i, . . ., k so that:

Ho = identity and Hi (Q) = Q:.

Proof. — The proof will be by the usual Thorn isotopy device. By the covering
isotopy theorem we may pick a C1 small isotopy h^\ M-^M with AQ== identity and

( r,\

Ai(QJ=(.y. We wish to construct a vector field v= v\—\ on Mx[o, i] which is
tangent to ^^ ̂ ^ ̂ ^ ^
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and is "tangent" to each fiber Tr^^xEo, i]xe'N^ i-==i, .. ., k (the fibers T:^{x)x[o, i]
are immersed submanifolds so at multiple intersections we would want the vector field
to lie in several tangent spaces at once). Since we may piece together with a partition
of unity and retain these properties, we only need to construct v locally. In addition
we wish v to have compact support. Once we have this vector field, we integrate it to
obtain a flow (JL on M X [o, i] and then define H^) == p(A<(^, o) where p : M X [o, i] ->M
is projection. / r\ \

So take any {p,u)eM.x[o, i]. If p^h^QJ) we may take y ^ j o , — ( locally.
V ^1

If j&eAJQJ we pick local data at p (U, (p,{R^.}, {LJ). Then ^(QJ is transverse to
k k

^riR^nU) since Q^ is transverse to ^fiR^oU) and the isotopy hf is C1 small.
i=~-1 i=l

Hence we may by Lemma (5.2) assume that there is a linear subspace TCB/" so that
k

R^CT z = = = i , . . . , ^ and UrYI^cp'^QJ. Let T 'c f iR^ be a complementary
4== 1

subspace to T. Let n: R^-^T and n : R^-^T' be the projections so that:
TC -}- TT' === identity.

We may find a neighborhood W of {p, u) in (p(U)x[o, i] so that the map
^ : W-^R^EO, i]

is defined and is an open imbedding where ^{x, t)=={n^~l{x)-}-nf^~lhuh^~l{x), t). Let

(n\

our vector field v be locally defined on W by v==d^~1 — ) where d^ is the map on
tangent spaces induced by ^- This v works since: /

WnY^-^TxIo, i])
and Wn(^-i(^)x[o, i])=^-\^+L,)x[o, i])

for any xeN^ and j^eRn so that 7^(p(j^)==.y.
Hence v is tangent to Y and to each Tr^^x^, i],

( ^\
If y== v ' , —1 is the global v we get after piecing together the local y's with a

^/ ^ / a\
partition of unity, then v ' has compact support since the local y's equalled I o, — ) except
in a small neighborhood of Y which we could take to be compact. •

Lemma (5.6). — Suppose a : Y->M is a map from an A-space Y which is stable over
some compatible fins TT,:V,-^N, i==i, . . . ,A. Suppose also that h: M->M is a diffeo-
morphism so that A(7^-1(A:))=7^,-1(A;) for each i==i, . . . , k and xe'N^ Then Aa is stable
over the fins n^

Proof. — Suppose pe'Y and (U, 9, {Ry}, {L,}) is local data at a(j&) compatible
with a. Then (U, Ay, {Ry}, {L,}) is local data at hoi{p) compatible with Aa. Hence
ha is stable. •
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VI. — THE RELATIONS BETWEEN BLOWING UP
FINS AND A-SPACES

In this section we tie together some of the notions we have been discussing.
Proposition (6.1) indicates what happens to the representability ofZ/aZ homology classes
when we blow up. Proposition (6.2) and Lemma (6.3) relate the notions of controlled
resolution data and fins which you may recall was the reason for defining fins in the
first place.

Proposition (6.1). — Suppose V and U are nonsingular algebraic sets with UCV and
U compact and suppose V and U both have all algebraic homology up to n. Then ^?(V, U) has
all algebraic homology up to n.

proof. — Denote TT = 7r(V, U), B - ̂ (V, U), T= r(V, U) v = dim V and
zz=dimU. Let r : L-^-T be the canonical line bundle over T==the projectivized
normal bundle of U in V. We may identify L with a tubular neighborhood of T in B.
Let q : Q^U be the normal bundle of U in V, we may identify Q, with a tubular
neighborhood ofU in V, and in fact assume chat n is a diffeomorphism onto Q^—U.

L-T
Pick aeH^(V) with i^n (the coefficients of all homology groups will be Z/2Z).

Pick a nonsingular projectively closed algebraic set XCVxR^ for some m so that
[X] represents a. Then by Proposition (2.3) we may isotop X in some VxR^xR^
to a nonsingular projectively closed algebraic set YCVxR^R^ so that Y is transverse
to UxR^xR^. In particular, Y intersects UxR^xR7 ' cleanly so:

^(Y^YnUxR^xR^) °-> ^(VxR^xR^, UxR^R^BxR^xR^.
The nonsingular projectively closed algebraic set <^(Y, YnUxR^R^) represents
some a'eHt(B) and clearly 7^(a')==a. Hence the maps T^ : H»(B) -> H»(V) and
H^B^H^V) are onto. So if there is a |BeH,(B)—H^(B) then we may assume
that (B is in the kernel of T^. From the exact sequences

—> H,(L) -^> H,(B) —> H,(B, L) —>

!- Vy v

-^ H.(Q) -^ H.(V) -^ H.(V, Q) -^

we see that there is a ye kernel (H;(L) -^Hi(QJ) so that J',(Y)==P. (Note that
H,(B, L) -> H<(V, Q.)
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is an isomorphism since H,(B, L) » H,(B-T, L-~T) ^ H,(V-U, Q-U) w H,(V, QJ.)
So if we can show j,(H,(L)) CH^(B) we will be done since this would imply
H,.(B)=H^(B).

Since T<-^L is a homotopy equivalence it is sufficient to represent H^(T). The
cohomology H^T) is a free H^U) module with generators i, co, co2, .. ., ^v~u~l where
(oeH'(T) is the first Stiefel-Whitney class of the line bundle r : L-^T. (For instance
this is implied by Theorem (5.7.9) of [6] after observing that the map

6 : H'^RP^-1) -> H^T)

is a cohomology extension of the fiber for the bundle TT : T-^U where 6 (generator
ofH^RP^-1))—^.)

Let ^ : H,(T) -> H*(T) and 9 : H,(U) -> H*(U) be the Poincare duality iso-
morphisms. We claim that ^-^yH^U) CH^(T) and ^-^(OU^H^T))) CH^T).

This implies the H^(T)=H,(T) for all i<,n since if aeH,(T) then ^(a)= S P,U^

where ^W-^-^^n-^^^^V) C TT^H^U) (since z+j+i^°-^<z)
so (3,e^(T). But if H^(T)=H,(T) for all Z^T? then ^H,(L) CH,A(B) so we
are done once the claim is proven.

So take aeH^(U) and a nonsingular projectively closed algebraic set Z C U x R ^
so [Z] represents a. Consider Zf={{x,y)eTxVm\ {n{x),j)f==Z}, so Z' is the projective
space bundle over Z induced from the bundle T->U. Then [Z'] represents:

r^WeH^^cr).
Hence ^-^yH^U) CH^(T).

Now take oceH^(T) and a nonsingular projectively closed algebraic set W C T x R"1

so that [W] represents a. By Proposition (2.3) there is a small isotopy of W to a
nonsingular projectively closed algebraic set W'CLxR^R^ so that W is transverse
to TxR^xR^. Then [W'nTxR^R^] represents ^(cou^a)). Hence:

^(coU^mCH^T)).

(Recall that ^-^^^[TnT'] where T'CL is a copy of T isotoped a little until it
is transverse to T.) •

Proposition (6.2). — Suppose TT, : V,->N, i==i, .. ., k are compatible fins in a smooth
manifold M and jaf==(M, (Q^i, Q^, ..., QJ, (Ai, ..., AJ, (^, ..., ̂ )) ^ controlled
resolution data with Q^<-^M j-toife over the fins 7^. T :̂

a) TT(^) : B(e^) -^ M ^af Q,i C M augment the fins n,: V,->N, i == i, . . ., k.
b) If P C M is any smooth submanifold so that Pc-^M is stable over the fins TT, and

Q^ CP, then B(^nP) <—^B(J^) ^ ^^/^ o^r ̂  augmented fins.
u

Proof. — Let ^===2^4- S (^+^-)- We have a diffeomorphism
1=1

X(^) : (M-Q,l)xR6-^B(^)-T(^)
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so that 7r(^)oX(J^) is projection to M—Q^. Hence to prove a), it suffices by
Lemma (5.3) to find local data for the augmented fins at any ^eT(^). To prove b),
note that we have a commutative diagram

B(^nP)-T(^nP) c_^ B(^)-T(^)

X(^nP) W U^}

(P-QJxR6 ^ (M-Q^)xR6

so by Lemma (5.4) b) it suffices to find local data compatible with B(j^nP)<->B(^)
at all ^eT(^nP).

Let us now prove b). Pick any j&eT(j^nP). By Lemma (5.2) we may pick
local data (U, <p, {Ry}, {LJ) at n{^/){p) for the fins T^:V,-^N, and a linear sub-
space T so that cp^Q^J^TnU, R^CT for each i==i , . . . , A and T is transverse

k k
to n R^. Let T'C fl R^ be a complementary subspace to T.

i == 1 i == 1
By a relative version of Lemma (5.2) we may in fact assume that there is a linear

subspace SCT' so that (p-^^T+S^U.
Let S'CT' be a complementary subspace to S in T'. By Proposition (4.6) we

have an open imbedding 6 : (sTxSxR^S', o) ->(B(e^),j&), smooth functions
/: sTxSxR^R and g : sTxSxR^S

and a KCSxR 6 so that:
sTCU, e- l(B(^nP))=£TxSxR6xo,
7c(J^)o6(A:,^, w, z)=^{x+g{x,jy, w)+f[x,y, w ) . z ) ,

K is a union of linear subspaces in general position, and /"^(o) C^^^^sTxK.
Now for any z = = i , . . . ,^ , A:eN, and j/eR^nsT with ^{y)=x we have

©-^(^-^(^((j+L^ncI^xSxR^S'. Also for any xe^T) we have:
e-^j^-^^-^xKxs'.

Define L^^^n^xSxR^S', R;i=R^xoxoxo, Ry^R^.n^xSxR^xS'
j = = 2 , 3 for z = = i , . . . , A . Let:

L^ ^ == o x K x S', R^ i^ =T x o x o x o,
R^g^oxSxR^xS', R^^3=oxNxS'

where N is the intersection of the maximal subspaces of K. Then (sTxSxR^S', 6,
{R^.}, {L,'}) is local data at p for the fins n, augmented by Tc(J^) and Q^CM. Since
A+l k
D R^^ fl R,3nT)xNxS.' and e- l(B(^nP))=TxSxR6Xo, this local data is

i. == 1 i ==-1
compatible with B(^n P) <-> B(^).
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Since we could have let P==M we would have obtained local data at all points
of B(J^), so both a) and b) are proven. •

Lemma (6.3). — Suppose n,: V,->N, z= i , . . . , A are compatible fins in a smooth
manifold M, ^=(M, (Q,,, . . ., QJ, (^, . . ., kj, (^, . . ., jj) ^ ,^W^ r^^W
data and Q^<-^M ^ ̂ ^ over the fins TT,. Suppose P ̂  ^ .mo^A submanifold of some B(j^(z))
jo ^ P i^rj^ S(^')) ^W^, PnS(^))=Q^, (^-j^(i))nP ^ defined,
{^/—s/(i)) n P ^ controlled resolution data and P— Q,,+i<-> B(^(i)) ^ j-^Afc o^r the fins 71:,
augmented by 7i(^(i)) and Q^CM.

T^ B((j^-j^(z))nP)-S((^-j^(z))nP)^B(^) is stable over the fins n,
augmented by Tr(j^) and Q^CM.

proof. — Let ^^(^--^(^nP. Notice that by Lemma (5.4) b) the stability
ofP—Q^ implies the stability of B^^—T^') <-> B(^) since:

m

B(^')-T(^')CB(^)-T(^-^(i)) and if c== S; (a+A.+j.)
j = • +1

then X(^-j^(t)) ((P- Q,+ ̂  x R6) = B(^') -T(^').

So it suffices to find compatible local data at all ^eT(^")—S(^'). So pick
any />eT(^')-S(^'). Let (U, <p, {R.,}, {L,}) be local data for the fins TT. at ̂ ){p}
so that there is a linear subspace T so that R,iCT for all i=i, .. ., k and:

UnT^-^QJ.
k

Pick T' C n R,3 so that T' and T are complementary subspaces.

By Proposition (4.6) there is an open imbedding
6 : (sTxR^xT', o) -> (B(^(z)), 7r(^')(^))

and a smooth /: cTxR^R and a subset LCR^ so that O-^S^z^^sTxR^xo,
n{^/{i))oQ{x,y, ^)=^{x+f{x,jy)z), L is a union of codimension one linear subspaces
in general position and /"^^^sTxL.

By Lemma (4.5) we may make s smaller and find a linear subspace J C R^ and an
h: (sTxR^ o) -> (R^, o) so that if hf{x,y)=(x, h[x,y)) then h' is an open imbedding,
h ' " ^ l(Q.^+l)=£TxJ and ^" l(£TxL)==:£TxL. By a similar arguement there is a
linear subspace KCT' and an (^i, Ag) : eT xR^xT' -> R^xT' so that if:

h"[x,y, z)=={x, h[x,y)+h^x,^ z), h^x.y, z))

then A" is an open imbedding, A'^O-^^sTxJxK, /^(o^sTxR^Xo and.
^^D^-^o), and ^'-^TxLxT'^TxLxT7. (Hence hff-lQ-l{(^^^=^Tx]xo.)

Let ] ' and K' be complementary subspaces to J and K in R^ and T' respectively.
We also require J7 to be contained in each maximal subspace of L.

By Proposition (4.6) there is a smooth open imbedding
6': (sTxJxKxR^J'xK'.o)-^^),^)
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and an L' CR6 and smooth functions /': sTxJxKxR'-^R and g ' : sTxJxKxR'-^K
so that 7r(^')o6'(^^ z, u, v, w)=Qhff{x^+v.f/{x,^ z, u),g\x,y, z, u)+w.ff{x,y, z, u)),
L' is a union of codimension one linear subspaces in general position and:

/'"'(o) -^(o) = sT xj x K x L\

For i == i, ..., k define:

R;i==R,iX o x o x o x o x o and R^Ry.nT^xJxKxR'xJ'xK'

f o r j = 2 , 3 and L;=(L,nT) xJxKxR'xJ'xK'. Also let:

Rfc +1, i == T X ° X ° X ° X ° X 0,

R^^^oxJxKxR^J'xK',

4+l=ox(LnJ)xKxR< ?xJ /xK /uoxJxKxL'xJ 'xK' ,
Rfc+l ,3= oxJ"xKxL' /xJ /xK /

J" and L" are the intersections of the maximal subspaces of LnJ and L'
respectively.

Then (sT xj X K x R6 Xj' X K', 6', {Ry}, {L;}) is local data at p for the augmented
fins which is compatible with B(^')—S(^). •

140



VII. — GETTING NICE SPINES

This section gives the final ingredient in the proof of our main Theorem (8.3).
Recall that when doing an A-blowup we need an A-space W which a link S bounds.
We want to be careful picking this W. We want to make sure that W has a spine of codi-
mension one transversely intersecting sub A-spaces with empty boundaries. Furthermore,
we wish to imbed W in some supermultiblowup so that W intersected with the associated
fin is this spine and so W is in fact stable over the associated fin (the W we refer to above
is the W of Proposition (7.2)).

The following Proposition (7.1) is an A-version of Fact (3.2) of [i]. It is
extremely technical, the reader should first read the proof of Proposition (0.1) which
contains a more intuitive and less precise form of Proposition (7.1). Proposition (o. i)
also contains some of Proposition (7.2).

Proposition (7.1). — Let Y be a compact A-space so that each connected component of each
stratum of Y has nonempty boundary. Then there are A-spheres A^ C Y, smooth stratified mor-

k
phisms ^ : Y-> [ — 1 , 1 ] z=i, .. .3 k, pairwise disjoint A-discs ByCY— U Ag, A-discs Yy,

fc a, s==l

A-imbeddings a,,: Y,,.x [—1, i] -> Y—- U UintB^=V i = = i , . . . , ^ j== i , . . . , ^ , a
' s = l ( = l

collaring K : ^Vx[o,i)-^V and integers a^==±i s==i, ...,^, z=i, ...,k j=i, ...,^
so that:

a) if R^CR^ is defined by R,=={(^i, ^3, .. ., x^eJ^ \ ̂ ==0} then:

CAJ,,...,A): intY-^
k

is stable over the fin U R,-̂  point;
1 = 1

h)/,-^)^ z=i , . . . ,A. {Hence (A, .. .^-^UR^ U^A,);

c) K(BVx[o, i))=V- UA, {so UA, is a " s p i n e " o/V);
k «»•

d) a(V— U U a,.(intYyX[—i, i])) is A-isomorphic with 8Y;
i = 1 j =3 1

e) By is a full A-sub} space of Y and is A-isomorphic with Y y X [ — i , i ] i==i, ..., k
j=i, ...,^.

f) BYC^-^i) z==i,...^;
g) f^y, t)-==a^ for all {y, ^)eY^x[—i, i] unless s==i in which case f^y, t)==a^t',
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h) a^aV^Y^-i.i} and a^B^Y^X I;
i) K{^±i),t)=^±{i-t)) for all y^, ^[0,1).

Proq/. — The first step is to get full A-discs D^ C int Y so that the A, == 8D^ are
k

in general position, there is a collaring K' : ̂ Yx[o, i)->Y with Image(K')==Y— U D^
fc k i'-1

and so that each component of U D^— U A^ is an open A-disc. This is done as in
i = 1 i == 1

Proposition (o. i) so we will not repeat the construction. The general idea of this proof
will be as follows. We can construct/^ satisfying a) and b) because the A^ are in general
position. In each component of (JD^—UA^ we take a full A-disc By, then we may
find a K satisfying c). The ay are thickened paths connecting various boundary
components ofV. These paths are the y of Proposition (o. i), hence we have d). The
conclusions f), g), h) and i) are technical conditions which we need later.

Let us now proceed with the proof. Let SS be the set of connected components
k k

of U D,— U A^. Then for each ^eSS pick an A-disc Bp in the component (B of
Z = l 1=1

UD,—UA, so that p—intBpisA-isomorphicwith BBpX[o, i). Let V==Y— U intBp.
k

We may then extend K' to a collaring K" : ^Vx[o, i)->V with Image(K")==V— U A,.

Let S S ' < ^ . S 8 be a maximal subset so that for each [Be^?' there exists a
Yp : [— i, i ] —^V so that Yp is a smooth imbedding into a stratum of V, y^1 (W) == { — i, i }

k

and Y3(i) is in the lowest dimensional stratum of ^Bp, y"^ U A^)=={o} and each Yp(°)

is in exactly one A,, the Yp([—i, i]) are pairwise disjoint and the complex ^ is
contractible where ^=3Yu U (Yft([--i5 i])^1^) with SY identified to a point and

pe^r
each £BQ identified to a point.

Suppose that S S ' ^ S S . Take the stratum Y^ of least dimension so that Y^n U B^
P(^
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is nonempty. Since each component of Y^ has nonempty boundary we may choose
a path in Y^ from some component in S8—38' to ^Y^. We may assume this path is
in general position with the Y^nA^.. Then at some point this path must leave a
component (3' in S8—38' and enter either a component in 88' or Y— UD^. In either case
we may then choose an imbedding Yp, : [—i, i] ->VnYp so that ^'l{^):={—I? I}?
Yp ' ( i ) is in the lowest dimensional stratum of B^, Yp ' ( [— I ? T]) ls disjoint from all
Yp( [—i , i]) pe^'3 Yp^UA^^o} and yp' intersects exactly one A^ and:

Y3,(-i)e U BBuaY.
pe^'

But then the complex ^^^Uyp^C—i, i])u^Bp, with £Bp, collapsed to a point is
contractible so S8' was not maximal, hence S8'-==-38.

So for each (Be^? pick y? so that the above properties are true. Note also that
for each JB, if Vy is the stratum of V containing Image (yp) then we may assume that
Yp is in general position with the VyUA^ z = = i , . . .,^.

We rename the B^ and y^ as By and Yy ^i, . . . 5 A j=i , . . ., ^ so that
Yp(o)eA^ means that Yp a-nd B^ are renamed as y,y and By for somej. Now the normal
bundle of each Yij ( [— I ? I]) m i^ stratum V^.. is trivial so we have pairwise disjoint
open imbeddings ^: [— i, i] xR^' ->V^.. so that Y^T1^) = :={— I ? I}xRny and
^j~l{A,)==ox'RniJ and y^^Ag) is empty for s^i. If ^.: V^..X(?S^..-^V is a neigh-
borhood trivialization of the stratum V... then we let:fi)

^^^^eR^xc^^}^^! and ^j^-discx^

and define a,, by ^((^ (^ t)), s)=c^{s,y), (^ ^)) for (^ (^, ^)eY^.CRnyx^ and
j-e[—i, i]. Notice that h) is satisfied.

We now adjust the collaring K" to a collaring K : ^Vx[o, i)->V so that c) and i)
are satisfied. Notice that e) is satisfied by our choice of Yy and d) follows because
the complex ^ above is contractible (cf. [i], Fact (3.2)). So it remains to find Ogy
and fi: Y->[—i, i] so that a), b), f) and g) are satisfied.

Let ( T ^ = = — I if By.CDg and o-sy^i otherwise. Then if o ,^ .===—i,
Y^EO,!]^^) and if ^.=i, Y,,x[-i, o]=^\D,).

By Lemma (1.3) we may pick bicollarings, open A-imbeddings

&: A,x(-i,i)-^Y-aY

so that ^(A^xo)==A^, Image {gy) n Image (a^.) is empty if i^s and so:

^•(^ f)=g^{x, o), c^t) for all ;veYy and te[-i, i].

Then we may define^, by figi[x,t)==t for {x, t)eA,x (—1, i) and ^(j^)=—i
j^GD.—Image^ and ^(^)==i for ^eY—(D^u Image &). We also smooth out the/
a little near the frontier of Image g^ Then these/ will satisfy a), b), f) and g) so our
proposition is proven. •
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The reader should be aware that the important conclusions of Proposition (7.2)
are that X === ̂ W, y ls stable, W has the same number of strata as X, the collaring p
exists and y(S)CB(^)—T(^/). Conclusions 5 and 6 are there only to allow an
algebraic bordism condition to be satisfied in Theorem (8.3). If the algebraic homology
conjecture were true, they would be unnecessary [8].

Proposition (7.2). — Suppose 2 is a compact A-space which bounds and suppose
n>dim 2+2. Then there are compact A-spaces W, W and W" and controlled resolution data
^y=(iy1, (o, Q^2, .. ., Q^J (AI, . .., ̂ J, (Ji, . .., jj) and a smooth stratified imbedding
Y : W->B(^) so that:

1) W==W'uW" and WnW^BW^aW'^S;
2) W has the same number of strata as S;
3) Y ls stable over the fin n{^/) : T(^)->o;
4) there is a collaring p : Sx[o, i)-^W' so that:

Image(p)=W'-Y-lT(^)

{i.e. Y(W')nT(e^) is a spine of v(W'));
5) Y represents o in ̂ (B^) : S(^));
6) Y(W")CB(^)-T(O.

T(^}=n(^)~\0}

FIG. 7. i

Proof. — The proof will be by induction on the dimension of S. If dim2<o
then S is empty so we may let W, W and W" be empty and ^==(1^, (o), (o), (o)).
So we may assume the proposition is true for dimensions less than the dimension of S.

By Lemma (1.4) we may pick a compact A-space Y so that S is A-isomorphic
to ^Y and each component of each stratum of Y has nonempty boundary. Now by
Proposition (7.1) there are A^, f^ a^ B^, Yy, oc^, V and K satisfying a)-i) of
Proposition (7.1).

Notice that dim^Yy<dimS so for each z=i , . . . , ^ j'=i, . . . ,^. we may
by induction find compact A-spaces Wy, Wy and Wy' and controlled resolution data
^.= {W-\ (o, Q?2, . . . , Ql), (^ . .., %), (A. • • •. 4)) ^d a smooth stratified
morphism y^ : ̂ ij"^ B(e^) so that y^ represents o in ^/T^B^^.) : S(J3^)) an y^ is
stable over the fin T(^.) -> point. Also:

w,=w,,uw^ w,nw^=aw,=8W,'=aY,
244
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and there are collarings py : 8YyX[p, i)->Wy with:
p,(aY,x[o, ̂ ^-(Y^-W^)).

In addition, W,,. has the same number of strata as 8Yy and y^Wy') CB(^.)—T(^.).
Note also that "^(W^nS^.) is empty since ^ is stable and the dimension of W,,
is less than the codimension of S(.a ,̂) which is n—i.

We define now an A-space Z. Loosely speaking, Z is a boundary connected sum
ofYx[o , i ] with the (Yy-u ^Wy') x annulus and WyXannulus. (See Figures (7.2)
and (7.3).) More precisely, let ^ : [—1, i] -^S1 be a smooth imbedding onto a subset K
of the circle S1. Define Z to be:

Yx[o, i]u^U 0^(Y,,x[-i, i]x[i, 2]

^(Y.u^W^x^x^s]
uW^ x [-1, i] x [3, 4] uWy x S1 x [4, 5])

with the identifications {^{y, t), i)eYx[o, i] equals (jy, t, i)eY.,.x[-i, i]x[i, 2]
for all jyeYy, te[—i,i], also (jy, t, 2)eY.,.x[—i, i]x[i, 2] equals:

^,^t),2)e(yyU^)xSlx['^,3] for all ^eY.,, te[-i, i],

in addition 8Y., x S1 X [2, 3] = 8W^ x S1 X [2, 3] and {y, ̂ t), 2) e(Y.,uW,;') X S1 X [2, 3]
equals {y, t, 3)eW^x[—i, i]x[3, 4] for jyeW^.' and f e [ — i , i ] and also:

CM,4)eW,,'x[-i,i]x[3,4]

equals (7,+((), 4)6W„xSlx[4, 5] for all jie-Wy , fe[-i, i].
In other words the Y,jX[—i, i]x[i, 2] are tubes reaching from Yx[o, i] to

(Y.uW^xS^O, 3] and the W.;,'x[—i, i]x[3,4] are tubes reaching from

(Y^W^) x S1 x [2, 3] to W., x S1 x [4, 5J-

a,y(^x[-1,l])/v"

US
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(v^-xS^x^s]

Zo(OTS/£fe boundary)

(YyuW,

(second generation growth)

FIG. 7.3

We define Z,C^Z !'==o, i, 2, 3 as follows:

Zo = U ((Y.,uW^) x S1 x 3 uW,, x S1 x 5)

Zi=(V-U^(intY.,x[-i, i]))xiuU(8Y,,x[-i, i]x[i,2]

ueW^'x[-i, ̂ x^juW^xS^

Z2=(a(Yx[o,i])-Vxi)uU(Y,,x{-i,i}x[i,2]
»,i

u(Y„uW„')x(Sl-K)x2uW^x{-I,I}x[3,4]uW^x(Sl-K)X4)

Z3=(3V-Ua.,(Y.,x{-i,i}))xiuU(aY.,x{-i,i}x[i,2]
'.3 »',.»•

uaW^x{-I,I}x[3,4]u0W^x(Sl-K)x4).
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^(Shaded region}

^(Unshaded boundary)

FIG. 7.4

Notice that Z is a bordism from Zg to Z^u Zg and also Z^n Zg = Zg == ^Z^ = ^Zg.
Also, Z3 is A-isomorphic to S (see Figure (7.4)) since Z^ is A-isomorphic with:

B(V-U lJa,(intY,x[-i,i])
i-l j==l

which by Proposition (7.1) d) is A-isomorphic with 8Y.
Our plan is to let W^Z^uZg, W'==Zi and W'^Zg. We will find controlled

resolution data e^ and a map y : W-^- B(ja^) with the desired properties. This Z will
be the bordism we use to show that y represents o in ./(^(B^) : S(^)).

Let S=B^(oxR2 ,o)CB^(RnxR2 ,o)=B, let T^B—R^R 2 be ^(R^R^o)

let X^X^xR^o) and S^S^R'xR2, o), S;= U Ŝ . for ^'=0, i, 2, . . . , A. Note
fc ^i

that 7^:~ l(oxR2)==SuTc - l(o)=Su U S, by Lemma (4.3). By Lemma (4.4) there is

an imbedding a : (R^R^R^, o) -> (B, N^R^R2, o)) so that a-^^oxR^R^,
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2^ (Shaded region)

FIG. 7.5

a-^^xoxR* and oc-^S.) =RnxR2xR, where R.={(^, ..., x^eR" [ x,=o}
i==i, 2, ...,k. Define (3 : Yx[o, ij^R^ by:

^ <)=(/l(^), . • -,A(7))+(l-<)(2, 2, 2, . . ., 2).

Define yi:Yx[o,i]^B by Y^)=a((i, o, . . . , o), (o, o), ̂ y, t}). Notice:

Ti(Yx[o, I]nZa)C7t-l((R"-o)xR2)

and -rr1"-1^ x R2) n Z^ = YI'̂ SU U S.) n Z^
ft k

=rl(.UR.)nZ,=( UA.xi)nZi.
i- 1 i=l

Also, by Proposition (7.1) a) and Lemma (5.4) a), yi is stable over the fin
Tt'^OXR2)-^. Y x i n Z ,

Let ft,eS.—S,' be the point

a((i, o. o, ..., o), (o, o), (cr^, ̂ •, ..., o<_i,.,, o, (T..+ ,̂, ..., o ,̂))

t = i , . . . , A j=i , . . . ,a; . Notice that a,,(Y,,xo)x i C^\q^. There is a smooth
imbedded circle C.,CS-S; so that G,, is transverse to S., C^.nS. is a point and
C(,nS. is in the same path component of S.—S.' as $y. To see this, take a smooth
arc Dy in S—S; transverse to S. so that D,,nS. is a point and Dy.nS. is in the same
path component of S(—S,' as q^. For instance we may let the arc D,. be:

a(o, (i, o), (CTI.,, G^, ..., [-1, i], . . ., o .̂)).

74«
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Let a^ and b^ be the endpoints of D^. Then we may pick a smooth arc E,. in
(oxR 2 —o)xR & from X-1^.) to X"1^.). We may then construct C .̂ by smoothing out
the two corners of the circle DyUX(E^).

C//=D,,uE,7

yi(a/,(Y/xO)xl)=
a((1A..../0),(0,OU+l< .±\Q±\....±\))

The arc's T and Dy are given by:

Dy:^a((o, .,o),(i,o),(±i,±i, .,^,±1, .,±i))
T :^a((^,o, .,o),(i—<,o), (±i, .,±i,o,±i, .,±1))

FIG. 7.6

Now by Proposition (6.1), H^(S)=H(S, Z/sZ) for all i so by Lemma (2.1)
and Proposition (2.3) we may find an s and pairwise disjoint nonsingular projectively
closed algebraic subsets Ly.CSxR8 which are two parallel copies of Gy, i.e. for
z== i , . . .,k J==i , . . ., a, r==o, i, each L .̂ is isotopic in SxR8 to C^.xo by a small
isotopy. In particular, L^C (S—S,')xR8, S.xR'nL^ is a point in the same
component of (S.—S^xR8 as (yy, o), and L^ is transverse to S,xR8.

We now define ^'^(R", (o), (A), (^)) (so B(j^')=BxR8). Define a full
A-subspace Z' C Z by:

Z'=Yx[o,i]uU(Y^x[-i,i]x[i,2]

u(Y^uW,/)xSlx[2,3]uW,;x[-I, i]x[3,7/2]

(see Figure 7.7).
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(Y/uV^xS^S]

z'
(first generation of growth)

FIG. 7.7

We also define:

where

Z^z'u U (W^xE-i^xEy/^uW^x^xiA^])
v.weAi-y

^^{(^ ^) I y = I 5 2, . .., z; w=i , . .., ̂  and w<j if y==z}
=={(^5 w) \ {v, w) < {i,j) where < is the lexicographical order}.

Notice that Z^CZ^. if {u, v)<_{ij).
Our plan will be to extend YI X o to yg : Z' -> B(^') = B x R8. We will then blow

up B(^') some and extend yg to YH : ̂ 11 -^ blown up B(j^'), then blow up some more
and extend to y^ : Z^-^ more blown up B(^'), etc. until we have:

T&a^ ^^^—v^Y blown up B(^).

For a final step we will change y/ca
w

a little bit so that it becomes an imbedding.

Notice S X R8 = S(j^') has codimension n in B(J^') = B x R8 so the normal bundle
ofSxR8 restricted to the circle Lyy contains a trivial n—i bundle. Hence there are
imbeddings ^,: S^R^-^B^-S.'xR8 so that ^.(^xo)^,, ^/(S^'^S'XO,
^.(S^R^1) intersects S(J^') cleanly and ^/(S.xR^-^xR1""'1. There are
also imbeddings 9^: [—i, i]x[o, 2] -^ B^^-^S^uS^xR8 so that:

^^(S.xR^^oxEo^],

2^
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w^s^s]

Wii=Wn>jWi"i

(Y-nuWi'pxS1

3 (^Surface}

FIG. 7.8

<py is transverse to S^xR5, and for some ^eR""1—o:

<P,,(̂  i) = ̂ -oW)^)' ^^ 2) = ̂ i^W. P)
and y,,(f, o) = a((i, o, .. ., o), (o, o), (01.,, ..., te,.,, ..., (T ,̂))

for all fe[—i, i ] . (See Fig. 7.9.)
We define ya : Z'->B(.aT) by:

Y2(^)=Yi(^)xo for ^eYx[o,i],

Y2(jy, f, M)=(py(^ M—i) for {y, t, M)eY.,x[—i, i]x[i, 2],

Y2(jy, (, M) = ̂ {t, (3 - M)̂ ) for [y, t, u} e(Y,,uWy) X S1 X [2, 3]

and Ya(^, f, u) == ̂ {t, 2u - 5) for {y, t, u) eWy' X [-1, i ] X [3, 7 /2].

In particular y^ first crushes:

Y,,x[-i, i]x[i, 2]u(Y„uW^')xSlx[2, 3]^W^x[-i, i]x[3, 7/2]
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FIG. 7.9

^(S1.^-1)

to a disc union an annulus in an obvious way (going from Figure 7.7 to Figure 7.11)
then maps them into B(^') as in Figure 7.9 (i.e. the shaded region in Figure 7.10 gets
mapped to the shaded region in Figure 7.9).

^x^S]
given by

^o(t.(3-u)p)
^

T ——[02]-
FIG. 7.10

Notice that

Y2(Z2nZ')CB(^')-T(^'),

Y^CIW)^

=( UA.xinZi)uU(aY.,.xox[i,2]uaW^xox[3,7/2])»z=-l i, j

Y2
ZiUZ'

is stable over the fin T^') -> point and y2
ZgHZ'

represents o in:

^(3(0 : S(^')) (note S(0==B,(oxR2, oxo)xRS==SxRS).

follows from stability of yi, Lemma (5.4) a) and the fact thatThe stability of y2
jZ inz '

the 9y are transverse to S,xR8.
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FIG. 7.11

We now consider the resolution data

•a îW81^")
=(BOT, (L,,,, L^xQ1,1, ..., L^xQ^), (^l, ...), {s[1, . . . ) )

and <,'=<i*^'=(R», (o, L^, L^xQ^, ...), {k,k{\ ...), (^ ^1, . . . )) .

Note B(^)=B(^'). The imbedding (Ji^ : SlxR"-l->B(^') gives us the imbedding
(^m.: S^B^i) ̂  B(^)=B(^'i). Notice that ̂  is controlled resolution data by
Lemma (4.7) and s^[[ is controlled resolution data by Lemma (4.8). We may now
define y^ : Z^->- B(^') by:

y^)=X«i)(Y2W,o) for xeZ'

and Yll(^<,")=^ll.(<,Yll(•^)) for {z, t, M)eWnXSlx[4, 5].

Notice in particular if we let X^J-Y1^)^"^), y'(2))e(R"- l—o)xR<^ for some q
for zeWu then

Yu(z, f, a)=^n.(<, X(^)(<P"(^), V'(^)))
-^^n)^!^^^),?^))

(by the following commutative diagram):

B(^")xR^ (B^^-L^xR2

W,
Hin X id

Slx(R"-l-o)xRtc^l^L S^BGO-TKi)) tt"t' B«)

id x v" x v'

SlxW,lx{4} --"
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we then extend YII on the tube (=Wi'iX[—i,i]x[7/2,4]) connecting Z' to
WiiXS'x^s] (see Figure 7.8). Since 6imW^<n—2 there is a homotopy

€•• Wll-^R"-l-o 7/2^"^4 with ^'/^)=p ^\z) = <p"\z).

Let Yii(^^")=^(^n)(^n(4'^),Vu'(^))»(2"—7)v'(^)); then it is easy to check that
Yn is well defined.

We claim that:
a) Yn(Z2nZJCB«t')-T«i)

b) TnW.O^Z^ UA;XinZ,)uU(aY.,XOX[i,2]
i- = 1 i, j

uaW,,'xox[3,7/2])uaW^xox[7/2,4]uW^x+(o)X4
^(Wnn^-^T^^xS^

^ Yn is stable over the fin T(ja^')-> point
ZiUZu

^ Yn represents o in ^(B^'/) : S(^)).
ZonZu

Claims a) and 6^) follow immediately from the definition ofy^. To see claim d )
note that y11; W^ -> B(^i) is bordant to a map 73 : X -> S(^) which represents o
in ̂ (S^) : S(J^n)). Hence yn is bordant to

Wn X S1 X 5

id x Y) : L^i x X -> L^ x S(^) == S(L^ x J^n) C S«i) C S«i).

But id XT] represents o in ^(L^xS^i) : LmXS(^i)) by Lemma (2.2) c), hence
it represents o in ^(S '̂) : S(^')) by Lemma (2.2) e). To see that YII
represents o in J^B^') : S(^)) use Lemma (2.2) f). zonz'

We must now show claim c ) , that yn is stable over the fin T(J^'/)-> point.
ZinZu

Lemma (5.4) a) shows us that yii is stable. Lemma (6.3) shows
ZiUZu-WnX S1^

us that [A ,̂ is stable so by Lemmas (5.4) c) and (5.4) d), yn
S^B^^-S^)) W^xS^

is stable, so c ) is demonstrated.
In the same manner we may find Yi2 : ^12 -> ^(e^'g) where:

<2 = ̂ 2ift(S1 X J^12) * <i and ^21: S1 x R"-1 -> B«0

is defined by ^2i(^^)=X«i)(pi^(^^), o).
By repeating this process we eventually find y^ : z^ -> S^^)- But z=z^

so we may let Y'==Y^ and ^"^z<^^ This y' was constructed so that:
^ ^(^CB^'^-T^")

^ Y~ l(T(^"))nZl=(UA,XInZ^)u^(aY„xox[I,2]

uaW^xox[3,4]^W,,x^(o)X4
^(W„•n(Yli)-l(T(^)),)xSlX4)=a "spine55 of Z^.
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c ) Y' ls stable over the fin T^J^")-^ point
Zi

rf; Y' represents o in ̂ (B^") : S(c^")).
z,

Figure 7.12 geometrically describes the map y'? ^tc fhs-t it factors through the
complex G.

FIG. 7.12

BK)

The map y' ls almost everything we want except that y'[ might not be an
w

imbedding. This is easily fixed up. By Lemma (1.1) there is a smooth stratified
imbedding (B : W-^IT for some integer m. Let ^=(B(J^'), (0), (o), (m)) *^",
so B(^)=B(^'/)xR2xRW. Then we let y ; W-^B(J^) be Y - T ' X O X J B . Then y
satisfies all our required properties.

We may define p : Z3X[o, i) -> Z^-y-'T^) by p((j/, i), ^=(K(j/, t), i) for
<?e[o, i), j e8V—Uay(YyX{—i, i}) where K comes from Proposition (7.1) and

i.J

^{{^±^u),t)={y,±t,u), for te[o, i),

(^±i^)eaY^x{-i,i}x[i,2]uaW^x{-i, i)x[3,4]

and p((js ̂  4), ̂ -(p^^ 8(^ ̂  ̂ (^ ^, 4) for Ĵ W,;, ̂ ^-K, ^e[o, i)

where (S, s) : (S l—K)x[o, i) -> (S l—^(o))x[o, i) is a homeomorphism with:

S(^(±i)^)=^(±^) and (S,s)(^o)==(^o) for ^-K.

Figures 7.5 and 7.13 describe the inverse images Y'^USJ on Z and on Z^.
Figure 7.5 factors through 7.14 under the map y'. •
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FIG. 7.13

FIG. 7.14



VIII. — THE MAIN THEOREM

We have finally done enough preparation to be able to prove the main theorems
we are after. Theorems (8.1) and (8.2) are essentially corollaries of Theorem (8.3)
the theorem which gives the actual proof. We do not explicitly do the tower cons-
truction of Section o, but this construction is implicit in the proof. Instead we prove
(8.3) by an inductive argument so that we only have to do one story of the tower
construction. The fins are there to keep track of the collapsing we want to do.

More explicitly, suppose we wish to show an A-space Y is homeomorphic to an
algebraic set. The idea is to find controlled resolution data ^, overt polynomials
^:B(J3^_J->R, and a tower of imbeddings

Y,CB«)

w[
N,CY,_iCB«_,)

NgCYiCBGO
7T(^)|

N,CYoCB(^o)
so that:
1) N^ft-^o) i=i, ...,m;
2) ^=(BK_i), (N,, Q,i, ...),...,...) z==i, ..., m;
3) N^ is a closed stratum of Y^_i z==i, . . . ,772;
4) Y^ is an A blowup of Y^_^ along N^ i=i, .. .5 m;
5) for each i=i, . . ., m, Y .̂ is stable over the compatible fins n^: Vy->Nj j==i, . . ., i

where ^.==7r(^) o7r(J^) o ... o7r(J^) and V,, = -n^1 (N .̂);
6) for each i==i, 2, . . ., m, ^.(Y^) is isotopic to Y^_i over the fins 7^_i^ : V^_i^—>-N^

j= i , ...,i—i;
7) Y^, Q^ and B(e^o) are nonsingular algebraic sets;
8) Y=Yo.

Suppose we can construct k stories of this tower so we have Y^CB(J^) and
N^^CY^ so N^i is a nonsingular projectively closed algebraic set. Then in the proof
of Theorem (8.3) we are essentially showing that we can construct the next story of
the tower Y^CB«_n).
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Theorem (8.1). — Let X be a compact A-space. Then int X is homeomorphic to a real
algebraic set W.

Proof. — Let Y== Xu cSX where 8X X i C c8X is identified with BX C X. Then
Y is a compact A-space without boundary. By Lemma (1.1) there exists a smooth
stratified imbedding a : Y-^R^ Note that a is stable over the empty fin in R^ Hence
by Theorem (8.3) below there is an imbedding Hi of Y onto a real algebraic
set VCR^xR6. By Proposition (4.2) of [i] there is a real algebraic set W homeo-
morphic to V—Hi(*) where * is the vertex of c8X. But V—Hi(*) is homeomorphic
to Y— * which is homeomorphic to int X. •

Remark, — In fact it follows from the proof of (8.3) that the natural singular
stratification of the real algebraic set W is isomorphic with Y as a stratified set.

Theorem (8.2). — The interior of any compact P.L. manifold is homeomorphic to a real
algebraic set.

Proof. — By [3] every P.L. manifold is homeomorphic to an A-space in such a
way that boundaries go to boundaries. The result now follows from Theorem (8.1). •

Theorem (8.3). — Let M be a nonsingular algebraic set and let ^: V^->N^ z==i , .. ., k
be compatible fins in M. Let Y be a compact A-space without boundary and suppose a : Y->M
is a smooth stratified imbedding which represents o in .^^(M : M) and suppose a is stable over
the fins T^.

Then for some b there is a projectively closed real algebraic set V C M X R6 and smooth
stratified isotopy H( : Y -> M x R6, te\o, i] over the fins TT, so that H()= a x o and H^(Y) =V.

Proof. — Take any closed stratum N ofY. Then by Lemma (2.2) a), a : N->M
N

represents o in ^'A{M : M) so by Proposition (2.3) there is 21 p and a G1 small isotopy
of a(N)xo to a projectively closed nonsingular algebraic set Q^CMxR^. By Pro-
position (5.5) and Lemma (5.3) there is a small smooth isotopy ^ : Mxf^ -> MxR^
^e[o, i] over the extended fins V^xR^-^N, so that h^ is the identity and:

^(a(N)xo)=Q.

(Here we use stability of a .) Note that by Lemma (5.6), Aio(axo) : Y-> MxR^
N

is stable over the extended fins. Also Aio(axo) represents o in ^A(MxJ!ip : MxR^)
since it is homotopic to axo which represents o by Lemma (2.2) f).

Hence we have reduced to the case where a(N) is a nonsingular projectively closed
algebraic subset Q^C M. Notice in particular that if Y had just one stratum then we
would be done since then a(Y)=a(N)=Q^.

Now let c : Nx^S-^Y be a neighborhood trivialization of N in Y and pick any
n>dim 2+2. Then by Proposition (7.2) there are compact A-spaces W, W and W",
controlled resolution data ^/=(K1, (o, Q^, ..., QJ, (^, . . . , AJ, (Ji, ..., ^)), a
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smooth stratified imbedding y : W-^B(J^) and a collaring p : Sx[o, i)->W satisfying
the conclusions of Proposition (7.2), Let:

j^'^MxR", (Q^xo.QxQ^, ...,QxQJ, (^, ...A). (^, . . . ,^)).
Lemma (5.4) a) implies that Q^xo<-> MxR" is stable and Lemma (4.7) implies that
^ ' is controlled. Hence TT^') : B(J^') -> Mx^ and QxoCMxI^ augment the
fins V^xR^V^N, z = = i , . . . , A by Proposition (6.2) a).

Let T^ : V^-^N^' z= i , . . . , A + i be the compatible fins in B(J^') obtained by
extending 7^ by MxR^-^M and then augmenting by TC(^) and QxoCMxR".
(That is, N;=N, z = = i , . . . , ^ , N^i==Qxo, V; =7^(^ /)- l(V,xRn) z = i , . . . , A ,
V^^Tr^^Q^Xo), Tr^^oTToTi:^') z = i , . . . , A Tc^i=7r(J^') where: TT.-MXR^M
is projection.)

Let y : MxR^R be any overt polynomial with ^^^Qxo and let d be
such that B^7) CMxR nx(R d—o) and 7r(e^') is induced by projection onto MxR^

Let Y'=B(Y, N, W). We claim that there exists a smooth stratified imbedding
a' : Y' -> B(J3H so that:
1) a'-17^(^)- l(^o)==a- l(^XY-l(T(^))(=a- l(^)x(spine of W')) for each ^eQ,.

(So Q^f! crushes N X (spine of W) in Y' to NX point, see Section 3.)
2) a' is stable over the fins T̂ ' z=i , . . . , A + 1 *
3) a' represents o in ^(B^') : B(^')).
4) There is a smooth stratified isotopy of imbeddings ^^Y^MxR^'xR^ over the

fins TT, z = i , . . . , A so that ^=axoxo and g^)=Q^'^').
Given this claim we may finish the proof as follows. By induction and 2) and 3)

there is an e, a projectively closed algebraic set V C B^^xR8 and a smooth stratified
isotopy of imbeddings HJ : Y' -> B(^) x R6, te[o, i] over the fins TT,' i = i, . . . , k +1
so that H^a'xo and H^Y^^V. Since H^ is an isotopy over the fin

7T(eO : T(^)-^QXO,

then for each xeQ^ and ^e[o, i]:
(H;)-^^)-1^ o)xRe)=:(H^)-l(Tc(^')-l(^ o)xRe)

=a- lMXY- l(T(^))
by condition i). Also for each xeQj.

Tr^-^^xR^B^xR'n^xoxR^xR6

since n{^) is induced by projection MxR^R^ -> MxR^ Thus we have an isotopy
F,: ^(a '(Y /)xo)^MxRnxRdxR e

over the fins TT,=V,->N, i = = i , . . . , ^ defined by letting F<(^(a'0), o))===^H;(j/)
for all jyeY\ This is well defined because H(' is an isotopy over the fin TC^'). Also
for each stratum S ofY', F^ imbeds ^(a'(S-NXY- l(T(^)))Xo) since ̂  is adiffeo-
morphism on (MX R"— Q,X o) X (R^ X R6 — (o, o)). In addition, Fo is inclusion.

Now by 4) of the claim ^xo isotops o^XOXoxoCMxR^xR^xR" over the
fins 7r, to ^(a'(Y'))xo and then F< isotops ^(oc'(Y'))xo==^(a'(Y')xo) over the
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fins TC, to ^Hi(Y')=^(V). But ^(V) is a projectively closed algebraic set by
Proposition (3.1) so we are done, modulo proving claim i), 2), 3) and 4) above.

Let us now prove the claim. Let a == su + SA( + £,?<. Let oci: B(Y, N, W") -> M
be ai=ao7c(Y,N,W"). Pick any (oc^, 003) : B(Y, N, W")--> (R"—o)xR'1 so that
(aa(^, w), ̂ {y, w))=\{s^-\f[w)) for all {y, »)eNxW". (Hence a^, w)=7t(^)oy(w)
for all (j,M;)eNxW".) Let Z be the A-space

Z=B(Y,N,W")x[o, i]uNxWx[i,2]

where NxW'xi CB(Y, N, W")x[o, i] is identified with NxW'xi CNxWx[i, 2],
and comers are rounded off. Then <)Z has three pieces, B(Y,N,W")xo, NxWX2
and (B(Y, N, W") — N xW") x i u N xW x i. The last piece is A-isomorphic with
B(Y, N, W) =Y'. (See Figure 8 .1 . )

NxW;2

FIG. 8.1

We define a" : Z -> B(^') as follows:
Let y.: QxB(^) -^ B(J2/') be the imbedding induced by Q,xR"<->- MxR". Let

»"{y, w, f)=(A(a(j), y^)) for (j>, w, <)eNxWx[i, 2]. Otherwise let:
a"(2, t)=W){^(z), ̂ {z), a3(z)) for {z, ^)eB(Y, N, W").x[o, i].

To see a" is well defined on the intersection pick (_y, w, i )eNxW"x{i) , then:

alO''"^0^)
and (A(a(7), Y(w)) = (^(0(7), X(^) (v.^y, w), 0.3^, w))

==X(.flO(ai(js w), «.^y, w), «.^y, w)}

because we have the following commutative diagram.

Q,x(R»-o)xRS Ji^^QxBC^)

(Q,xRn—Q,xo)xRa

B(^')
760
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We define a' =a"
Y'

Notice that a" represents o in J^B^') : B(J^')) by Lemma (2 .2) c)
N xW x 2

^d a" represents o by Lemma (2 .2) b), d), f). Hence a' represents o
B(Y,N,W")xO

in ^(B^') :B(^')) also. In addition a' and a' are stable over
N x aW x 1 N X intW x 1

the fins TT,' by Lemma (5.4) b) and (5.4) c) since [L is stable over the fins n, by Pro-
position (6.2) b). Also a' is stable over the fins T:[ by Lemma (5.4) a).

(B(Y,N,W")-NxW")x l
Hence a' is stable over these fins.

Let Y'^Y'-Nxy-^T^)). We define an isotopy
ht: Y'-^MxR^-Q^xR'

as follows. For ^eY—^(NxcZ;)CY" we define:

^(^=::(al(^),^(^)^a3(^))eMxRnxRa.

For z=c{y, {x, s))ec (NX (<?!:-*)) CY":

ht(z)=^c(y, [x, (^+^-^+I)/2)) ,^(^a3(^))eMxRnxR f l

and for z==(y, p(w, J))eNx(W /-Y~ l(T(^))):

^)=M^ (^ (I-^)(I-^)/2),^(^)- lyp(^^))eMx(RnxRa).

(Recall p : Sx[o, i) -^W /—Y -3(T(J^)) is the collaring given by Proposition (7 .2) . )
Notice that X(e^')^: Y" -> B(J^')—T(^') is a continuous isotopy over the

fins 7c,:V,-^N, and that X^^i^a" and X(^')Ao is an imbedding of Y" onto
X(jT)(a(Y-N)xoxo). Y"

Let <p : Y—N-^R^xR^ be the function so that:
^(X(^)(a(j), o, o))=(a(^), 9(^))eMx(RnxRd)

for all ye\—N, i.e. cp is the composition

Y-N-a^^(MxRn-Q,xo)xRa-^^B(^)c->MxRnxRd

^MxR'xR^—R^xR" .
Let ^ : Y—N-^Y" be the homeomorphism so that ^X(j^')A^(j;)=(a(^), 9^))

for all j;eY—N. Then the isotopy ^Y-^MxR'xR^ required by condition 4) of
the claim is obtained by smoothing out the following isotopy.

Let ^( j )==a(j)xoxo for j;eN. For j^eY—N and 0^^1/2 let ^(^) be
(a(^), 2^9(7)). (This takes Y-N to X(j^')(a(Y-N) xoxo) . ) For J^EY-N and
1/2^^1 let g^) be ^X(^')^_^(^). (This takes Y-N to ^"(Y").)

This isotopy ^ is in fact continuous. (The hardest part is for 1/2^^1. Take
zeQ^ and pick r so that:

^(NxW^CMxR^rB^
where rB^^eR^ [x <r}.
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For any e>o and neighbourhood U of z in M pick 8>o and a neighborhood U1 of
^~l{z) in N so that:

a^xS^XTr^yp^W'X^-o, l))

CUx£Bnn^-l((-(£26+l/r)l/2,(£26+l/r)l/2))

where b is the degree of q and Sc^j=={{x, t)edTi\t<S}. Then:

^U lx(S/2)^)=U lu^- l(U lxp(aW /x(I-8, i)))
is a neighborhood of a"^) in Y which is mapped by each ^ into UxsB^sB^,
i/2<^i. Hence ^ is continuous for i /2<^<i.)

To make the proof of (8.3) precise, one would have to complicate the various
constructions to make the maps all smooth. This can be left to the reader. •

There are a number of alternate methods of proof of Theorem (8.1). One
attractive method is to change Theorem (8.3) by assuming that the stratification on oc(Y)
satisfies the Whitney conditions, deleting all mention of fins and concluding that the
isotopy H( is very small. Then you would get stability from the Thorn isotopy theorems.
The proof of Theorem (8.3) would be more or less the same, but a bit messier. The
advantage would be that the notion of compatible fins would be unnecessary. The
disadvantage would be that a certain amount of messy analysis would be needed. The
concepts developed in this paper will be useful in our future work.
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