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EQUIVALENCE OF DIFFERENTIABLE MAPPINGS
AND ANALYTIC MAPPINGS

by MASAHIRO SHIOTA

INTRODUCTION

In this paper, we consider the problem to know when a differentiable function
or mapping can be transformed to an (c ( equivalent 5?) analytic or polynomial one by
a diffeomorphism.

In the i dimensional case this problem is simple. R. Thorn showed in Topology,
3 ^Q^)) ^^ a non-constant G00 function on R is equivalent to a polynomial if and
only if it is proper, the number of critical points is finite and the derivative is nowhere
flat. The author showed in [23] that it is equivalent to an analytic function if and
only if the derivative is nowhere flat.

The problem for general dimension consists of a local one and a global one. In
chapter I we consider the local problem for functions. Here are some of the main
results, which will be proved in Section 2.

Theorem. — If a germ of a 0°° function in n variables is zero at the origin and of the
k

form II f^ where f^ are G°° germs and o^ are integers such that the Toy lor expansions of f^ generate
1=1

distinct prime ideals in the formal power series ring, then the germ is equivalent to a polynomial
in two variables with germs of C^ functions in n—2 variables as coefficients.

Theorem. — Any convergent (or formal) power series in n variables is equivalent to some
polynomial in two variables with convergent (or formal) power series inn—2 variables as coefficients.

N. Levinson [10] andj. C. Tougeron [31] showed the equivalence to a polynomial
in one variable with C°° or analytic germs in n — i variables as coefficients, and
H. Whitney gave an example of a convergent series in three variables which is not equi-
valent to any polynomial [34].

The theorem above and a result in [31] imply that, if /is a complex convergent
series in n variables such that /(o)=o, if the singular set off~l{o) has codimension s '
in C ,̂ /is equivalent to a polynomial in s ' variables with convergent series in n—s' variables
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38 M A S A H I R O S H I O T A

as coefficients. This is a generalization of the well-known fact (see [31]) that if f has
its singular set of codimension j, / is equivalent to a polynomial in s variables with
convergent series in n~s variables as coefficients.

The case n==2 will be studied in more detail in § 3. Section 4 describes other
properties of the equivalence and the CT' equivalence for o^r<oo.

Theorem. — If two real convergent power series vanish at the origin and have the same sign
at each point near the origin^ then they are topologically equivalent.

Corollary. — Let f^, f^ be analytic functions on a compact real analytic manifold, and let
S, be the set of singular values off^. Assume f{~1 (S^ u 83) =f^~~3 (S^ u 83) = M and f^ \ ==/g
Then f^ and f^ are globally C° equivalent. M [M

We know by [31] that if a real convergent series/in n variables has a singular
set of codimension s in R^/is CV equivalent to a polynomial in s variables with convergent
series in n—s variables as coefficients for any r<oo. We generalize this as follows.

Theorem. — Assume /(o)=o. Let S' be the intersection of iy1 with the singular set of
/^(o) in C^ around o, and let s' be the codimension of S' in R .̂ Then/is C^" equivalent to a
polynomial in s' variables with convergent series in n—s' variables as coefficients for any r<oo.

Next we show the existence of a homomorphism from the formal power series
ring in one variable to the ring of germs of G00 functions in one variable whose compo-
sition with the Taylor expansion at the origin is the identity, and which commutes with
the derivation (S 5).\ o \j /

In chapter II we treat the global C00 problem.

Conjecture I. — Let f be a C°° mapping between analytic manifolds. Suppose that the
germ of f at each point is equivalent to a germ of an analytic mapping. Then f is equivalent to
an analytic mapping.

Conjecture II. — Any two G00 equivalent analytic mappings are analytically equivalent^
that is, the diffeomorphism can be chosen analytic.

In Section 6 we prove a fundamental lemma on the equivalence, the local case
of which is due to J. G. Tougeron [31]. We also give a lemma which glues analytic
function germs. In Sections 7 and 8 we work on functions and prove the conjectures I
and II respectively for functions taking locally one of the following forms, except at
a discrete set:

(i) regular,
(ii) the sum or the difference of a constant and a power of a regular function,
(iii) ±A^± . .. drA:i+ const. for a suitable coordinate system (^, . . . , x^, . . . , ^J.
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EQUIVALENCE OF DIFFERENTIABLE MAPPINGS AND ANALYTIC MAPPINGS 39

In general an analytic function takes locally the form (i) or (ii) except on an analytic
set of codimension 2, and a coherent analytic set is the vanishing set of some analytic
function locally of the form. (i) or (iii) except on the singularities. Consequently, the
conjectures hold for functions if the dimension of the manifold is i or 2. If a closed
subset of an analytic manifold is locally equivalent to germs of coherent analytic sets
with isolated singularities, then the set is equivalent to an analytic set. As a corollary
corresponding to the conjecture II, two C00 equivalent coherent analytic sets with isolated
singularities are analytically equivalent. Moreover, we prove this fact in a slightly
more general form, that is, we admit vanishing sets of type (iii) and we weaken the
condition of coherence. We also consider the following question: Suppose that in I
and II some analytic submanifolds are invariant under the given local or global diffeo-
morphism. Then, can we choose the resulting diffeomorphism so that those submani-
folds remain invariant? We shall give a partial result in that direction.

In Section 9 we introduce local canonical forms (i)', (ii)' and (iii)' of mappings
corresponding to the types of functions (i), (ii) and (iii) respectively. We show that
any analytic mapping takes locally the form (i)' or (ii)' except on an analytic set of
codimension two in the source manifold. Furthermore, the condition for being of the
form (iii) involves only the first partial derivatives. Hence we use the determinants
ofjacobian submatrices to generalize (iii) to (iii)'. Section 10 gives a proof of the
conjecture I for mappings locally of the form (i)', (ii)' or (iii)' except on a discrete set.
We also prove the conjecture II in a special case. In particular, the conjectures are
valid for any one- or two-dimensional source manifold.

Section 11 deals with other equivalence relations of mappings by adding diffeo-
morphisms of the target manifold. There we give some counter-examples to the
corresponding conjectures.

In § 12 we consider the case of a Nash function, and we obtain results similar
to the above. We also prove that a factorization of a non-zero analytic function on
a connected analytic manifold into C°° functions is a factorization into analytic functions.

The fundamental tools of the proofs in this chapter except in the last section are
M. Artin's theorem [i] and. the fundamental theorems A and B on Stein manifold of
H. Gartan.

In chapter III we study other global problems, of a topological nature. In
Section 13, we prove theorems about the topological equivalence of a continuous
function yon a G00 manifold of dimension ={=4, 5 to a G30 function.

Theorem. — If f has only isolated topological singularities^ f is C° equivalent to a G00 function.

Theorem. — If the set of topologically singular values has no inner point in R, then f is right-
left C° equivalent to a C°° function.

The problem studied in section 14 is when a C-valued function on R2==C can
be transformed into a C-polynomial. We prove:
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40 M A S A H I R O S H I O T A

Theorem. — If a C-valued C00 function on R2 is proper and is locally equivalent to a germ
of a C-polynomial, then it is equivalent to a C-polynomial.

By Stoilow's theorem this means that any C-valued light open proper continuous
function on R2 is C° equivalent to a C-polynomial.

The author thanks R. Thorn for his encouragements and kindness which were
indispensable to do this work and J. G. Tougeron for his kind advices. He also thanks
M. Adachi and T. and Y. Matsumoto who explained to him some results about topological
manifolds.
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I. — LOCAL EQUIVALENCE

i. Preparation

Let <?„ denote the ring of germs ofC°° functions at o in R^ 0^ the ring of convergent
power series R{^, . . . ,A:J and ^ the ring of formal power series R[^, ...,^J.
We sometimes write S(x^ . . ., A:J for <?„ in order to make clear the coordinate system.
Let A be one of the rings above and/be an element of A. Then m(A) and L mean
the maximal ideal of A and the ideal generated by all the first derivatives of/in A
respectively. We sometimes write simply m for m«). Let T denote the Taylor
expansion at o. An element/of^ is called//^ if T/==o. Let [:] and ht denote the
quotient ideal and the height of an ideal respectively.

Elements/and g of<^ are called equivalent if there exists a local G00 diffeomorphism T
of R" around o such that /or=^. If the local diffeomorphism is only of class G7' with
o^r^oo5 we say that / and g are Gr equivalent. In the same way we can define an
equivalence relation in ^, to be called C0 equivalence. We remark that elements /
and g of 0^ are G" equivalent if and only if there exists an automorphism of 0^ mapping g
onto/. Similarly, we can consider an equivalence relation in <^, two elements/and g
of ..̂  being called equivalent if there exists an automorphism of e^ mapping g onto /.

In this chapter we consider all functions in a sufficiently small neighborhood
of the origin. We do not always distinguish germs from functions.

The next lemma is essentially stated in Mather [15], p. 33. See [25] for the proof.

Lemma (i. i). — Let / g be in §^ (resp. 0.^ and let a,{x, t} (z== i, . . ., n) be germs
at ox[o, i] in R"xR of C^ functions (resp. analytic functions). Assume that

/(.)-,(.)-i:^^^^^ (,-4
1=1 \ ̂  ^ /

a,(o,t)=o for z = i , . . . , T Z .

Then f and g are equivalent (resp. G° equivalent).
As a corollary, we obtain the next lemma which is due to Tougeron [31] (see

also [25]).

Lemma (1.2). — Let f, g be in TH2^) (resp. m2^)) such that f—g is an element of
()a ()a

the ideal generated by — — x^ with z, j, k == i, . . ., n. Then f and g are equivalent (resp,
^,, . , . Sx. Sx
C° equivalent). l

241
6



42 M A S A H I R O S H I O T A

Remark (1.3). — Assume moreover that, in the lemma above, f—g is contained
in the product of the ideal above and an ideal a. Then the local diffeomorphism
T==(TI, . . ., rj can be chosen so that T^—^ are contained in a. For the proof, see [31].

The next lemma is due to Skoda and Brian^on [30]. They proved the case of
a complex convergent power series. The real case follows trivially, and from the
closedness of any ideal of ̂  in the Krull topology (Krull) we deduce the ̂  case.

Lemma (1 .4) . — Let f be in m(^) or in tTt(<PJ. Then /n is contained in 1^.

Remark (1.5). — The <^ case of the lemma (1.4) is not true. For example,
/==exp(—i/^2) sin ifx in §^ is not contained in ly. But the following is very probable;
in fact, we easily prove it for n<_2 from the corollary (2.4).

Let q be in m(e^). Then there exists f in €^ such that Ty=y and that/" is
contained in I/.

2. A canonical form for certain differentiable germs of functions

If an element f of rn(<^) can be factorized in m(<^,) as

/-A/.".-1=1
in such a way that the T^ generate distinct prime ideals, we call / factorizable. We
know by the theorem of Zariski-Nagata that any germ of a G°° function equivalent
to an analytic germ is factorizable.

The next theorem is a generalization of a theorem in Shiota [26].

Theorem (2.1) . — Let an element/in S^ be factorizable. Then f is equivalent to a
polynomial in two variables with coefficients in ^-2'

Proof. — The case n==i is trivial, hence we assume n^2. By the hypothesis
there are elements f^ for i == i, . . ., k in m such that

/̂ n/...
and that T/^ are different and prime. Put

f^^' f"=flt'' P-ml/,^:/].

Then we shall see that
htTp=ht{T^ep}^2.

For the proof it is sufficient to show:
htTI^2, htT[I/:/]^2.

The first inequality was observed by Tougeron [31].
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EQUIVALENCE OF DIFFERENTIABLE MAPPINGS AND ANALYTIC MAPPINGS 43

r\r

From the factoriality assumption on/, the -/ are divisible by/" for i== i, . . ., n.
Let the quotients be ^. Then we have r

[I/ : /"J-tel, . . .̂ n), [IT/ : Trj^T^ . . ., T^),

where (^, . . .,^) denotes the ideal generated by g,. Hence

T[I;:/'']-[lay: T/"].

Since it is trivial that
[I/:/"]C[I/:./],

the next lemma is sufficient to establish the needed inequality.

Lemma (2.2). — Let p be in rn(^) or in Tn(^J. Let

p=np?, ^'=nA, P"-P\P'.1=1 i=i
where p^ generate distinct prime ideals. Then we have

\^[\-- P'T, [ip: p"}^;.
Proof. — We only prove the ̂  case, the (?„ case being entirely the same. We put

j=si,,n/>,.
i==i j+i

We want to prove that J^Ip'^J2". It is trivial that J3I^. Now J2 is generated by

^Pi TT . ^Pm n A
^jfm==. ^.A.—11 A

OX^ s +j OXf t +w»

for z , / - = ! , . . . , yz and j, 77?.=i, . . . ,A . If J'+TTZ, q^p'^. If j=m

^li n,A(^- s ̂  n A)e^^+^^.
O X ^ s ^ j \()X{ u^m8Xft^u I ()Xf

By Lemma (1.4) we have p^ely,. Hence

{p'^+l^ci^
This implies that J^CI^. In the same way we prove that JD [Ip:^"]^J2n. Here
we use the fact that ^^^[Ip:^"], for whose proof it is sufficient to read the proof of
Lemma (1.4). Therefore we see:

i^j^p^jn2', [WPJ^I?.
Thus the lemma is proved.

Now we continue the proof of the theorem. From the normalization theorem for
rings of formal power series (e.g. Nagata [20]), we have a coordinates system (^3 . .., x^)
such that the sum ofTp and. the ideal generated by x^y . . ., ^_g in J^ contains m^e^)
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44 M A S A H I R O S H I O T A

for sufficiently large p. Then, by Nakayama's lemma, the sum of p and the ideal
generated by ^, • • • 5 ^ - 2 m ^n contains m^. Hence the images x^_^ and x^ of x^_^
and x^ by projection in <^/p are integral over €(x^ .... x^_^). This property remains
valid after a small change of the coordinates system in the Krull topology. Let 9 be
a monic polynomial in one variable with coefficients in <?(^, . . ., ^_g) such that <p(^n_i)
and <p(^J are contained in the product of a sufficiently large number of copies of p.
By Malgrange's preparation theorem, there exist (p^ and y^ in <^ and F^ a C^n-i, ^n)"
polynomial with coefficients in €(x^ . . . ,^-3), such that

/i^Pi+P^n-i) 9i+y(^) ?r
Hence we have

/' = F, n /. + y(^_j <p, n /. + <p(^) yi n ̂ .
i + 1 i + 1 i + 1

By Lemma (i .2),/' and Fi 11 ̂  are equivalent. Moreover, by our remark (i .3), the
i + i

local diffeomorphism has the following form:

T=(^+e,n^, . . .^+e,n^),i + i » + i
where 8, are elements of the product of a sufficiently large number of copies of p. Let
j/==(j^, .. .,j/J be another coordinates system. For each j=)=i there exist (B^, . . ., (3^
in S ( x ^ y } such that

^^+^)^^)+S^^.

In particular,

f^=f^x+Q n ̂ )^w+ s ̂ (^ e n /,) e, n /,.
i + l t = = l ' ' /+ ! ^ + 1

Hence we have Ag, . . ., ̂  in a product of sufficiently many copies of p such that

^OT=/^)(I +^.W) for j==2, . . ., n.
k

As n/ ,oT=Fin^, we have / ioT=Fi /n ( i+^ ) . Therefore
t=l i+1 i+l

/oT^^n^
i + i

where r is the sum of i and an element of a product of a sufficiently large number of
copies of p. Moreover the lemma below shows the existence of a local diffeomorphism T'
such that

/oToT'^F^n/^s
l + l

and that each component of T' minus the identity is an element of the product of suffi-
ciently many copies of m.
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EQUIVALENCE OF DIFFERENTIABLE MAPPINGS AND ANALYTIC MAPPINGS 45

We consider the case when/is of the form (*), and we want to modify/g in (*)
into an (^_i, A:J-polynomial Fg with coefficients in g[x^ . . . , ^_2) . We need the
following facts. The integrality of ^_i and ^ in </p over S(x^ . . ., ^_g) is preserved
by a small change of the coordinate system. If we define p* by the factorization (*)
in the same way as p, we have

00

p:)?^, p^p^od D m^
£==1

by Lemma (1.4). These inclusions imply that ^_i and ^ in ^/p* are integral over
§(x^ . .., A^_2). Hence we can see in the same way as above that/is equivalent to
F^F^2 H /.ai. Repeating the process, we obtain (^_i, x^ -polynomials F i , . . . , F ^

»+1,2 ^

with coefficients in <?(^, . . . , x ^ _ ^ ) such that/and 11 F^ are equivalent. Thus the
theorem is proved. l==l

Lemma (2.3). — Let A ^ o^ of the rings <, ̂  and ^. £^ / oTzrf ^ be elements
of m(A) ^cA that

^m(A)^:/]2.

T^ f+gf and f are equivalent.

Proof. — We consider the <?„ case. The other cases can be proved in the same
way. By Lemma (1.1), it is enough to find germs a,{x, t), for i==i, . . . , w , which
satisfy the following conditions:

^ •̂"(IK) M
^(o,^)=o (*+)

By hypothesis there exist a finite number of elements b^, c, and ^ in <^ such that
6'̂  ^E1/ ^ /]. ^-em2 and g== S^.^rf..

»,j
a^

Hence — are contained in m[I/: /], therefore there are elements a^ and (3^ in m,

for i,j, ̂ = i , . . ., 72, such that

^^ ̂ <
Substituting in (*), we have:

n 8f n r n f)f ?^f~\ n r n i ^y2,a•^=s,4s,^•4'+(•+^"^j=s.ls.••-p-i'+a•(•+^')j^•
Hence it is sufficient to solve (in a^ the equations

n

a,=^a,p,.f+fl((i+^).
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46 M A S A H I R O S H I O T A

Let B be the matrix whose {i,j) -component is ̂ f and let I be the unit matrix. Then
the equations above become

M
=(B+(i+^)I ) : .

^n/ W

Since (3 .̂, ^em, the determinant of B+(i+^) I does not vanish at any point of
ox[o, i]. Hence there is an inverse matrix G of B+(i +,?^) I whose components are
germs at ox[o, i] of C°° functions. Therefore we have the solution

faA /aA

: =G : •w w
Since 0^(0) =o, all ^ satisfy (**). The lemma is proved.

We can prove just in the same way as above the next corollary which is a gene-
ralization of results in Levinson [10] and [n]. We omit the proof.

Corollary (2.4). — Any element of 0^ (resp. of ̂ ) is G" equivalent (resp. equivalent)
to a polynomial in two variables with coefficients in C'n-2 (r^* ^-2)-

Remark (2.5). — The corollary above is valid for the complex case. We omit
the proof which is entirely similar to that of the theorem.

The proof of the theorem shows:
m

Corollary (2.6). — Let j^, . .., f^ be elements of <S^ such that II fi is factorizable.
1 = 1

Then there exist g^, ' - ',grn m ^n anc^ T? a ^oca^ ^Go diffeomorphism, such that ^(o)+o for
?==!, . . ., m and that all ^X^or are (^_i,A:J -polynomials with coefficients in S(x^ . . ., A^g).

The same result holds in the (9^ or <^ case.

Since (9^ and ̂  are Noetherian rings, we have the immediate

Corollary (2.7). — Let p he an ideal of 0^ or e^. Then p is generated by ^-polynomials
with coefficients in ^_a or ^-2 m a suitable coordinate system.

We remark that, by the normalization theorem and Nakayama's lemma, if ht p==A,
then p is generated by A-polynomials with coefficients in ^_^ or J^_^ in a suitable
coordinate system.

The condition cc factorizable 3? in the theorem is ako a necessary condition for
^==2. We shall consider that case in detail in the next section.

Problem. — Let an element f of 0^ (or ^"3) be prime. Then, is f equivalent to
a polynomial?
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EQUIVALENCE OF DIFFERENTIABLE MAPPINGS AND ANALYTIC MAPPINGS 47

Without the primeness condition, the problem has a negative answer. See
Whitney's example [34]. The author has given an example of a formal power series
in 3-variables which is not equivalent to any convergent power series [27].

3. Differentiable germs of functions in two variables

In this section we study some properties of elements of <^. We saw the following
already in the previous section.

(3.1) Let /be an element of m^a) or ^(^2)- Then there exists a positive
integer k such that for any element g of m^g) (resp. ^(^a)),/+^/is C" equivalent
(resp. equivalent) to f.

(3.2) Any element of (9^ (resp. e^) is C" equivalent (resp. equivalent) to a
polynomial.

There are non-flat and non-factorizable elements in ^, for example

^+exp(-i/j;2).

But any non-flat element is (< semi-factorizable ":

Proposition (3.3). — Let/be a non-flat element of S^ Then there exist a finite number
n

of elements g^, . .., g^ of <?g such that f== Tl g^ that any two of T^ are relatively prime and
i==l

that, for each i, Tg, is a power of a prime formal power series. Moreover this <c semi-factorization 3?

is unique, that is, if f== 11^ is another semi-factorization, then for each i there exist a unique j
and an invertible element o^ of S^ such that g^ = ̂ g-.

Proof. — The first half is proved in Risler [23]. We prove the uniqueness. Let
Ylgi be another semi-factcrization. Let

T/= n f^1=1
be a unique factorization into prime elements of ^. We assume that each f^ is
convergent and that f^=r^g^==Tg^ We only have to prove that g[fg^ is well defined
as an element of ^3. If /r^o)^-^}, then there exists a positive integer a such that

l/iWI^M- hence \g,{x)\^\x\^1, \g[(x)\^\x\^\

Since g[{x)—g^{x) is flat, g[lg^== i +{g[—gi)lgi is defined as an element of ^2. If
X^/^^o) is not {o}, there exists an open neighborhood Y of X—{o} in which II f^

does not vanish and whose boundary is a union of analytic sets. The existence is showed

as follows. We consider the zero set of n(y^2—/?); it separates X—{0} from
t+i

U ./^(o)—{0} and we take as Y a union of connected components of the complement
' ± 1i + i
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of that set. Let Z be the complement of Yu{o}. By the inequality of Lojasiewicz,
there exists a constant a>o such that

lAWI^dist^X)-.

Since any two analytic sets are regularly situated (see [12]), we have
dist (^ X)^|A:|3 for x in Z,

for some constant P. Hence there exists a constant y>o such that
l / iWI^I^ for x in Z.

We easily see that g[lg^ is well defined on Z as a 0°° function, that it can be extended
to the closure of Z and that its Taylor expansion at the origin is i. As

^ i=n&/n&,
i+1 t + 3

we have a definition of g[fg^ on Y, extending to Y, whose Taylor expansion at the origin
is i. We can glue together the definitions of g[fg^ on Z and Y in view of the regular
situation of ZnY [12]. Thus the proposition is proved.

The proposition above is not true in higher dimensions, and, on the other hand,
irreducible non-flat elements of <^ are not always prime.

Example J. — f(x,jy, z)=xy-}-exp{—I/-2;2) is not semi-factorizable.

Example 2. — We put
f{y) ==exp(—i/y) sin2!/^,
g{y} = exp(— i If) cos2! \y,

,, . {AY) i! J^o
^n^) if ^o,

, , ^ f ^OO if J^°
'^[f^ it ^o.

Then {x2+f(^)){x2+g(^))={x2+h^))(x2+h,^),

two different factorizations into irreducible elements of S^.
It may be possible to generalize the uniqueness in the proposition above for higher

dimensions:

Problem. — Let/, /, ^, with i== i, 2, be elements of<^ such that f=f^=f^
and that T/^ and Tg^ are relatively prime for each z. Then, do there exist h^ i == i, . . ., 4
in S^ such that

4

/ = II A,, /i=A^, /g^A.
1=1

^==^4, g^==-h^

We generalize the theorem (2.1) in the two dimensional case.
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Theorem (3.4). — Let /=t=o be an element of m^)- The following conditions are
equivalent:

1) f is equivalent to a polynomial',
2) f is equivalent to an element of Q^\
3) f is CY equivalent to an element of 0^ for o<r<oo$

4) f ts factorizable;
5) ./""^o) is the union of the images of a finite number of G00 mappings from [o, i] to R2 such

that the images do not intersect each other except at the origin., and the F^ = S [ D3/] satisfy
the Lojasiewicz" inequality for i == o, i, . . . . 1 1 ^

Proof. — We already proved 4)01). It is trivial that i ) = > 2 ) and s)=>3). The
implication 2)=>5) is easy, and we omit it. We prove the implications 3)=>4) and
5)=>4)•

Proof of 3) =>4). — We can assume that r= i. Let T be a C1 local diffeomorphism
m

around o such that g==for is a convergent power series. Let II g^ be the unique
p ^i

factorization of g into prime elements of 0^. Let II / be a semi-factorization of/,
i==l

after Proposition (3.3). We only have to prove that each/ is factorizable. We remark
that if an element ^ of m(<^) satisfies

Ix(^) ^.I^F' f01' some constant a, (*)

then ^ is factorizable. The reason is the following. From the inequality (*), / is
C° sufficient (see for example [2]). Hence ^ is equivalent to any realization of T^,
especially to a realization which is factorizable. We assume that /, g^ satisfy (*) for
i^^+i, ^^+i, and not for i^:k, ^<^. We assume that each T/ is the o^ power
of a prime convergent power series A^. We have

m m

/^(o)^^-1^))^ U^o))^ UTC^CO)).
i=l i=l

Since any two ^^(o) are regularly situated,/"^o) consists of mutually regularly situated
curves. We see also that any two/'^o) are regularly situated. This means that for
each i<_t there exists a unique j^k such that /^(c^^TO^^o)). We can assume
that j=i. We see that l==k as follows. If ^<k, f{x) converges to zero with infinite
order when x->o along the curve ^^(o). Hence g[x) converges to zero with infinite
order when x->o along the curve (^oT)"1^). But this curve is regularly situated
with respect to .^^(o). This contradicts the second property of 5) in the theorem.
(It is sufficient that the curve is of class G1.) Hence we only have to prove that / is
factorizable. Let U be a small neighborhood of^^o)—-^}. Put

pM-^W/dist^,^-1^))"1
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on U—^-^o). Then ^{x) can be extended to the analytic curve ^(o)—^}, and
the restriction of the function to the curve does not take the value zero and converges
to zero with finite order when ^->o. This follows from the Lojasiewicz's inequality
if we consider the case where g==g-^ and ai=i . Put

P'W-^oT-^^/dist^,/,-1^))"!

on T^—y-^o). Then we have

Kdist(T-l(^^-l(o))<dist(^/,-l(o))^K'dist(T-l(^,^-l(o))

for xe^U)—/^1^) here K and K' are positive constants. Hence

LpoT-^^p'^L'poT-1^)

for A-e^U)—^-1^), where L, I/ are positive constants. Therefore p' has the same
property as p. We see easily that

|p'W[<^ S ID^)) for some constant c f**)
I P l = « i v /

Since/i—^i is flat, h^ converges to zero with an infinite order when x->o along the
curve f^-\o)—{o}, hence so does h^. This means that ^-^^{o}. Moreover it
follows that the curves /^(o) and ^(o) have a contact of infinite order at the origin.
Now we show that 04 ==04. If o4<o4, then for any (B such that |(B|=o4, B^h^{x)
converges to zero with infinite order when x-^o along the curve /I'^o)—^}, hence
so do D3^ and p' for |P| =a^ by (**). This contradicts the property ofp'. If ai>a;,
we have

{x\D^{x)=o for all lYl^a,}^-1^).

On the other hand the ideal of ̂  generated by TD^ for all H^ is of height 2.
Hence the set of common zeroes of D^ H^i is{o}. This is a contradiction. Thus
we proved that 04=04. Let p be the ideal ofe^g generated by all TD"^ with Ivl^ai .
Then we see that the radical of [p : h^\ is TUa. Hence there exist elements ^ m ^
with jy |<ai such that

T( S y,Dy,)=^N+^)
l Y | < a i

where x=(x^x^) and N is sufficiently large. We put

9= S z,Dy,.
M<ai

By Proposition (3.3) there exist elements <pi and 93 in <^ such that

y-Ti^ T<p,=^ and Ty^^+^f.

Since Ty^ is prime, cp^ is equivalent to a convergent power series. Obviously, for any
point a near o, T^ is divisible by T^ where T^ denotes the Taylor expansion at a.
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Hence, in view of a theorem in Malgrange [12] 3/1 is divisible by 91. Repeating this
argument, we see that there exist elements 9^3 . . . , cp^ such that

a!

/i= I! 9i,, T<p^==Ai for all i,
»=!

^(^^(o) for all z, j .

Applying once more the theorem of Malgrange, we may assume that 9^ = = . . . = = 9^ .
Hence/ is factorizable. Thus we have proved 3)=>4).

Proof of 5)=>4). — Since/satisfies the Lojasiewicz3 inequality, / is not flat [3]
P

Let Ft & be the semi-factorization of/in Proposition (3.3). Let Tg, be the a,-th power

of a prime formal power series A,, which we may assume to be convergent. Then we
only have to prove that g^ is factorizable. From the proof above we can assume
^F^0) +{°}- Bv the remark below, ^(o)—^} is an analytic curve with two connected
components A^ and Ag, and the theorem of Bruhat-Whitney shows that the closure
of each component is the image of an analytic mapping defined on [o, i]. Then the
composition of the analytic mapping with / is flat. Let

9,: [o,i]->R2 for z = i , . . . , 72(^2)

be the mappings in condition 5) such that 9^(0) =o and each element of {image 9,}
is not regularly situated with respect to ^(o). We will see that n==2. Assume that
the elements of {image 9,}^^ ^, are not regularly situated with respect to A^. We
choose a coordinate system (^, x^) so that \ is tangent to the positive ^ axis. Then,
for sufficiently small t>o, there exist real numbers a, for z = i , . . . , T Z ' such that
Si==(t, ^)eimage 9^. Consider the restriction of/ to the segment jointing s^ then the
^ flatness of/ at ^ for i == i, . . ., n' implies the existence of a point b on the segment

n'

where the S ( ^ + i ) — i - t h derivative of the restriction is zero. This means that
1=1 Z^f

^te+1)^04. By the way, from the assumption, it follows that —" never vanishes
c)x^1

on any sequence of points which has a contact with ^(o)—^}. Hence F^ _^o^
(for i= i, . . ., n ' ) does not vanish except at o, if 72'^ 2. But those functions are flat
at o, and any sequence of zeroes ofF^_^ which has a contact of infinite order with A^
is contained in U image 9,. This contradicts the assumption that F^ _^ satisfies Loja-
siewicz' inequality. Thus we proved that 7z '=i , hence n==2. This argument also
shows that, for small t>o, the line {x^==t} intersects the image of 9^ at only a point.

Moreover we see that —^—[ vanishes and is regular on the image of 91. Now, since

the ^09^. are not flat at o for z==2 , 3, . . . and j= i, 2, neither are the g^o^. Hence
^o9,==o for i=i,2.
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^1We apply the proposition (3.3) to —^—^ . Then we have the semi-factorization
p ' ux\1

n g[ of the function. Here we can assume T^==^ and g[~l{o)==g^l{o). Hence
i==l

the image of 9^ is transformed to a semi-analytic set by a C°° local diffeomorphism
around o. Choosing a suitable coordinate system, we can assume that

^{t)=={t\a{t))==^x,)

where a(f) is C00 on [o, i]. Put

ITT /yl/n\ ,r y >n
H^o<p, and ^^wl! n ^°

0 if ^<0.

Then, since Hi is flat, ^i is a flat element of S^. Let ̂  be the Whitney function defined
on the image of 91, which is the restriction of^i (see [12]). In the same way we construct
a Whitney function ^3 on the image of 93. Because the images are regularly situated,
we can extend ^i and ,̂ to the set ^^(o) and hence to a neighborhood of the origin.
Let ^ be the extended germ. Then ^ is flat and satisfies

^ o 9^ == h^ o ̂  for i == i, 2.

Put h[==h^—4'. Then ^ is equivalent to a convergent power series and satisfies
h[~l{o)===g^l{o). Applying Malgrange's theorem in the same way as in the proof of
3) =>4), we prove that g^ is divisible by h[ and even by ^al from the assumption. Thus
we have proved that 5)::>4).

We used in the proof above the case n = = 2 of the next remark.

Remark (3.5). — Let X be the zero set of a prime ideal of 0^ of height n— i. Then
X—{0} is empty or has two connected components.

Proof. — We will only prove the case n == 2, the other cases being proved in just
the same way. Let f be a prime element of 111(̂ 2) • Then we want to show that
^^(o)—{0} is empty or has two connected components. We assume that /^(o)^^}.
Let Xi be the closure of a connected component ofy'^o)—^}. Then, by the theorem
of Bruhat-Whitney, there exists an analytic mapping 9 from [o, i] to R2 such that the
image is X^, 9(0) ==o, the set of singular points of 9 is {0} and 9 is injective. Let
(p(^==(9^(^ 92^)). We may suppose through a change of the coordinate system that

9iW-^ 92^)== S a^, ^eR,
a>&

where the greatest common divisor of all the numbers in A=={oceZ |^=<=o} and of k
is i. Then we can extend analytically 9 to [—s, i] with s>o so that the extension
is injective and that its set of singular points is {o}. We use the same notation 9 for
the extension. We may assume s=i . It is trivial that y'^o) 3 9([—i, i]). Let
9c be the complexification of 9 defined on a small open neighborhood U of [—i, i]
in C. We see easily that 9c is injective and its set of singuler points is {o}. Hence
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the image of U—{0} by (pc ls a one-dimensional complex manifold and is contained
in a complexification ofjf'^o). By a theorem on p. 101 of Herve [4], <pc(^0 ls an

analytic set in an open set of C2. Hence the intersection of the image of 9^ and R2

is an analytic set in an open set of R2. It is sufficient to prove that

image (p^nR^ image 9 (*)

Let t^=o be a point of U such that <pc(^)eR2. Since (p^(^)==^ we see that

t == s exp Imjk with /'==o, . . ., 2A;—i , s real.

Then the set of points of U whose images by (pgc are re^ ls a rea! analytic set in U of
dimension one if we regard C as R2, and cp^ as a real analytic mapping from U to R2.
Hence the set of points ofU whose images by (pc are rea!ls a rea^ analytic set of dimension
one and is a sum of lines [s exp/W/A | s real} for i ==o, . . ., 2^—1. Let {s exp^ri/^}
be such a line. Then

9c(.y exp Imfk) = S ^(j> ex? ̂ ilkY
CCGA

is real for any real j near o. Let oco be the smallest element of A. Then a^{s exp^ri/^)"0

is real for real s. The reason is the following. If it were not so, the numbers

S; a^exp^nilkys"-^ and ^(exp^r?/^0

a>ao

would not be real for some real s arbitrary close to o. But their sum is real, the first
converges to zero when s->o and the second is a constant. This is a contradiction.
In the same way we see that the a^s exp ImfkY for a =^ + i? • • • a^e real. This means
that £oL==omodk for aeA. Because the greatest common divisor of A and k is i,
t is equal to zero or k. Hence we have (*) which proves the remark.

4. Other results about differentiable germs of functions

The author showed in [25] a sort of inverse of Lemma (2.3). But the proof
was faulty, so we again prove it here, in a generalized form.

Proposition (4.1). — Let f be an element ofm^n)9 The ideal [1^:/] contains m^J
for q^o if and only if there exists r^o such that for any g in m^J, fg -}-f is C" equivalent
to f. Here we assume ^(o)>—i if r=o, and the correspondences q\->r and r\->q are given
by r=<7+2, q==r respectively. The same result holds for ^.

Proof. — <( Only if35 follows from the proof of Lemma (2.3). For (c if", we detail
the case r=o as follows. For the other cases, the proof is the same, and we omit it.

<( Iftfis C" equivalent to/for any constant t>o, then f is contained in m(^J I/ ".
Let a natural number k be fixed. Let Adiff^ be the set of local analytic diffeo-
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morphisms around o in R". Let Adiff^ denote the set of^-jets of elements of Adiff
Ihen Adifl^ is contained in a Euclidean space. We put

A={(f , T)eRxAdifF^| f/s/oT mod m^W},
B={TeAdiff^ | ̂ eR s.t. tf=for mod nr^W},

C={T6Adiff^|/=/oTmod nr^W}.

Since A and C are algebraic sets and groups, they are Lie groups. Because B is a
projection of A, it is a semi-algebraic set. Hence B is also a Lie group, and C is a Lie
subgroup ofB. From the assumption, there exists T( in Adiff,. for any <e(o, i], such
that tf=f^. The cardinality of the set of T( whose Jacobians are greater that i/N
at the origin for a sufficiently large N is the continuum. Hence there exists a
sequence t^, t^ ... converging to s in (o, i] such that {r,} converges to -r in AdifP
Take subsequences of {^} and {T,,oT,71} if necessary, and assume that\==i and
T,== identity. This shows that C is of codimension one in B. Consider an element
ofAdiff^ as n polynomials. Then there exists an analytic mapping <p(t x) = (<p ® •)
from (-a, e)xR» to R" with s>o such that for each te{-e, e) 1 ) • • •' ̂

(i +0/W=/o<p(f, x) mod m^1^),
y (t, x) eAdiff^, and y (o, x) = identity.

We put F(^)=/oy(^). Then there exists g{t, x)<=0{t, x) such that
8F

F{t, x) = F(o, x) +1-^ (o, x) + t^g^t, x).

Hence we have for each te[—s, e]

fW = (/° v(t, x) —fo <p(o, x)) ft mod m^1 (fiij
" 8f 8s>-

=.2^WIt(o^)+^^)•
This implies

Ax} = ̂ .{x) ̂ ^ ̂  mod mt+l(^•
The relation <^,o)=o means that ^••(o, x)emW. Hence, from the closedness of

any ideal of ^ in the Krull topology (Krull), we deduce /6m(^)I/.
Here we used a consequence of the theorem of Zariski-Nagata, namely the fact

that an element of ̂  is prime in ̂  if and only if it is prime in J^. This is not generally
true in the ^ case. But

Proposition (4.2). — Let f be an element o/m(^). Then a factorization of fin irreducible
elements of <^ is the unique factorization in prime elements of 0^.

We shall generalize this to the global situation in the next chapter.
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Proof. — We need a result of Tougeron [31]. Let g^, . . .3^ be C00 functions
defined in the neighborhood of oeR". Let JaC?i, • • • 5 & ) denote the ideal of ^n
generated by T^, . . ., TaSk where T^ is the Taylor expansion at a. Then the func-
tion htj^(^, - - - y g k ) ln a ls l°wer semi-continuous. We only have to prove the
following:

Let g^ and g^ be elements of <S^ such that g^g^ =f'. then there exist elements cp^
and 9g in <^ such that cp^ and 92^2 are analytic and that <pl(p2== I *

k

Let f= IT f^ be the unique factorization in prime elements of ^. We can
assume that

T^=n^s T^-n/^.
i==l i=l

We prove our assertion by induction on k. The case k=o is trivial. We suppose
the assertion true k — i . Let i satisfy o^—a^oc^—oj for any j. Then

htJo({D^},p|^,_^2.

Hence by Tougeron's result

^Ja{{^g2}\^^-^^ for a near o.

If f^a)^o, obviously T^ is divisible by T^i. If f^a)==o, T^ ls not divisible
by T^0'1"011'4'1. Hence Ta8ils divisible by T^/^1 for any a. From a theorem of Mal-
grange on p. 82 of [12], g^ is divisible by/^. Hence we may assume that o^ = o. Then

htjo(^i,/i)^2,

consequently

^Ja^i^/t)^^ for a near o.

In the same way as above we see that g^ is divisible by/^"""1. By the induction assump-
tion on k, this completes the proof.

We now have a result about the G° equivalence.

Theorem (4.3). — Letf, g be elements of m(^J such that f and g have the same sign at
each point. Then f and g are G° equivalent.

Proof. — We define vector fields near the origin by

v ( ^ ^\ ^ v 1^ ^X/== , — , . . . , — and X == — , . . . , — .
' \^1 ^n] \^1 ^n]

Then X. and X^ are non-singular on {x\f{x)^o}. Using them, we will construct a
local homeomorphism T. We first define T except on/'^o). Let A be the set of x where
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^X^==/Xy for some k^o and {<_o with k^-^-fi^o. Then A is a semi-analytic set,
contained in/ ^o). The reason is the following. We have

A= S^at.
* =1 OX. OX.

Hence A is a semi-analytic set. Assume that A is not contained in ./^(o). Then,
from the theorem of Bruhat-Whitney it follows that there exists an analytic curve in
A—^^(o) one of whose ends is the origin. By the assumption we have fg^o on the
curve. We consider the restrictions ofy and g to the curve. They are monotone.
If one of them is monotone increasing, then the other is monotone decreasing. As
they are zero at the origin, we see that fg^o on the curve. This is a contradiction.
Hence A is contained in/"1^). We put

'E=[{x,t)eRnxR 1 ^
i=l

sfW
[ 8 x ~ .

s
i=l

fwv
8x,

„ , y W W
~-(t~I)l'z~8x~~8x~

Then E is a semi-analytic set. Let r^(x) be the function on R^ such that the graph of
t==Tt {x) on R^—y-^o) is Er^—y-^o^xR, and that ^{x)==o onf-^o). Then,
by a property of semi-analytic sets, T] satisfies the Lojasiewicz9 inequality. Moreover,
iff is analytically parameterized, the inequality is satisfied on the product space of R"
and the domain of the parameter. This means that, also in the parameter case,^"'1^)
contains the intersection of A with a neighborhood ofy^o). Let r>o be a constant.
We put

S,={xeRn\\x\=r}, f ==/, and g =gr'

Let X^ , X^ be the tangent components of X^ X.
s,

respectively. Then

X/=X. -<XpO^> Ox x,=x, -<X^>0^,
k

We define Ay by X^ and X^ in the same way as A. We consider that fy, gy are
parameterized by r>o. Then f~l{o)—{o} contains the intersection of U A^ with a
neighborhood of/'^o)—{o}. We put

A;^^-/-1^), B-(UA;)u{o}.B-(^A;)u{o}.

Then we see that B is a closed semi-analytic set. Let 9 be a G00 function on R"—-^}
such that o^<p^ i, the values in a neighborhood of/'^o)—^} are o and the values
in a neighborhood o f B — { o } are i. Let Y be a vector field on Rn—/ - l(o) defined by

Y-X//|X,|+X,/|V

Then Y has no singular points. There are vector fields Y^ and Y^ on Rn—/ - l(o) such

that YI is the Ox component of Y at each point x, and Yg is the orthogonal component.
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We write Y'== cpYi+Y^. Then Y' has no singular points and satisfies Y'/>o, Y'^>o.
Let a point x be sufficiently close to the origin and such that f[x) =t= o. Then there exists
a unique y on the integral curve ofY' passing through x such that f{y)==g{x), and the
mapping T : x-^y is continuous. The reason is the following. Let r>o be fixed.
The vector field Y' is tangent to S^ at any point ofS, in a neighborhood of/'^o). Hence
all integral curves passing through points of the interior of S^ never intersect with S,
at any point close to/'^o). Let u be the minimum of |/J outside of the neighborhood
of/'^o). Then we have the solution y==^{x) for x such that \x\<r and \g{x)\<u.
Hence T is well defined in a neighborhood of o. The continuity is trivial. This shows
also that T can be extended to (R^/'^o^u^}. We replaced Y by Y' in order to
extend T to the origin. For the extension to the whole space, we shall moreover modify Y.

Let { G , $ i = i , . . . ,w} be the stratification of/'^o) in Mather [14]. That is,
the Gi are analytic manifolds such that

m

.LKW-^o),
i == 1

Cpq if C,nC,=t=0,

and there exist a tubular neighborhood U, of G, and a diffeomorphism TT, : C,xD,-^U,
for each i, where D, is a closed disc centered at o with radius i, such that

1) 7^ is the identity and
CiXO

2) if C.CG,, for any xeC,r\Vj we can choose uniquely yeC^ so that

7^xD,)C7^xD^.).

We consider analytic approximations of the maps TT,, i== i, . . ., m which satisfy the
condition i). We use the same notations TT,, U,. Then they do not generally satisfy
the condition 2). We shall modify TT, so that 2) is satisfied. Let G,, Gj be strata such
that CpG^. We define a modification for (G,, G^). Let p,, q, be the projections
of C, X D, to the first component and to the second, respectively. Define

p,,: G,xD,->G,xD, by p,,(^)=(^)

for o < ^ < i . We put

^(^^^(A-0^10^0^0^1^)5 ^0^-1(^)

for zeV,r\V^ where V^=^(C^x{|S|^9/io}). Then, if the approximations are
strong enough, TT^ is well defined and is a diffeomorphism from U,nV^ into U^.
Let % : R-^R be a G00 function such that

f o if ^1/3,^n. if -2«/3,
257
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and ^(^) is analytic and monotone on (1/3,2/3). We put

^ ^^_fT^(lp,•°^71(.)P)(^ if ^U,nV,
T l̂ ) if ^U,-V,,

U;=^(U,), U—T,(A,x{|S|^i/2}),

^ == ̂ j0 ̂  5 and ^ = T .̂ o p^/2.

We assume the approximations sufficiently strong. Then

^': G,xD^U^ and TT; : G.xD^U;

are diffeomorphisms, satisfy i) and 2), and are analytic except on a semi-analytic subset
of G,xD,. Here the semi-analytic set is a sum of fibres of the projection p,. Let C,,
G^, Cj, be strata such that G^CC,, G^cq. Then the same modifications of TC,, TC.,
7^ as above can be done at once for (G^, G,) and (G^, G^.). Hence we first modify
all the pairs (TT,, .̂) such that dim C^dim/'^o)^^, dimC^==7z '—i and then all
the pairs (^, ^) such that dimC^=7z' or % ' — i , dim G^==%'—2. We proceed with
the modifications in this way. Then we have diffeomorphism n, : G,xD,-^U,', for
2== i, . .., m which satisfy i) and 2) where each n[ is analytic except on a semi-analytic
set. Here the semi-analytic set is a sum of fibres of the projection A, and the restriction
of n\ to the semi-analytic set is analytic except on a semi-analytic subset of smaller
dimension and so on. We order C^, Gg, . . . so that

o == dim G i < . . . <dim G^.

Since we consider functions in a small neighborhood of the origin, we have dim C ==o
only if i==i. We write Yi=Y. Let a fibre of U^Gg be fixed. Let x be a point
of the fibre. Let Y^ be the component ofY^ tangent to the fibre. Then the c< quasi "
analytic property of n, shows in the same way as for Y that the vector field Yg is non-
singular in a neighborhood V of Cg. Let 93 be a G°° function defined on If—Cg so
that o<(p^i and

i outside of V
o in a small neighborhood of Gg.

We put

Y^^Yi+O-^.

In the same way we define Y^ for Gg and Yg. Repeating this process, we get a vector
field Y^ and a mapping T' : x^y such that f{y)=g{x) and x, y are contained in the
same integral curve of Y^. We saw that T defined by Y' could be extended to
(Rn—/- l(o))u{o}. This method shows that T'can be extended to/-^o). Hence
fo^==g. It is trivial that the extension is a local homeomorphism around o. The
proof is complete.
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Remark. — It is natural to ask the following question. Let/, g be elements of
m(^J. If there exists a local homeomorphism T such that /or and g have the same
sign at each point. Then, are/and g G° equivalent?

This is wrong. There is a counterexample in King [7].

Remark. — As a special case of the theorem above, we see that/and/A are C° equi-
valent for any/in m(^J and h in ^ such that A(o)>o. Moreover, this statement
is true for any germ h of a C1 function whose value at o is positive.

Proof. — In the above proof, we modified the vector field Y===Xy/ Xy[ +X^/|XJ
on ^—/"^o) into Y^ in order that
1) the diameter of the subset of each integral curve of Y^ of points whose distance

from/^o) is smaller than s>o converge uniformly to o when s decreases to o,
and that

2) neither Y^/nor \^g vanish anywhere on ^—/"^o).

Since g ==fh is not analytic, it is not acceptable to consider the vector field Y. Hence
we modify X^ on R"—/"1^) to X^ in place of Y. By the same argument as in the
proof of the theorem, it is sufficient that the modification X^ satisfy i),

2)' X^/vanishes nowhere on R^—/"1^) and
2)" X^/A vanishes nowhere on R^/'^o).

The conditions i) and 2)' are easy to be satisfied. For 2)", we use the idea of the
method of majorant as follows. We saw already the C° equivalence of/ and of for any
constant a>o. Hence we may assume that A(o)==i . Let J/=(^i, • • • 5 ^ ) be other
variables. We set

g{x^)=f{x){i+^x^ f{x,y)=f{x)

and X=(XpO).

We regard X as a vector field on (R^/'^o^xR". Let K be a compact subset of
thej^, . . .3^ space. By the way, we easily see that

8f{x)|/M|^'S \x,
-i| ' Ox, |

in a neighborhood of o, where a! is a positive constant (e.g. [30]). This implies that
n Q/-2 n n 8f

xg== s ̂ ( i + s ĵ .)+ sy-^o
- i=l ̂  J-l " " »=1 ^

on the intersection of a neighborhood of { o } X K and (R" —/"1 (o)) X R'1. By the implicit
function theorem, there exist G° functions y,=y,{x} for i=i , . . . , n such that the

( 80' c)g \
gradient of g =fh is the multiple of -L (^M), ••• . . - (^W) by a positive valued

OX^ CX^ f
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G° function a'\x). Let K be the image of a small closed neighborhood of the origin
by^(^). Then

^fh[x)=alf{x}^g{x^{x))>o

on the intersection of the neighborhood of o and ir—/"1^). As in the proof of the
theorem, we can preserve this inequality when modifying X^ to X^, . . ., X^. There-
fore the condition 2)" is satisfied. Thus we have proved the remark.

The proof of the theorem above works also in the global case. Hence we have,
for example,

Corollary (4.4). — Let /i, /g be analytic functions on a compact real analytic manifold,
and S, be the set of singular values of /. Assume M^/f^SiUS^/^SiUSg) and
fi ==f2 • Then f^ and f^ are C° equivalent.

M M

From the remark (2.5) and a result in [31], we have the following. Let/be
a convergent power series in n variables over C such that /(o) = o, let s be the codi-
mension of S, the singular set of/'^o) around o in C^ Then/is equivalent to a
C-polynomial in s variables with convergent {n— k) -series as coefficients. Here s is 2
except when/is a power of a prime element. But the codimension j' of S^SnR"
in W is not always 2 even if/has coefficients in R and is not a power of a prime element.
Hence the next theorem is not implied immediately by the theorem (2.4). We remark
that S' is the subset of/'^o) of real points around which/is not a power of a regular
function.

Theorem (4.5). — Let fbe an element o/m(^J. Let r be a non-negative integer. Then
f is Gr equivalent to a polynomial in s' variables with convergent (n—s') -series as coefficients.

For the proof we need the following lemmas which are the G' cases of the
Lemmas (1.1) and (2.3), and a refinement of (1.2). The proofs are the same and
we omit them.

Lemma (4.6). — In Lemma (i. i), we assume the G' differentiability of a^x, t) if r^i
and Lipschitz' condition if r=o in place of the G00 differentiability. Then f and g are
C^ equivalent.

Lemma (4.7). — Let f{x) be in m2^) (resp. mTO). Let y^ for i,j=i, ...,n,
be variables. Then there exist elements b^x.y) in m(<^+^) (resp. m(^+^)) such that

/(-. .,«,+s»,( ,̂. ..)=/(,)+ i,,̂ ,̂
\ J=l ^ / i , j= l ^ ^

and b^{x, o) = o for i , j= i , . . .,n.
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Lemma (4.8). — In the Lemma (2.3), we assume that g is an element of the ideal generated
by m\A)[lf:f]2 in the ring of germs of G^1 functions for r^i. Then f and f+fg are

(7 equivalent.

Proof of the Theorem (4.5). — We proceed in the same way as we proved the
Theorem (2.1) , and we use the same notations/,/, A,/' and p, replacing < by ^.
We assume A > i . By Lemma (2.2) , S' is the zero set of p. Let q be the ideal
in ̂  of germs vanishing on S'. Then we have ht q == s\ Hence, from the normalization
theorem for the ring of convergent power series, we have a coordinate system (^, . . ., x^)
such that the sum of q and the ideal generated by ^, . . ., x.^_,, in ^ contains m^J
for sufficiently large j&. Let 9 be a monic polynomial in a variable with coefficients
in d){x^ . . ., ^-,') such that 9(^-3' +i). • • • . ̂ n) are contained in the product of a
sufficiently large number of copies of q. Then we remark that by the Lojasiewicz5

inequality, the ^ { x ^ ) l g [ x ) are germs of G' functions for j ^ n — s ' + i , . . . , n where
n (()f'(y\\2

0(x)== S . From Weierstrass' preparation theorem there exist 91, . . . , 9^
z - i \ B^ ;

in ^ and F^, a (^ _ ^ +1, . . . , x^) -polynomial with coefficients in 0{x^ ..., ^_s'),
such that

/,=F,+cp(^_^j9i+...+?(^)9s'-

Hence we have

/'=F,n ^+9(^+1) 9in /,+... +9(^)9s'n/,.
t +1 t +1 » +1

Apply Lemma (4.7) to/'. Then replacing^ by

-(9(^-^?in^+...)/^)
if i=j, and by o if z+j, we have

Fi n /^//(..., x,+ i M^W8^^ • • •)•
i+l \ J=l (/•A•J /

We denote the local (7 diffeomorphism by T. Since b^x, o)==o, we have h^{x, t), ...,
^(^,^) in m(^+i) such that

^.oT=^M(I+^^,(<p(^-s'+l)CPl+.••)^W]).

Aj(x, o)=o for j=2, . . ., n.

Hence there exists (;(A:, t) in ^+1 such that c{x,o)==i and

/oT=4^(9(^-s'4-l)?l+•••)/^)1Flal^/ai•

We put F = F^i n /ai. Let h be the sum of the squares of generators of m(^) [Ip '. F].
Then the zero set of h is contained in S', and we may assume from the beginning that
the 9 ( .̂) I g h are germs of CV functions for j = n — s ' +1, . . ., n. Hence, by Lemma (4.8),
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F and /or are CT equivalent. Here we remark that the singular set of F^ II f, is S'.
i + i

This means that we can use again <p(^-s'+i), . . . when we transform /g into a
(^_^+i, ..., ^)-polynomial Fg with coefficients in <^_^. Therefore we see in the
same way as above that/and F^F^/g"3. . . are C' equivalent. Repeating this process,
we prove the theorem.

Remark. — Letf, f be as in the proof of Theorem (2. i). Suppose that the height of the

{ I n (W }ideal T^ |^e^, g S ——) is a well defined continuous function germ \ in ̂  be h. Then,
[ I j s a l \ c x j ] J

for any r< oo, f is CY equivalent to a polynomial in h variables with germs of C00 functions in
n—h variables as coefficients.

5. Homomorphism from ̂  to S^

Reichard [22] and the author [27] showed the existence of a homomorphism
from ^i to S^ the composition of which with the Taylor expansion is the identity
of^i. Van der Put [32] generalized it (see Theorem (5.4)). Here we show another
generalization.

Theorem (5.1). — There exists a homomorphism S from <^ to §^ such that ToS is the

identity of ̂  and that for any f in e .̂ we have sl^l^ -(-^' .
\dxj dx

For the proof we need a theorem of Malgrange [13].

Lemma (5.2). — Let 0 be a G°° mapping in 2m +i variables ^,Y=(^, ...,j^)
and Z==(^, . . ., z^) in a neighborhood of (o, Y(), Zo) with values in W. Suppose that there
exist formal power series Hee^^ such that

H(o)=Yo, Î̂ Z, and T^,Mx,H,d-^\==o.

Suppose that the determinant of the matrix T(()Y^)—(A;, H,—) is not zero. Then there
exists Fe<^» such that • v' a 9Z\ dx]

( i-p\
TF=H, 0 ^F ,— =o.

dx]

Proof of the theorem. — Let A be a subring of ^ = y[x) containing R such that
yy

for any ^ in A) the derivative — is contained in A. Let 9 be a homomorphism from A
//IY\ /1( y\

to <?i such that T o <p is the identity and that for any ^ in A we have <p | — \= .
\dx] dx
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Let X denote the ordered set consisting of the such pairs (A, 9). We define the order
as follows. Let (A, 9), (B, ^) be elements of X. Then

(A,9)<(B,^) if A C B and ^ =9.
A

Apply Zorn's lemma to X. Then X has a maximal element (A, 9). We shall prove
that A=^i. Assume that A is a proper subset of^. Let ^ be an element of ̂

AY
not contained in A. Let A^ be the ring generated by ^, —, . . . over A and let

A|A)? ^i? • • •] be the polynomial ring in ^, . . . with coefficients in A. We have a natural
d^

homomorphism 6 from A[^o, . . .] to A^ defined by 6 ( ^ ) = = . for all i. There are
two cases to consider:
1) 6 is injective, or
2) 6 is not injective.

Case z. — Let/be a realization of ^, that is, /e<^ and T/=^. Then we have

an extension homomorphism 9' of 9 from A^ to ^ defined by 9' —^ == . . It is trivial

that (A^,9')eX, (A, 9)<(A^, 9'). This contradicts to the maximality of (A, 9).
Hence this case cannot occur.

00

Cases.— Let p be the kernel of 6. We set p^=pnA[^o, . . . ,^]- Then V== U Pn-
Let m be the minimum of n such that py»4=o.

First we shall prove the existence of a homomorphism 9' from A[^, . . ., ^J to <^
extending 9 and such that

(*) To 9^0) =^ 9'^^ for i<m, 9' -o.
<u p^

We regard elements of p^ as polynomials in ^ with coefficients in A[^, ..., ^_J.
Let ^ be an element of p^ whose degree takes the minimum value in p^. For any
element q of p^, there exist j&' in A[^o, . . ., ^J and y' in A[^, . . ., ^- i]—{o} such
that

(**) PP'=U'-

The reason is the following. Let us divide q by p. Then there exist p ' , r in A[^, ..., ^J
and q' in A[^, . . ., ^-i]—{o} such that

??' ̂ A^' + r? and degree r< degree p.

Since rep^, we see that r==o. Hence (**). We put
p==^a^, with oc===(ao, . . ., aJeNm+ l, ^eA,

a
n»

^-(^o, • • • ^m) . ^-n^-.)5 • • - 5 •'m/? *' — XA *'»
1= 1

^5
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We set

P^o, ...^J=:S9(0^
a

and, if 772== o

A^o^^-S^^+^Sa^^-S
v. dX a

Po(fo, <,) = S^^+^ay^) ̂ -1.
a fi?^ a

We put 77z'=max(i,77z). Let 0=(d\, . . ., O^/) be the C00 mapping in the
variables x, y^ ...,j^, ^, . . . , ^, defined by

if 772>0, Oi=^-J^ •••.^-1-^-1-J^

^n-PO^l, . . . ,^),

if 772=0, ^>i=Po(^i,^).

/ ^ ^w'--l^\
Then H = ^, — , . . ., ———. is a formal solution of

\ dx </A;W-1/

rfH^
~dx,

TO ^H,— =o.

The determinant of the matrix T-_(^H,—) is ^^^,...,S. Since
Op cz\ dx! ^m\ dx dx^
^ (^o? • • • ? ^m) is not zero and of smaller degree than p as polynomial in ^, the minima-

lity of the degree ofj& implies that — is not contained in p^,, that is, -^ K, -" , . . ., rf-")
^^ ^^\ ^ rf^

is not zero. Hence we can apply Lemma (5.2). Therefore there exists a solution
TT _ /'TT V \ c/^Wr — ( ,̂ . . ., r^jeo^

( »y,\

of TF==H and 0 x, F, . =o. Let us define an extension 9' of cp by q/(^)== ̂ F .

If 772>o, 9(^(^, . . . ^ J )=PJF , , - , . . . ^ j=o. Hence pep^ and we have

^'(^^o for any element q of p^ by virtue of (**). Hence 9' satisfies (*). If 772=0,

we have 7x{p[tQ))=7x^)=v\7'^=o' Hence ^(^o))==P(F)=o. This means

that ^(^PO- Therefore we can prove, as the case 7?2>o, that 9' satisfies (*).

Secondly we shall extend 9' to A[/o, ^, . . .] so that, if we use the same 9', then
j{ / .

(***) ^ ' t ^ ^ — 0 and y' =o.
dx p
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d'^to
We define the homomorphism by 9'^=——^— for i>o. Then we only have to prove

u/c
that 9' ==o. Let p be the linear transformation of A[^o, . . .] defined by

p

p(a)=— for aeA, p^^+i,
fiw

and P(^)=p(/k+/p(^) for /^eA^, ...].

d^f
Thenwehave 9'(p/)=—— for any /eA[^o, . . .]. Hence any composition p o . . . o p ( / )

dx
is mapped to o by 9' if/is. Therefore, for the proof of (***) it is sufficient to see that
if/is an element of p there exists/' in A[^, . . . ]—p such thatj/' is contained in the
ideal a generated by p, p(j^), pop(^) , . . . . We prove this by the induction on the least
integer n such that /£p^. If n==m, the assertion is already proved. We suppose it
true for n<_k—i, and assume that /^p^? /^P/c-r ^e ^sily see that

i

po. . .op(^)==^+,+9m+o

where ?eA[^o, . . ., Q—p^ ^^.,eA[^, . . ., ^-J for i^i. We regard the elements
of A[^, . . ., ^] as polynomials in ^ with coefficients in A[^, . . ., ^_J. Dividing /
by ^/c+?L we see that there exist/' in A[^, . . . , ^J—P^, ^ in A[^, . . ., ^] and A
in A[^, . . ., ^_J such that

ff-§^+^+^

Since y^+^eaCp, we have hep. By induction, there exists H in A[^, . . . ] — p
such that hh'ea. Hence j/'A'ea. Thus (***) is proved.

Finally, we induce a homomorphism 9" from A^ to <?i by 9'. The condition (***)
implies the existence of 9". The conditions (*) and (***) show that (A^,9")eX.
It is trivial that (A, 9)<(A^, 9"). This contradicts the maximality of (A, 9). Hence
A==^. The theorem is proved.

It seems impossible to generalize the theorem above to arbitrary dimensions (see
p. 164 in Hormander [6]).

Van der Put's result is the following.

Theorem (5.3). — Let A be the image of a 'R-homomorphism from 0^ to ^r. Then
there exists a homomorphism S from A to S^ such that ToS is the identity of A.
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II. — GLOBAL EQUIVALENCE

6. Preparation

In this chapter, manifolds are assumed to be real, connected, paracompact,
analytic and of dimension n, functions and germs of functions are real-valued C00, and
mappings, diffeomorphisms and their germs are G°°, unless otherwise specified.

Let^ andy^ be mappings from a manifold M^ to another Mg. We say that^i
andy^ are equivalent if there exists a diffeomorphism T of M^ such that f\o^=f^' The
mappings are R-L (right-left) equivalent if T' of^o^==f^ for suitable diffeomorphisms T'
of Mg and T of M^. We define in the same way the L equivalence by means of a diffeo-
morphism of M^ only, the analytic equivalences by means of analytic diffeomorphisms,
and the equivalences of germs by means of local diffeomorphisms. Let A^ and Ag be
subsets or germs of subsets of a manifold M. A^ and Ag are equivalent when A^ is trans-
lated to Ag by a diffeomorphism or a local diffeomorphism of M. If the diffeomorphism
is analytic, the equivalence is called analytic. If we talk about the Jacobian matrix
of a mapping, local coordinate systems are assumed to be already given.

The notations X, Y, . . . stand for C00 or analytic vector fields on manifolds, in
particular X^, Xg, . . . are analytic fields defined as follows. Assume the manifold M
to be analytically imbedded in R^ Let (^, . . ., x^) be the affine coordinate system

r\

of R^. For each i=i, . . . , N we restrict the vector field — to M. Then X^ isa^
defined as the tangential component of the restriction to M. We remark that X^, . . . , X^
span the tangent space of M at each point. Let^and A be a function and a set respec-
tively. Then we denote by^p and A^ the germs of f and A at a point x. We write 0
and y for the sheaves of germs of analytic functions and C°° functions on a manifold
respectively.

Throughout this chapter the topology put on a set of mappings or on a set of vector
fields will always be the strong Whitney topology, defined as follows. Let M be a
manifold and let G°°(M) be the set of functions on M. Let {OJ be any locally finite
open covering of M and let V^ be an open set in G^O^) for the topology of uniform
convergence of all derivatives. Then an open set ofCl°°(M) consists of functions whose
restriction to 0^ is contained in V^ for all i. We define the topology on a set of diffeo-
morphisms, a set of mappings or a set of vector fields in the same way. We recall
Whitney's theorem asserting that any function can be approximated by analytic functions
in this topology [35].
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The fundamental lemma on the equivalence is the following global version of
Lemma (1.2) . The proof is the same, because the global analogue of Lemma (1.1)
holds. See the proof of Lemma (1.2) in [25].

Lemma (6 .1 ) . — Let M be a manifold., let f be a function on M, and let Y^, . . ., Y .̂
be vector fields on M. Then there exists a continuous correspondence associating to a system of
^functions a^ on M, for z, j "==i, . . . ,A, a vector field Y on M such that:

(a) for (3L-==o, Y is the zero vector field \
(b) Y is a linear combination of Y^ with functions as coefficients \
(c) if we write T=== 9^ where <p^ is the one parameter group of transformations " generated by ? 5 Y,

then we have, for small a^

/OT=/+ S a,.Y./.Y,/.
i j = l

Remark (6.2)

1) In addition, if/, Y^ and a^ are all analytic in an open subset of M, then Y is
analytic in the same subset.

2) We assume that ^1=^, that/, Y .̂ and a^ are analytic in M and that the ^
are all divisible by an analytic function h. Then the components of the mapping T
minus the identity are divisible by A.

3) In the above lemma, we can replace the condition that a^ are small by the
k

condition that S ^Y^/Y^/ is small if/ is analytic.
ij==l

Proof. — The first assertion immediately follows from the proof in [25]. Regarding
a vector field on R^ as a mapping, we also see that the components of Y are divisible
by h. Hence the components of T minus the identity vanish on h~^[o). This implies
that, if A is regular, 2) holds. Moreover we easily settle the case where h is a power
of a regular function by the properties of vector fields. We remark here that the corres-
pondence a^\->\ can be extended to the complex field and that the resulting diffeo-
morphism is the complexification of T if the a^ are real valued on R^.

Now we consider a general h. Since the problem is local, we regard the functions
and vector fields as germs at a point of R" and we assume that h vanishes at that point.

/
Let 7i be the complexification of h and let h = II h^ be the unique factorization into

1=1
prime elements in the ring of holomorphic function germs. We already saw that the
complexified germs of the components of T minus the identity are divisible by h on the

i
regular set of 11 ^. Hence, by Hilbert Nullstellensatz, the complexified germs are

i=l
{ { ^

divisible by H^, because the closure of the regular set of H ^ is the zero set. This
i=l i=l
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implies again that the quotients are divisible by Ft %. Repeating this argument, we
a;>l

obtain the divisibility by the germ of h. Thus 2) is proved.
3) follows from the statement below.

Letf^., . . .,y^ be analytic functions on an analytic manifold M and let g be a linear combi-
nation off^, . . .,f^ with functions as coefficients. If g is sufficiently near to the zero function,
the coefficients can be chosen near to the zero function. If the given coefficients are analytic, so are
the resulting ones.

Proof. — First we prove this in the topology of uniform convergence of all derivatives
on compact subsets ofM. Let p be the mapping from [G^M)^ to G°°(M) defined by

m

P^l. ...,9j=^9^.

We denote the kernel ofp by K and the intersection of K and [G^M)]^ by K'. Because
the image ofp is closed, the open mapping theorem for Frechet spaces shows that if
§==P^ •"^m) is sufficiently near to o, there exists (<^, . . . ,q4) in K such that
the 9, — 9,' are near to o for i == i, . . ., m. We only need that if g is analytic, so are
9, — 9,'. By Gartan's theorem we may assume the analyticity of 9,. Hence it is suffi-
cient to see that the closure of K' is K. Let jTC^ and JT' C ^w be the sheaves
of submodules defined by the stalk

m

^-{(pi, ..., yJ^T S 9j;a-o}

jT;-J^n^ for aeM.

Then, by Oka's theorem, Jf' is coherent, and Artin's theorem implies that the closure
ofT.JT; in the Krull topology is T,̂  for aeM. Hence T,JT;^=T^ (Krull)
Here T^ means " Taylor expansion at a 59.

Now let ^ be an element of K. It is a cross section of JT. The theorem of Gartan
shows that, for aeM, T^ can be approximated by T^ where ^ are cross sections ofjT',
that is, elements of K'. Therefore, for each a of M there exists ^ in C^M^K' such
that T^==T^. Then we say that ^ is pointwise in G^M)!^' (see [12]). Whitney
proved that any function which is pointwise in a submodule of [G^M)]^ is contained
in the closure of the submodule. Hence ^ is contained in the closure of C^M)!^'.
Since the closure of K' is that of G^M) K', ^ is an element of the closure of K'. Thus
the statement is proved for the weak topology.

Case of the strong Whitney topology. Using a partition of unity, we find easily
(?n • • • ? ?w) as above. We need to show that the closure of K' in the strong topology
is K. For this we apply the method of Lemma 6 in Whitney [35]. We may assume
M = If. Let ^ be an element of K, let the open set U C Cf be a Stein manifold contai-
ning K1 to which ̂ , . . .,y^ can be extended, and let h be a function on R" which is i
on { | ^ | ^ i } and o on { |A: | ^ i /2} . Then, by the above result, ^ can be approximated
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on { |A : | ^2} by some Y^ in K'. Gartan's theorem tells us that Y^ can be chosen to
be extendible to U. We choose the approximation so strong that (^-—Yi)^is small
on {|;c|^2}, where h-^{x)=^h[xf2). Next we approximate {^—Yi)^ on { |^ |^3}
by Yg. Repeating this process, we obtain an approximation V=Yi+^*2+- • • of ^.
To finish the proof, we only have to see the analyticity of Y. Let Yg be an approxi-
mation of ^—YI on { |^ |^3} defined on U. We put

^{x)=Cknj^)e-^x-y\2dy

where G is a constant and k is a real number. We take k large. Then Yg' is near to h^
on { | ^ | ^ 3} and to o on {ze^ |-2' |^i/2}. Hence Yg^Y^Y^ is an approximation
of (4'—Yi)^i o11 { 1 - ^ ^3} ^d YL+Y2+- • • converges on U. This finishes the proof.

Remark (6.3). — With the same/ and Y^, . . ., Y ;̂ as in the lemma above, let
gi) • • • ? 8k' be linear combinations of the Y^/, for ?'= i, . . ., k, with functions as coeffi-
cients, such that, for i= i, . . ., k and j == i, . . ., k\ also the Y^ are linear combi-

A;'
nations. Then f is equivalent to f-\- S a^gy for small ^, and the same properties of

i=l

the diffeomorphism as above hold. The proof is the same.
The principal idea of the proofs in this chapter is to enlarge the subdomain where

functions or mappings are analytic. Up to equivalence, the lemma above allows one
to add certain types of functions. For that reason, the next lemma will be used many
times.

Lemma (6.4). — Let ̂  and ̂  be functions on a manifold M. Suppose that ̂  is analytic
and that ^ is analytic around ^a^0)- Then there exists an arbitrarily small function ^3 such

that ^1+^2^3 ls a^ly110'

Proof. — Let p be the sheaf of ideals of (0 generated by ^3. Then we have the
exact sequence of coherent sheaves

o-^p-^-^/p—o.

Gartan's theorem on Stein manifold asserts the surjectivity of the mapping between
cross-section spaces F(M, ^)—^r(M, ^/p). Since C^/p is zero outside ^^o), ^ deter-
mines an element of r(M, fi^/p). Let ^ be an element of F(M, 0) whose image in
F(M, fi?/p) is ^. Then ^~^i ls divisible by ^2. Hence ^=^1+^2^3 f01' some
function ^3. Let ^3' be an analytic approximation of ^3- Then ^3 ===^3—^ meets
our requirement.

Corollary (6.5). — Let f be a function on a manifold M and let V be an open subset ofM,
Suppose that f is regular on M—V and analytic on V. Then f is equivalent to an analytic function.
We can choose the inverse of the diffeomorphism to be analytic in a neighborhood of any given closed
set contained in V.
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Proof. — Let q be the sheaf of ideals of 0 generated by X,/for ?= i, . . ., N on V
and by i on M—V. Then, by Cartan's theorem there exist g^ ...,^ in r(M, q)
such that at least one of the g, does not vanish at all regular points of/. Let ^ be the
sum of the squares of the g,. Then ^ is a linear combination ofX,/. X/for i,j'=i, .. ., N
with functions as coefficients. Since ^~l{o) is contained in V,/is analytic in a neigh-
borhood of ^(o). Hence we can apply Lemma (6.4). Let ^ be a small function
such that/+^ is analytic. Then, by Lemma (6. i),/ is equivalent to /+ ̂ , because
^ is a linear combination of the XJ\X^./with small coefficients. The last statement
follows from Remark (6.2.1). The corollary is proved.

Corollary (6.6). — Let/be a function on a manifold M. Suppose that the critical points
tfff0™ a discrete set and that the germ off at each point is equivalent to an analytic germ. Then
f is equivalent to an analytic function.

Proof. — Let a be a critical point of/. By the assumption, there exists a local
diffeomorphism T in a neighborhood of a such that /or is defined and analytic in a
neighborhood of a. Let T' be a strong analytic approximation of T~1. Then TT' can
be extended to M so that the extension T" is the identity outside a small neighborhood
of a. Considering /or" instead of/, we may assume that/is analytic in a neighborhood
of a. We repeat this process at each critical point. Thus, we can assume that / is
analytic on an open set containing all the critical points, and the corollary follows
from (6.5).

Remark (6.7). — We can generalize the results above except Lemma (6.4) to
the case of a mapping, as follows. In Lemma (6.1), we replace / and ^ by mappings
into If, /=(/, ...,/J and a^={a\^, ...,^3) where m^n and a, (B run through
the set of sequences of m integers (^, . . ., z'J such that i^^< . . .<i^k. We denote
by gx Ae determinant of the mxw-matrix whose {j,f) component is Y,./, for
a = (ii, . . ., i^). Then we have

//^=/}+S^a^ for ^ = i , . . . , ^ .
ap

The proof proceeds in the same way, using the method of p. 206 in [31]. The
other generalizations are similar.

7. Equivalence to analytic functions

In this section we deal with the conjecture I for functions.

Theorem (7 .1) . — Let f be a function on a manifold M. Suppose that the germ offat
each point of M is equivalent to an analytic germ. In addition suppose that f takes locally the
canonical forms (i), (ii) or (iii) of the introduction except on a discrete set. Then f is equivalent
to an analytic function.
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Proof. — Let S be the exceptional discrete set and let S' be the set of critical points
of/outside of S. By Corollaries (6.5), (6.6) and their proofs we can assume that
f is analytic in a neighborhood U of S and that the only critical value of/ is o. For
any x in S',/; has one of the forms ±x^ . . . ±x^ or ±x{ for some local coordinate system
(^, ...,;cJ and some integers i<k<_n and ^2. We assume that i is globally
constant on M. The general case follows in the same way. Let S ;̂ or S^ be the subset
of S' of such points. We put

(X^/M, . . ., X,̂ )) for a=(i; ̂  . . .,4), î N,

FaW— Jj^_
X,. . .X, /(^) for a-^-i;?'), ^2 and i<^N.

Then F^ is a mapping from M to B^ or to R. Let S^ be the set of points of S^ or S^
at which the Jacobian matrix of F^ has the rank k or i respectively. We write Sa(/)
to specify/if necessary. It is trivial that the union of all S^ is S'. Let (V, S^'), a as
above, be a closed covering of SuS' such that V and S^ are contained in U and S^
respectively.

Let us order the set of all a. Fix one a. Assume inductively that / is analytic
in a neighborhood of the union S^ ofV and all S'p such that p < a. We want to transform
/ by a sufficiently small diffeomorphism T so that
1) /or is analytic in a neighborhood of r'^S^uS^) and that
2) for each y, T'^S^) is contained in S^(/or).

Suppose this done; then we can assume that/is analytic in a neighborhood of the union
of V and Sp' for (B^a, and by the induction on a and Corollary (6.5) the theorem
ensues.

By definition, F^ is regular on S^. Hence we can choose a small neighborhood U^
of S^uS^ so that if xeV^ is a critical point of/, /; is analytic or x is an element of S^
and that F^ is regular or analytic everywhere on U^. Remark (6.7) applied to the
restriction of F^ on U^ implies the existence of a small diffeomorphism T^ of U^ such
that F^OT^ is analytic, that T^ is analytic around T^^S^) and that T^ is extensible to
the identity outside U^ (see the proof of (6.6)). Considering /o^ instead of/, where
^ is the extension of T^, we can assume from the start that (SuS^nU^ is analytic.

Let p be the intersection of (0 on U^ and the sheaf of ideals of ^ on U^ generated
by X,/for i == i, . . ., N. Then p is coherent and p^ contains and is generated by X,/
for z = = i , . . ., N because of the definition of S '̂ and the analyticity of (SuS')oUa.
Let p' be the sheaf of ideals defined in the lemma below. Then p' is coherent, and
for each x of S '̂ the stalk p^ is the square of the ideal of germs vanishing on S ;̂ if
a=( i ;^ • • • 5 ^ ) ^d its y-th power if a = = ( ^ — i , z ) . Cartan's theorem implies the
existence of doss-sections g^, . . ., gj,r of p' on U^ such that for any x outside S, ̂ , . . .,
g k ' x generate p^. Here the global finiteness easily follows from the regularity of p'
outside S. Moreover we can see that, in general, any coherent sheaf of ^-modules is
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generated by a finite number of global cross-sections if all the stalks are generated by
a bounded number of germs. The proof, which proceeds by induction on the dimension
of the zero set of the sheaf, is easy and will be omitted. Since/is a cross-section of p'^"
in a neighborhood of S^', / determines an element of r(U^ ^/p'). As in the proof
of (6.4), we have an analytic function g on U^ such thatf—g is a cross-section of p'^"
on U^. Using a partition of unity, one shows the existence of k' C°° functions h, for

k '

i = i, . . ., k' on U^ such that f—g= 2 h,g,. Let h[ be a strong analytic approximation
i == 1

k'

of h, for each i. Then /I and ^+ S h!,g, satisfy the conditions of Remark (6.3).
| Ua '̂ = 1

Hence they are equivalent, and the diffeomorphism can be chosen to be arbitrarily
near to the identity and extensible to the identity outside of U^. These facts imply
the conditions i) and 2). The theorem is proved.

Lemma (7.2). — Let p be a coherent sheaf of ideals of 0 and let Y^, . . ., Y^ be analytic
vector fields. Let p' C p be the sheaf of ideals consisting of all germs g such that Y^g belongs
to p for all i. Then p' is coherent.

Proof. — Since the problem is local, we can assume that p is generated by analytic
functions g^ . . .3^. Then the stalk p^ at a point x consists of germs g of the form

{ {
S a,g^ such that S a,\,g^ belongs to p^ for all 7. Hence, if we define a sheaf of
==1 i == 1

modules q by
f £

q,-{(^,. . . ,^,^,. . . ,^)e^+^| S^Y^,- S^,=o for all j},
i=l z= l

then p' is the image of q by the homomorphism p from ^+^ to Q defined by
t

p(^i, . . .5 ^, ^n, . . . )==S^ . Oka's theorem implies that q and hence p' are
z== 1

coherent. The lemma is proved.
An immediate corollary of the theorem is

Corollary (7.3). — The conjecture I holds for functions if the dimension of the manifold
is i or 2.

As corollaries we shall give conditions for a closed subset of a manifold to be equi-
valent to an analytic set. We call a point of a closed set regular if the set is C00 smooth
in a neighborhood of the point and singular otherwise. An analytic set is called coherent
if the sheaf of germs vanishing on the set is coherent.

Corollary (7.4). — Let A be a closed subset of a manifold. Assume that the germ A^
at each point is defined by the germ of a function of one of the types considered in the theorem above.
Then A is equivalent to an analytic set.
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Proof. — Let M be the manifold, let R be the set of regular points of A of codi-
mension i, and let S be the exceptional discrete set in the sense of the theorem. Namely,
for any point A; of A outside S, A^ is the germ of the zero set of a function of the form (i)
or (iii). By the proof of Corollary (6.6), we can assume the existence of an open
neighborhood U of S such that AnU is the zero set of an analytic function g. Here
g has the form (i) or (iii) outside S and is regular on R. This regularity is shown as
follows. Let x be an adherence point of R. Then A^ is defined by an analytic function

m

germ of the form (i) or (iii) outside x. Let II h^ be the unique factorization of the
m i=l

germ in the stalk ^. Consider Ft h, instead of the germ. Then g is regular on R
and satisfies the properties.

Let ^ be the subsheaf of y of germs whose zero set germs are the germs of A,
which take the form (i) or (iii) on A outside S, are analytic on U and are regular on R.
We introduce an equivalence relation on ^ as follows. Two germs at the same point
are equivalent if they have the same sign at all points near the given point. Let M'
be the set of equivalence classes. We have a natural mapping p from M' to M. It
is easily seen thatj^ is onto and that the inverse image of each point consists of two points.
We give M' a structure of an analytic manifold such that p is a 2-fold covering. Then,
by using a partition of unity, we can find a function/' on M' such that /'^(o) ̂ ^^(A)
and that /' is analytic on j&'^U) and outside a neighborhood of j&'^A), takes the
form (i) or (iii) on ̂ (A) outside ̂ (S) and is regular on ̂ (R). Let u be the non-
identity diffeomorphism of M' such that pou==p. Considering f'—f'ou instead of/'
if necessary, we can assume that f'= —f'ou. We denote by X^ the vector field j^X,
on M' for i=i, . . ., N. In view of the theorem applied to/' and X,', the function/,
is equivalent to an analytic function. Furthermore, the proof tells us that the diffeo-
morphism commutes with u, hence induces a diffeomorphism of M. It is obvious that
the induced diffeomorphism transforms A into an analytic set. Thus the corollary
is proved.

Examples. — i) Let A be a closed set whose germ at each point is equivalent to
the germ of a coherent analytic set with isolated singularity. Then A satisfies the
condition above. Hence A is equivalent to an analytic set.

2) The above analytic set is coherent. But the coherence is not always necessary.
An example of a non-coherent analytic set which satisfies the condition is the umbrella
{(^,^,^)eR3 x^+xi)=x3,}.

Corollary (7.5). — Let A be a closed subset of a metric manifold whose germ at each point
is equivalent to the germ of an analytic set with isolated, singularity. Assume that the connected
components of the set of regular points are all unbounded and have the same dimension, and that
the intersection of A with any sphere of sufficiently small radius centered at a singular point is a
disjoint union of spheres. Then A is equivalent to an analytic set.
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Proof. — Let M and R be the manifold and the set of regular points of A respec-
tively, and let k be the dimension of R. Let s be a singular point of A and let B be a
ball of center s and small radius. Then Rn^B is a union of spheres S^, . .., S/. We
can transform A by a diffeomorphism so that A is analytic in a neighborhood ofB. Let
g be the sum of the squares of the generators of the ideal of 6^ consisting of the germs
vanishing on Sg. We assume the convergence of g on B and consider g as a function
on B. Then g takes the form ^+. . . +^_^ in some local coordinate system around
each point outside an analytic subset of A near B, and the dimension of the subset is
equal to or smaller than k. Hence we can assume that the intersection of the subset
with S^ is close to a point b^ for each z.

Let oq : [o, oo) ->R—IntB be G00 proper simple curves from ^ to infinity for
z = = i , . • .3^ which do not intersect each other. Since the triplet (M, A, one curve)
is diffeomorphic to ( ( — i , oc^xK^"1, (—1, o^xR^"1, [o, oo)) in a neighborhood of the
curve, there is a C00 imbedding a of M into itself such that, for all i, a (A) is contained
in a, and close to b^ that oc(A)na^== a(o^) and that a is the identity outside a neigh-
borhood of the curves. Let (3 be an approximation of a which is analytic on a neigh-
borhood of B and the curves, and is the identity outside another neighborhood. Then
go (B is analytic near B and the curves, and (B'^A) is equivalent to A. From the construc-
tion of (B, go p takes locally the form ^ + . . . +^_^ outside a small neighborhood of B
and the curves. We repeat this for each singular point of A. Then, by means of a
partition of unity we construct a function f on M which is analytic on an open set
containing all the singular points, takes locally the form ^ + - - - + ^ - f e outside the
open set and is such that f~l{o)==A. Hence the theorem implies our corollary.

8. Analytic equivalence

This section deals with the conjecture II for functions. We will need the following
lemma.

Lemma (8.1). — Let A be a coherent analytic subset ofW with isolated singularity at o.
Then there exists an integer m>o satisfying the following condition. Let n be a local diffeo-
morphism in a neighborhood of o which maps A into itself and whose Taylor expansion at o is equal
to that of the identity up to m-th order. Then there exists a global diffeomorphism T which is equal
to n on a neighborhood of o and to the identity outside another such neighborhood, and which maps A
onto itself. We can choose T arbitrarily close to the identity.

proof. — By Hironaka's desingularization theorem, we have an analytic proper
mapping^ from a smooth manifold A onto A whose restriction top~l{A—{o}) is a diffeo-
morphism. Let A be analytically imbedded in R/ and let TA be the tangent space
of A. Let || || denote the naturally defined length of elements of any Euclidean space.
We sometimes regard a tangent vector of A —{0} or A as tangent to Rn or Rf respectively.
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We define two analytic functions p^ and p on TA X TA as follows. Let t and t ' be tangent
vectors of A at ^ and t[ respectively. We put

pju'^ll^'ll2!^)!!2

and P(U')-||AW--AOT||2.

We compare the zero sets of the functions. Since the zero set of p contains that of p,
we have, by Lojasiewicz3 inequality

p.̂  n^^ n
for {t, t ' ) in TAxTA such that ^ and t[ are near toj&'^o), where r is a positive constant.

Let t be in TA such that p(t^) is near but not equal to o. We write t=={t^, t^)
regarding it as an element of TK/=K/xR/ and we put ^A'^jM)- It is clear
that t ' is uniquely determined. Then we see that

p^^-II^A^-A^ll^c^ll^^ll+IMI)2!!^)
for some constant Ci>o. Hence we have

\\t-t'\n\pw^c,{\\pw\\+ n îi) n^)n'».
If we assume ||^||=i and choose m large, this implies that

\\t-t'\\<.^\\PW\\

for some constant C2>o. Hence, by the trivial inequality

\\p[t,)\\<_G^{t,,p-\o)),

we have

ll^ll^dist^-^o))

for 11^[ |== i where €3 and €4 are positive constants. This means that the mapping
p~lo•Kop defined on A—p~\o) is extensible to j^'^o) and that the extension is of class C1

and equal to the identity on ^"^(o) up to the first partial derivatives. We apply this
method to T. .. TA. Then we prove in the same way that for any m^ the extension
is of class 7723 and equal to the identity up to the m-^-th partial derivatives if m is large.

Let 9 : R->R be a decreasing function which is i on (—oo, 1/2) and o on
(2/3,+°o)- Let t^->t[ be the above extension of p"1'^?. We denote by t[' a projection of

^<p^ll^i)ir)+^(i-y(A||^)||2))

into A for some sufficiently large k. Then the C^ mapping t^-t'^ is equal to the
mapping t^[->t[ in a neighborhood of ̂ "^(o) and to the identity outside another. Taking
sufficiently large m^ and k, we can assume that the mapping is close to the identity.
By definition, this mapping induces a C°° mapping n' of A which is equal to n in a
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neighborhood of o and to the identity outside another. From Lojasiewicz' inequality
we see that

ii^i)irii^ii^iiA(^)ii
near ^"^(o) for some constant r'>o, and moreover we prove in the same way as above
that TC' is close to the identity. Here we endow the space of mappings of A with the
topology of uniform convergence of all derivatives on A—{o}.

We want to extend TT' to a Whitney mapping on A (see the definition in [12])
preserving the properties of TC'. The idea of the method is the same, so we only give
an outline. We assume that the set of regular points of A has codimension n' everywhere.
For the general case, we only have to deal with each irreducible components of A
separately. By the conditions on A, there are analytic functions f^ ...,fe defined
near o in R" such that the set of common zeroes is A and that the Jacobian matrix of
the mapping [f^ . . .,j^) has constant rank n' on A—{o}. Let G be an analytic non-
negative function on R^ such that for n' vectors j^, ...,j^, in R^, G(j^, ...,j^)
is o if and only if y^, ...,J^' are linearly dependent. For any a==(z\, . . . , ^ , ) ,
i ̂ ^i< . . . <^'^ we put

G,-G(grad^,...,grad^).

Then o is the only common zero point of all G^. Hence, by Lojasiewicz9 inequality
we have

maxG^)>||X| r "
a

for any x near but not equal to o, where r" is a positive constant. We put

U^={x\G^x)>\\x\\r"^

The sets U^ are open semi-analytic, and {o}UUa is a neighborhood of o. Let p^ be
the mapping from TAxR^ to TRn =AxRn defined by

A

n'

Ac(^ ̂ -Q^i),jW+ S grad^.(^))^)j=i •/

where t-=(t^t^ is in TA and x=={x^, . . . , A ^ ) inR^. We consider p^ on p^l(U^xKl).
In the same way as for the mapping p^ on TA, we show the existence of a C1 Whitney
mapping TT^ on U^ which is equal to the Whitney mapping induced by TT in a neighborhood
of o and to the identity outside another. Furthermore, TC^ can be chosen to be arbi-
trarily close to the identity and equal to TT' as a C° mapping. Hence, using a partition
of unity on {UgJ, one sees that there exists a C1 Whitney mapping TT" on A which has
the same properties as TT^. It is easy to modify T:" to be G00; moreover we can realize TT"
by a diffeomorphism T of R" preserving the required properties. The lemma is proved.

Lemma (8.1) is equivalent to the next statement.
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Lemma (8.2). — Let A^ and Ag be coherent analytic subset oflK^ with isolated singularity
at o. Assume given a diffeomorphism n of B^ such that ^(A^^Ag. Then there exists an
integer m>o with the following property. Let -K he a local diffeomorphism in a neighborhood
of o, which maps A^ into Ag and whose Taylor expansion at o is equal to that of' TT up to order m.
Then there exists a global diffeomorphism TT" which is equal to TT' on a neighborhood of o and to n
outside another, and which maps A^ onto Ag. We can choose -K" arbitrarily close to TT.

We generalize this as follows.

Lemma (8.3). — Let A^ and Ag be analytic subsets ofK^ whose germs at any point x are
the zero set germs of functions of the type considered in Theorem ( 7 .1 ) if ^==0, and of functions
of the form (iii) of the introduction if x 4=0. Then the conclusions of Lemma (8.2) hold.

Proof. — Let S^ or Sg be the subset of A^ or Ag respectively consisting of all singular
points and all regular points where the germs of A^ or Ag are of dimension <_n—2.
By the assumption made on A^, there is an analytic function h in a neighborhood of o
in R^ such that h~l{o)==A^ near o, that for any non-zero x in Sg the germ h^ takes
locally the form (iii) and that h is regular outside Sg (see the proof of the remark (6.2)).
Let <p be a function on B^ which is equal to i in a neighborhood of o and o outside
another. We put

hk={hon{x))^{kx)+{hon{x)){i-^kx))

for large numbers k. We want to prove that h is transformed into h^ by a diffeomor-
phism -K" which is equal to TC' in a neighborhood of o and to TT outside another. That
diffeomorphism TT" will map A^ to Ag, because h^ vanishes on A^.

We see that Si and 82 are coherent analytic sets with singularity at most at o.
Hence, by the lemma above, there exists a global diffeomorphism T '̂ which is equal
to TT' on a neighborhood of o and to TT outside another, and which maps Si onto Sg.
If k is sufficiently large, we have

h,=={ho^{x))^kx)+{hon{x)){i-^kx)).

Comparing hon^ and h^ we see that their difference is small and contained in the
()ho7Cg ()ho7tg

ideal of the ring of functions generated by ——— —,—— for z,j = i, . . ., n, n we take
ox^ ox.

m large and T^' close to TC. Hence the pair [h,hj,onj~1) satisfies the conditions of
Lemma (6.1) and Remark (6.2.3). Therefore h and boon's'~^ are equivalent by a
diffeomorphism which is equal to the identity on a neighborhood of o and outside
another. This shows that h is transformed into hj, by a difFeomorphism TT" of the desired
form, and the lemma is proved.

Now we establish one of our main results.
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Theorem (8.4). — Let f^ and f^ be analytic functions on a manifold M. Assume that
they are equivalent and take locally the forms (i), (ii), or (iii) except on discrete sets. Then f^
and Vg are analytically equivalent.

Proof. — i) Assume that the sets of critical points off^ and f^ are discrete. We
denote them by S^ and Sg respectively. By assumption there is a diffeomorphism TT
of M such that f^ ==f^ o TC. We first reduce the problem to the case where TT is analytic
in a neighborhood of S^. This problem is local. Hence we can assume that M^R^
and Sj •== S2={o}. By Artin's theorem there exists an analytic local diffeomorphism TT'
in a neighborhood of o whose Taylor expansion at o is equal to that of TT up to an
arbitrarily large order satisfying f-^ =f^oT:' near o. Let 9 be as in the proof of the last
lemma. We easily see that

f,o^{x)^kx)+n{x){l-^kx)))

is equal tof^ in a neighborhood ofo and outside another, and is close tof^ for large k.
Hence, by Remark (6.2), this function is equivalent to/i by a diffeomorphism which
is analytic in a neighborhood of o. Since n\x) ̂ {kx) + n{x) (i —<p(fcc)) is a diffeomor-
phism analytic in a neighborhood of o, we can assume the analyticity of TT in a neigh-
borhood of Sr

Let F be the sum of the squares of X^ for i == i, . . ., N. Then the zero set of F
is Si. By Lemma (6.4), there exists an analytic mapping -K" from M to R^^ such that
TT"—n is the product of F and a small mapping. Let n^ be the composition of TT"
with an analytic projection ofRN onto M; it is an analytic diffeomorphism on M and
is close to TT. Consider the difference f^on^—f^^f^on^—f^o-n: on a neighborhood of
each point of Si. Complexifying F and the difference in the same way as in the proof
of Remark (6 .2 .2 )3 we see that the difference is divisible by F. Since the difference
is small, f^ and^o^ are analytically equivalent by Lemma (6.1) and Remark (6.2).
Here the diffeomorphism is near to the identity. Hence f^ is transformed into ̂  by
an analytic diffeomorphism which is arbitrarily close to TC.

2) Remarks. — From the proof above we have: ( a ) In general, let f^ and f^ be
analytic functions. If^ is transformed into f^ by a diffeomorphism which is analytic
in a neighborhood of the set of critical points off^y thenf^ and^g are analytically equi-
valent and the diffeomorphism can be chosen arbitrarily close to the previous one.

By Remark (6.7)3 we prove in the same way as above and as below: ( b ) Let^i
and^g be equivalent analytic mappings between manifolds. Assume that the rank of
thejacobian matrix off^ is constant except on a discrete set. Then^ andj^ are analy-
tically equivalent, and the diffeomorphism satisfies the condition in (a ) . Moreover
the same remark as ( a ) holds for mappings.

For the proof, we only have to reduce the problem to the case where the target
manifold is R^ and the constant value of the rank is i. The reduction follows from ( c )
below. The reason is the following. We can assume that the target manifold is R^
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for some N', and that f^ and /g are analytically equivalent on U, a neighborhood of
the exceptional set. We write /i==(/n, . . .,/iN') ^ere the f^ are component func-
tions. For each o c = ( ^ , . . . , ^ ) , i ̂ <. .. <z^N', let U^ be the subset of the
source manifold consisting of the points where the Jacobian matrix of /^ = {f^ , . . . ,/^.)
has rank f. Then we prove the analytic equivalence of f^ smdf^ where

UuUa Uur(Ua)
T is a difieomorphism such that f^o^^=f^ We repeat this for (a', UuU^uU^) and
so on. The assertion ( b ) ensues.

( c ) Let /i=(/n, . . .,/iJ and f^=={f^, .. .,/2m) be analytically equivalent
germs of analytic mappings at o in If. Assume that the maximum of the rank of the
Jacobian matrix off^ equals that of /i=(/n, . . .,/^) for some i. Then any diffeo-
morphism, which transforms/^ into /^(^i? • • • 5 / 2 ^ ) ^d whose Taylor expansion
of large order at o is equal to that of the given one, transforms f^ to /g.

Proof. — We can assume that f^ ==f^. We have a neighborhood U of o in B^
and a proper analytic subset AofU such that the restriction of/i to U —A is a submersion
onto its image and that the projection of/i(U—A) onto /i(U— A) is a covering. The
proof is then easier than that of Lemma (10.2)3 to which we refer the reader.

3) The general case. Let n be a diffeomorphism such that fi==f^on. Let S
or S^ be the sets of exceptional critical points or other critical points respectively of /
for i== i and 2. By ( a ) we only have to modify TT into an analytic diffeomorphism
in a neighborhood of each connected component of S^uS^. Hence we can assume
that S^uS^ is connected and then the only critical value is o. We also assume that for
any x in S^,/^ is of the form ±x^+ . . . ±x^ for some local coordinate system (;q, . . ., x^)
and some integer k, i <_k<_n. The other cases follow in the same way as in the proof
of Theorem (7.1). We define the notations F(^, S^, S^ and S{^ for ̂  like F^ . . .
for/in the proof of Theorem (7 .1)3 and an ordering of the set of all a is fixed. By Artin's
theorem, there exists an analytic diffeomorphism TT' from a neighborhood of S^ to a
neighborhood of Sg such that f^^' =f^ on the neighborhood and that the jets of large
degree of TT and -K at each point of S^ are identical. Hence the previous lemma implies
the existence of a diffeomorphism TC" of M which is analytic in a neighborhood ofS^,
which satisfies ^^'^/i ln Aat neighborhood and such that 7r"(SiUS^)=S2US2.
Moreover we can choose n ' arbitrarily close to TT.

By induction on a, we shall modify TT" slightly in such a way that the analyticity
of -K" and the relation f^on'^f^ become valid in a neighborhood of SlUTr""^^),
the equality ^"(S^uS^^SgUSg being preserved. We assume this done for all (3 such
that p<a. Then, by definitions, F^OTT" is analytic in a neighborhood U^ of ̂ "^(SS^),
has Jacobian rank k on TT'^'^S^)) and vanishes on TC^'^S^)). For each z, (X^OTT"
is a linear combination of X^/goTc"), . . ., X^/a07^') ^h functions as coefficients.
By the induction hypothesis we assume that fi=f^onfr hence X^/^X^^OTC") on U('a)
for allj. On the other hand, the canonicity off^ on S[ means that X .{f^on') is a linear
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combination ofX^, . . ., X^^ in a neighborhood ofS^. Hence we have functions ^.,
for ij== i, . . ., N, in a small neighborhood LJ^) of ^""^(S^uS^), such that

(X^oTT^^^X^on U^

for all i, and that a^ are analytic in a neighborhood ofTr'^^SS^), by Cartan's theorem.
Let F be a non-negative analytic function on U^ whose zero set is contained in U/^
and whose restriction to U^ is the product of a function by the sum of the squares of
all the Jacobian minor determinants of degree k of F/^OTT". The existence of such
function follows from Cartan's theorem. Let p be the sheaf of ideals of Q on U^ of
germs i-flat on S^uS^, and let p' be the intersection offf on V^ with the sheaf of ideals
of y on U^) generated by X^, . . ., X^/i. We put p" = [p'2: p], the quotient ideal.
Those sheaves are coherent. We have p==p' 2 outside S^. Hence the zero set of p"
is contained in S^. Let G be a cross-section of p" such that G'^o) CS^.

By Lemma (6.4) there exists a small function b^ on V^ for each i and j such
that a^+TGbij is analytic. Then

F^^F^o^'+C^^.X,/,, . . .^S^,X,/,)FG

is analytic on U(a), and F(^ and F^OTT" are equivalent, by (6.7). Hence F^) and F(^)
are analytically equivalent, by ( b ) in 2). Here the diffeomorphism TT^ is close to T:"
on U(a) and satisfies ^(S^nU^)) ^Sg. Moreover, in the neighborhood of any point x
ofS^, Ti^is the sum of^" and the product ofG and a mapping for some local coordinate
system at ' K " { x ) by Remark (6.2.2) . Hence we have

^o7T (3 )=/2o7r"+Gxa function

on U(a). This implies that, near S^, f^o^—f^ is the product of G and a function.
Since G does not vanish on S^^OTT^—f^ is divisible by G. The quotient is i-flat on
(S^uSi)nU(a) because f^on^ and^ are i-flat there. Hence it is a cross-section of p.
Therefore, by the definition of G, f^on^—f^ is a cross-section of p'2. It follows that
on U^),^ and^oTr^ satisfy the conditions of Lemma (6.1) and Remark (6.2). Thus
we have proved that f^ is transformed into f^ on U^ by an analytic diffeomorphism
arbitrarily close to TC" on U^. Hence, by induction on a, the theorem is proved.

Remark (8.5). — In the theorem above, if the diffeomorphism TC which satisfies
Vi ==/207^ ls analytic on an open set, we may admit any form of^ on that set. We can
also choose the analytic diffeomorphism arbitrarily close to the previous one.

We now give a condition for two analytic sets to be analytically equivalent.

Corollary (8.6). — Let A^ and Ag be equivalent coherent analytic subsets of a manifold M.
Assume that the germs A^ and A^ at each point are defined by germs of analytic functions of the
type considered in Theorem (8.4). Then A^ and Ag are analytically equivalent.
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Proof, — For i= i and 2, let R^ be the set of regular points ofA^ of codimension i
and Ŝ - be the exceptional discrete set of A^. We put S^=A^—R^—S^ and denote
by Z^ the closure ofA^—R,. For i== i, 2, R^ and Z^ are coherent analytic sets. Let p
be the sheaf of ideals of (9 of germs vanishing on Z^. By Gartan's theorem we find
in the same way as in the proof of Theorem (7.1) a finite number of cross-sections of p
which generate p outside S^uZ^. We let g be the sum of the squares of the cross-
sections. It is trivial that g^1^)^^ and that g takes locally the form x\-\-.. .+^
on Z^—Sr

Let g ' be a function on M whose zero set is A^, is regular on R^ and takes locally
the form =b^=b. . . ±^ on S^. Such a function does not always exist. But if we use
the two fold covering p : M'—^M of the proof of Corollary (7.4) and if we consider
p~l[K^) andj&'^Ag) in M' instead ofA^ and A^, then the existence ofg follows by means
of a partition of unity. Of course the diffeomorphisms of M' which will be constructed
step by step must commute with the non-identity diffeomorphism u such that pou==p
in order to induce diffeomorphisms of M. We assume the existence of g ' for the sake
of brevity. We modify g ' as follows to make it analytic. Let p' be the sheaf of ideals
of (9 of germs vanishing on R^. It is coherent, since R]^ is. In the same way as for
the construction of g, we have a non-negative analytic function A on M whose zero set
is the closure of R]^ and whose germ at each point generates the stalk of p'2. Since
the stalks ofp' are principal ideals, the square roots of germs of h are analytic. We put

f h^{x) if g{x)^o
hlx)=={

[-h^x) if g{x)^o

on M. Taking g ' ^ h ' g , we can from the start assume g ' analytic.
Let n be the given diffeomorphism which maps Ag onto A^. We can assume

that Si == Sg == S and that n is the identity on S and arbitrarily close to the identity on M.
We want to transform n slightly so that it becomes analytic in a neighborhood of S.
The problem is local, therefore we suppose M^R" and S={o}. Let <pi, . .., 9^ or
+i9 • • • ? +w be a system of generators of the ideal of 0 of germs vanishing on A^ or \
respectively. There exist formal power series a^ for i== i, . . . , / ' and j== i, . . ., m
such that for each i

m

9,o7r== S a,^

(cf. the theorem on page 90 of [12]). By Artin's theorem applied to these equalities,
there exist an analytic local diffeomorphism TT' in a neighborhood of o and analytic
functions a,- for i == i, . . ., ^ and j == i, . . ., m whose Taylor expansions at o of large
order equal TC and a^ respectively and which satisfy

m

^OTC'==,S1^
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for each i. These equalities imply ^'(Ago) CA^o. As TT' is a local diffeomorphism, we
see that ^'(A2o)=Aio. By Lemma (8.3) we can connect -K and n preserving the
property that A^ is mapped onto A^. Hence we can assume that n is analytic near S.

Secondly we will modify n to make it analytic in a neighborhood UofZg. Choosing
U small and transforming TT so that it be close to the identity, we can assume that TT is
analytic in a neighborhood of Ur^SuRg) and that U contains Z^. We put g^go-^'
Then g^ is analytic near Un (Su Rg) and takes locally the form x\ + . . . + x^ on Zg — S.
Let q be the intersection of 0 on U and the sheaf of ideals of y on U generated by
Xi.?23 • • • ? XN^- Then the zero set of q is Zg and q on Z^—S is the sheaf of ideals
of germs vanishing on Zg—S. Let [L, for z = = i , . . . , r be cross-sections of q which
generate q on Zg—S. By a method which we used repeatedly, we have an analytic
function v on U and functions .̂ on U for z, j==i, . . . , r such that

r

g2—^== S S,̂ ,̂
tj=l

where Ag is defined for Rg in the same way as A' for R^. Let .̂ be an analytic strong
approximation of ^ for all i and j. Then ^ and

r

G2=v+ S Sy^^Ag
»,; = 1

satisfy the conditions of Lemma (6.1). Hence they are equivalent, and the diffeo-
morphism is analytic near Un(SuRg) and is the identity on SuR^. This fact and
Remark (8.5) imply that g and G^ are analytically equivalent and that the diffeo-
morphism of U can be chosen arbitrarily close to n on U. We easily see that the zero
set of G^ is Zg. Thus TT can be made analytic in U. Henceforth we assume that n is
analytic in a neighborhood of ZgUS.

Finally we will modify TT to make it analytic globally. Let a be the intersection
of Q and the sheaf of ideals of ^ generated by g^go-^- For any point x outside Zg,
dp is the ideal of germs vanishing on A^. Hence, by Cartan's theorem there exist a
finite number of cross-sections of a whose germs generate the stalk of a at each point.
Let a be the sum of the squares of those cross-sections. We put

^J ^ if ^o,

[-G1/2 if ^o.

Then a is divisible by g^ and the quotient a is positive. Considering the sheaf of ideals
of Q whose stalk at xeM is the quotient ideal [the ideal generated by (X,^X.^ for
^J'^1? • • - 5 N: a], we construct a non-negative analytic function p on M whose zero
set is contained in S and which satisfies

N

P^2== S ^-X^X.^
»,i==i
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for suitable functions \j. By Lemma (6.4) there exists a small function (B such that
v==loga—(Bp is analytic. Then there is a small function (B' which satisfies

i+p'p^^a^.

Hence (i + p' p) g^ = a e " ^ is analytic. We can apply Lemma (6.1) to g^ and (i + (Bp) g^,
and thus see the equivalence of the analytic functions g ' and (i + P' p) ̂ 2 • It ls trivial
that the zero sets of those functions are A^ and Ag respectively and that the functions
are of the type mentioned in the Theorem (8.4). The corollary ensues, in view of the
theorem.

In the proof above we essentially used the coherence assumption on the analytic
sets when we proved the existence of an analytic function whose zero set is the given
analytic set. But we cannot replace the assumption by the existence of such a function
in the corollary. See the following example. On the other hand, the assumption on
the type of the function germs does not seem necessary, though the author could not
generalize the corollary except in special cases.

Example. — We put M==R3, A^=={{x,y, z) [ ̂ +y(i/2 +sin z)=.o} and

A2={(^^^) |(^2+y(I/2+sin^))(^+y(I/2+sin(7^+^)))=o}.

One easily sees that A^ and Ag are equivalent and that locally the zero sets of the function
germs are of the type specified in the theorem. But A^ is the zero set of an irreducible
analytic function. If A^ and Ag were analytically equivalent, then A^ would have the
same property. This is impossible.

We now consider a generalization of the conjectures I and II.

Conjecture I'. — Let f: M^—^Mg be a mapping of manifolds. Consider locally finite
analytic closed submanifolds of M^. Suppose that the germ off at each point is transformed into
a germ of an analytic mapping by a local diffeomorphism under which the submanifolds are invariant.
Then f is transformed into an analytic mapping by such a diffeomorphism.

Conjecture II'. — With the same manifolds and submanifolds as above, if an analytic mapping
is transformed into another analytic mapping by a diffeomorphism which has the same property as
above, then we can choose the diffeomorphism to be analytic^ the property being preserved.

We are far from the solution. We can only prove:

Theorem (8.7). — In Conjecture I' we assume that for each submanifold, the Jacobian
matrix of the restriction off has constant rank except on a discrete set. Suppose further that at
any point x of M^ there exists a local coordinate system such that each submanifold is defined locally
at x by the vanishing of some of the coordinates. Then the conjecture holds.

Theorem (8.8). — In Conjecture II', if the mappings and the manifolds have the same
property as above, then the conjecture is correct.
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The idea of the proof is the same for both theorems, and the proof of the first one
is easier. Hence we prove only Theorem (8.8). We first establish a lemma.

Lemma (8.9). — With the same manifold M^ and submanifolds L^, Lg, . . . as abovey
there exist analytic vector fields Y^, . . ., Y^' on M^ such that/or each i the restrictions ofV^, . . ., Y^'
to L,— U L are vector fields on L,— U L which span the tangent space at each point, and that

j =f= i j ^ i '

the same property holds for M^ — U L,.

Proof. — For each i we can construct vector fields X^ 5 . . . 3 X^ on L, which
span the tangent space at each point. We also have a non-negative analytic function ̂
on L^ whose zero set is the intersection of L^ with the union of all Ly which do not
contain L^. We assume the connectedness of all L^. Let i<_k<_'N be an integer
and let ?i, i^, . . . be all the integers such that the dimensions of l^ , . . . are equal to k.
Let Y^, . . . ,Y^ be the vector fields on UL^. defined by Y^ =(p^.X^, . . . on L^..

j J J ] J

Then, by the statement below, we can extend Y^ to the union of all Lj whose dimensions
are equal to or smaller than k +1. We repeat the extensions up to M^ . The extensions
for all k and suitable fields <pX^, . . ., 9X^5 where y is a non-negative analytic function
on Mi such that (p"1^)^ UL^, provide the proof of the lemma.

i

" Let gi be analytic functions on L^ for z=i, ... such that the restrictions of g^ and g.
to L^nL- are identical for each i and j . Then there exists an analytic function g on M^ whose
restriction to L^ is g^ for each i. 93

By virtue of Gartan's theorem, the problem is local. Hence we easily reduce
the proof to the case where 1̂ 1=11̂  with affine coordinate system (^, . . ., x^) and
Li-^i^o}, . . ., L^={^==o}. We put

gl2^1, • • • ? ̂ n)̂ !̂  • • •. xn)+g2{x^ x^ • • •)—<?l(°? x^ ' ' •)

gm^g^+g^l. ̂  ̂  • • •)—<?12(^ ̂  ̂  ̂  • • • ) •

Then g^gi ,n satisfies the conditions. Hence the lemma.

Proof of Theorem (8.8). — i) The case of functions. We use the same notation as
in Theorem (8.4) and its proof, and we proceed in the same way. Let L^, . . . be the
submanifolds. We assume the connectedness of all L^. We apply the lemma above
to L^ where the restriction off^ is not constant. We use the resulting vector fields Y^, . . . ,
Y^ in place ofX^, . . ., X^. Then, in the step of the reduction to the case where TT is
analytic near the exceptional points set, we see that, by Lemma (6.1), L^ is invariant
under TT if the restriction off^ is not constant. For another L,

/,o(7.'M9(^)+TcM(I-9(^)))-/lW=0

on L^. Hence, by Remark (6 .2 .2 )5 L^ is also invariant.
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We need to modify n^ a little, so that it leave L^ invariant, its other properties
being preserved. The rest of the proof proceeds in the same way as above. We consider
the intersection of L^, L^, .. . for any integers ^, . . . Let L,' for i=o, . . ., n be
the union of the connected components of dimension i of all such intersections. We
assume that L.o is contained in the set of exceptional points. We assume by induction
that a modification TT^ is defined on the union ofL,' for i<k — i. We want to extend n^
on 14. For this, we only have to examine the case k==n— i. Let p be the sheaf of
ideals of 0 of germs vanishing on all L, and let F be the sum of the squares of Y,/^ for
i==i , . . . . N'. Then there is an exact coherent sequence

o-^pnF^->F^(F(P+p)/p->o.

Regarding mappings to M^ as to R^ we can analytically extend n^ to M^ by the
statement in the proof of the above lemma. Then each component function of
Tr^—TC^ is a small cross-section of (F^+p)/p. Hence, by Cartan's theorem, there

UL,
i

exists a mapping n^ of M^ to R1^ whose component functions are small cross-sections
ofVO such that 7^=7^-7^ on UL,. We put 7^=7^+7^. Let 7^ be the

composition of T^ with an analytic projection of RN on M. Then n^ is an extension
ofn^ and the difference with n^—and hence with TT—is small and divisible by F. Thus
we have obtained the desired modification TT^ of TT^.

2) The case of mappings. If the ranks of the Jacobian matrices of the restrictions
of/i to the L, are identical for all i except on a discrete set, the proof is just the same
as the above one and of 2) in Theorem (8.4). In general, we can reduce the problem
to the case where Mg^R", f^=={f^, ...,^J for j==i and 2, and the rank f, of
the Jacobian matrix of the restriction of/i to L,' equals that of (/^, . . .,/^.) except
on a discrete set. An outline of the proof for this case follows.

The problem is that we have to define a suitable F as above for the modification
ofTT^in i). It is trivial that i^ i. I f^==o , we put F^=i . I f / \ = = i , we define F^
by means of/i in the same way as F above. We take analytic vector fields whose
restrictions to L^.— U.L^ and Lj, are vector fields on L,— U L- and L^, and span the

j =(= i j ^ i

tangent spaces if dimL,>2 and dimL^==2. We denote these fields by Y^+i, . . .,
YN". Let Fg be the sum of the squares of the ^X^ submatrix determinants of

m

(Y,/ij),=i,...,N" • we define F3, . . . , F ^ in the same way, and put F==IIF, . We
J=l,'...,'^ t-1

use this F for the modification of TT^. Thus we obtain a modified analytic diffeomor-
phism TT^ such that each component function of f^o^—fi is divisible by F and that
the quotient is small. By Remark (6.7), there exists an analytic diffeomorphism ^(4)

such that /a^^^Wvi ^ ^=! and that /2o7^(3)o7^(4)-/^ is divisible by II F,.
»=2

By 2) ( c ) in the proof of Theorem (8.4), this implies that /20T1:(3)OTC(4)=/l on L^
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Hence the quotient of /g o n^o ̂ w —/ by 11 F, vanishes on L[. Comparing (/^, ... ,/^)
»=»2

^d (/2i, . . .,/2/ )o7^(3)o7T;(4), we see that they are equivalent by an analytic diffeo-
morphism TC^. Here n^ is chosen to be the identity on L^, and f^on^on^on^—f^

m

is divisible by 11 F,. Repeating this argument, we see that f^on^o.. . oTr^4"3^/.
i=3

Of course the n^ are analytic, and the L, are invariant under them. Hence the
theorem is proved.

Remark (8.10). — We need the G00 differentiability of the diffeomorphism in
Theorem (8.4). It cannot be replaced by the C7' condition for o^ r< oo. For example,
let

y^+y)2, f^^+^+x^-g^),
where g{x,y) is an analytic function on R2 sufficiently near to the zero function. Then
f^ is transformed into/a by a C diffeomorphism. But, if g{o, o) =)=o, they are not
equivalent.

9. Local canonical forms of mappings.

We have seen that the conjectures on functions with canonical forms are true.
Because we want to generalize that result to mappings, we need to find canonical forms
of mappings, particularly of analytic mappings, which correspond to those of functions.

As canonical form (i)' corresponding to (i) in the introduction we take mappings
whose Jacobian matrix has constant rank. If a mapping germ / takes the form (i)',
we can trivially choose local coordinate systems x={x^, ..., x^ and ^=(^1, . • .,^J
such that

^-/(^(/iW. .••^W)-^ •••^0. • • • . 0 )

where t is the constant rank. Moreover, if/is a mapping germ to V and if (j^, ... ,^J
is the affine coordinate system of If", there exist a local coordinate system x == (^, ..., x^)
and a permutation a of (i, . .., m) such that

(/o(l)W. •••Jo^W)-^ •••^<^+l(^ •••.<?m(0)

where ^4.1, ...,^ are germs of functions of x'=[x^ . . .5^). It is clear that any
analytic mapping takes locally the form (i)' except on an analytic subset of codimension
at least i.

The form (ii)' will be defined later so that any analytic mapping takes locally (i)'
or (ii)' except on an analytic subset of codimension at least 2.

Let/be the germ of an analytic mapping at a point a where the Jacobian matrix
has maximal rank t, let S be the germ of the subset of all points where the rank is smaller
than t, and let p be the ideal of ̂  generated by all the determinants of Jacobian I xl sub-
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matrices. We say thatjf takes the form (iii)' if p is generated by x^ . .., x^ for some
local coordinate system (^, . .., ̂ , . .., x^ at a, and if the Jacobian matrix of the
restriction of/ to S has constant rank. Here we remark that if the first condition is
satisfied, then S is smooth, and the second condition is satisfied near a except at most
on the germ of a proper analytic subset of S.

Proposition (9.1). — Let f: (R", o) -> (R™, o) be a germ of the form (iii)'. Then
we can choose local coordinate systems x=={x^, ...,^J and y=={y^, ...,^J such that if
we write

/W-C/iW,...,/^)),
then

Ji{x)==x^y . . ' ) j p ^ - q { x ) ==Ap^_^3

fp+q+lW== 2^ ±A:p_^^+ ^ ^g+i^p+g+r+t?

fp+q+2{x)=:: ^ f l l^A :p+^+^+ ^ ^ I z^+ i^p+f f+ r+o

P

S
i=l

wA^r^ a^ and b^ are germs of analytic functions in ^, . • .? ^p+g+r vanishing at o. T^r^
p-{-q+i=={ and 2p+q+r<_n.

Proof. — As the restriction ofy to S is a submersion to the image, we have local
coordinate systems (^, . . ., x^) and (j/i, . . .,J^) such that
(i) s^^^..^^^^o} and /(S)=={j^=... =^-0}

where ^ and r will be defined later. The mapping

(/l,...,/,^l,...,^4-r): R^R^^

is a submersion. Hence, by the implicit function theorem, we may assume

(2) yl==•yp+r+l? • • 'Uq=xp^-q+r'

(->'<, il. • • • . J m )

We remark that the rank of the Jacobian matrix of/is t— i on S, because, if it were
not so at a point x, all the determinants of the Jacobian 1x1 submatrices would be i-flat,
and this contradicts the condition (iii)'. Hence the Jacobian matrix of the mapping
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(/g+i? • •'^) : ̂ -^"^ has rank l—q—i on X. We put p==the rank, and
r==the codimension of S minus p. Then, transforming linearly (^4-15 . . .^J^n), we can
assume that (j^+i, . . ',fq+p) '- R^R^ is a submersion. It follows trivially that
(fq+D ' • ">fq+p9 xp+r+l9 • • • 5 ^ ) ls a submersion too. Therefore we can take

(3) Jq+l==xl9 • • 'Uq+p^^'

We have chosen the coordinate systems so that ̂ 4. 4.1, . . .3^ are linear combi-
nations of ^, . . ., Xp^.y with functions as coefficients (that is ( i ) ) . Moreover we can
assume that they are i-flat at o. Let ^, . . ., Xp, ^,4.,. 4.1, . . ., ^ p + r + g be fixed. Then
the image by f is a semi-analytic set of dimension one, and so is the image by
( /p+g+ i5 • • -Jm}' Hence the restrictions of fp+q+^ • • -.fm on

{X^== . . .==Xp==Xp_^.y^^==. . . == ^p 4.,. 4. ^ == 0}

can be assumed 2-flat at o after a linear transformation of (j^^i, • • • ? J w ) - ^e

P+r

write ^4.^4.1=^. We have ^= S ̂ ^ for some o-flat analytic functions ̂ , . . ., g p ^ r '
i== 1

Here ^,,4-1, • • • ? &,+r are chosen to be functions in the variables xp+i, . . ., ̂ . Consider
the Jacobian matrices off and (^, . . .5^+^4-1). By condition (iii)', both p in the
definition of (iii)' are generated by x^y . . ., x ^ ^ y . Hence from (2) and (3) we see that

^
(4) — for J==P+^ ...,p+r,p+q+r+i, ...,n generate p.

^

Putting x^ = = . . . = Xp == o, we have

^r ^+^ if J=p+^ ...^+^
()g i = p + 1 <7^-

^ < p+r 8p-
S ^^ if J=j&+?+r+i, ...^.

i = p + 1 (7^-

Hence ^p+i, .. ' ^ g p + r are Imear combinations of x? 4.1, . . ., x ^ ^ y . Therefore we have
analytic functions g^ for k,l=p-\- i, .. .,p+r in the variables ^p+i, . . ., -^ such that

"p p+ r

^=S^^+ S; ^A^.
i= l A ; , ^ = = 3 ? + l

In view of Tougeron's lemma on equivalence (1.3), (4) implies that g is equivalent to
P t>+T

S&^+ S gkAo)V(
i=l k,f=v+l

by a diffeomorphism which changes only ^p+i, . . ., ^p+g? ^4.^4.^.4.1, . . ., ^. Here we
remark that the diffeomorphism can be chosen to be the identity on S and hence ( i )
remains valid. Hence, after a linear transformation of ^4.1, . . . , ^4., we can assume
that

p r

g== S g,X,+ S±^4.,.
.9 == 1 t - 1
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Apply once more Tougeron's lemma, then the expansions of g^ with respect to x,+i, . . .3
X p ^ y become polynomials of degree i with function in other variables as coefficients.

p
Moreover, taking ^p+^+ S g^Xj for some g^ in place of Xy^.^ for i= i, . . ., r, we can

assume that the g^ for i== i, . . .3^3 are independent of ^+1, . . ., ^,+r- Then (4)

( r\ \

means that the rank of the matrix —!} is p. Hence3 by the implicit
( )x j i= l , . . .,p

J/ j=p4-g+r+l , . . . ,n

function theorem we can take ^==^_^+,._^ for ^ = = 1 3 . . . , j^ . Thus we have
p r

g==^x^^^,x,+^±x2^,.

As the rank of the Jacobian matrix of^is at most £ =p-\-q-{-1, we see that3 for
r^r

j=2, . . .3 p+q+3 is divisible by ^,^ if i= 13 . . . 3 r and by x ^ _ ^ _ y if
^p+i

i==q+r+i, . . .,p+q+r,

and that it is identically o if i==p-{-q-\-r-\-13 .. . This shows that for j=2, . . .
P r

Jp+q+i == ^^ij^p+q+r+i'^T ^ ^^p +i + Sp+ q+j

where a^ and b^ are functions in ^3 .. .3 ^4.^+^3 and the g p ^ q ^ j are functions in
^, . . . , Xp. Gonsidering^+^^.-^+^^j/^i, .. .,^+p) instead of^+^^for j==2, .. .
we have gp^q^j^o. We see that a^. and 6,- vanish at o. Therefore the proposition
is proved.

Remark (9.2). — In the proposition above3 if we admit only permutations of the
index set { 1 3 . . .,m} of ^=(^3 . . .,j^) as changes of the coordinate system in R^
we have

/lW==^ "-,fqW=Xq,

Jq+l=xq+l ~\~Slf ' •-fJp+q^^+q'^'Spf

r P V

fp+q+1^ ^ J^xp+q+iJ^ .^ l,yg+^ l;VP+?+r+^+^p+l-^" ^^cixq+

r T)

Jp+q+2^ ^ ̂ i^+q+i^ ^ olixq+ixp+q+r + i \~ Sp+2

where ^3 . .., ^p+i (resp. ^+33 . . ., ^_p) are germs of analytic functions in ^3 . . .3 ̂
(resp. in ^3 . . ., -Vp+g)? the ^ are constantS3 and a^ and 6^ do not necessarily vanish at o.

This follows easily from the proof above.

Let g : R^-^R^ be an analytic mapping and let A be the subset of R" of points
where the rank of the Jacobian matrix of g takes its maximum value L We want to

289
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see what form is most general on A^If— A. We may assume that the rank is constant
on Ao, that the sum F of the squares of the determinants of all Jacobian / xl submatrices
has the form (ii), and that the restriction of g to Ao has the form (i)'. Let us consider
the simplest case where n==m==l==2. There are only two possibilities: (a) the restriction
is an immersion or ( b ) it is a constant map. One easily proves that the germ of g at
any point o f A o i s R — L equivalent to the mapping {x,y} -> (x,jy8) for some integer s> i
if ( a ) holds and to {x,y)->{x81, g^x^+jyx82) for some function ^ and integers
o<Ji<jg in case ( b ) . An example is g(x,jy)=={x, xy+y3). In this case

Ao-^+sY-o}

and the restriction of g to this curve is critical at (o, o). Hence (o, o) is an exceptional
point.

We propose the following as a generalization of the above forms. We write
gW^^giW, . . .,^W) and x=={x^ ..., ̂ )

with

("r giW=^ ...,gp(x)==x^
gp+^==±x8^^
gp+2'=xp+2x^+l +<§^ll̂ l+l5

gp+3==xp+3xp3+l~^~§22xp+2xp2+l~^g21xpl+l9

^=^^+&-p-l/-p-l^-l^-l+...+^-p-ll^l+l,

g!+l==g/-p/-pxfxsp/+pl+'"+g/-plxspl+l,

gm == gm—p—lf—px/xp+l T • • • \ gm—p— ll^p+l?

where i^i^...^^-? are integers, g^ is an analytic function in x ^ , . . . , X p ^ j
vanishing at o, and ^=o if ^=j^^.

Definition. — Let /: M^->M^ be a mapping between manifolds, and let x be
a point of Mi. We say thatjf takes the form (ii)' at x if there exist local coordinate systems
(A:i, . . . ,A:J and (j^, ...,^) at x and f{x) respectively, such that x==f(x)==o and
that f takes the form (ii)" in these coordinate systems.

Proposition (9.3). — Let f: M^-^Mg be an analytic mapping between manifolds. Then
the subset of M^ of points at which f does not take the form (ii)' is an analytic set of codimension
at least two.

Proof. — We suppose M^ == R^* and M^ == R^ for the sake of brevity. We use
the above notations A, Ao, t and F. Let B be the subset ofAo of points where F does
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not take the form (ii). Then B is an analytic set of codimension two, A^—B is smooth,
and/does not take locally the form (ii)' on B. Let A^ for i<i^ be the subset ofR"
of points where the rank of the Jacobian matrix of/is equal to or smaller than t — i — i,
and let G^ be the subset o fAo—B of points where the Jacobian matrix of the restriction
of/ to AQ — B has a rank equal to or smaller than i — i — i. It is trivial that the A^ are
analytic sets. We want to prove the analyticity of BuG,. We consider the radical
of the sheaf of ideals of 0 generated by F. As each stalk of the sheaf is a principal ideal,
we have a finite number of cross-sections X^, ... which are also generators. Then B
is the set of common critical points of X^, . . . on A(). We consider the vector fields

llgradXj^^-ygrad^.^gradX,

for all i andj, where < , > means the inner product. Let them be Y^, . . . They vanish
on B and their restrictions to AQ — B are vector fields on AQ — B and span the tangent
space at each point. Hence, the sets BuC, are the analytic subset of AQ of points
where the rank of the matrix (Y^) is equal to or smaller than f—i—i. Here
/=(/, .. .,/„). Let F, or F̂ ' for i== i, ..., n be the sums of the squares of the deter-
minants of all Jacobian (i— i) x (I— i) submatrices of/or of all (£— i) x (f— i) submatrices
of (Yifj) respectively. Then A, or G^uB for each i is the zero set of F, or F.'+Sx^
respectively. Let V, or V»' be the subset of A, or BuG, of points where F^ or F̂ ' does
not take the form (ii) respectively. We denote by V the union of B, all V, and all V^'.
We easily see that/does not take the form (ii)' on V, that V is of codimension >2 and
that Ao—V, A,—V and C^—V are smooth and of codimension one. It is trivial that
A,—VDG,+i—VDA,+i—V for all i. We shall study the form of/on A,—C^i—V
and G,— A,— V separately. We remark that (A,—C,_n)uV and (G,—A,)uV are
analytic sets.

We first consider Aq—C^ ^ —V for each q. By definition, the rank of the Jacobian
matrix of/is equal to or smaller than / — q — i on Ag—Cg^i—V and that of the restric-
tion of/to Aq—C^i—V is equal to or larger than t—q—i. Since it is trivial that
the former is not smaller than the latter, they are identical. We put t — q — i ==p.
Let Wi be the subset of R" of points where the Jacobian matrix of (/, ...,/,) has
rank<^— i. Let XQ be a point of Aq—Cq^.^—V—W^. In a suitable local coordinate
system (^, . . ., <?„) at XQ and by a translation of the coordinate axes (j^, . . .3^) °^ ̂ 5
we assume XQ ==/(^o) == °? /i^-^ • • ^fp=zp and {zp+l==o}==Aq' We want to find
analytic functions <p»(^i, . . .3^-1) tor i==p-}-1, ..., m such that the mapping (/, . . .,
fp^fp+i—^p+i^fi^ - • -^)? • • •) takes the form (u)"- Ky the definition of V, the ideal
of the ring of analytic functions on a neighborhood of^o generated by all the determinants
of the Jacobian {p + i) X {p + i) submatrices of/is the principal ideal generated by -̂ "i1

for some s^>i. We pick up Jacobian submatrices of (/, . . ̂ fp^fp^.^) for i== i, . . .,
m—p. Then we have

/p4.,=TO^l+l+Ai(^ •••^)
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for i=i, . . . , m — p and suitable functions ^ and h[. Calculating the determinants
of other Jacobian submatrices of/, we see that ^(o)+o for at least one i. Let Wg
be the set of points where the sum of the squares of the determinants of all Jacobian
( j&+i)x(^+i) submatrices of (/, . . .,/p+i) is not the product ofF^ (that is, the similar
sum for/) by a positive function. Assume that XQ is not contained in Wg. Then Wg
is an analytic set, and h[{o)^p0. Changing ^p+i, we get

/p+i-^+i+^+i^ • • - J p ) '
Next we shall choose 2^4.25 removing analytic sets Wg and W4, in such a way that

(*) fp+2== ̂ +2^1+81^1. ..., ^+l)^l+l+9p+2(/l. •••,/p+l)

for suitable functions 9^2 and g^. Let n be the sheaf of submodules of ^n on R"
defined by

n,= (^, ...,^)e^ S ^ . ^ o for i=i,...,^+i
[ J-l —i J

where (^, . . ., .x-J is the affine coordinate system of R". Then it follows that n^ is
generated by n—p— i elements if A: is a point ofA^—G^i—V—Wi—Wg and that n is
coherent by Oka's theorem. Hence there exist a finite number of cross-sections Z^, . . .,
Z^. of n which are generators of rip at any point x of A^—C^^.^—V—W^—Wg. We

w a
regard an element (^, . . ., a^) ofn^ as the tangent vector S fl^A:) — . Then Z^, . . ., Z^

are vector fields on R" which satisfy Z^ == o for 2'.== i, . . ., n' and J = = i , . . . , j & + i )
and which span the tangent space of { ^ = = . . . ==^4.1=0} at A;o. Let Wg be the set
of points where the sum of the squares ofZ^ for all i andj does not take the form (ii).
We proceed in the same manner as for Wg. The set W3 is analytic. We assume that
XQ is not contained in W3. These facts imply that the ideal of the ring of analytic

r\r

functions on a neighborhood of XQ generated by —^for i,j^.p+2 is the principal ideal
.̂

generated by z^^ for some integer s^>o. Removing an analytic set W4 in the same
way as Wg and W3, and changing (^,4-2? • • ' , -2^)9 we can, in a neighborhood of XQ,

r\r

assume that —p+2- is the product of z82, ^ and a positive function. Then it follows that
8zp+2

fp+2==hpf+2^)zp+2zsp2+l+" ' +hnf^)^ZP2+l+(?p+2{z^ • • • > ^p+l)

for suitable functions h[' and 9^+3 such that hp\^{o) +o. We substitute ^4.3 for
hpf+2zp+2+' ' -+^n5 and P^ Pp'4-2^ 9p+2(^l? • • • ? z^ °)- Then we S^

^+2='^+2^2+l-^<Pp+2(^l3 • - • ? ^3+l)—?p+2(^l? • • • ? ^p,o)

+9p'+2(/l3 • • '->fp)9

By the definition of s^y ^p+^is • • • ? ^p+i)—9p+2ls divisible by z^.^ and we have s^s^.
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We write the quotient as g[^ and put

^i=^n(^-^i(o)
and ?p+2(^ •••^+i)=<+2+^i(o)^+i-

Then the wanted equation (*) is achieved. It is trivial that if s^==s-^, g^ can be chosen
identical to o.

Applying the same method 10/^3, ...,/„, we see that there exist a finite number
of analytic sets W^, . . . such that if XQ is not contained in the union W^ of all W,,
(/i? ' ' ' ^ f p ^ f p + i — ^ p + i ^ f i ^ • • • 3 ^ ) 5 . . . ) takes the form (ii)" for some functions 9p+i, . . . ,
cp^. Let CT be a permutation of (i, . . ., m). Considering the mapping

Vo^Uc^l)? • • '3/o(w))

in place of/, we get an analytic set W^ such that/, takes the form of the sum of (ii)"
and a constant map in a suitable local coordinate system around each point of
^-Gg+i^--^- Hence/takes locally the form (ii)' on A^—Cg+i-V-W where
W is the intersection of all W<,. It is easy to see that Wn((A^—C^JuV) is an
analytic set of codimension ^2 and that if/takes the form (ii)' at a point XQ, XQ is not
contained in at least one Wg, and hence in W.

On Cq—A^—V, we obtain the same result in a similar way. Hence the set of
points at which/does not take the form (ii)' is the union of V, W n ( ( A — G g+i )uV)
and so on. The proposition is proved.

Remark (9.4). — If M =11̂ , we can deal with somewhat simpler forms. Namely,
let /==(/, ...,/J : M^-^R^ be an analytic mapping. Then the subset of M^ of
points at which the germ of/ is not equivalent to any germ g == (^, . . ., g^) at o of
the form

^o(i)= ̂ i + const, . . ., g^ ==Xp+ const,

^(p+^^^+i+yiC^i, ...,^),

§a{p+2)=xp+2xp2+l ~t~ 92(^15 • • • 3 - ^ + 1 ) 5 • • • ?

g^)=^X^+^_^X^ . . . ,^_i) ,

Sa(f+l)==^-p+l^l^ • • •^)? -^ga{m)=(Pm-p{xl^ • - • ? x/)

where a is a permutation of (i, . . ., m), the <p^ are germs of analytic functions and the s
are positive integers, is an analytic set of codimension at least 2.

This is shown in the same way.

io« Equivalence to analytic mappings

The following is a generalization of Theorem (7.1).

Theorem (10.1). — L e t / b e a mapping from a manifold M^ to another Mg. Suppose
that the germ off at each point of M^ is equivalent to a germ of an analytic mapping. In addition^
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suppose that/takes locally the form (i)', (ii)' or (iii)' in Section 9, except on a discrete set. Then
f is equivalent to an analytic mapping.

Proof. — We can assume that f is analytic in a neighborhood U of the discrete
set. Imbedding Mg in a Euclidean space, we assume Mg^R"*. We put dim M^=n,
MI = M and denote by i the maximum of the rank of the Jacobian matrix of/. Let F
be the sum of the squares of the determinants of all ly^i submatrices of (^if-)i^i,...^,

j='l,...,m

where f=={fi, . . -,fm)' From the assumption, F is analytic on U, and for any point
A:^U, F^ takes the form (i), (ii) or (iii). Hence, by Theorem (7.1), there exists a
diffeomorphism T of M such that T is analytic on T^CIT) and that For is analytic.
Considering for instead of/, we may assume from the beginning that S=F~ l(o) is
analytic. We observe here that F is not necessarily analytic. Let U^ be the open
subset of points where the germ of/ is equivalent to (/, . . .,/„) in Rv lark (9.2) or to
(&,(!). • • • . < ? o ( m ) ) in Remark (9.4). We define U^, T^, ... for f^={f^ ...,/p^)),
f^, ... respectively in the same way, where p, are all permutations of (i, . . ., m). Then
the union of U, Ui, ... is M. We want a diffeomorphism T^ such that:

(1) TI is analytic on T^CU),

(2) /oTi is analytic on UuUi,

(3) TI is the identity outside UuU^, and

(4) T,(S)=S.

If such a TI exists, we can assume/to be analytic on UuU\. Hence, repeating the
argument for (U u Ui, U^) and so on, we obtain the theorem. To find T^ , it is sufficient
that we consider the case where UuUi=M and that we replace (3) by the condition
that TI is sufficiently close to the identity. Moreover, for the same reason, we can
assume thatj^, y, r and ^ of the canonical forms in the remarks (9.2) and (9.4) are fixed
on SnUr We deal with the last canonical form only, for the sake of brevity, the proof
for the first being similar. By the lemma below, we reduce the problem to the case
/ == m. We will shrink U by steps, but at any step the shrinked U is assumed to satisfy
UuUi==M.

We saw that F is analytic on U and takes locally the form (i) or (ii) out of U.
This implies, by Cartan's theorem, that we have an analytic function F' whose zero
set is S and whose germ at each point of S — U is the square of a regular function germ.
Let YI , .... YN' be analytic vector fields defined for S in the same way as in the proof
of Proposition (9.4). Namely their restrictions on S—U are vector fields of S—U
and span the tangent space at each point. Let H be the sum of the squares of the
determinants of all p x p submatrices of (Y,/)^i N'- Then Remark (6.7) shows

J-I. . . . .P
that for a small mapping 9 =(91, . . . , <pp), the maps (/, .. .,/p)+H(p and (/, .. .,/p)
are equivalent by a diffeomorphism which satisfies (i), (3) and (4) for a shrinked U
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if<p is analytic on U. By Lemma (6.4), we choose the small 9 so that (^, . . .,^y)+H<p
is analytic. Hence we can assume from the beginning that [f^ . . . ,^/p) is analytic.

In the same way as in the proof of Proposition (9.3), we find analytic vector
fields Z^, . . ., ZN" on M such that Z^.=o for i= i, . . ., N" and j= i, . . . ,p , and
that for each point XQ^U, the tangent vectors at XQ span the tangent space of
{xeM\(f^ .. .,^,)W=(/i, .. -,fp){xo)}. Let p be the sheaf of ideals of ^ generated
by Zifp^i for i== i, . .., N". Then the zero set of p is contained in UuS, and for
any point x of S—U, p^ is the (^i— i)-th power of the ideal of germs vanishing on S^;.
Let p' be the intersection of p and (P, let p" C p' be the sheaf of ideals of germs vanishing
on S such that Z^g for z== i, . . ., N" belong to p', and let p^ be a sheaf of ideals
generated by a finite number of cross-sections ^, . .., g^ of p" such that p'^p^
on M—U. Then p' has the same properties as p, and so do p" and p^ if we replace
s^—i by Jr By the assumption, for each point XQ of M—U, there exist an analytic
function germ <pi at o and a regular function germ <p^ at XQ such that

/p-H^W-Pl^W+^/lW-/!^), . . .,W-/^o))

and Pr^0)^^.-

Hence the correspondence ^o^Pi on M — U and Xo\->fp^^^ on U determines an
element ^.i of r(M, fi^/p^). Let fp^ be an analytic function whose image in
F(M, fflip^) coincides with/;^. Then/p+i-/^ is a cross-section of p^^. By the
theorem on page 82 of [12], there exist functions g[, . . .,^ analytic in a shrinked U
such that

k

fp+l—fp'+l^^g'igi-Vp+1 Jp+1—,^i6^

Let g^ for i == i, ..., k be analytic approximations ofg[. Then fp^. ̂  and^,'+1 + S g^g,
satisfy the conditions of Remark (6.3). Hence they are equivalent by a diffeomorphism
which is close to the identity and under which/^, ...,J^ are invariant. Moreover,
we easily see in the proof that the diffeomorphism is the identity on S and that (i) is
satisfied for a shrinked U, because the g, are all (s^— i)-flat on S and are linear combi-
nations of the Z / for j = i, . . ., N" with function coefficients vanishing on S and analytic
in a shrinked U. Therefore we can assume that (/^, . . .,^,+1) is analytic. Repeating
this argument forjG^a, . . . ,^, / is transformed into an analytic mapping. The theorem
is proved.

We remark that if, in the theorem above, Mg is a Euclidean space, we can simplify
the canonical form (ii)' as in Remark (9.4).

Lemma (10.2). — Letf^orf^bea mapping from a manifold M to B/ or T^ respectively.
We put /==(/i, A)- Assume that the maximum rank of the Jacobian matrices offandf^ is t,
thatf^ is analytic and that the germ off at each point of M is equivalent to a germ of an analytic
mapping. Then f is analytic.
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Proof. — Since the problem is local,/i and/g are assumed to be germs at o in R".
By the assumption, there is a local diffeomorphism T in the neighborhood of o in If
such that /or is analytic. By Artin's theorem applied to the analytic germs/i and
/i o T, there exists a local analytic diffeomorphism T' around o such that f^ o T ==f^ o T' and
that the jets of T and T' at o of high degree are identical. It is sufficient for the proof
that f^o^ ==f^o^. Let P be the canonical projection of B/xlf" onto B/. Let U be
an open sub-analytic set of R" such that o is an adherence point of U, that the restriction
of /or to U is a submersion onto its image, that the image is smooth, and that the
restriction of p to the image is a local homeomorphism. The existence of such a U
easily follows from the assumption. Let p : [o, ij-^R" be an analytic path such that
p(o) == o and p((o, i]) C U. If we choose T' so that its jet at o of sufficiently high degree
is identical with that ofr, r 'op((o, i j ) is contained in U. Hence we only have to prove
that the images of /or o p and /or'op coincide. We denote the images by A^ and Ag
respectively, and we assume that they are different. We put

A-{(jW2)^/o^(U)bie/ioTop([o, i])}.

Then A is a semi-analytic set of dimension i, and A^ and Ag are contained in A. By
Lojasiewicz5 inequality, we have \ y — y ' \>\y^ wherej^ andy are contained in different
connected components of A — { 0 } respectively and L is a positive constant. Hence it
follows that

|/oTop^-/oT/op(^|/oTopM|L^|I/

for o<_t<_i and a constant L'. This is impossible, because we can choose T' so that
the member of the left side is L'-flat at o by Artin's theorem. Hence A^=A^. The
lemma is proved.

We consider the simplest case of Conjecture II. Assume that the manifolds are
one-dimensional and that the functions are not constant. Then the diffeomorphism
of equivalence is always analytic. We generalize this to mappings.

Proposition (10.3). — Letf^ and f^ be equivalent analytic mappings from a manifold M^
to another Mg. Assume that f^ is an immersion on a non-empty open subset of M^. Then the
diffeomorphism of equivalence is always analytic.

Proof. — The method is the same as for the proof of the lemma above. Since
the problem is local, we can assume that f^ and f^ are mapping germs from (R", o)
to (R"*, o). Let T be a local diffeomorphism at o such that /i ==f^ o T. We want to
prove the analyticity of T. There exists a germ of a closed subanalytic set S Cf(K1)
of dimension <n such that/^R^—S is smooth and that the restriction off^ to R^'—Yf^S)
is a local homeomorphism. Let U^, . . . , Uj, be the connected components of the germ
ofR'1—/!"^), and let p^, . . . , p^ be analytic paths such that p,(o) = o and p,((o, i]) C U,
for each i. Then for each z, y^^/i0?^0? I])) ls a semi-analytic set of dimension one
and contains the path Top,([o,i]). Moreover the semi-analytic set contains T'op^([o, i])
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where T' is any local diffeomorphism such that fi==f2°^' Hence, applying Artin's
theorem and Lojasiewicz5 inequality in the same way, we have an analytic local diffeo-
morphism T' such that T o p ^ = T ' o p ^ for i== i, . . ., k and f\=f^o^' If A is an immer-
sion, the proposition is trivial. This means that the equation T=T' holds on R"—/^^).
As the dimension of^^S) is <n, we see that T==T'. The proposition is proved.

The following is an immediate corollary of Theorem (8.4)3 Theorem (10.1) and
the above proposition.

Corollary (10.4). — If the source manifold is of dimension <^2, the conjectures I and II hold,

it. Other equivalence relations

If, in the conjectures I and II, we replace the equivalence by the R — L or L equi-
valence, the resulting conjectures are false.

Example (11.1). — Let us consider an immersion of R into R2 as in the figure.
Then it is locally L equivalent to germs of analytic mappings but not globally R — L equi-
valent to any analytic mapping.

We remark that any function germ which is R — L equivalent to the germ of an
analytic function is equivalent to an analytic germ.

>—<^
Example (n.a). — Let/^ and/^ be strictly monotone increasing analytic functions

on R whose germs at all critical points are R — L equivalent to each other, whose sets
of critical values are {1 /72 T Z = = I , . . .} and { i / n | / z = = 2 , . . . } u { 2 } respectively and
whose limits are oo as x tends to oo. Then ̂  and f^ are R — L equivalent but not
analytically R — L equivalent.

We remark that if/i andy^ are R — L equivalent analytic functions whose sets
of critical values are discrete, then there exists an analytic diffeomorphism T of R such
that To/i andj^ are equivalent. Namely we can reduce the problem to the original
conjecture II.

Remark (11.3). — Let/i and/2 be L equivalent analytic functions on a manifold
whose images are R. Then the diffeomorphism of L equivalence is analytic.

Example (11.4). — In the remark above we cannot omit the condition that the
images are R. Let f^ and /a be functions on R defined by fl(x)=x2+l and
f^x)==f^ exp(i — i//i2). Then the diffeomorphism T of [1,00) such that ^of^=f^ is
uniquely given by r(^)===^ exp(i — i/j/2). Hence /i and /g are not analytically
L equivalent.

Remark (11.5). — Any two L equivalent analytic functions on a manifold are
analytically R — L equivalent.
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12. Equivalence to Nash functions and the uniqueness of factorization of
analytic functions

In this section we give two applications of the ideas used in the preceding sections
of this chapter. First we consider the problem of when a C°° function on a compact
Nash manifold is equivalent to a Nash function. Here a Nash manifold means an
analytic manifold which is a semi-algebraic subset of a Euclidean space (see Palais [21]),
and a Nash function on a Nash manifold means an analytic function whose graph is
a Nash manifold. We want to prove the corresponding conjectures in some special
cases. Here, we cannot use Cartan^ theorem. But the theorem is not essential in
some of the preceding results in this chapter, if the manifolds are compact.

Proposition (12. i). — Let M be a compact Nash manifold, l e t / b e a function on M and
let S be the critical set off. Let Si, 83, . . . be the connected components of S. Suppose that
for each S,, there exist a Nash function g, on M, a diffeomorphism T, of M and a neighborhood U,
of S, such that

gi°^==f on U,

and T,= identity on U U .
j ^ i J

Then f is equivalent to a Nash function on M..

Proof. — Let M be embedded in R^ Considering /OT^OT^ . . . instead of/,
we can assume that g, ==f on U,. We let G, denote the sum of squares of all derivatives
of^ for each i. Then S, is a connected component of G^^o). Let h, be a polynomial
on R" which is positive on S^, and negative on another connected component. We put

H-(A?+Gt)1/2^ for z = i , . . .

Then H^ is a Nash function whose zero set is S, and the germ of H^ at S, is the product
of G, and a germ of a positive function. We put

H—n^., H—HKH.+HO-1.

Then H^ is a Nash function whose zero set is S — S, and the germ of H" at S, or Ŝ . for
r\f r\r r\r r\f

j^i is of the form i+S^—-—- or S^—-7- respectively. Multiplying by some
OX^OX{ CX^OX(

Nash functions on H^ and H,', we can assume that the a^ are sufficiently near to the
zero function on a given small closed neighborhood ofS, or S . Then, by Lemma (6.1),
G=2^H,// and/are equivalent as germs at S, and the diffeomorphism can be chosen
close to the identity. Hence we can assume that /= G in a neighborhood of S. Using
the sum of squares of all derivatives ofG in the same way as in the proof of Corollary (6.5)3
we prove the equivalence of/to a Nash function.
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An immediate corollary is

Corollary (12.2). — Let M,f be as above. Suppose that/has only isolated critical points
and that for each point x, the germ offis equivalent to a A'ash function germ. Then f is equivalent
to a Mash function on M.

Theorem (12.3). — Let M. be a compact Nash manifold of dimension <^2 and let f be
a function on M. Suppose that for each point a of M, the germf^ is equivalent to a C^ function
germ. Then f is equivalent to a Nash function on M.

Proof of the theorem. — We assume M C 'BJ1 and that M is not orientable. The
/^/ /V/

other case follows easily. Let (M, p, M) be a 2-fold covering such that M is an orientable
e^/ ^^

manifold and that p is a local diffeomorphism. We can imbed M in R3 so that

—xeM if xeM,

and p{x)==p{—x) for xeM.

It follows that there exists a function 9 on R3 such that

y^)==cp(-^ ^-\o)=M,

and that f is regular at all points of M. Let <p' be a polynomial approximation of 9.
Then

9''M=[<p'M+9/(-^]/2

is an approximation of 9, and (p / / - l(o) is diffeomorphic to M. Here the diffeomorphism
commutes with the mapping x->—x. Hence we may assume that MCR3 is a Nash
manifold. Let q be the projection from a Nash tubular neighborhood ofMin R^ onto M.
Then q is a Nash mapping. Let p ' be a map from R3 to K1 whose restriction on M
is p. Let p " be a polynomial and a sufficiently strong approximation of p\ We put

p-==q{[pf/{x)+pff^x)]|2) .
M

Then?* is a Nash approximation ofp such that p*[x)=p*[—x). Hence, we may assume
thatj& is a Nash mapping and that p{x}=p[—x). Let S be the zero set of/. We put

^-'(s), 7= fop.
By Proposition (12.1), we only need to show the existence of a Nash function g on M,
of TeDiff°°(M) and of small neighborhoods UCU' of S in M such that

go^==f on U

and T= identity on M—U'.
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We may assume that/is analytic, by Corollary (10.5). Let 0, (9 be the sheaves
of germs of analytic functions on M, M respectively. There exist distinct coherent
sheaves J^, ..., J^ of ideals of (9 such that

mfo== n^\ a,>o,
the radical v^a^e^. for each i and xeM,

and such that Si={xeM\^^0^} for i= i, . . . , m are finitely many points plus the
irreducible components of S. Here it is possible that S,==S- for i^j if S^ and S- are
points. We put

^WW, ^i==P~1^) for i= i, . . ., m.

Then we can construct functions h^ . . ., h^ on M such that, for each x, S^CA^^o),
^^ ^^ ^/

the germ h^ is a generator of<^^ for any ^eS^, and h^x)==h^{—x) or = = — h ^ { — x )
on M. Here ̂  denotes the sheaf of germs of functions on M. We remark that if M
is not orientable, the h^ do not exist in general. We want to take Nash functions as h^
for i= i, . .., m. Let h[ for each i be the restriction of a polynomial on M such that
h[ is sufficiently near to h^ that their critical sets are the same, that their jets of large order

m

are identical at each critical point of H h^ and that h[{x)=h[{—x) if ^(A;)=^(—x)
and h[{x)= —h\[—x) if h^x)== —h^—x). Then, by the properties of ^P and h^

m m

II h^ and II h[ satisfy the condition of Remark (6.3) in a neighborhood of S. Hence
1=1 i==l
they are equivalent as germs at S, and the diffeomorphism can be chosen near to the
identity and commuting with the multiplication by — i . As the diffeomorphism can
be extended to the whole of M without losing the commutativity, we can assume from
the start that the h^ are the restrictions of polynomials./^/

Let ^ for i == i, .. ., m be Nash functions on M such that for each i

^.>°. ^ , .<°.
S, ^(0)-S,

and ^i(x)=^(—x).

We put

H—^+^T2-^ for z=i,. . . ,m.

Then we have for each i

H^o, H^o)^, H^)=H,(-^),
^ /^/

and the germ H^ is a generator of J^i for any xeM. We put
m

H==nH?', B.{x)=H{p~\x)) for xeM.
i=l
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From the property of e^, we deduce that
PQ^W.

This means that
/^HeG^M) and /'/H^.

Hence there exists a Nash function H/ on M such that
H'^H and //H^o.

It is easy to find a Nash function H" on M such that/yH'H" is sufficiently near
to i and that the jet of//H'H" of sufficiently large order is equal to i at each point
where f does not take the form (i) or (ii) of the introduction. Then Lemma (2.2) ,
the proof of Lemma (2.3) and the statement in the proof of Remark (6.2) imply that
/and H'H" satisfy the conditions of Remark (6.3) in a closed neighborhood ofS. Hence
/and H'H" are equivalent as germs at S, and the diffeomorphism is near to the identity.
Thus the theorem is proved.

Remark (12.4). — If M is not compact in the results above, f is not necessarily
equivalent to a Nash function. Take for example, M •= R and f{x) == sin x. But we
see that for any compact subset K of M, there exist a Nash function g on M and a
diffeomorphism T of M such that/ and gor coincide on K.

We can generalize the corollary (12.2) as follows in the same way.

Theorem (12.5). — Let/be a mapping from a compact Nash manifold Mi to a Nash
manifold M^. Suppose that the rank of the differential off is constant on M^ except on a discrete
set and that for each point x of M^, the germfy^ is equivalent to the germ of a Nash mapping. Then
f is equivalent to a Nash mapping on M^.

Next, as another application, we generalize Proposition (4.2) to the global case.
Namely, we show that a factorization into G00 functions of a non-zero analytic function
on a connected manifold is a factorization into analytic functions. We also consider
the complex analytic case. Assume that a continuous function/on a complex analytic
manifold is of class 0°° when we regard the manifold as a real manifold. Then we
call / briefly a 0°° function.

Lemma (12.6). — Let f be a function on a manifold. Suppose that for any zero a of f,
the germ f^ is the product of a function germ which takes a non-zero value at a and an analytic
function germ. Then there exists a function ^ such that ^{x) +o for any x and that ^fis analytic.

Complex case. — Let f be a C-valued (^function on a Stein complex manifold. Suppose
that for any zero a off.f^ is the product of a C-valued C00 function germ which takes a non-zero
value at a and a germ g^ of a complex analytic function. Then there exists a C-valued C00 function ̂
vanishing nowhere such that ^f is complex analytic.
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Proof, — The complex case is involved in the solution of the second problem of
Cousin. It is well-known that the existence of such sinf proves the truth of the problem.
We will repeat the proof, because the real case follows in the same way.

Complex case. — Let M be the Stein manifold on which f is defined. Let (P, jf,
<?, Jf7, and Z be the sheaves of germs of holomorphic functions, meromorphic functions,
C-valued G00 functions, fractions ofC-valued C00 nowhere flat functions and the constant
Z sheaf on M respectively. Let (P*y S* be the subsheaves of^, § respectively of invertible
germs. We put ^=jf/W*, ^'==^'/^'* viewed as multiplicative group sheaves. Then
we have commutative diagrams of exact sequences

o —> Z -"-> (0 -^ ^ —> o o —> ^ -^ JT —> 0) —> o

[i [ j I3 \3 \3 \3 (^ (2)v y y ^ y y '
o —> Z -"-> S —> (T —> o o —> ^ -"-> Jf' —> 3)' —> o

where i is the identity, j the natural injection and e the exponential mapping. Hence

H^M, 0) -^> H^M, (9^ -^> H^M, Z) -^> H^M, (P)

\j* [j* \i* |j* (3)^ ^ ^ ^ V<J/

H^M,^) -^> H^M,^*) -8^ H^M.Z) -^ H\M,^)

H°(M,^) -^> H^M,^) -s^ H^M,^*)

^ 1^ |j*y y y

H°(M,jr) -^ H^M,^) -8^ H^M,^*)

are commutative diagrams of exact sequences. The fundamental theorem B on Stein
manifolds tells us that

H^M.^H^M.^o.

Now f is an element ofH^M.Jf'), and the mapping g : a->g^ is not necessarily
a continuous cross section of jf\ We see that r*g is a continuous cross section of Of.
We write the element of H°(M, 3)} as [/]. Then we have

nn^r-fm H^M, '̂).

If we prove that S^[f]=o, it will follow that there exists g-^ in H°(M,jT) such that
r*g^=[f]. Then g^ and ̂  coincide mod (9\ for any ^ of M. This means that g^ has
no singularity and that ^i//is a C-valued G00 function vanishing nowhere on M. Hence
g^={gilf)f is the decomposition we want. Therefore we only need to prove the
equality S^[f]=o. We have

rw]=wf]=w=o.
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In the diagram (3)
H^M,^) -8^ H^M.Z), H^M.Z) -^ H^M, Z)

are isomorphisms. Hence
i'Wf]=SJ-W]==o

implies S^[f]==o. Thus we have proved the analytic case.
For the real case, we only have to consider commutative exact sequences

o —> 0 —> o- —^z^ —> o

i i i
o —> € —> ^ —> Zg —> o

instead of ( i ) . We omit the details.

Theorem (12. 7). — Let fbe a non-zero analytic function on a connected manifold. Suppose
that f is the product of two functions 91, o^. Then there exist two functions ^i, ^3 such that
^^==1 and that 91^1, 92^2 are ^cilytic.

Complex case. — Let f be a complex analytic function on a Stein manifold. Suppose that
f is the product of two C-valued ^functions 91, 93. Then there exist two C-valued C°° func-
tions ^»i, ^2 such that ^'i^a^1 an^ ^a^ 9i^i? 92^2 are complex analytic.

Proof. — Real case. Let a be a point of the manifold. By Proposition (4.2), we
have two function germs ^i, g^ at a such that g^== i and that 91̂ 15 ?2a^2 are analytic.
Hence 91 satisfies the condition on/in Lemma (12.6). Therefore there exists a func-
tion ^i vanishing nowhere such that ^i9i is analytic. Put ^a^^/^r Then ^i, ^3
are the functions we want.

Complex case. — Because of the argument above, we only need to show this theorem
locally, namely, the complex case of Proposition (4.2). We can prove that case in
the same way as Proposition (4.2), since the results ofTougeron and Malgrange which
were used there hold true in the C-valued case. We omit the details.
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III. — OTHER PROBLEMS OF EQUIVALENCE

13. Topological equivalence

Let f be a continuous function on a C1 manifold M. A point x of M is called a
topologically regular point of/if the germ of/at x is G° equivalent to a C1 regular function
germ. If x is not a topologically regular point, we call it topologically singular. The
image of a topologically singular point by / is called a topologically singular value.

Our tools in this section are the following lemmas due to Siebenmann [29], Kirby-
Siebenmann [8], Moise [16] [17], Munkres [18] [19], and Hirsch-Mazur [5].

Lemma (13.1). — Given a topological manifold X and a codimension one foliation ̂
one can always find a foliation y by i -manifolds transverse to y. If y is a given filiation
by i-manifolds transverse to y and defined near a closed set G C X, then one can choose y equal
to y " near G.

Lemma (13.2). — Let Q^ be a q-dimensional topological manifold without boundary^ with
q 4= 3, 4, and let G be a closed subset ofQ^. Let So be a G00 structure near G. Let © be a C00 struc-
ture on Q^x R which agrees with So x R near G X R. Then Q^has a G°° structure S, extending So
near C, so that there is an z-isotopy hf: Q,sXR->(Q,xR)Q with h^^the identity, h^=a
G00 diffeomorphism, and h^-=the identity nearCxV^. Here e : Q^xR-^R+ is a given continuous
function.

Lemma (13.3). — Any homeomorphism from a Euclidean space of dimension not 4 to a
G°° manifold can be approximated by G°° diffeomorphisms in the C° topology.

The topological case of the Corollaries (7.1) and (12.2) is

Theorem (13.4). — Let M be a C°° manifold of dimension 4=4, 5. Letf be a continuous
unction on M. Suppose that f has only isolated topological singularities. Then f is C° equivalent

to a G°° function on M.

Proof. — Let S be the set of topologically singular points of/. Obviously/defines
a codimension i topological foliation ^ on M—S. The Lemma (13.1) implies the
existence of a foliation y by i-manifolds transverse to y. We assume dim M = n-\-1.
Let aeM.—S. Then there is a neighborhood W of a and a homeomorphism
TrrR^^f l -^W with c<f[a)<d such that

{^(R-x^heM]-^ , MWxM)LeR"-^ .w w
/o n{x, t) = t for (^ t) eR" X [c, d].
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Let {WJ^^g be a locally finite covering of M — S by sets of type W; the mappings
7r^: R"x [ .̂, rfJ->W^ have the same properties as n. We may assume that if

[^^l0^^]^0 and z<7,

then [^4P[^].

By Lemma (13.3), there exists a C00 diffeomorphism T^ : W^R^x (q, fl?i) such that

\'Tl{x)—Tcll{x)\^o when x-^8Vf[

where ^W^ means the boundary of W^. Then 7^ o T^ is a homeomorphism of W^ such
that /OTT^OT^ is G00 regular on W^. Taking a refinement of{WJ if necessary, we may
assume that

dist (7^ o TI (x), x) -> o when .r -^ ̂  W^,

where dist( , ) is a metric on M. Then T^OT^ can be extended to M so that the
extension is the identity outside W^. We denote it by (T^. We consider /o^, <3\y
and (5\y instead of/, y and y\ and we use the same notations /, . . . for them.

Next we shall transform/ on Wg. If Wi n Wg =0, we define a homeomorphism c^
ofM in the same way as above so that foa^ is G00 regular on W^uWg and that 02== the
identity outside Wg. If W^cWa^, we have (q, rf^ D (^, d^). Let C be a closed
subset of Rn such that

7r2(Gx(^,^))^WinW2.

We set Wia= 7:2(0x^2, ^2))- The function/is 0°° regular near W^. We want a
homeomorphism c^ of M such that /o o-g is C00 regular on Wg and that (T^ is the identity
near W^g and outside Wg. We choose G so that WjuW^g is a neighborhood of
aWgnTT^xO^^))- Then /o^ is C00 regular on WaUW^—TT^R^COx^,^}]-
Hence if we can construct eg and repeat this argument for W3, . . . then we may assume

00

that/is G00 regular on M — S — U ^(R^^,, rfj). We shall now construct Cg. As
i=l

/is G30 regular on W^, we have a G°° foliation ^r" by i-manifolds on W^ transverse
to y'. By Lemma (13.1), there exists a foliation j^* by i-manifolds on/"'1^!, ^)]—S
such that

\y' neary-^^^^-S-W,
=:= i[e '̂" in a sufficiently large open subset of W^.

We put W^^e/""1!^, ̂ )] | the leaf of ^r* passing through x intersects with Wg}.
Then W^DWg, and because of the existence of J^*, there exists a homeomorphism
TT^ : Xx(rg, fiy—^W^ where X is a topological manifold such that

/OT^, ̂ )-^ for (^ ^)eXx(^, ̂ )

and that X and T^ are of class G00 near closed subsets G* and C^X^, ^2) respectively.
Here G* has the same property as G. It is sufficient to construct a^ for W^, TT^ and C*.
Because W^ is a C00 manifold, we have an induced G°° structure on Xx(^5 ^2) by ^.
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The two C00 structures are equal near G* X (^2 ? ^2) • Hence, by Lemma (13.2), there
exist a C00 manifold Y, a closed subset D of Y, a homeomorphism p : Y->X, and a
C°° diffeomorphism h'. Xx(^, fiy->Yx(^? ^2) ^^ ^at

^-^(pX identity) near ~Dx{c^,d^),
P(D)=G*

and that h and p^X identity are sufficiently close. We put
f TT^ o (p x identity) ohon^~1 on W^,

°'2== { . . .[identity outside Wg.

It follows that hon^~~1 is a G00 diffeomorphism and that
fo 7^o(pX identity) (^ t)=fon^(jy), t)==t

for (j^, ^)eYx(^, d^). Hence foa^ is G00 regular on W^. It is trivial that c^ is the
identity near W^==7i^(G*x(^25 <4))- Thus we have constructed dg as wanted.

00

We proved that we can assume the following: (*)yis G00 regular on M — S — U X^
where X^, i== i, 2, . . . are compact subsets o f M — S such that f is constant on each X^
and {X,} is locally finite in M—S. The above construction of homeomorphisms
justifies the next remark.

Remark. — Let X be a closed subset of M — S such that/is constant on X. Then
there is a homeomorphism h of M such that foh is C00 regular near h~l(X) and satisfies
the condition (*) and that h is the identity outside an arbitrarily small neighborhood ofX.

By this remark, we choose {XJ in (*) so that each X^ is a connected component
00 00

of U X, and that for each aeS, U X^ does not intersect with/"^/^)) near a. We
put f(X.^)==b. The lemma below shows the existence of aeG°°(R) such that a is a
homeomorphism on R, oc(^) == 6, | a(^ 4" t) — b\<^_\t\ for ^eR, a is the identity outside
a sufficiently small neighborhood of by and a of is of class C00 near X^. By Lemma (13. i),
we have a foliation by i-manifolds transverse to ^ near X^ and of class C°° outside a
small neighborhood of X^. This implies the existence of a homeomorphism

n : X,X(^,^)->W'

where W' is a neighborhood of X^ and X^ is an open subset of f~l{b) containing X,
such that

fo 77' {x, t) == t for {x, t)eX[x (k^, ̂ ),

that X^ is of class C00 outside a small neighborhood X^', and that TT' is of class G00

outside X^x^i,^)' ^e "^Y assume that a is the identity outside {k[, k^) where
k^<k[<b<k^<k^ Let cpeG°(X;) be G00 outside X^, i^y_>o and

( i in X^'
(p==

[o outside X^,
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where X^ is a small neighborhood of the closure of X^'. We put

fr^t)=^t)^x)+{l-^x))t for (^)eX^x(^).

Then/' is of class C00 and is G° equivalent to for:' through a homeomorphism which
is the identity outside X^x(^,^). We put

f/ 'oTT'-1 on W'
f" =\J [f outside W'.

Then / and /" are C° equivalent by a homeomorphism that is the identity outside a
00

small neighborhood ofX^. We easily see that/" is of class G00 outside Su U X^. We
»=2

repeat this process for other X,. Then we have a function which is G° equivalent to /
00

and of class C00 outside S and 0°° regular outside Su U X,. We use the same notation/
for this function.

Next we want to transform/into a function of class G00 at S. For each aeS
there is a neighborhood U of a such that/ is G00 regular near/"^/(^z)). We

U-{a}
consider the case U=Rn + l , a=o, f{a)=o and /eG^If14-1). By Lemma (13. i),
there exists a foliation ̂  on R^1-—^} by i-manifolds transverse to ^ and

U-{0)
defined near/""1^)—^} by grad/ For any A-eR/14'1, Z^ denotes the intersection of
/"'([-I/WI. 1/WD) ^nd the leaf of ̂  passing through x. We write D,= U Z^

|a;|<e
for £>o. Then {Dg}g^o is a fundamental system of neighborhoods of o. The reason
is the following. We only need to prove D g C { ^|^2} for sufficiently small £>o.
We may assume that/is G00 regular on /"^([—s, £])n{i< |A: |<2}, that e^o ls defined
by the gradient of/ in the same set and that |grad/|>8 there for S>2s. If
^^{M <^2}? there is a leaf in Dg which connects two points x, y of Dg such that
M = 1 ? l^^2- Then we have l/M—yO^S. But, by the definition of Dg we
always have \f{xf)—f{x/f)\<^2^ for x\ ̂ "eDg. This is a contradiction. Thus we
have proved that {DJ is a fundamental system of neighborhoods of o. This implies
the following. Let o^ be similar to the above a for X^, that is, ao is a homeomorphism
ofR of class C00, oco==the identity on (—00, —s)u(£ , oo), |ao(^)|<^| for ^eR, and
aoo/ is of class G°°. Let A: be a point near o. Then there exists a unique j^eR""^ such
that x and y lie on the same leaf of ̂  and that ^Qof{x)=f[y). Moreover the corres-
pondence T : x->y is a local homeomorphism near o. And then we easily show in
the same way as in the case of X^ that T can be extended to a global homeomorphism
so that /o T is of class C00 on M. The proof is complete.

We used the next lemma in the proof above. The proof of the lemma is easy,
and will be omitted.

Lemma (13.5). — Let I^CR, n== i, 2, . . . he open intervals such that
00

oeI^CI^ for each n, Q In={o}.
n = l
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Let ^, 72=1 ,2 , ... be positive numbers. Then there exists a strictly increasing function
/eG^R) such that /(o)=o and

^P\f{m\x}\<a^ for any pair n>,m.
^n

Theorem (13.6). — Let M be a G00 manifold of dimension 4=4, 5, and letf be a continuous
function on M. Suppose that the set of topologically singular values off has no inner point in R.
Then f is R — L C ° equivalent to a ^function.

Proof. — We may assume that/is bounded, and from the previous theorem, that
/is of class G03 on the set R of topologically regular points of/ Let V be the C°° vector
field grad/on R for some Riemann metric on M. Let K,, 2 = 1 , 2 , . . . be a sequence
of open subsets of M such that for each z, the closure K, of K, is compact and contained
in K^i and that M is the union of all K,. Let S, be the set of topologically or diffe-
rentiably singular points ofK,, i= i, 2, . . ., and let T, be its image by/ Since S, is
compact, so is T,. Then the complement of T, in R is the disjoint union of open
intervals U^, U,2, . . . We put

W^y-^U^nK, for z j = i , 2 , . . .

Adding countably many points to T, if necessary, we may assume that, for all i

mff{x) and sup/(A:)eT,,
a;eK. xe^i

and that for each i,j, the function/is C00 regular near Wy and any integral curve of V
contained in W, and passing through points ofK,_i does not intersect ^K,=K,—K,.
We still assume T,CT^, z = i , 2 , . . . Let <p be a C00 function on R strictly
increasing on (o, i), equal to o on (—00, o) and to i on (i, oo). We put

U,,=(^, ^), ^W=9[^-^)/(^-^)].

Then for each i, j\ the function <p,,o/ is of class C00 on K,. Let k^<_i be positive
numbers such that for each i

00

S^(^.-^)9,,o/|
'K,i-1

converges to a G00 function on K,, and that k^k^. if Uy.DU^. For all i, j, z',
let c^ be the sum of all k^,[b^.-a^,) with UpU^, and let .̂ be the limit of c^,
when i'-xx). It is trivial that Q<,c^<_k^—a^. We can choose {k^} so that
all ^ are positive. This is shown as follows. First we choose k^, ^=1,2 , ... suffi-
ciently small. Then we put

. _(^ j=^ ...,<
R23~\ ^ . .,

5* '2

[sufficiently small for other j,
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where the mapping (j',j)->{i~-1^;*) is defined by U^CU^^, and ^ is chosen large
enough, so that c^ and c^ are sufficiently near to k^b^—a^) and ^12(612—^3.2)
respectively. Next, we put, for large /g ,

r __ ) ^2J* J = l•> • • • 5 ^3
3i — I

[sufficiently small for other j,

securing that ^13, ^33, ^33, ^13, ^23, and ^33 are sufficiently near to ^g, c^,
S k^{b^—a^), ^21(^21—^21) 3 ^{b^—a^) and ^23(^23—^23) respectively. We repeat

j* =3

the process for /^., . . . Then, for each z, j, ^.—^.+i) is sufficiently near to o for
i'>z,j, hence we have ^=t=o. Observe that

c^== S ^4-1)^ tor each i, j (*)

We shall define a homeomorphism T of R such that rof is G° equivalent to a
C00 function on each K^. We put

T(^)=0, T(^n)=6:n.

We want to define r(^) and T(^.) for (z , j )4=( i , i). If a^>a^ let A^. be the set
of allj'such that ^<a^<a^. If a^<a^ let Ay ={j ' |^^^'<^n}. Then we put

S ^ if ^>^i
^^)=

S ^ if ^<^i,y
f /GA,y

T(^)=T(^.)+^.

The equality (*) and the assumption of the theorem ensure that T is well defined and
can be extended to a homeomorphism T of R. For all i, j, we put

gij^^j^0/'

We compare the functions TO/ _ and ^ _ +^(^j). Then, by the vector field V,
Wy _____ Wy _____

there exists a homeomorphism TC^ from W^nK^_i into Wy such that

TO/O^=^+T(^) on W^nK,_i,

7 -̂ = identity.
SWynK;_i

For each i, adding countably many points to T, if necessary, we can extend TT^,
j= i, 2, ... to a homeomorphism T^ from K^_i into K^ so that

oo

To/o-n:,== S ̂ +^ on K,_i
J ^ l

3(?9
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where c, is a constant. Because of the choice of k^ and of the inequalities
^•(^•--^)->^•^ fhe function on the right hand side is of class G00 on K,.

Now we want to connect TT, and TT^ to each other. For each ^3, j>_i, we
have a G00 embedding o .̂ of Ay^xjo, .̂] into W .̂ where Ay is a C00 manifold such
that the image of oc^ contains Wy.nK,_i, that the curves {a^x[o, ̂ ])L^- are
integral curves of V, and that

<?zj o ̂  (A:, ^) = t for (^, ^) e Ay x [o, .̂].

Let ^ be a G°° function on Ay such that o^^ <i and that

^ ^ v ( 1 if ^(^l0^-])01^^
y to if ^(^x[o,^,])n(K,-K,_,)+0.

Let p be the projection Ay.x[o, ^]-^Ay. Then

^^o^oa^^^^+^^l-^o^oa^1)

can be naturally extended to a function continuous on M, of class G°° on K ^ . ^ and
equal to ^S ^+i)^ outside Wy. We denote that function by .̂. Here we put

J ' * = J oo

^•^ S ^(i+i)j' if W^-=0. Then ^'= S ̂  is a continuous function which is equal..-,. - ^-0-
to S <?y on K,_2 and to S ^(i+i)j outside K,_^, and there exists a homeomorphism TT'

j == i j == i
from K, into K^i such that

TO/OT^=^+^ on K,,

f^ on K,_2
7C,=

[TT^i outside K^_i.

Repeating this process, we have a continuous function on M which is C° equivalent
to TO/. But, unfortunately, this function is not of class G°° in general. To make it
differentiable we need numbers o<^.<i, z , j = = i , 2 , . . . which are similar to k,-.
That is, let {k^} satisfy

^^==,,s/(/^+l^^+l^ for a11 z5^

Then

kfijgi^ijopo^l+ S ̂ ('z+l^+l)^1 -^opo^1)
3'^ 3

is well defined G00 function on Wy and can be naturally extended globally. We call
the extension g^. We choose {k^} sufficiently small so that for each i, the sum of &•',
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j== i, 2, . . . converges to a C00 function ^/ on K. To find the k^ is exactly the same
as for k^ and c^ and we do not repeat the argument. Now we have, for all i

S;̂ ,+^ on K,_,

00

S^'+ij^+ii outside K,_i.

where the c[ are constants. Hence we can connect the g\' as follows. We put

g{x)==gff{x)+^ ^ ^K.^—Ki.2, X = 2 , 3 , . . .

where the c^ are constants defined so that g{x) is continuous on M. Then g is a C°° func-
tion on M and R — L G° equivalent to T of. The proof is complete.

From the theorem above and Sard's theorem, we deduce:

Corollary (13. 7). — Let M be a G00 manifold of dimension ^4=4, 5? and let f be a C^ func-
tion on M. Suppose that for each point x of M, the germ off at x is R—L C° equivalent to a
germ of a G1'function. Then f is R—L G° equivalent to a G00 function on M.

Example. — If we modify the example in Whitney [34], we have a G1 function
on R2 whose set of topologically singular values is not a border set in R. This function
is not R — L C° equivalent to any G°° function on R2.

About the G° equivalence we have a simple result in the one dimensional case.

00

Proposition (13.8). — Let f be a (^function on I=[o, i]. Let U (^,^) be the set
of topologically regular points of f. Then f is C° equivalent to a G7' function with i <^ r <^ oo
if and only if

(i) ^\f^)-fW<^
i==l

where k=r if r=t= oo, ^ = = 1 , 2 , . . . if r==oo,
(2) the measure of the set of topologically singular values is o.

Proof of <( only if'\ — For each z, there exists ^e(^,j^) such that

\f^)-f{^\=={^-x,)\f'{z,)\.
Hence

S |/(^<)-/(^)|< S {Ji-^ sup j/'Wl^sup |/'W|<o>.
i=l i^l a;EI xEI

If r^>2, we have

\f'{^\ = \f'^}-f'^}\ =(^.-^)i/"(^)i,
i= i, 2, . . . for some w^e{x^ ^). Hence

l/^-/^)!1^^-^!/"^)^.
37^
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This implies

Jlj/^)-/^)!172^.
Repeating this argument we have (i) . The assertion (2) is Sard's theorem.

Proof of <c if'\ — We assume f(o)=o. Let 9 be a C00 function on R strictly
increasing on [o, i], equal to o on (—oo, o) and to i on (i, oo). We want to find
positive numbers a^ b^ z = = i , 2 , . . . and a homeomorphism T of I such that

(a) ^[(^^+^)]=(^J^), i=^^, • • • ,

( b ) /oT=S(/(^)-/(^)9[(^-^)/^ and
» = i

( c ) this last function is of class Cr.

We assume r+oo. We put
c^Ay^-fW^

00

Then, by (i) , we have S ̂ <oo. Let A, j= i, 2, . . . be positive integers such that
i-l

( d ) 2^<i/^.
^dy

Then

s^+ s <;,+ s ^+...=^<oo.
i==l i=*di i=d2

Let the coefficient of^ in the above sum be o^ for each z. Then a^-^oo when i->co.
We put ^== ^c^mic, where m is the measure of the set R of topologically regular points.

00

Then S a^==-m. Let m^ be the measure of [o, x^\ — R and let A^ be the set of integers j
1=1

such that Xj<x^ Then (2) means that

yK)= s [/(^)-/W
jeAt

We put

bi==mi+ S ^-.
j'eA,

Then there exists a homeomorphism r o f l which satisfies the conditions ( a ) , ( b ) . For
^[^,^+^iL l<i^<ir7 we have

^^(/(^•)-/^,))?[^-^/fl,]
^[(/(^)-/(^))/^] sup ly^'WI -(./a^^sup lyW^)].

xei xei

312



EQUIVALENCE OF DIFFERENTIABLE MAPPINGS AND ANALYTIC MAPPINGS 113

As a,—^oo when z'-^oo, this simplies ( c ) . If r=oo, we put 6:'=|/(j^)—/(^)|, and
we consider the sums

Y ' Y /i/2 Y '1/32j ^, 2j ^ , 2a C^ , . . .
i = 1 i=d{ i = da

instead of (^). Then we obtain in the same way a^ b^ i == i, 2, . . . and T as required.
The proposition is proved.

Example. — f{x) == X7' cos2 i \x, xeK, r>_2 satisfies the conditions ( i ) for k<r and
(2) in the proposition but not ( i ) for k == r. Hence/is R—L C° equivalent to a 0°° func-
tion and G° equivalent to a CY"1 function but not to any CV function.

14. C-valued G00 functions equivalent to C-polynomials

In this section we consider complex valued C00 functions on R2. Equivalence,
R—L equivalence, etc. are defined in the same way as in § 6.

The main result of this section is the following.

Theorem (14.1). — Let f be a C-valued C00 function on R2. Suppose that f is proper
and that/or each xeVL2, the Toy lor expansion T^f is equivalent to a non-constant C-polynomial.
Then f is equivalent to a C-polynomial.

Proof. — We easily see that for each xe'R2, the germ/ is equivalent to a non-
constant C-polynomial germ. If f{x) = o, the order of;c is well defined by a holomorphic
function germ equivalent to f^ Let X be the set of singular points of/. Then X
consists of a finite number of points, a^, . . ., a^ say. The reason is the following.
Trivially the assumption implies this fact locally. We put

C-/(X)=B, R2-/-1(/(X))=A.

Then / : A->B is a covering. As/is proper, the cardinality of/"1^) is finite for
A

all j^^C. Hence the covering is p-fold for some integer p. Modifying / near each
singular point, we can assume that the order of f—f{a) at each aeX is always two
and that

/(^)+/(0 for a^a'eX.

We shall prove that j^f tX+i . Assume that there are p distinct points ^, . . . , < Z p
in X. Letj^o be a point in B. Let ^, . . ., v? be simple arcs contained in B except
for their ends, from^o ^/(^i)? • • •?/(^) respectively, such that

\^j={yo} for ĵs
v,n/(X)-{/(^)}for each i.
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Let ^ be the connected component off~1^) containing ^.. Then

/ ^ ^-K}->^-{/(^)}
^•-{0,}

is twofold, hence ^n/-1^) consists of two points, ^, '̂ say. Let (JL be a Jordan
v

curve contained in U ^, assuming such a curve exists. Then /(pi) is contained in
p ^ l

\J^,. Because/is an open mapping, the image of the interior of [L is an open set whose
p

boundary is contained in/([i) and in U v,. This is impossible. Hence there is no
p l-l p

Jordan curve in U (i,. This implies that each connected component of U ^ is contrac-
tible. Therefore

#/-l(^fc<}i=l,..,,>^
This contradicts to the j&-foldness of/ . Hence j^ f tX+i .

A

We now regard R2 as being C. If X = { ̂ }, the theorem follows trivially. Hence
we assume n>i. For each i, set f{a,)==b^ and let the order off—b, at a, be m,+ i.
We assume b^o for all z.

First we suppose b^by for i+j. We define a polynomial mapping F :Cn->Cn

and a polynomial G^(j^) for x={x^, . . ., ^JeC^ by

G^-J^^-^r1...^-^)^,
^•..^-(G,^), ...,G,(^)).

Then the components of F are homogeneous polynomials of the same degree. Hence,
the image by F of any line passing through the origin is also such a line or {o}. If there
exists x=={x^ . . . , ^ ) = ( = o in G* such that F(A:)=O, then G^y) has the critical
points x^, . . ., ̂  and the critical values are all o. Hence, for each i, x, is a zero point

n

of order m,+ i. This means that G^) is of degree ^ S (w,+ i). But, by definition

of &,, the degree is S;m,+i. This is impossible because n>i. Therefore we have
F-l(o)=={o}5 ^d F is proper. If F is not surjective, there is a line passing through
the origin whose intersection with F^) is {o}. Let F' be the orthogonal projection
from C" to the orthocomplement of the line. Then we have (F'oF^^^o}. This
means that there exist n—i polynomials on C^ whose common zero set is {o}. This
contradicts the Hilbert Nullstellensatz. Hence F is surjective. The Jacobian matrix
o f F at x==(x^ ...,^) is

fm^^t-x^-^t-x,)^... dt, ..., m^^t-x^-^t-x^... dt\

^nj^-^r1. . . {t-^-^ . .., n^f^t-x^... (^-^-1^

314



EQJUI VALENCE OF DIFFERENTIABLE MAPPINGS AND ANALYTIC MAPPINGS 115

We see that the Jacobian of F is divisible by x^ and by {x^—x^^^'for i+j. On
n

the other hand, the degree of the Jacobian is n S m^ This means that
n

Jacobian F == K 11 x^ 11 (x.—x,)^^'
i-l i<j J

where K is a constant. Hence the singular set of F is

U^-o}uU^=^}.

Let R denote its complement. Then F'^R) is a set of regular points. Let
c={c,, ...^JeC

be a regular point of F. We put

gW=G,{x), 8^)=^ i==I. • • • . 7 L

We assume ^=t=rfj for i =(=;'. Then there exists a G00 simple arc <p : [i,7z]-^C such
that <p(z)==^ , that ^o<p : [i, 7z]->C is also a simple arc and that the image of ^o<p is
a G°° smooth manifold. The reason is the following. First we join c^ and c^ by a simple
arc. Let S be a large circle in C whose interior contains all ^. Let Jo6^ and
y-^S)^^'. Let v, v' : [o, i]->C be simple arcs such that

v(o)=^ v(i)=v'(o)=^ v'(i)=^,

image vn{^.}=^, image ^n{^}=^2?

and image ^ n image v' =VQ .

Then there exist simple arcs (JL, [JL' : [o, i]->C such that

^(0)=('15 ^W==^,

and ^O(JL==V, ^o(Jl'=v/.

If pi(i)= |ji'(o), the products v*==v.^ ' and pi* = (JL . [JL' are the arcs we want: we have
^=:go[L\ p.*(o)==^ and (JL*(i)=^- ^ [J l( I)+[JL '(o)5 let ^" : E0? i]-^C be the simple
arc contained in S' and joining (1(1) to (JL'(o) (counter) clockwise and let (JL* == [L . (JL" . [JL
and v* =^o [JL*. Then [JL* is simple, but v* is not. We want to modify v* to make it simple.
If we move ^* continuously in C—{a?J preserving its ends, [JL* moves accordingly, that
is, satisfying g o [JL* == v*. Assume that v* goes around S A-times. Then we may suppose
that v* has k — i multiple points (Figure i). Hence there is no problem in the case
^==1. Assume k==2 and that ^(1/3) =^(2/3) is the multiple point. We put

fv*(2^/3) for o<t<il2
^(t)={ v l u / ~

[v*(^/3+i/3) for 1/2^1.

Then we have a simple arc [A** in C such that
^o[JL**=V**, ^(O)=q.
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If (A**(i)=(:2, (A** and v" are the arcs we want. If ^••(i)^^, then (Ji**(i) is a regular
point of g. We put

|v**(6() o«^i/6

v-(<)=v(-2^+4/3) i/6«Si/3
(v(() i/3^i.

The set of multiple points of v*" is ^([2/3, i])=v***([i/i2, 1/3]), and we have an
arc u.*** in C such that

^"=v*" (A*"(0)=^,

(A*"(i)=C2 and !jL*"(r)n{c.}=0.

It is easy to modify v*** and (JL*** to make them simple and satisfying
V.mWr^{c,}={c„c,},
.-(I) n{rf.} ={rf , , <4} (Figure 2).

FIG. I FIG. 2

If A>2, we repeat the argument. Thus we get a simple arc from q to c^ whose image
by g is also simple and does not contain <4, . . ., 6^. After a transformation by a homeo-
morphism of C, we can consider the simple arc from d^ to d^ as a small segment. Then
we can use the method above to join d^ and 6/3 by an arc which has no common point
with the segment. Repeating this process, we obtain a simple arc <p : [i, n]->C which
satisfies our conditions except that ^ocp is not necessarily a C°° manifold. But it is
easy to modify 9 to achieve this condition.

In the same way as above we find a C°° simple arc ^ : [i, n]—^C such that
^(i)=^, that fo^ is also simple and that the image of fo^i is a 0°° manifold. Here
we need the fact that for a sufficiently large circle S in C centered at o, /^(S) is a circle
too. We put

A^^ocpd^+i]), B,=/o^([^+i]) z = = i , . . . ,^-i .
»—1 n—l

The sets ^"^ U A,) and f~1^ U BJ are contractible. We may assume that a.=c.,
i=l i==l

fa^=gc^ t== I) • • - 5 nf For each i, g~l(A,_^uAi) consists of 2m,+2 simple arcs near ^,
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and these arcs become half lines after a transformation by a suitable local diffeomorphism
in a neighborhood of ^. Then we can choose (p so that

Z^-l^+l :='^:/(wi+I)
and that the direction ^_i^+i is counterclockwise with center ^, where c[_^ and c^^
are points near c, on 9[ (^—i, i ) ] and <p[ ( i , z+ i ) ] respectively. In this case we say
that AI, . . . , A ^ _ ^ are well-chosen arcs for g. We also choose ^ in the same way.
There exists a diffeomorphism T^ of R2 such that

^f\U^))=g-\n^A,).

Let us assume A,==B,, z == i, . . . , % — i . Then we can choose T^ so that

^QT,=/ near /-^U1^).
n—l

(.Ul
»=1

n—1 n

Since the restrictions of go^ and/to R2—/-^ U B,) are S m,+1 fold coverings, there

exists a unique diffeomorphism Tg of R2 such that
go^o^-=f

n—l

and T2==the identity near /"^ U B,).

Hence / is equivalent to the C-polynomial g. Therefore we only need to find
c==(q, . . ., c^eC1 such that B^, . . ., B^_i are well-chosen arcs for g{x)=G,{x). For
that, we need:

Assertion. — Let A[, . . . , A ^ _ ^ be well-chosen arcs for g==G^ where
c=^ . . .^OeC, F(.')eR.

n—l

Let AI', . .., A^_i be C00 simple arcs such that U A^ zj ^ simple arc, and that A^ is the image
of a C00 mapping p.from A, to C sufficiently near to the identity for each i. Then there exists
^'=(q', ....^eC" near G' such that A[', . . . ,A^_i are well-chosen arcs for g" =G^,.

Proo/ o/ ̂  assertion. — Let { ̂ / /, ̂  J be the ends of A^', z = i, . . ., n — i. Then
d [ ' is near to d[ for each i, where [d[, . . ., ^)==F(c'). Because the restriction of F
on F-^R) is a covering, there exists ^'=(q', ....^eC^ near c' such that

TV "\ 7// / J/f Jff\f{c )=d ==(^ , ...,<).
w—l

Then, from Lemma (14.2) below remarked by Malgrange [12], g ' ~ l ( U A") is
n-l i=l l

contained m the s-neighborhood of g-^ U A,') for sufficiently small e>o, and there

exists a G00 diffeomorphism n of R2 sufficiently close to the identity such that

7^(^-l(^An)=^-l(^UlA^
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outside a given neighborhood of{^'}. Hence there exists a homeomorphism TT' of R2

such that

7^'(^-l(gAn)=^-l(gAO.

This means that A^', . . ., A^'_^ are well-chosen arcs G^.. Thus the assertion is proved.
Let a: [i, 2n\->C be a simple arc such that

a =/o^, o^a([i,27z])
[l,n]

and ^{t-\-n)=go^(t) for I^^TZ.

We put

di{s)=y.{i+s), A,(s)==w.{[i+s,i+1 +s]), z==i , . . . ,^ , o<j^.

Then d{s)=(d^{s), . . . ,^(^))eR for any o<^:<^. Hence there exists a continuous
mapping se[o, n]-^c(s)={c^s), . .., c^s))^^ such that

F{c{s))==d{s), o<_s<_n, and c{n)==c.

By assumption, the set of points se[o, n] such that A^), ..., A„_l(j>) are well-chosen
arcs for G,̂  is open. Since A^)=A,, \{n), . . ., A^_^(n) are well-chosen arcs
for g. Hence this set is not empty. On the other hand, the proof of the assertion
shows that the set is also closed. Hence Ai(o)=B^, .. ., A^_i(o).=B^_^ are well-
chosen arcs for G^). Thus we have proved the theorem in case b^b- for ?=)=;.

The general case. — We may assume
b^bj for i^j, i<_i, j<_m,

and {^...,U={^...^n}•

Then in the same way as above we construct a simple arc ^ : [i, m]->'R2 such that
^W^^y ?= i, . . ., m, that the image of fo^ is a C°° manifold and that the image
of ^ satisfies at each b^, . . ., b^_^ the same condition as the well-chosen arcs above.
And there exist c=={c^ . . ., c^eC" and a simple arc <p : [i, m]->R2 such that

^{i)=Ci for i<_i<^m, go^=fo^,

^^0?([I577^]) for m<j<_n,

and d^dj for i+j where g=G,, d,==g{c,}

and that the image of the set (p([i, m]) by some diffeomorphism T^ of R2 is ^([i, m]).
We set

Let

^^yd^+i]) ^'=i, . . . ,w-i .

Xo=^([i^]),
32^
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X^=the union of the connected components ofy'^A^), i== i, . . ., m— i, which inter-
TO—l'-u

sect X^_i, ^== i, . . . We define Y^ for g in the same way. Then, SLS f~l( U A,) is
connected, we have

m—l

Ux^/-^ U A,).
k k J v i=l t/

Let ^, z = = m + i , . . . , ^ , be the least ^ such that X^ contains ^. We may assume
^m+i^m+2^' ' ' Then there exists a homeomorphism Tg ofR2 such that Tg == T^ on Yg
and that Tg is a homeomorphism onto X^ for ^^^^^_^. Let 9^+1 : [o, i]->R2

be a simple arc such that
(?m+l(o)=n21^m+l). CPm+l{l)=^m+l.

m—1

and that go^rn+i ls a simple arc and does not intersect U ^u{^.} except for the
extremities. We denote the image of go^rn+i by A^_^. Next we define a simple
arc <p^+ g : [o, i] -^R2 and a set A^ 3 such that y^^. 2 is a path from a point of^"1^^. 3)

m—l

to ^4.2 and that ^09^4.2 is a simple arc and does not intersect A^^u U A^u{rf.}
except for the extremities. The point of^"1^^) is chosen in the same way as for 9^4. i
by shrinking each connected component of g~l{^nt+l) to a point. We repeat this
process to define 9^+3, . . ., cp^, A^^.3, . . ., A^. Then (J A, is contractible and

m-l i^m

(R2, ̂ "^ U \))1^ is homeomorphic to (R2,/""^ U AJ), where ̂  means the shrinking
i + m i == l

of each connected component of .^(A^,) to a point, z== i, . . ., n—m. Let
^)=(^),...,<M)ECn, 0^<I

be defined by

1 ^ i<i<m,
d,{s)== ~~ ~

go^{s) m+i<_i<_n.

Then, since we can assume that any d^(s) never takes the value o, we have rf(j)eR for
o<^<i . Hence there exists a continuous mapping

[o, i]^H^M=(qM, ....^(^eCl"

such that f[c{s)]==d{s) and c{i)==c==(c^, . . ., cj. If we prove ^(o)eR, that is,
^(o) ^^(o) for ?+;, then we see in the same way as for the case ^4=6, that f is equi-
valent to G^QV Hence we only need to show that ^(o) =t=^(o) for z+j. Assume the
existence of io+jo such that ^ ==^- . Let

<(o)-^ G,|(̂ )IZ,.

Then, by the lemma below, there are ̂  + i elements of Z, near c, {s) and m^ +1 ele-
ments near c, (j') for small s>o. Because

m—l n

W,=G^(U A.u. U U d,Wg/ ^ \j rx^ ^ ^ c
v / »==! l i -w+1 0<«s
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is contractible, we can join c^(s) and c^{s) by a simple arc J, in W, for any small s>o',
here the mapping (o, i]3j-h->J,eC°([o, i], R2) is continuous. For any j^o, o<_l<_m—i,

n
G^VA.) consists of p=== S^+i simple arcs {L{,, . . . ,L^} such that G,(,) is av / ^i L^
homeomorphism onto A^ and that L^nL^CBL^ for (l,k)^[r , k ' ) . Then, by the
lemma below once more, we can order the set of arcs so that [o, i]9Jh->(L^, . . ., LyJ
is continuous for each I . We easily see that there exist ^, . . .3^1, . . . such that J,

n

consists of L^,L^,, . . . and a subset of G^^U^ ^ U /,(()). It is not possible
n — —

that J CG7V U U <^)), because this would imply \==a, for some i+?o-
' ' i==w+l 0 <t < s

From the assumption, the extremities of J, converge to a point when s-^o. Hence
w—l

L^o,L^o, . . . contains a Jordan curve. This means that G^)( ̂  AJ contains that
Jordan curve, which is impossible. Hence there is no i^j such that c,{o) == Cj(o).
The theorem is proved.

Lemma (14.2) (p. 56 of Malgrange [12]). — ̂  ^ (r̂ . 4)? J,k== i, . . .,?, be
the roots of the equation

^f^-^o (r^. ^S^-^o)
1=1 »= i

wA^ ̂  ^, ^ ar^ complex numbers. Suppose that
\c,\^K\ \Ci-^\<,Ki8 where K, 8>o.

Then/or any j , there exists k such that 1 ^ -— ̂ I^^KS^.
As corollaries of the proof of the theorem we have the fallowing.

Corollary (14.3). — Let f{x), g{x) be ^-polynomials in a variable. Let {^i , . . ., <^J,
{ & ! , . . . , U be the singular sets off, g respectively. Suppose that n==m, that the order of
f{x)—f{a,) at a, is equal to that of g[x) -g[b,) for each i and that /(^)+/(^), gW^pg^)
for z+j. Then f and g are R — L real-analytically equivalent.

Corollary (14.4). — Given a positive integer k. Let \ be the set of ^-polynomials in
a variable of degree <k. Then the cardinality of the quotient space AJ— is finite, where — means
the R — L real analytic equivalence relation.

Corollary (14.5). — Let f'. R2-^ be a proper continuous function with only isolated
topological singularities. Then f is G° equivalent to a ^-polynomial.

Example. — Let / be a C-polynomial in a variable of degree 6 with singular
points a^ a^ ^ such that /(^)=/(^) and that the order off{x)-f{a,) at a, is 2, 2, 4
for i = = = 1 , 2 , 3 respectively. Let B be the set of polynomials which have the same
properties as/. Let X be a simple arc from/(^) to/(^). We remark that any two
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such arcs are homotopic relative to/(^) and/^). Hence there are two types for the
inverse image of X by / (Figure 3). Since the R — L real-analytic equivalence class
of/ is determined by the type, we have H;B/^=2. This shows the necessity of the
condition that /(^) 4=/(^), gW^g^) for b^b^ in the Corollary (14.3).

FIG. 3

Stoilow proved that any C-valued light open continuous function on R2 is locally
C° equivalent to a C-polynomial (see [36]). Hence the last corollary implies:

Corollary (14.6). — Any C-valued light open proper continuous function on R2 is C° equi-
valent to a (^-polynomial.
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