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o. Global introduction

The purpose of this paper is to apply the results of [12], to the global study of
j^-adic etale cohomology and the associated ^-adic Galois representations. We fix a
field K of characteristic o which is complete with respect to a discrete valuation, with
residue field k of characteristic p > o and valuation ring A. The generic (resp. special)
point of S == Sp A is denoted Y) (resp. s). We consider a diagram of schemes

V = X^ -̂ -> X <—— X, == Y

(O.I)

Sp K == 7) ——> S == Sp A <— s == Sp k

with all vertical arrows smooth and proper. A bar will either indicate algebraic or
integral closure (viz. K, A) or base extension (X = X^ = X Xg S, V = = V K , ...).
Finally, G = Gal(K/K) and Gy ̂  K, the completion of K.

* Partially supported by the NSF.
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io8 S P E N C E R B L O C H A N D K A Z U Y A K A T O

The basic global objects are the etale cohomology groups H^(V, Q~), which we
study using the spectral sequence
(0.2) E^ = H^Y, ? R^(Z/^ Z)) => H^(V, Z/^ Z).

This spectral sequence induces a G-stable filtration
(0.3) F-TOV.Z,))

such that PIP = H» and F"H4 = (o) for w^ q + i. We write
(0.4) gr"H<^=F"?/F"+lH'^.

Recall that one also has the de Rham-Witt cohomology [3], [lo]
H'(Y, wn'y)

and the crystalline cohomology [2]
H^(Y/W(^)) (W(^) = Witt vectors over k),

which depend only on the special fibre Y and are linked via the slope spectral sequence
(0.5) E['1 = H'(Y, WQ«) => H^(Y/W(A)).

H^ , has a canonical endomorphism F (Frobenius) and we write
(0.6) H^(Y/W(A))SS'

for the /^-eigenspace of F on H^yg ® Q^. Roughly speaking we will say Y is ordinary
if the rank of (0.6) equals the rank of the A-vector space (Hodge group)

w-\y, Q^)
for all i and q. (This definition is not quite correct in the presence of torsion in H^yg.
For a more detailed discussion see § 7 below.) An abelian variety of dimension d is
ordinary if and only if it has pd geometric points of order p.

By Deligne (unpublished but cf. [20], p. 143), ordinary hypersurfaces of any given
degree make up an open dense set in the moduli space.

Theorem (0.7). — Let notation be as above and assume Y is ordinary. Then there exist
Junctorial G-module isomorphisms

(i) gr^I%(V, %,) ^ HUYW))^- i)
(ii) gr^- H^(V, %,) (x)^ W(A) ^ IP-^Y, WQ1) (- i)^

(iii) gr^ H^(V, %,) ®^ C, ̂  H^-^V, ̂ ) 0^ C,(- z).

(The notation (— i) means twist i times by the dual of the j^-adic cyclotomic character
on G. Also G acts in the natural way on Cp.)

Recall that a Q,p[G] -module M is said to admit a Hodge-Tate decomposition if
the module M ®q Cp with semi-linear G-action is isomorphic to a direct sum

© M^n)
n
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p-ADIC ETALE COHOMOLOGY 109

with M^ ^ C^ as a G-module. Assume now k is perfect. Tate has shown [18] that
the Tate module of a ^-divisible group admits a Hodge-Tate decomposition. By using
this fact, Tate and Raynaud proved that H^(V, Q^p) has the Hodge-Tate decomposition

H:t(V,%,)®c^ [H^^^KCjeEmv^^^K^- i)]
for any smooth proper variety V over K.

Corollary (0.8). — Assume Y ordinary and k perfect. Then for all q,

H (̂V, %„) - ® (H»-(V, £2V) ®KC!p(- »•)),
C& lCp i

so H^(V) AAT a Hodge-Tate decomposition.

The proof is straightforward from (0.7) (iii) together with the result of Tate:
(0.9) If n + o , H°(G, Cy) (n) === o. If k is perfect and n 4= o, then

?(0, C,(n)) = o.

We continue to assume now that Y is ordinary, and we suppose in addition that
the residue field k is separably closed (not necessary perfect). There is some geometric
interest in considering the extensions
(0.10) o -^gr^IP ̂ PIP/P^IP -̂ IP ->o.

If H^yg(Y) is torsion free, the isomorphisms of (0.7) exist before being tensored by Q,
(see (9.6)). Thus the extension class lies in
(o.n) Hom^(H^(Y)te-', H^Y)^—1)) ̂ ?(0, Z,(i)).

One has (cf. [19], prop. (2.2))
?(0, Zp(i)) ^ Um KYK^ == &*,

the ^-adic completion of the multiplicative group of K. If a basis jfp for the Horn
in (o.n) is fixed, one gets (dual) functions

f liftings of Yl
Jp • \ -> K .

[over A J

This situation is understood in the case ofabelian varieties (Katz [13]) and also K-3 sur-
faces (Deligne-Illusie [6]). It should be the case that the image off^ lands in the group
of principal units U^ C JC*. The f^ could then reasonably be thought of as j&-adic
modular functions, i.e. as j^-adic functions on the moduli space (in fact, on the " period
space"!?).

Briefly, the content of the various sections of the paper are as follows. Sections 1-6
are local. § i describe the local setup and states the main local results, (0.4) (0.5).
In section 2 we identify the mod p Milnor K-theory of a field in characteristic p with
the group of logarithmic Kahler differentials. § 3 contains a lemma about Galois
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cohomology which enables us to prove in § 5 that the Galois cohomology of a henselian
field is expressed by Milnor K-theory. § 4 is preparatory, giving elementary properties
of symbols which will be used in later sections, § 6 " sheafifies " these results. Sections 7,
8 and 9 are global. In § 7 we discuss ordinary varieties in characteristic p. We charac-
terize these by the vanishing of all cohomology groups of sheaves of locally exact diffe-
rentials. Finally, § 8 and § 9 are devoted to the proof of the main global result (0.7).

A summary of this work is published in [5].
The authors would like, first and foremost, to thank 0. Gabber. His results on

vanishing cycles [7], [8] played an essential role in this work. Further, he read the
manuscript carefully giving us much valuable advice.

The authors would also like to thank L. Illusie, N. Katz, N. Nygaard, A. Ogus,
and M. Raynaud for helpful conversations and encouragement.

i. Local results

(r.i) Recall the situation of (0.1)

V —^-> X <—l—> Y

SpK —> SpA <— Spk

but do not assume vertical arrows proper. In the local study § i-§ 6, we are principally
interested in the structures of the dtale sheaves on Y;

M^z-R^Z/^Z^)) (7z ,y^o) .

These are localizations on Y of the j&-adic ^tale cohomology of V in suitably twisted
coefficients. For y e Y, the stalk M^y is isomorphic to the ^tale cohomology group

H^Spj^x.y ^ ) ? z/^nz(Sr))5 where O^y denotes the strict henselization of G^y.

In the case X is proper over A, the spectral sequence (0.2) relates the limit
M^ == ^R^Z/j^Z^)) of M^ to the p-adic (Stale cohomology H*(V, Zp) of V.

We study M^ by using symbols and a natural filtration. We shall see that M^
is related to differential modules on X and Y, and to the De Rham-Witt complex on Y.

(i.a) First, we define the symbols. The exact sequence of Rummer on V

o —> Z/^Z(i) —> ̂  -^ ̂  —> o

induces an exact sequence on Y

i'J\ ̂  -̂  ̂  ̂  ——> ^n ——^ 0.
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p-ADIC ETALE COHOMOLOGY in

For local sections x^, ..., Xq ofi*j\ ̂ , let {x^ ..., x^} be the local section of M^ defined
as the cup product of the images of x^ (i < t' <^ q) in M^. Then,

{x, - x} == o, {^} + {js ^} =o, { z , i - z]==o

for any local sections x,jy, z such that i — z is invertible. (The proofs of these iden-
tities are essentially the same as Tate's proof of the existence of the cohomological
symbol Kg—H^ ,Z/^Z(2)) for fields. They also follow from Soul^s Chern
class homomorphism Kg --^H2( , Z|pnZ{2)) for rings and the corresponding identities
in K, (cf. [17], [i9]).)

Next we define the filtration of M^. For m>_ i, let U^M^ be the subsheaf
of M^ generated locally by local sections of the form {^ i , . . . , ^} such that
x^ — i 6^1*^x9 where TT is a prime element of K. It is possible to compute the
subquotients

,r-(M.) == Mqnlul Mqn {m = 0)

UMM^UW+1M^ (m ^ i)

for those m such that o <_ m < e ' == —~—, where e denotes the absolute ramification
P — T

index ofK. If n == i, U"1^!^ == o for m>_ e ' and thus we obtain a precise picture
of M^. The result is very similar to the structure theorems of the K-theoretic
sheaf SCK^y) and of the De Rham-Witt complex of Y (cf. Bloch [3], Illusie [10]).
Indeed, if o < m < e\

gr^M^O ^ gr^SC, K,(^)/^ SC, K,(^))

for the filtration {U^SG^KJ^^i on SC^ K^ which is defined by modifying the
filtration fiF of [3] II, § 4, as

1̂  SG, K, = fil—1 SC, K, + {fil—1 SC, K^i, T}.

(Cf. also [n] § 2.)
But this precise analogy holds only in this range of m, and the structure of gr^M^)

for m>_e' has rather different aspects which are not yet well understood.

(1.3) Let tiy := ^Y/Z be the exterior algebra over Oy of the sheaf Q.^ of
absolute differentials on Y. If k is perfect, this coincides with the usual Qy/fc? ^)ut ls

bigger than the latter in general. As in [3], [10], define subsheaves B^ and Z? {i>_ o)
of a^ such that

o == BgC BIC . . . C Z^C Zg = Q̂ Y

by the relations
Bl == Image(rf: OF1 ̂  ̂

Z^==Ker(rf:Q^QY4'1)

^^B^./BI, Z?-°^Z?^/B?

^72



i i2 S P E N C E R B L O C H A N D K A Z U Y A K A T O

where C~1 is the inverse Gartier operator:

^->Zm A...A^A...A^s A ^ y\ Vq
(-^i? • • -3^ invertible). Define

0.^ == Ker(i - G-1: ̂  -> 0 )̂.

This is in fact the part of 0.^ generated ^tale locally by local sections of the forms

-yx A . . . A -xq ([10] Th. 02.4.2). Let W^Qy be Ae De Rham-Witt complex of Y^
x! xq

and let W^ Qfy ̂  be the part of W^ 0^ generated etale locally by local sections of the
form rflog(^) .. .rflog(^). Note that, since all local rings of Y are inductive
limits of smooth algebras over Fy, the theory of the De Rham-Witt complex over a
perfect base ([10]) applies to W^Qy*

Our results are the following:

Theorem (1.4). — The sheaves M^ are generated locally by symbols, and

(i) gr^M^^W.^^eW^^-
(ii) For m >_ i, there is a surjective homomorphism

p,: Qr'^r^gr'w.
ep

(iii) Let i < m< e' = ——— and let m = m^p8, s>_ o, p \m^. Then^ for

o <^ n <_ s {resp. n> s), the above homomorphism p^ induces an isomorphism

orYzr3 ® ̂ r'/zr2 ̂  g^m
(resp. an exact sequence

o -> a^-2 -i n^-YBi-1 e ar'/Br2 -> grM(MS) -> o,
wA^^ 6((o) == (C-^co), (- i^G-^co)), C-8=G- lo ... oC-1 ^ times)).

Corollary (1 .4 .1 ) . — The sheaf Mf ̂  the following structure.

(i) gr^Mn îo^U-
(ii) If i <_ m < e' and m is prime to p,

gr^Mf)^^-1.

(iii) If i <^ m < e' and p \ m,

gr̂ M?) ^ a^-yzr1 ® Qr'/zr2-
(iv) For m>,e', VmM^o.

The surjective homomorphism
M^w»^.^®w,n^

222



/»-ADIG ETALE COHOMOLOGY 113

given by (1.4) (i) is a homomorphism such that
{^...^J^log(^) .. .rflog(^).o)

{%, . . ., ^_i, 71} h> (0, rflog(^) . . . rflog(^_i)),

where TC is a fixed prime element of K, x^, ..., x^ are any local sections of fl^, and S,
are any liftings of ^ (i < i <^) to i* fl^x* ^Ln analogous homomorphism is given by

Theorem (1.5). — There exists a unique homomorphism M^ -> î/g/^ t^x/s ^^A
r̂î

{/. . . . /J^A...A^
Jl J?

{/I. •••Jg-l^}^0

/or flT^ local sections /i, .. .,/g tf t* ^x ^d for any c e K*. Here we regard ^l/g/^^x/s
^ a sheaf on Y^ ^ the natural way.

In conclusion, one might say that the j&-adic ^tale cohomology M^, the De Rham-
Witt complex W^OY) ^d the De Rham complex ^x/s? ^lve m completely different
worlds, and there is no unified cohomology theory at present which combine them in
an intrinsic manner. We must therefore use some presentation of them by symbols in
the study of their relations. It becomes clear that the symbols play important roles
in the algebraic geometry of mixed characteristic, though we do not know from what
world the symbols come.

2. The differential symbol

Let K" be the Milnor K-theory of fields [15].
For a field F of characteristic p > o, we write

A,(F) = K^FV^F),

^ = Ker^-1^- ̂ /rfnr^

^ == ^ : k,(F) -> ̂  ; <KK, .... X,}) == dxl A . . . A dxq.
x! xq

The following result was proved independently by 0. Gabber.

Theorem (a.i). — ^ is an isomorphism.

We give here the proof of the injectivity of ^. The proof of the surjectivity is
similar to the proof of Proposition (2.4) below and is given in [12], § i.

We fix q so that Theorem (2.1) holds for all q' < q. We use the method in [4].

Lemma (2.2). — If^ is injectivefor F, it is infective for any purely transcendental extension

ofF.

113
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ii4 S P E N C E R B L O C H A N D K A Z U Y A K A T O

This follows from the commutative diagram of exact sequences

^ - L /T?\ - L /T^/±\\ ^mim^

^

[F) -

by<l/

'[<] ——

-^ W<)) -

-> Q^) ————. U^(,)/^<L

by^

"-? U^,(F[f]/m)

(^)m

where m ranges over all maximal ideals of 7\f\ and c^ denotes the tame
symbol for each m ([i], Ch. I, §§ 4 and 5). The homomorphism i^ is the compo-
sition of ^-i(F[^]/w) —^ ^?F[i^w) with the canonical injective homomorphism
°'!w/m) -> ̂ (T)/0^? which is defined by

X^dx^ A . . . A ^_^h^%^^L A ... A dT^_i A Tr^^TT^

for any A?o, ..., ̂ _i e F, any prime element TC^ at m, and for any lifting ^ of
^i(i ̂ ^?- i)-

Corollary (a.a.i). — ̂  is injective for VLtfK. is purely transcendental over a perfect field.

(2.3) For a semi-local Dedekind domain R with field of fractions K such that
char(K) = p > o, let

^(R) = Ker(^(K) ̂  == U^_i(R/^)),
yw

where m ranges over all maximal ideals of R. Let I be the radical of R, let

^(R)->^(R/I) ^U^(R/m)

be the specialization map induced by the homomorphism in Lemma (2.3.2) below,
and let A (R, I) be its kernel. Assume R has a^-base so that the Cartier and the inverse
Carrier operators are defined, and let

< == Ker(i - G-1: Dfe -> WW1)),
^^Ker^^v^i).

By Lemma (2.3.2) below, we obtain a diagram (commutative with exact rows)

o —^ ^(R, I) -^ ^(R) -^ ^(R/I) -^ o

(a-3.«)

o ^iK,l 4 VR/J

Lemma (2.3.2). —Let Vi be a discrete valuation ring with quotient fieldK. and with
residue field F such that char(K) = p > o.
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p-ADIC ETALE COHOMOLOGY 115

(i) Ag(R) is generated by symbols {x^, • • .3 ̂ } (^i? . . ' , Xq e R^).

(ii) There is a unique homomorphism ^(R) -> ̂ (F) wA ^a<

{fli, ...,<zjh>{fli, ...,aJ.

(in) -y R has a p-base^ there is a unique homomorphism ^ : ^(R) ->v^ ^A ^^

rfA:i ^
{X^ . . .^JH-——A ... A — — ^ .

^1 ^g

p^ _ (i) follows from [i], I (4.5) b) and (ii) is the ̂  of (loc. cit.) (4.4). The
homomorphism in (iii) is induced by ^ : k (R) ->v^ by virtue of (i).

For a finitely generated field F over F , we can find a discrete valuation ring R
which is a local ring of a finitely generated algebra over Fy, such that R/w ^ F and
such that the field of fractions KofRis purely transcendental over Fp. Since ^g(R) —^ VR
is injective by Corollary (2 .2 .1)3 the diagram (2.3.1) shows that to prove (2.1) it
suffices to prove

Proposition (2.4). — Let k be a perfect field of characteristic p > o, let R be a semi-
local Dedekind domain which is obtained as a localization of a finitely generated k-algebra. Then^

^: ^(R,I)^<i

is surjective.

Proof of (2.4). — To begin with, k^ has a norm compatible with the trace on v^
and carrying A^R", VIR') to kq(R, I) for R' the normalization of R in a finite exten-
sion K' ofK (cf. for example, [n], § (3.3), Lemma 13). The diagram

^(R'.ViR7) -^ <,VnF

Norm /* tr

^(R,I) ̂  <i

and the formula tr./* == multiplication by [K-' : K] reduce us to showing that for a
given A e v ^ j there exists K' with [K' : K] prime to p such that /*A elm^.

We now follow closely the arguments of [12]. Choose a j&-basis Aj, . . . , & „ of K
such that &i, . . . , ^_i e R* and these elements mod I form a ^-basis for R/I and such
that the valuation of &„ at each maximal ideal is prime to p. Strictly increasing func-
tions s : { i , . . . , y} -^{ i , . . . 5 7 2 } are ordered lexicographically so s < t if for some
i e { i , ..., q} we have s[i') == t{i') i' < i and J(i) < t{i). Write

^f^...A
bs[l} ' " b8
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An element Sflg <o, lies in v^ if and only if

S(^-^)^e^K-1.

It lies in v^i if and only if, in addition, a, el for all s. The notation Q^ s (^P-
^K, <a) f03" -^ { I ? • • • ? y} —"{ 15 . • . , ^} will mean the sub-K-vector space of ̂  spanned
by co< for t <^ s (resp. t< s).

Lemma (2.5). — Let a el and let s : {i, ..., q} -4 i, ..., n} be strictly increasing.
Assume

(ap-a)^e^^+d^-l

Then replacing K by some finite prime to p extension K' which is a succession of Galois
extensions and replacing R and I by R' and VIR' as above, there exist j^, .. .,ĵ  e K J^A

^ {^i, ...,j^}e^(R, I), a = - ^ A ... A-^e^,, and a^, — a e Q.^ n ̂  <,,
u/A^ Q^i== Ker(^->Q^i). ^i ^ '

Note that this lemma suffices to prove (2.4) and (2.1). In fact, given S^ co, e v^ j
we can by the lemma subtract a e Im(^(R, I) -^v^i) and decrease the "size" of
the maximal s with Oy =t= o.

Proof of (2.5). — Adjoining the {p — i)-st root of some element in R we obtain
as in [12]

(a. 6) acOg = a1 co^ A — + T
c

where s ' : {i, ..., q ~ i } -̂  { i, . . . ,» } , j'(i) == J(i + i), a1 e K, r e Q^o,
ceK^b^ ...,^(i)), and

(a'^a')^e^7^+^K-2.
We have

^= Ji^^ ^G K)9 ^^ -^Ysd) .

Define
j= n a K , L = = n 9 K

SDIDI 9301
^(^e^ aw^J

and let Rj, RL be localizations, so that JRj and LR^ are the Jacobson radicals. Note
that a1 eLR^, so, by induction on y, we may assume

(a.7) f l 'c^=(B+^ P=^{^i, ...^^iL { î, ...^-i}e^-i(R,L)
peQ^1, ^eQ^.

Write T = Rj n K^^, ..., b^_^). Let H = Rj/JRj and P = T/J n T.

The image of ~ in ^j/r dies in ti^/p an(! ls fixed under the Gartier operator. The
diagram
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p-ADIC ETALE COHOMOLOGY 117

(i+JRj)/(T*n(i+JRjn

I

0

R*j/T* ̂  ̂

i 1
HYP-^Q^p

shows that there exists 8 e i 4- JK-j such that
dc dS .
— = s- + 7! m °KC 6

with T) 6 Rj. Im(i4 -> n )̂ £ ̂  < .(ij

rf8 ^
y S^K,.!!)-

By (2.6) and (2.7) we get

au>
(dS

+ » ) A -+7) +T
\6 /

^A.. .A^Af (mod^,<.).

Note, quite generally, that if B] e^(Rj,JRj) and B^ eA^(R^, LR^) the product
Bi.Bg belongs to ^^.^(R, I). This is a simple consequence of the fact that

A,(R,, mRJ .^(K) £ A^3(R,, mRJ.

In particular, { ,̂ . . .^i, 8} e^(R, I), q.e.d.

Corollary (a. 8). — Z^ F be afield a/characteristic p> o. TA î the p-primary torsion
subgroup of K^(F) u infinitely divisible^ and

K^/^K^^W^Q^^.

Zf^ W^D^i^ tJ ̂  group of global sections ofVf^^ on (SpF)ef

Proof. — For a discussion of W^Dj. i^ see [10]. In particular we have

K-WIP —> ^WIP" -^ ^Wip"-1 -^ o

.̂l.g W»Q^io, ̂  W,_,Q^^
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where the bottom sequence is exact by op. cit. (5.7.5). The left hand vertical arrow
is an isomorphism by (2.1) and the right hand arrow is an isomorphism by induction.
This establishes the isomorphism. The first assertion follows from the exact sequence
of To^Kf, •) applied to o -> Zip -^ Z^ -> Z/^1-1 -> o.

3. A basic cohomological lemma

Let K be a field, p a prime number prime to char(K). The cohomological symbol
defined by Tate gives a map [19]

K^K)/^ K^K)-^ H^(Sp K,Z/^ Z(r)),

which one conjectures to be an isomorphism quite generally. It is useful to formulate
a relative conjecture. Let (Q,/Z)' denote the prime to char(K) torsion in Q^/Z, let
/ eH^Sp K, (Q^Z)') and let K' be the cyclic extension of K corresponding to ^.

Conjecture (3.1). — The sequence
K^K') -^> K^K) ̂  H^Sp K, (%/Z)' (r - i))

-^H^SpK'^O/Z)'^-!))

is exact. Here N is the norm map in Milnor-K-theory [n], § (1.7)5 and (< X u " is

the map x -> X u ^(x) with

h: K^K) -^ir-^SpK.Z^r-i}), the cohomological symbol.

See [14] for definitive results on these conjectures in the Kg case.
The following lemma is taken from [12]. It is the essential tool we will use in

studying these questions.

Lemma (3.2). — Let notation be as above, but take [K' : K] == p. Regard ^ as an
element of H\Sp K, Z/^Z), and let G == Gal(K'/K) ^ Z/^Z. Then

(i) The sequence
(3.2.1) ?- l(SpK,Z^Z)-^?(SpK,Z^Z)—>?(SpK^Z^)

is exact if and only if the sequence
(3.2.2) W-\Sp K, ZIpZ) -^ H^^Sp K', ZIpZ)^ -^> H^^Sp K, ZIpZ)

is exact.
(ii) The sequence

(3.2.3) W-\Sp K', ZIpZ) ̂  W-\Sp K, ZIpZ) ̂  IP(Sp K, Z/pZ)

is exact if and only if the sequence
(3.2.4) IP(Sp K, ZfpZ) —> H^(Sp K', Z\pTf -cor> H^(Sp K, ZIpZ)

is exact.
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(For a G-module M, M° = invariants of G acting on M and MQ == co-invariants
= = M / ( S ( i - ^ ) M ) . )

firGG

Proof. — We will only prove (i). The proof of (ii) is similar, and it will not be
used in the sequel. Adjoining a p-th root ^ of i involves an extension of degree prime
top, and hence induces injections on the homology of the complexes (3.2.1) and (3.2.2).
Thus we may assume ^ e K.

Sublemma (3.3). — Assume ^ e K, and identify ZfpZ ^> ^y via i (-> ^. Thus
H^Sp K, Z/^Z) ^ K7K^ W ?: e K* ^m <z class [S] eH^Sp K, Z/^Z). Let

( B : H^Sp K, ZIpZ) -> H^Sp K, Z/^Z)

be the Bockstein associated to the exact sequence

(3-3- I) o -^ 2/^2 -> Z//»2 Z -> Z/j&Z -^ o.

T^ (B(x) == x u K].

Proo/. — An element t e K' maps to the class a ( ' ) : GaHK^/K.) -> ZfpZ where
ra(o) ̂  ^l/p\a^lfp^

Let p^^ == ^3 6^ === ^. The cocycle w{a, r) associated to p(^) is given by
^W(0,T)^ QOTQ^OQT^

Note that
6° === p^O, A((T) = fl((r) (mod/0.

From this one gets easily

^0>T) = (p'/p)^^ = (p'/p)^.
The cohomology class represented by the right side is t u [^], q.e.d.

Sublemma (3.4)3 — Let S be a prqfinite groups p a prime number, % a non-zero element
of ?(8, Z/pZ), and T = Ker(/ : S -^ Z/pZ). Let p : H*(S, ZfpZ) -> H^^S, Z/^Z) ^

the Bockstein. For X —»- Y --> Z a complex, call Ker(^)/Im(y) ̂  homology.
(i) Z^ y ^ 2. TA^w, the following two complexes have isomorphic homology groups.

(3.4.1) IP-^S, Z/^) CH^-^S, Z/^) (xu>fi(x)^ ?(8, Z/^) -^ H^(T, Z/^).

(3.4.2) H^-^Z^-^H^-^Z/^^-^H^-^Z^).

(ii) F<c?r q ^ i, the following two complexes have isomorphic homology groups.

(3.4.3) H^Cr, Z/^) -^ H^-^S, Z/^ ^^^^H^Z/^) ©H^^S, Z^)

(3.4.4) ?(8, Z/^) -^ H^(T, Z/^)^ ̂  ?(8, Zip).
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Remark. — These sequences are exact if p == 2, but need not be exact in the case
p =(= 2. For example, let j& be an odd prime number, and let S be the semi-direct
product Zp[^] X^Zy, where ^ denotes a primitive p-th root of i and T is the
homomorphism

Z^Aut(Z,KJ); <ZK(^^).

Let ^ : S -> Zp be the homomorphism induced by the second projection S -> Z .
Then, the sequence (3.4.2) is not exact in the case q = 2. Thus, though S is torsion
free, S can not be isomorphic to Gal(^JA) for any field k.

Proof of (3.4). — Since the proofs of (i) and (ii) are rather similar, we present
here only the proof of (i). Let X be the S-module of all functions S/T -> Zip, s an
element ofS such that ^(.?) == i, and Y the image of s — i : X -» X. Let g : X -> Y
(resp. h: Y -> X, resp. i: Zip -> Y) be the map induced by s — i (resp. the inclusion
map, resp. the embedding as constant functions). Since there is a canonical isomor-
phism IP(S, X) ^ H^T, Zfp) for any q, the exact sequences of S-modules

o —> Z/^ ̂ > X -"-> Y —>o, o —^ Y ̂ X-^ZIp —> o

{j is defined by j{f) = ^ fW fo1' all / e X) induce a commutative diagram

w-\s,zip)
| ^-s.3(x)ur \^

W-^ZIp) -^Ip-^S.Y) ——IP(S,Z/j&) -^H^ZIpZ)

?-1(T,Z//Q ^- IP-^S.Z/^)

H^-^S.Z/jfr)

with two long exact sequences. Here ^ denote the connecting homomorphisms. (Note
that the restriction maps and the corestriction maps are induced by h.i andj, respec-
tively. The commutativity of the diagram follows from (3.5) below.) The assertion (i)
follows from this diagram. This proves (3.2) and (3.4).

Lemma (3.5). — (i) The image of i e H°(S, Z//») under the composite map

H°(S, Zip) -I IF(S, Y) -^ H^S, Zip) coincides with (B(%).
(ii) The image of i eH°(S, Zip) under the composite map

HO(S, Zip) 4. HO(S, Y) -^ Hi(S, Zip)

coincides with %.
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Proof. — (ii) is easy and so we give here the proof of (i). By functoriality, we
may assume T == { i }. Let j^eX be the function defined by f(i) = i and f(a) == o
for CT + i. Then, j(f) == i. So, ^(^eH^S.Y) is represented by the cocycle
S -» Y, a l-^/o? where

i if a 4= i and T = a~1

i if a =(= i and T == i
o otherwise.

/o(T)

For a e S, define /„" e X by

/̂ ")
i if OT + » ̂  j^ OF i1 w ̂  i and n = o
o otherwise

(o < OT < p, o^n<p). Then, ^(/<;') =/„'. So, a a(i) e H^S, Z//>) is represented
by the cocycle G x G -> Z{p C X,

r^^^/-" .» f" 4- / - " - i 1 ^m+»^P^,s)^f.^s -/.-+^-^ ifm+«</»

(o ̂  w < j&, o<^n<^P)• But this cocycle also represents (B(/) as is easily seen.

4. Filtration on Symbols

In this section, A denotes a ring additively generated by A* (e.g. A local), and TC
denotes a non-zero divisor of A contained in the Jacobson radical of A.

Let K" {q >_ o) be the group

A l
I 7t

. . . ® A -L^
q times

;]')A
where J denotes the subgroup of the tensor product generated by elements of the form
A?i ® ... ® x such that ^ + Xj == i or o for some o <_ i < j <_ q. An element
A-i ® ... ®^ modj of K^ will be denoted by {^, ..., Xq}. One has of course

{x, i — x} == o (^3 i — x eA - ), { x , — x } = = o and also {x, y} = — {y, x}. In
\ L^J /

this section, we give some elementary lemmas concerning the structure of K^, which
will be useful in later sections. The arguments are essentially the same as in [3], Gh. II,
§ 3, where Quillen's K-functor is studied for A = R[[T]] and TC == T.

For m >_ i, let U^ K^ be the subgroup of K^ generated by symbols of the form

{i + A^J^ •••^-l}

such that x e A and j^, .. .,J^-i e A TCJ

J^
16
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Lemma (4.1). - {U1 K^ IP- K^C U1^' K^,.
For a, b e A*, we have

(4 .1 .1 ) { i + an\ i + bn3} == {i + an\i + bn3), i + bn3} mod IP-̂ '

== — { i + a'K\i + b-K3), — a^}

\ abn 3 .,
= — I + — — , — — — — , , — f l T C 1 .

! I + fl7T1 '

The lemma follows easily.
For a ring R, QR will denote the module of (absolute) Kahler differentials of R.

We write QR=ARQR. Define the homomorphism

8,: R^R*)0"-^,

by Sy{x (^ji ® ... 0^) == A: ̂ 1 A . . . A -^r.
J l̂ r̂

Lemma (4.2). — Assume R u additively generated by R* (̂ .̂ . R local). Then 8y is
surjective^ and Ker Sy is generated by elements of the following types'.

(4.2.1) x ®^i ® ... ®j>y with y^ ==yj for some i <^ i < j <_ r.

m t
(4.2.2) S x^x^y^ . . . ®^_i — S ;^®^®j^0 . . . ®^_i

i=»l i==l
w /

^^'eR-, S ^ = S ^ .
»==! »==!

Proof. — Straightforward and left to the reader.
Let R == A/7iA, and for any m >_ i, define

(4.3) P.: Qr^^-^^K^^K^U^^"

/ 1̂ <^ff-l \ r i ~ m ~ ~ i^ \ X — — ^ . . . A-^—.O ={l +X^en,Jyl, ...,Ji,_i)by ^'•••^\ J'l Jt-l /

?„ (o, ̂ ^l A . . . A ^=2) = {I + ̂ m^, . . .,^_,, ,t},
\ -̂ 1 -^(-2/

y 6 A, J, 6 A* lifting ,v 6 R, y, e R*.
The fact that ?„ is well defined is an easy consequence of (4. i) and (4.2).
From now on, let p be a prime number and assume that R = A/wA is essentially

smooth over a field of characteristic p. Note that

(4.4) (i +TCmA•)p = i +vmpxpmod•^:mp+lA

if ^eTC^-^+^A.
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Lemma (4.5). — Let m = m^p; s^o, p\m^ and assume that /»" e7tm'r-l'+lA.
Then

(i) pjBr^Br2)^)
(ii) Define 6 : Q^-2 -^ (Q^-1^-1) 0 (tyR-2^-2)

^ 6(<») -(G-W^-i^OTiG-^o))).
T^n p»o6(^-2) =(o).

(See (1.3) for the notation B^ and G-1.)

Proof. — Let o < t< s. Part (i) follows from

{i + x1'17t'»»< x} = /•'{ i + A;̂ "1"', x} mod U^

^{ i + x^"1, x} == - {i + x^~\ (- i)?' ̂ }

= — { I + A-"' 7C", — I } — p—' m,{ I + X^ TC" 7t} e U"^1.

(Use (4.4) with mp in place of m.)
Part (ii) amounts to the assertion

< I+^7cm^l'•••^-2}=(-I) t- l^{I+^7tOT^,...,^_„^,

i.e. { i +xpl•^fa,XT:m^}eVm+l.

This is again straightforward.

Lemma (4.6). — Let OT, ^ and s be as in (4.5) anrf let o<_n<_s. Then
p^Zr^ZF2) = (o) in gr^K^-Kf) = (U-Kf+^Kf)/(UOT+lKM+^KM).

Proof. — Let OT' = mp'". Note that
/>"{ i + x-s^',y} = {i + A;"" TC",^} mod U"^1.

Since Z« is generated by B,. together with differentials x^ dh A ..., the lemma follows.

Let m, OTI and s be as in (4.5) and let n ^> o. Define the group "G^ to be
(4.7) WVZr1)®^-2^-2) ifn^s,

Goker(Qr2 •̂  ("B-VB.) ® W^)) if n > s.

We have established surjections '"G^ -^gr^'^^^K11).

7?eOTar^ (4.8). — These surjective homomorphisms are in fact bijective. Indeed
by localization, the question of injectivity is reduced to the case where R is a field. If

char ^AJ^J J = o, injectivity will be proved in § 5 and § 6 by using the cohomological

symbol. If char ^A ̂ j j == p, injectivity follows from [3], Gh. II, § 4 (cf. also [i i], § 2).
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Note that in the mixed characteristic case, the condition on m in (4.5) is actually
restrictive. The structure of gr^E^) for large m such that p^ ^ TC^^A (this is

ep
equivalent to m > e ' == ——— with the notation of§5,§ 6) is not yet known.

5. Galois cohomology

In this section, K denotes a henselian discrete valuation field with residue field F
such that char(K) == o and char(F) == p > o. In the next section, we shall apply
the results of this section to the quotient field of the strict henselian discrete valuation
ring 0^ ^ where v is the generic point of Y (not to the base field K of § o).

Let
A,(K) = K^K^K^K),
^(K)==H^SpK,Z^Z(?)).

The aim of this section is to determine the structures of these groups and to prove that
the cohomological symbol gives an isomorphism

K^K)/^ Kf(K) ^ IP(Sp K, Z/^ Z(y))

for all q and n.
We define the filtration U*" K^K) (m ̂  i) as in § 4. Here we take the valuation

ring (P^ of K as A and a prime element of K as TT. Note that the homomorphism
p^: O^"1® QSp~2 -> gr^^K^K) depends upon a choice of a prime element TT of K,
which, we will assume, has been fixed.

Let U° K^K) == Kf. Let U^K) C ̂ (K) {m ̂  o) be the image of
U^K^K), and let l^ A^K) C A^(K) be its image under the cohomological symbol
map ^(K) -^(K).

Let ordjK be the normalized additive discrete valuation of K, let
U^ = {x e K, ord^x - i) ̂  m} for m ̂  i,

^let e === ordf.(p) the absolute ramification index of K, and let e' == ———.
P — 1

Lemma (5.1). — (i) U^K) == o for m> e\
(ii) Assume that e' is an integer and let a be the residue class ofpn~€. Then, the surjective

homomorphism (4.3)

p,.: ar^^r'-^u^K)
annihilates (i +aC)Z<[~l@{l + aC) Zp2, wA^ G ^ ̂  C r̂/̂ r operator. If F is
separably closed, then U8 A (K) == o.

Proof. — (i) follows from
UK^K^ i f w > ^ ' .
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The proof of (ii) is similar to the proof of (4.6) using
(i + x^'^Y == i + (^ + xpTT^ ^ mod 7^+1.

Lemma (5.2). — Let i < m < e' and let the group "^G^ be as in (4.7) with R = F.
Then.

^^gr-^K^gr^K).

Proof. — By a limit argument we may assume that F is finitely generated over F
of transcendence degree d. We may also suppose that K contains the p-th roots of i
(a straightforward reduction using norms, which we leave for the reader). Then the
group U^A^^K) is non-zero by [n], § i, Th. 2 (cf. also [12], page 227). Note

o < m < e\ p \ mor1
(5^.') mQ^

B^CBp1 o< m< e\ p\ m.

We now consider a diagram of pairings

mQ^ ̂  e'-mQd^2-q pm x ̂ m g^n ̂  ̂  g^-m^+2

(2) cup product

Q^ —l)^ elGi+2 -p^ U^A^2

where arrow (i) is the natural surjection which exists because

Bi == (i + aC) Bi C (i + aC) Q^,

and arrow (2) corresponds under the isomorphism (5.2.1) to wedge product of forms
if p \ m (resp. to

(rfco^, d^) X (̂ i, dy^) l-> coi dy^ + (Og ̂

if ^ | m). It is a simple exercise with symbols (calculated as in (4.1)) to show that
this diagram commutes upto an (Fp)x-multiple. Also Q^/B^ is a i-dimensional Fp vector
space and (2) is a perfect pairing of Fp vector spaces. Injectivity of p^ follows. Since
the arrows from left to right in the statement of (5.2) are already known to be surjective,
we are done.

Lemma (5.3). - 4©^-1 ^ gr°^(K) ^ gr°^(K).

Proof. — Results in [i] give an isomorphism

grO^(K)^(F)©^(F)
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so, from (2.1), we get a map po defined as the composition
po : ̂  C 4-1 ̂  gr° k,(K) -^ gr° A^(K).

Let K/ 3 K be the quotient field of a henselian discrete valuation ring 0^. 3 0^ with
the property that K/ is unramified over K, with residue field

F' = ^/^K' ̂  F(^),

where z is transcendental over F. Let ? e %, lift z. Multiplication by i 4- ?TC gives

^©vr'-^gr^K) ̂ gr^-^K') ^ 0^.

The composition is easily seen to be

^A. . .A^A. . .A^
Jl J^ Jl Jq

.̂..̂ ^ .̂,.̂ ..
Jl Jg-l ^1 Jq-^

Injectivity of po is now immediate.
Our next objective is to prove that ^(K) ^ A^K). Let SA^K) = U^^K) be

the image of^(K) in A^(K). We first prove SA^K) = A^K) in the case F is separably
closed and K contains a primitive p-th root ^y of i. To apply the basic lemma of § 3,
we devote ourselves in (5.4)-(5.11) to proving

Proposition (5.4). — Assume that F is separably closed and C e K. Let b e 0^ 6^
^McA ^Afl^ ̂  image ^ofbinY is not ap-thpower. Let a = b^ be ap-th root of A, L = K(a),
a == p1^, E = F(a) wz7A G == Gal(L/K). Then, the sequences

(5.4.1) SA^(K) ^^ SA^L)0 -^ SA^(K)

(5.4.2) SA^K) -^ SA^(L)(, ̂  SA^(K)

^r^ exact for all q.

Note that we already know the precise structure of SA^K) and SA^(L), for
g r^A^-o by (5.1) (ii).

We begin with some lemmas concerning differentials. Let i: Qj, —> Q,^ be the
canonical homomorphism, and let Tr : Q,^ ->Q.^ be the trace map characterized by
(i) Tr(E.i(0^)) = Tr(rfE A W~1)) = o

(ii) For co e Qr1 and / e E*, Tr (i((o) A ̂ j = <o A d^.

A proof of the existence of Tr is that the norm on SGK _^ ([13]) induces this homo-
morphism Tr on its subquotient iy. (The assumptions p + 2 and p> q in [3], II,
§ 4, Th. (4.1) are unnecessary by [n], § 2, Prop. 2.) In (5.5)-(5.9), we need not
assume F separably closed.
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Lemma (5.5). — (i) For G) e fl^,, the three conditions ?i) G) A </(3 = o, b) <x> et^A rf(B,
c) t((o) = o, are equivalent.

(ii) Z^ F == i(Q^) C Q^. TA^ the map
(E®pF)®(E®FP- 1 ) -̂

defined by
(x ® (o, o) H- ^<o
/ - , rfa
(0, ;V ® Cx)) 1-> A-CO A —

a

ily aw isomorphism.

The proof is left to the reader.

Lemma (5.6). — The sequence
Tr Tr

is exact.

Proof. — By (2.1), the assertion is equivalent to the exactness of

w^w ^(E)^(F).

We use the fact that the composite

K^E^K^—^K^E)

is multiplication by p. This fact is reduced to the case where any finite extension of F
is of degree a power of p. In this case, K"(E) is generated by elements {x,^, ...,y _^}
such that xeE\ y^ ...,j,_i6F* ([i], Ch. I (5.3)). "

Now assume x e K"(E) and N{x) = py, y e K^F). Then, px == i o N(^) = pi{_y).
Since the ^-primary torsion part of K"(E) is divisible by (2.8), we have
x - i(jy) e^K"(E). This shows the exactness of ^(F) ^^,(E) ->A,(F). The exact-
ness of A!,(E) -^ky(F) ^kyCE.) is proved similarly.

Now, we analyze the sequences (5.4.1) and (5.4.2) using the filtration on Sh".

Lemma (5.7). — (i) cor{Vmh''(L))CVmhq('K.) for any m.
(ii) The following diagrams commute.

v^®4-1 s gr°^(L) ^-1®^ gr'»^(L)

Tr Tr

^Cvr1 s gr̂ K) Q^-1®^-2 —»- gi^A^K)

{m>, i). ./̂ rc (B ̂  diagram on the right, the horizontal arrows are induced by ?„ defined using
the same prime element TC.
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Proof. — For m>^ i, let T^ be the image of
U^L) ® SA^-^K) -^ SA^L)
A?®JI->A? u res(j/).

By using (5.5) (ii), we can prove easily that
(5.7.1) For any m>, i, L^A^L) is generated by T^ and

resQJ^-^K)) u{a},
where {a} denotes the class of a in A^L).

By using

we have

(5.7.2)

N^/K(i — ̂ ) = i — x1' y for o < i < p and x e K,

NL/KW) c UK""' for i ̂  m ̂
^-i

NL/K(ULm))CU^+<) f o r m ^
-^-i

Note that (5.7.1) and (5.7.2) prove (i). The commutativity of the diagrams in (ii)
follows easily.

Now, for m ̂ _ o, let S^ be the homology group of the complex
gr'»A'(K) -"^gr-A^L) ^gr-A^K).

By (5.6) and (5.7), we have

Corollary (5.8). — So = (o).

Lemma (5.9). — For i <_m< e', we have an isomorphism

(EF-1/!2-1) ® (EP-2/!'-2) s S^
characterized by

^(^ lA...A^- l,o)^{I+%•»,^,...,^_J
Vi J'ff-1 /

(o,^A...A^)^{l+^^..,^^}
\ y\ ^g-2/

ybr A: e E and y^ .. .3^-1 e F*, z^A^r^ ri/rfd^ indicate liftings.

Proof. — Assume ^ | m. By (5.5) (ii), we have a commutative diagram for any q
p-i

EP/(P n Z^) ©.S ^P^eP-1/^-1 n Zj^1) ^ Q£/Z^

pr« Tr

p-i/(P-inZ?-E1) c- W^
228
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where the upper horizontal isomorphism is

Ac
(<i), Ox)', (*)") 1-> (0 + ((x/ + (O") A ——

a

and the lower horizontal injection is i(co) i-> co A —. Now, (5.9) follows from (5.7)

and (5.2) in this case. The proof for the case p \ m is similar and is left to the reader.
To proceed further, we need

Lemma (5.10). — Assume F separably closed. Let a be a generator of Gal(L/K) and

let e 1 1 ==—e—. Then,
p ^ i

(i) UpCCL*)0-1.!^.
(ii) U^C^.K*.

Proof. — Note that p : U? -> U^ is surjective (cf. [22], § (1.7)). Let
xeV^. Then by (5.7.2), we have ^^eU^. Hence there is an element^
of K* such that N(A:) ==y. Since N{xy~1) = i, we have x e (L')0-1.^ by Hilbert's
theorem 90. Next, let x e V ^ . Then, A^eU^ since CT acts on OJ^" 0^
trivially. Hence there is an element j/ of U^ such that x0"1 ==j^. By (5.7.2),
N(^) is a ^-th root of i contained in U^. Since ordK(^p — i) == ^'\ we have
N(jy) == i. By Hilberfs theorem 90, x°~1 = (^-^^ for some z e L*, and thus we
obtain ^""p e K*.

(5. n) Now we can prove (5.4). First we consider the sequence (5.4.1). Let a
and e" be as in (5.10). We have

((T - i) (U^L)) C V^6" ^(L) for m ̂  o

and this induces cr — i : S^ -> S^+^., w ̂  o. We claim
(5.11.1) o- i : S^->S^.

is an isomorphism for o < m < e.
Indeed, for x e Og and letting ^ = 0(0) /<z, we have

(i + afxrT)^1 = (i + ̂ ^/(i + ̂ w)

= i + ̂  ̂ ^(^p — i) mod ̂ m+e" + \

Our claim follows from this and from (5.9).
Now assume x e S^(L)° and cor(^) = o. We prove x eres(SA?(K)). We are

reduced to the case ^eU^^L) by (5.8), and then to the case xeV'h^L) by
( 5 . 1 1 . 1 ) . Then we have x e T, by (5.9) (T^ is as in (5.7)). But T, C res(S^(K))
by (5.10) (ii).

Next we consider the sequence (5.4.2). Assume x e SA^(L) and cor(^) == o.
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We shall prove x 6res(S^(K)) + (<? — i) SA^L). We are reduced to the case
xeVlShq('L) by (5.8). We prove
(5.11.2) If x e T^ + IP A^L) with i <^ m < <?" and { m — i ) p < i < m p ,

and if cor(;,) == o, then ^ e T^ + U^A^L).

(5.11.3) If x eT^ + U^A^L) with i <_m< e" and if cor(^) = o, then
^ e re^U-A^K)) + T,^ + U^A^L).

Once we have these assertions, we are reduced to the case
- ^eT^+U^A^L) =T,.

and then we have x e res(SA<^(K)) + {a - i) SA^L) by (5.10) (i).
The assertion (5.11.2) follows from (5.7.2) and (5. g) easily. To prove (5.11.3),

let 0 be a subset of F such that 0 u { ( B } form a j^-base of F. For each <p e O, we fix
a representative ^ of 9 in OK. We endow 0 with a structure of totally order set. For
q>_ o, let 0 be the set of all strictly increasing functions { i , ..., q} ->0, and let
EO be the free E-module with base $^. We obtain a surjective homomorphism

EO^eEO^®?-2/^-2 n Z^2) CP-3/^-3 n Z^3)
-. (T, + U^AW)/(T,^ + U^4-1^^))

(('S x^ ̂ r)^^ o, o, o) ̂  S { i + ̂ y^ ̂  T ,̂ 9(7), ..., 9(y - i)},

^('S^^a*")^. ,,0,0)^S{I + S ^^^-9(1^, ... ,<p(y-2),7r},
r = 0 ' •( V r==u

_ / (/a , ^a\
(o, o, (o, (>)') t-^ p^pio) A -^, <o A -^-1,

where ^ e F. The composite of this homomorphism with

(T^ + U^TOVCr,^ + U'"^1^^)) -"̂  gr^^(K) s B^©B?,F1

is given by e,_i®9g_2, where
6,: EO,® P-1/^-1 n Z^1) ̂  B^p1

p-i
(( S ̂ , a'),, »•(<») modZ^1)

//^ px:-l ^<p(i) ^A -, \ ^^ S S ̂  r ^ ' ^ A ... A^^ ±^ A — .
n, r-i ^ • 9(1) y(?); ; P

p — i
If (( S A^, aQ,, t(o)) mod Z1^1) is contained in Ker(6<,), since <D is a part of a j»-base

$ u { a} of E, we have ;<•, _„ == o for o < r < p and for all (p e <D,, and we also have
<(<o) mod Z^E1 == o. This proves (5.11.3).
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Theorem (5.12). — Let K be a henselian discrete valuation field with residue field F such
that char(K) = o and char(F) = p > o. Then, the cohomological symbol

A^K: K^KV^K^K) -^(SpK,Z/^Z(<?))

is bijective for any q and any n.

We are reduced to the case n == i and ^p e K by the following general lemma.

Lemma (5.13). — Let k be afield and p a prime number which is invertible in k. Let
E == k(^y) where ^ is a primitive p-th root of i. Fix q^_ o.

(i) If the cohomological symbol h^ ̂  is surjective, A-^K is surjective for any n.
(ii) IfA^E is injective and A^1 is surjective, then A^ is injective for any n.

The proof is identical with the case q == 2 treated in [19].

(5.14) We prove the surjectivity of A^g in the case F is separably closed and
^ eK. Let C(K) be the quotient A^KVSA^K). For the proof that C(K) == o, it
is sufficient to show the injectivity of C(K) -> C(L) for any extension L/K of the type
of (5.4). Indeed, as an inductive limit of successions of such extensions, one obtains
a henselian discrete valuation field K with algebraically closed residue field. The
cohomological dimension of K is one ([i6], Gh. II, (3.3)), whence hq(K) == o for
q ̂  2. Hence C(K) == o and this will imply C(K) = o if we prove the injectivity
of C(K) -> C(L). Let G =-- Gal (L/K) and consider the diagram with exact rows

o —> SA^(K) —> A^(K) —> C(K) —> o
I |- I
y v T

(5 .14.1) o —> Sh^L)0 —> ^(L)® —> G(L)G

cor

hW

(note that cor o res == o). By induction on q, we may assume hcl~l(K.) == Shq~l{K)
and ^^(L) == S^'^L). Then, by (5.4), the sequence

^(K) -^ ^-^L)^ -^ A^-^K)

is exact. Hence, by (3.2)5 the sequence

(5.14.2) SA^^K) ̂  A^(K) -^> A^(L)

is exact. By the diagram (5.14.1), the injectivity of C(K) -> G(L) follows from the
exactness of (5.14.2) and that of (5.4.1).

(5.15) Now we prove the bijectivity of A^ assuming ,̂ e K. Note that we
have already

^(K)/-ir ^(K) 4- SATO-lT A^(K).
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Let K^ denote the maximal unramified extension of K, F, the separable closure of F,
and let Gy = Gal(FJF) s Gal(Kn,/K). One has ft^=^®yF,, whence also
B^ £ Bĵ , 0^ F^. In particular by (5.2), gr"1 A''(KJ £ gr'» A»(K) ®p<, F^ for \ <_m< e ' ,

so H°(Gy, U1 A'(KJ) ^ U1 ̂ (K)/^' ̂ (K)
H^G^U^KJ) =o r>o.

The exact sequences (cf. (5.3))
o —> Ui ̂ (KJ —^ A»(KJ -^ v£ ® 4-1 —^ o
o -^ ̂  —^ Z^ Iz^ ̂  _^ o

give
H°(GF, ^(KJ) = SA^^/U^A^K) s ̂ (^/U^^K)
H\G,, ̂ (KJ) = (^/(i - C) Z^p) ® (OF'/(i - G) Z^1)
H^G^ A^(KJ) = o r^2.

The spectral sequence with Z//»Z coefficients
H^Gp^KJ) ^A^^K)

yields exact sequences

(5.15.1) o -> (^-'/(i - G) zr1) ® (^-'/(i - c) zr2)
-^^(^-^^(^/U^^K) ->o.

As in (5.1), let a be the residue class of p-n:'6. The congruence
(i -^-^ -j&modT^1

shows that multiplication by the residue class of (i — ^p)^"^ gives a morphism
n^(i -G)Z*,->^/(I +^G)ZI.

So by (5.1)3 the exact sequence (5.15.1) shows that V 6 ' ̂ (K) ^ U6'^(K) and also
^(K)/U^(K) ^ ^(K)/U^^(K).

6. The sheaf M;

Our objective in this section is to prove theorems (1.4) and (1.5) describing the
sheaf M^ on Y^.

We first determine the structure of M^. Let L^M^C M^ {m>, i) be as
in (1.2) and let U° M^ == M^. Without loss of generality, we may assume that Y is
connected. Let v be the generic point of Y, and let T : v -> Y be the canonical map.
Note that the structure of T* M[ is known by the preceeding section, for the stalk M^
is isomorphic to the Galois cohomology group of the quotient field of the strictly henselian
discrete valuation ring (P^.
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Proposition (6.1). — Let the notation be as above. Then,

(i) MI -> T^ T* MI is infective.
(ii) For ̂  m ̂  o, ^ mzw^ m^ O/'T^ T^U^ M )̂ ^ MI coincides with U^ M .̂
(iii) T^ graded sheaves gr^M^) ̂  described as in (1 .4 .1 ) .

In the first version of this paper, we proved this structure of M^ using an injectivity
theorem of 0. Gabber. For y eY, let G^y be the strict henselization, and let K be
the quotient field of the henselization of G^y at the generic point of the special fiber
of Sp ^x,y Gabber proved that

M^- = W (Sp (^ [-] ), Z^ Z(y)) -> IP(Sp K, Zip- Z{q))

is injective, as a consequence of his general results [7] [8]. In the case n == i, this
is nearly (6.1) (i). It is possible to prove (6.1) using this injectivity, but in this paper
we adopt another simpler method found later.

Proof of (6.1). — We first prove the injectivity of M^-> T^T* M^. Let T be
its kernel. Since the problem is etale local, we may assume that X === P^ and k is
separably closed. Furthermore, by induction on n, we may assume n '>_ i and that
the stalk of T at any non-closed point of P^ is zero. We may assume also that ,̂ e K,
by a trace argument. Let G == Aut(P^) be the projective general linear group,
Z[G] the group ring, and let I C Z[G] be the augmentation ideal. The ring Z[G]
acts on the cohomology groups H^P^.M^). Since T is a skyscraper sheaf,

(o) 4= T => 1^ r(P^, Mi) + (o), any N >. i.

On the other hand, by induction on q we may assume that (6.1) holds for M^
for any t^ i. In particular, M^"^ will have a filtration stable under G whose graded
pieces are direct sums of sheaves like

"Ppo,, "P?> df^.

These are absolute differentials and not relative to A, but Q^ has a filtration stable
under G whose graded pieces are isomorphic to Qpn^® Qj|~\ and there are exact
sequences

o ——> iy -°^ WW-1 ——> d0? ——> o

o ——> ̂  ——> ̂  lzc:1> ̂ Id^-1 ——> o.

Thus we will have (since I kills H'(P^ D^))
^H^P^, Mi-1) == (o), f^ i, N > o.

This implies
I^E0,^ (o)

in the spectral sequence
E^ == HW, Ml) => IP^, ZIpZ).
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But IP(P^, ZIpZ) maps surjectively on E°^ and

IP(P^) ^ ® H^(P|) ®H^(Sp K)

so I^H^PK) == (o) f o r N ^ i .

This contradiction implies T = (o).
Let V^ M^ C M^ (m >_ o) be the inverse image of T, T" U^ M^, and let

gry(M^) =VmM^VW + lM ([ . By the injectivity of M^->T,T*M^, we have using

(5.1) (ii) Vm Mi == o for m>_ e ' ==. —~— with e == e^. Furthermore, we have
P — 1

^Y,lo,©^Y:lo1, m==0

jQ^-1 o<m<e^
p t m ^ g^(M?)

B^eBp1 o<m<e'
P I w

T,T*^^®T,T*t2^

7-1gr^(Mn ̂  ̂  T* gr" M^ = T, T* ̂
(T.^B^e^T-Br1 ,

and we must show that the inclusion (*) is an equality for o < m < e\ Indeed, for
o< m< e\ the sheaves on the left map onto gr^ M[ as in § 4. Since 0.^ -> T, T* 0.{r
is injective, we see that (*) is an injection. For m == o, the inclusion

^Y,lo,®^Y:lo^g^(Mn

follows from the fact ([io], Th. (02.4.2)) that O^^og is generated etale locally by
logarithmic forms.

Now, let T be the cokernel of the map (*). We may assume again that T
is a skyscraper sheaf. We proceed just as above. By downward induction on m,
V^+1 Mi = Vm+l Mi and it has the structure described in (6.1). Hence

Î H ,̂ V^ Mi) = (o) for some N ̂  o.

From this, we have again
(o) + T => 1^1 ,̂ Mi) =f= (o) any N >, i.

Now the same argument as above proves that T == (o).
Next we study M^ for n >: i.

Corollary (6.1.1). — For n>_ i, M^ is generated locally by symbols.

This is reduced to the case n = i by induction on n using the exact sequence
M^_i -> M^ -> MI, and the case n == i follows from (6.1).
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For o < m < e ' and n, q >_ o, let G^ be the sheaf on Y defined to be the sheafi-
fication of U h^Gr^ for R == ^(U) defined in (4.7).

Proposition (6.2). — ^-S-gr^^M^ /or o<m<ef.

Since the problem is to prove the injectivity, we are reduced to the case $ e K.
The exact sequence on V

o —> ZIp^Z^q) -^> WZ{q) —> ZfpZ{q) —> o

and the isomorphism Mp1 ̂  f R^-^Z/^Z^)) induced by ZfpZ 4. ZfpZ{i); i -> ̂
yield an exact sequence

Mi-1 -^ M^i -^> M^ —> M^ —> o.

Here the surjectivity of M^ -^ M^ follows from the fact that Mj is generated locally
by symbols.

Lemma (6.3). — The boundary map 8 satisfies

8({^, ...,^-i}) ={^i. ...,^-i}-

7)z particular, 8(M1-1) C U^ M;_i zcA^ '̂ = —^—. (JVb^ ^A^ ordK(^ — i) = e".)

The proof is straightforward and left to the reader.

Lemma (6.4). — Let i < m < e' and let m^ be the smallest integer such that m ̂ pnio.
Then the sequence

U^M^.i^U^M^—>VmM<[—>o
is exact.

Proof. — If I ^ e ' is an integer, then as sheaves in the etale topology
i + ̂  v Q^ c (i + T/-6 ̂  (p^y

whence U^ M^ C " p " \]e-e M^_i.

Taking ^G^ = (o) if m is not an integer, the lemma will follow from the exactness
of the sequences
(6.4.1) ^G^i^^—>mG<[—>o, i^m<e\

and from ^G^ g^ MI (6.1) (iii).
We show the exactness of (6.4.1). If p \ m, then

^G^^-1^^.

Also "̂  -> ^G^ for n' > n so it suffices to consider the case n > j, p \ m. In this
case, the map <c p " is induced by the inverse Carrier operator C~1 and one finds

^/("^ "^G^-i) ^ (^-V7!"1) ® (^r1/2!"2) ^ ^G!-
jrjj
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Lemma (6.5). — For i <^m< e\ the sequences
o —> gî /P M î -X gr^M^ —> gî M? —> o

ar^ ^a .̂ (2?y convention gr^ == o if x ^ Z.)

If ^ f w, this follows from
^ "G^

gr"̂  -^ gr'»MI.

If p | OT, by (6.3) and (6.4), we have exact sequences

Mp1 -̂ > UOT/p+ lM^_l -^ U'"-1-1!^^ —^ U)»+1M? —> o

Mr1 U^M^.i U"^ ^"M?

which prove the lemma.
Now, the proof of (6.2) follows using (6.5), (6.4.1) and induction on n.

(6.6) Fix a prime element TI of K. We prove that there is an isomorphism

(6.6.1) ^M^-^w^n^^ew^^
such that

{/i, • • -,/JH- [diogfi ... diogf,, o)

{/n • • •,/,-!, w}^ (o, diogf^ ... diogf^)

for any local sections/i, ...,/, of i*((Px). Here ̂  is the image of/, in 0^ and
d log : ̂  -»• W, Q,^ i,g is the homomorphism of [10], (3.23.1). We prove also the
existence of the canonical homomorphism

(6.6.2) M;S-^U»»^/8

stated in (1.5).
By (5.12), M^; is isomorphic to the mod ^"-Milnor K-group of the quotient

field of (D^^. This proves the existence of the vertical arrows having the desired
properties in the following diagrams:
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M^ —> T,T-M^

^
W,Q^®W^^ c^ T^(W,Q^®W^^)

M^ —> T^M^

"W^x/s ̂  ̂ (Q^^s)

The existence of the homomorphisms (6.6.1) and (6.6.2) follows from the injectivity
of the lower horizontal arrows and from the fact that M^ is generated locally by symbols.

The bijectivity of the homomorphism (6.6.1) is reduced to the case n == i by
the diagram

M^._,/U1 M^ -^ M^/U1 M^ —— MI/U1 Mi —— o

o —> w^Q^®w,_,n^ —> w^o^®w,i474 —> n^®Q^ —> o

Lastly, we give a description of a sheaf L^ on Y^r closely related to M^. Let
s : Y^ -> Y^y be the canonical morphism of sites. Let L^ be the Zariski sheaf asso-
ciated to the presheaf U ^H^(U, i'R/^Z/^Z^))), so,

L^R^Rj,(Z/^Z(y)),

where the notations i* and R/^ are used in the sense of etale topology as before. Then,
the etale sheafification of L^ is M^. By Gabber [9], the stalk L^y of L^ at y eY

coincides with the etale cohomology group H^ (Sp (A - ), Z/^"Z(y)) where
\ \ VP\1 I

A == (s^i*^x)y ls ^e " henselization along Y 9) of fi^y- Thus the study of L^ is a
natural generalization of the study of the Galois cohomology of henselian discrete
valuation fields in § 5. Define the filtration of L^ in the same way as in the case of M^.
As in (5.15), by using the spectral sequence

E^ == R5 e, M[ => L^ assuming ^ e K,

we can deduce from (1.4.1) a structure theorem of D[. The structures of gr^L^)
with n ̂  2 and o < m < e ' are obtained by the methods of (6.2) and (6.3).
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Theorem (6.7). - (i) gr°(H) ^ W^Q^^CW^Q^ and gr̂ H) ^ ̂  for
Q<m< e'. Here W^Qy^ and ^G^ ^o^ ̂  restrictions to the Zariski site of their etale
versions.

(ii) Assume that e' is an integer and let e' == p3 r, s >_ o, p \ r. Take a prime
element n of K and let a ek be the residue class of pn~\ Then, for n <_ s, gr^L^) is
isomorphic to

(^-'/(i + aC) ZJ © (OF'/(i + aG) ZJ

where the quotients are taken in the sense of Zariski topology. For n> s, gr^L^) is isomorphic
to the cokernel of

OF2 -> W/(i + ̂ C) BJ © (^-"/(i + ̂ G) BJ

o) ̂  ((i + aG) G-^O)), (- i)^ r(i + aC) C-^o))).

Remark (6.8). — Contrary to the case o<_m<et, gr'^H) and gr'^M^) are
not determined by only n, q and e. Their structures depend in a subtle way upon the
nature of K. The structures of gr^L^) and gr^Mjy with m > e' seem to be closely
related to the number of roots of i of ^-primary orders contained in K.

7. Ordinary Varieties

Throughout this paragraph, Y will denote a complete, smooth variety over a
perfect field k of characteristic p > o. For simplicity we write

V == Z^ == Ker(rf: ̂  -> O^-1),

W == BJ == Im(rf: QV-1 -> Qy.

Sheaves and cohomology will be taken with respect to the etale topology unless otherwise
indicated. The results of this section overlap with results of L. Illusie [21, IV (4.12),
(4.i3)].

Lemma (7.1). — Assume the field k above is algebraically closed. Fix an integer r ̂  o,
and assume

H^Y.B') == (o) for all q.

Then:

{i) The natural maps

^^H^Y.Q^^-^H^Y.n-)

are injective for all q.

(ii) The homomorphisms in (i) are bijectivefor all q if and only if H^B1'4"1) == (o) for
all q.
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(iii) If the equivalent conditions in (ii) are satisfied, the map

w,,^) ®^ HW ̂  i,,) -> HW ay
^ an isomorphism/or all q and n.

(iv) Assume

(*) {multiplicity of slope r in H^/(Y/W)) = dim,,H»(Y, Qy /or ̂  y.

T^ the groups H»(Y, W^J ̂  torsion free for all q, and the equivalent conditions (ii)
hold. In the absence of torsion in H*(WQ^), condition (*) is equivalent to (ii).

Proof. — For a later application, we prove that H^BH = (o) implies
HW^)®A^HW) fixing y and r. Consider the sequence

0——^Y.I,?——^-'^iW——>o.

By H»(B^=o, the homomorphism H^-1^) -^H'-1^^^^^ induced by the pro-
jection Q^-» a^B"" is surjective, and hence i — C"1 • IP-1^) -^ W-1^ W\
This shows that HW^)^HW. Let ,: HW) -> ?(0 )̂ be the injection
induced by the projection ̂  ̂  tî /B'', and take a A-linear map t: H^Q /̂B') -> ?(0r)
such that t o i is the identity map. Then, the -̂linear map (o G-1 acts on HW}
Since HW^)^Ker(i-foG-1), we have HW io,) ®A^IP(Dy by ^linear
algebra. -

Now fix r and assume H^B-) = o for all q. Then, the above homomorphism t
is byective and

Ker(i - to G-1) = Ker(i - G-1) == H îJ.

By ^-linear algebra, H»(^,J ®A £ H^) if and only if foC- 1 isbijective.
This proves (ii).

To prove (iii), the exact sequence ([io], I (3.9.1))

o -^ Q^ ̂  Ker(W« ̂  -^ W^.^ Oy -^ Q^-VZ,';-1 -> o ,

together with the isomorphisms (op. cit. (0.2.2))

ZrVZ^sB^^, B^B^/BI

implies (under the hypotheses of (ii))

HW) -^ H»(Ker(W^ ̂  -^ W^_i ̂ )).

The result now follows by induction on n, using the exact sequence

0 ̂  ̂ Y,l., -> W, ̂  -^ W^i ̂  ̂  o

and the five lemma.
To prove (iv), note the string of inequalities

(multiplicity of slope r in H^(Y/W)) = rank^H^W^g) ̂  ̂

^ rank^(H^(WDy/^) < rank^ H^^y, ̂ ) ̂  rank, ?(0^).
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Equality of the extremes forces (ii) to hold and the torsion subgroups of HP^Wi^' )
and HP^Wtly to vanish. In the absence of torsion, (ii) is equivalent to this equality.

Definition (7.2). — Let Y be a smooth, proper variety over a perfect field k of
characteristic f> > o. We say Y is ordinary if H^Y, V) = (o) for all m and r.

Let k be the algebraic closure of k, Y = Y^.

Proposition (7.3). — The following conditions (i)-(5) are equivalent.

(1) Y is ordinary.
(2) H^Y.^y^F^^H^Y,^) for any ?, r.
(3) ir(Y, W ,̂) ®z^zW^) ^JP(Y, W^) /.r ̂  ^ r, n.
(4) IP(Y, Wt^) ®z,W(A) ^IT(Y, W^) ybr any q, r.
(5) F : IP(Y, WQy -» H^Y, WQy ^ 6y^^ /or fl̂  q and r.
Moreover, Y is ordinary and H^yg(Y/W) ij torsion free for all q if and only if the following

condition holds:
(6) For any q, the Newton polygon defined by the slopes of the action of frobenius

on H^(Y/W) coincides with the Hodge polygon defined by the numbers dim^HP'̂ Y, ^y/fc)-
T^H^Y, Wtiy) ls torsion free for any q and r, these conditions (i)"(6) are also equivalent to
(7) For any q, the slopes of frobenius on H^(Y/W) are all integers.

Proof. — The implications (i) o (2) o (3) => (4) => (5) are clear from (7.1).
To prove (5) => (2) we may assume that the ground field is algebraically closed.
Bijectivity of F implies vanishing of cohomology for the pro-sheaves Wi2*/F, and hence
the exact sequences

o -> WQ'/F -^ WQ7^ -> WQ7V -> o

o _ W^-YF ̂  WQ'/V -> ̂ r -> o

([io], I (3.15), (3-i9)) yield
(7.3.1) H-(WQ7^ ^ H^y).

In particular, H*(Wty//0 are fi11!̂  dimensional over k. Hence the exact sequences

o —> n^ —> wny^ ̂  wo7^ —> o
(op. cit., I (3.5), (5.7.2)) induce

o —> ?(0^) —> H?(Wn7^) ̂  H^(Wn7^) —> o (exact)

for all ^ and r. By the bijectivity of F, /^-linear algebra gives

k^H^^) ̂  H^(WQ7^).

By (7.3.1), this proves (2).
Assume now that Y is ordinary, k = k, and H^yg(Y/W) is torsion free. Consider
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the complex of pro-sheaves WQ^g ® W(^) with o differentials. The map on hyper-
cohomology

(7.3.2) H-(Y, WD;J ® W(k) -> IP(Y, WQ-) = H:^(Y/W)

gives rise by (4) to an isomorphism on the E^ terms of the corresponding spectral
sequences, and hence is itself an isomorphism. Thus H^Wti^g) is torsion free for
all q and r. Condition (6) now follows from (7.1) (iv).

Assume that (6) holds. We apply (7.1) (iv) inductively starting with r == o to
deduce that Y is ordinary and the IP(W£2y are torsion free. Using (7.3.2), we see
that H^yg(Y/W) is torsion free also.

Finally, ifH^(Y, WtY) is torsion free for all q and r then the slope spectral sequence
degenerates at E^ [10] and the slopes s of H^/(Y/W) with r ̂ j< r + i are given
by the slopes o f^F on H^Y, VW). Conditions (5) and (7) are then seen to be
equivalent. The proof is complete.

Example (7.4). — Let Y be an abelian variety over k. Then, Y is ordinary in
the sense (7.2) if and only if it is ordinary in the classical sense (i.e. pY(A) ^ (Z/^Z)^^^).
Indeed, for an abelian variety Y, there are isomorphisms

H°(Y, Q^J ^ ,Pic(Y), Hi(Y, Z/^Z) ^ Hom(,Y(A), Z/^Z).

The orders of these groups are ^dim(Y) if and only if the equivalent conditions

k ® H°(Y, Q ,̂) ^ H°(Y, ny, k ® H^Y, Z/^Z) ^ H^Y, <Py)

are satisfied. Assume these conditions are satisfied. Then,

IP(Y, Qy) ^ AH^Y, 0} 0^AH°(Y, Q^)
shows that

k ® H^(Y, Qy,^) -^ IP(Y, ny.

By induction on r using (7.1) (i) (ii), it follows that Y is ordinary in our sense.

8. A vanishing theorem

Let the notation be as in (o. i). In particular, X is smooth proper over S == Sp A,
V === X^ is the generic fiber and Y == X^ is the closed fiber.

By base change, we obtain diagrams

V®^K' -^ X(S^A' ^— Y®^' V —'-> X <——Y

SpK' ————> S' ^———— S p k ' SpK —> S <— Spk
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where K' is a finite extension of K, S' == SpA' is the integral closure of S == SpA
in K' and k' is the residue field of K'. Let

M^=^R^:(Z/^Z(y)),

M^ = f ̂ JW Z(?)) = Hm M^K',
_ K'

UM^ == 1m U1 M^K' C M^.
K^

By (6.6), we get an exact sequence

(8.0.1) o^UM^M^W,^->o,

for the symbols {^i, ..., x^_^ n} die in the limit M^. Since M^ is generated locally
by symbols (1.4), the long exact sequence

... -> MF^I) -> M^ -^ M^^ -> M^ -> M^- i ) - > . . .

breaks up. So in the diagram

o o oi i
o ——> UM^ ———^ UM^ ———^ UM^ ——> o

[ I [
(8.0.2) o ———> M^ ————> M^i ———^ Mi ——> o

i i i
o —* w.Qt.i. -^ w.+ifl'^t, —> I4,, ̂  o

i l l
0 0 0

the bottom two rows are exact as are all three columns. It follows that the top row
is also exact.

The aim of this section is to prove

Theorem (8.1).— Fix q and r, and assume IP(Y, By = (o). Then, H^Y, UM^) = (o)
for any n.

Corollary (8.2). — I / V i s ordinary, we have ?(¥5 UM^) = (o) for any y, r, n.
The proof of (8.1) is rather long and complicated. There is a shorter proof

of (8.2), and we give it first.

Proof of (8.2). — We may assume that the residue field k of A is algebraically
closed. By (8.0.2), it suffices to show that H^(Y, VM[) == (o). For this it is enough
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to show that the map H^(Y, U1 MI) -. IP(Y, VM[) is zero. We proceed by induction
on r. When r = o, M; = (Z/^Z)y and U1 M; == (o). Assume the result for all
t< r. In particular, after ramifying, we may assume that the maps

H-(Y,Mi)^H*(Y,a^)

are onto for all t < r. For any integer m >, i and any u e W(yfe) consider the diagram

H*(Y, U"*+1 MI) —^ H*(Y, U" MI) -̂  H* (v, ( ̂ ~l 1

f \ (B^-^ByJ

H*(Y, MI-1) ————. H*(Y, Q^)

where the left hand vertical arrow is a ̂  (i + u^.oi and the right one is induced
by the natural inclusion Q^g C iiy-1 followed by multiplication by the residue class u
of urn k. Note that U-MI = (o) for m > o. Proceeding by downward induction
on m and using the hypothesis that Y is ordinary, we see that any class in H*(Y, U1 MI)
can be written as a finite product

n(i+M.TCOT••).a.

with a.eW(A) and a.6H*(MI-1). Since (i + u^}^ e A, we conclude that the
map H*(Y, U1 MI) -> H*(Y, UMI) is zero as claimed.

Now we give the proof of (8.1). In (8.3)-(8.6) below, we do not assume
?(3^ = (o). However, we shall always assume k = k and ^ e K without loss of
generality.

Definition (8.3). — Fix r^ o. For an element b of K*, let U? be the kernel
of U^MI^MI-^. Let gr^U^/U^1.

Lemma (8.4). — Assume that ord^(b) is prime to p.

(i) For m >_ i, U^ is generated locally by local sections of the forms

(8.4.1) {x, —b} with A;eU'»MI-1,

(8.4.2) {i-fpy^,g,,...,g,_,}

where f,g^...,g,_^e i* 0^ c e K*, and s is an integer such that p \ s and ord '̂ c^ >, m.
(ii) For o < m < e', we have an exact sequence

o -^ gr^ —> gr'»(MI) -^ B^ —^ o

where ?„, is the homomorphism induced ^(1.4.1). {Irrespective of whether or not p \ m, (i. 4. i)
gives a swjection gr̂ MI) -» n1'-1/2!"1 £ B1'.)
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Proof. — Let o < m < e\ It is clear that the local sections (8.4.1) and (8.4.2)
are annihilated by u {b}. Furthermore, the class of these local sections fill out Ker(/^).
So we obtain diagrams

^ _^K(^ ^ ^ ±ordK(6) , B^

n

grWVgC ̂  grW^) g^Wlgr^ ̂  gr̂ M )̂

(P \ m) [p\ m)

which prove gr^* = Ker(p^).

Definition (8.5). — Let L be a finite extension of K. For o < w < L

p - 1e-f p(^ = ord^(p)), let n == ——— — m, and define
P — i

U, M^ = U" M[^ gr,(M^) = gr^M^).

We have thus an increasing filtration

(o )=UoM^CU,M^C. . .

Since e^ varies with L, it is not true that

resL/K(U,M^)CU,M^.

However, we have the following result.

Lemma (8.6). — Let b be an element of K* such that ord^(b) is prime to p. Let
Cvp

o < m < e ' = ———, and let V^ = U^, gr^ == gr^ z^r<? n == e ' — m. Consider

the following two cases.

Case i. — Let L = K(a) wA^ (— a)19 == — b, and t = e ' .

Case 2. — Assume o < ord^) < e ' . Let L = K(a) where (i — ̂  = i — b
and let t = e ' — ord^A). Then, in both cases, we have the following (i) (ii) (iii).

(i) For m<t,

res^K(U,,JCU,M^.

(ii) If m < t and p \ m,

resL/K(U,,JCU,_,M^.
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(iii) If m < t and p \ m, we have the following commutative diagram.

Z^-1 -^ ^-1

Vm U Z\\ ^

g .̂m -Ms> grJM )̂

where C is the Cartier operator, and ̂  and ̂  are isomorphisms defined below.

(iv) In Case 2, we have the following commutative diagram:

Zy-1 -°̂  Q-i

145

^M -m> g^ .̂L)

wA^r^ 9^ and ^^ are isomorphisms defined below.

In (iii), the definitions of <p^ and ^ are as follows. Fix an integer s and an
element . of K* such that ord^b8 c^) == .' - m. Then, 9, is the homomorphism
induced by

^-^grJM^K)

^^•^^^^-^^^^-••^.-xL
^l -7r-l

and ^ is the homomorphism

^-^gr^M^)

^A • • • "t^^^ +^^Jn ...,^-x}.
-^1 Jr — 1

The homomorphisms 9, and ^, in (iv) are defined in the same way for the particular
choices m = ^ ^ = i and c == i.

Proof. — Let o < w < e' = - ,̂ &, c e K\ and a e L* be as above. Note

that L is a totally ramified extension of K of degree p and ordi/fl) = ord^) both
in Case i and Case 2.

In Case i (resp. Case 2), (8.6) will be the consequence of the following (8.6.1)

145
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and (8.6.5) (resp. (8.6.3), (8.6.4), (8.6.7), (8.6.8)) and of the fact that Z'-1 is

generated by y~1 and elements of the form A^—1 A ... A r-l.
^ Vr-1

Let / e i* 6^ and let y^ be the maximal ideal of L. By the binomial theorem,
we have

(i -(fcfY = i -^€/^~^p/pmod<p~M+li^x

with ord^{pa8 c) = e' p — m

ord^P c?) = e1 p — mp.

In Case i, this shows that

(8.6.1) {i -^^/^}={i +pascf}modVelp-m+lM^

in M{ L. In Case 2, the equation (i — aY = i — i shows that

(8.6.a) ^ = i --^modmif-1^1

with ordj^=(^-i)^.

Hence we have
(I-_^)P^ i _^^_L -^jV^^yp

^ i ̂ pa8cf-b8cpfp+spabs-lcpfpmodm^-m+l^^

with ordL(&8 ^p) == e ' p — mp
ord^pabs~lcp) == e ' p — m + (p — i) {t — w).

This shows that, in M^,
(8.6.3) {i - b8 cF/?}=={! +pa8cf}modVe'p-m+lM^

for o < m < t, and (put m === ^3 ^ == i and <: = i)
(8.6.4) { i -^}={i +^(/-/P)}modU^-<+lM^.

On the other hand, in Case i,
(8.6.5) res({M^ - b}) = o in M^.

In Case 2, by (8.6.2)

(8.6.6) { b } ^ { - b } = = i i +pa^modV^-^t+lM^.

Hence we have in this case, for o < m < t,

(8.6.7) res({U6 f-mM^K,-^})C{U^-^M^,U^- l)<M^}
C U6^-^-^^-1^]^^ by (4.1)
C U6^-"14-1^!^.
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Also (8.6.6) shows in Case 2

(8.6.8) ^ - ^ -b }= i l - b f , l +p a \
[ o f

== f i +Pqf,P^}modVefP-t+lM2^

by the proof of (4. i).

Lemma (8.7). — Assume HP(Y, B') == (o). Let b be an element of K* such that
ord^{b) is prime to p, and let o< m< e', p \ m. Then, in the commutative diagram

IP(Y, U^) IP(Y, U"1 M[)

(8.4) (u)

H^Z^-1) -̂ -> H^(Y,^-1)

^A^ homomorphisms i and j are surjective and Ker{i) -> Ker(j) ^ <z/jo surjective.

Proof. — By (8.4) (ii), U^ M^/U^ has a filtration whose successive quotients
are all isomorphic to B". Hence IP(Y, l^M^U;") = (o) and

IP-^Y, U" MI/UD -^ IP-^Y, y).

The lemma follows from the diagram

H^-^U'M^/UD —> HW) ——^ H^^MI) —> H^MITO =(o)

H^-^B') -> H^(Z1-1) —> H^n^r1) H^B-) == (o)

(8.8) Now we are ready to prove Theorem (8.1). We prove the following fact
by induction on m ̂  o.

(8.8.1) For any finite-extension K/ ofK such that m< €K , the map

H^(Y,U,M^-)^H^(Y,UMO
is zero.

First assume p | m and m ̂  i. We replace K/ by K. Let

^eH^(Y,U,M^K) l ^ m < e K P - , p\m.p — i

W
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Let b be an element of K* such that ord^{b) is prime to p, and let L = K((— b)^).
By (8.7), x comes from HP(Y, U^). By (8.6), we have res^U^J C U,_i M^.
Thus, the image of A: in IP(Y, VM[) is contained in the image of H^Y, U^_iM^),
and this completes the induction in this case.

Next, we consider the case p \ m. Fix a ^-linear section s of the surjection
H^Y.Z^1) ->IP(Y,t^-1). Then, C o j acts on W{Y,^-1). We say that an
element co of I-P(Y, Q^~1) is of order <^ z, if there are elements (3i, ..., (3, of yfe such that

(C o s — pi) o ... o (G o s — p,) (<o) =0.

( G o j — p means co h> C o J((o) — (Bco.) Then, any element of H^Y, tl^""1) is of
finite order. For b e K* such that ord^) == ^' — w, the isomorphism

p,: ^-^grJMI);

^^...^^_^{i_^^...^,_,}
^l J r̂ — 1

induces a homomorphism
p,: H»(Y,U^MO^H'(Y,QY-1).

It is easily seen that for an element x of HP(Y, U^ M^), the order of ^(x) is independent
of the choice of b. We call this independent order of ^{x) the order of x. We prove
the following assertion by induction on i.

(8.8.2) For any K' such that m< €^p- and for any x eWCY,V^M[^) of
_ p— i

order <_ t, the image of x in H^Y, UM )̂ is zero.

We replace K' by K and let A* be an element of H^Y, U^ M^) of order i >, i.
By easy ^-linear algebra, we can find an element b of K* such that ordg^) = e' — m
and such that one of Co s(^(x)) and (C o s — i) (p^A:)) i s o f o r d e r < t — i . By (8.7),
there is an element y of IP(Y, V^) whose image in H^Y, U»» M[) is AT and whose
image in HP(Y, Z'-1) under

U^gr,,̂ Z-

is ^(p^A?)). In the case G o s{^{x)) (resp. (C o s — i) (p^))) is of order < i — i,
let L = K((- OT (resp. L = K((i - b)^)). The image ofj^ in H^Y, U^M^)
is of order ^ i — i by (8.6), and it has the same image as x in H?(Y, UM^). This
completes the induction on i and hence proves (8.1).

9« p-adic cohomology

Keep the notations of § 8. We consider the spectral sequences
E^ = H^Y, Ml) (- t) => H^(V, Zip9 Z)
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and the associated filtration. Let

HUYW))^ == Ker(F - p-: H^ ->H^).

TA^m (9.1). — F^ y^o and assume W-^Y, B )̂ = o for all i. Then, we
have canonical isomorphisms of Gal(K/K) -modules

(9 .1 .1 ) gr^H^V, %,) ^ H^(Y/W(A))^ (- i)

(9.1.2) gr^-H^V, Q )̂ OO^W(A) ^ H^-^Y, WQ% (- i)

yor a// i.

Proof. — By (8.1), the exact sequences

o^UM;^M^WA^->o
give injections

T-r9-»IP-(Y, M;) -^H'-(Y, W,,0^).

Furthermore, ^-(Y,^^) is finite by the proof of (7.1) (i) and hence
Hq '(^ ^n ^.log) are finite. Since passing to the inverse limit preserves the exactness
for systems of finite groups,

gr»-<H»(V,Zp) ^Hmgr»-H'(V,Z^»Z)
n

is canonically isomorphic to a subquotient of ImiH -̂̂ Y, W^ ̂ , ). Thus we have
W

dim,^ W(V, %,) ^ S dim,^ ?-(7, W^),

^Sdimw^H^-^Y.WQ^,

= dim^),H^(Y/W(A)), == dim^H»(V, ̂ ).

Hence all the inequalities are in fact equalities. This proves our theorem.

Corollary (9.1.1). — If k is perfect and IP-'(Y, B'y) = o for all i, H^(V, Q, )
admits a Hodge-Tate decomposition (cf. § o). p

This follows from (9.1) and the result of Tate (0.9).
We prove some integral statements assuming Y ordinary.

Theorem (9.2). — Assume Y ordinary. Let S,, = Spec(A/^»A) and X, = X Xg S,,.
Then, we have, for all r and n,

(9.2.1) H»(Y, M;) s IP(Y, W,, ̂  i<,g)
(9.2.2) H»(Y, M^) ®^p,^ W,(A) s H'(Y, W, Q'y)
(9.2.3) H'(Y, M;) ®^z A/^A ^ H»(X,, Q^).

Proo/'. — The first two isomorphisms are clear from (8.1) and (7.3). To give
(9.2.3), we use the map M^Q^ of (1.5).
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For n == i we consider the diagram (A^ = A/^ A)

H\M[) ®Ai ^ H'CY, Q|̂ ) (x) A, -^> H^X,, ̂ )

H^^) ®A ——^-> H^Y, Q9)

By passing to the limit over discrete valuation rings contained in A, one sees that (*)
is an isomorphism, proving (9.2.3) for n = i. We now consider the diagram on
cohomology associated to

o —> M^®A —> M^i®A Mi® A o

Q| ^ ^

and apply the 5-lemma. Q^.E.D.

Corollary (9.3). — Assume Y ordinary and let D == HmA^ 6^ ̂  nw,? o/ integers in Cp.
r̂ ,
(9.3.i) (^mH^Y, M^)) ®^D ^ H^(X^ ̂ ^)

n

/or a// y an<f r. If k is perfect, we have for all q,
(9.3-a) I%(V,%p)®C,= ©^-'(V.Q^^KCpC-O.

*6Z

Corollary (9.4). — Awww fAaf Y M ordinary. Then the spectral sequences
E^ = Hm H'(Y, Mj.) (- f) ^ H^^V, Z,)

^-l
degenerate modulo torsion at E^. Tjf dim(V) < , ^ spectral sequences

{SK,?- i)
E^ = H^Y, M ,̂) (- <) ^ H8^ '(V, Z/^" Z)

degenerate at Eg/or ̂  n.

Indeed, the last assertion in (9.4) follows from the facts that
Hom^(K/K,)(Z/̂ (i) (K), ZIpU) (K)) = (o)

p~ x— and that M^ = o if y>dim(V).if o< |i-J'|<
(^K,^- i)
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Lemma (9.5). — Assume k perfect and Y ordinary, and fix q ̂  o. TA^, the following
four conditions are equivalent:

(i) H^(Y/W(^)) ^ torsion free,

(ii) HP-^Y, Way ̂  torsion free for all i;
(iii) H^(X/S) =IP(X,Q^s) is torsion free;

(iv) H^X^x/s)^ torsion free for a l i i .

Proof. — The equivalence of (i) and (ii) are proved in the proof of (7.3) by showing
that

H^(Y/W(A)) ^ ©H^CY, W^).

Similarly, consider the complex of sheaves on Y
M;€)D

with zero differentials. The map of complexes M;®D -^x^ which induces an
isomorphism of E^-terms, shows that

H^(XJSJ ^ © ̂ -(X^ Q^).

Hence, (iii) and (iv) are equivalent. The equivalence of(ii) and (iv) follows from (9.2).
The following result is now deduced from (9.2).

Theorem (9.6). — Assume that Y is ordinary and that H^(YIW(k)) ̂ H^Y/W^))
are torsion free. Then, for all i, we have

(9.6.1) gr^H^V, Z,) ^ H^(Y/W(A))^(- z),
(9.6.2) gr^-1 H^(V, Z^) ®^ W(A) ^ H^(Y, WQ1) (- z),

(9.6.3) g^-Hj^V, Z,) ®^ D ^ H^-^X^ 0^) (- ^•
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Added in proof. Since this paper was written, there has been considerable progress. Fallings has shown
that the cohomology of any smooth proper variety over K has a Hodge-Tate decomposition, and work of Fontaine
and Messing has thrown much light on the structure of these representations in the non-ordinary case.
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